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Abstract

Protein-protein interactions are of special importance in cellular processes, including replication, 

transcription, recombination, and repair. Escherichia coli topoisomerase I (EcTOP1) is primarily 

involved in the relaxation of negative DNA supercoiling. E. coli RecA, the key protein for 

homologous recombination and SOS DNA-damage response, has been shown to stimulate the 

relaxation activity of EcTOP1. The evidence for their direct protein-protein interaction has not 

been previously established. We report here the direct physical interaction between E. coli RecA 

and topoisomerase I. We demonstrated the RecA-topoisomerase I interaction via pull-down assays, 

and surface plasmon resonance measurements. Molecular docking supports the observation that 

the interaction involves the topoisomerase I N-terminal domains that form the active site. Our 

results from pull-down assays showed that ATP, although not required, enhances the RecA-

EcTOP1 interaction. We propose that E. coli RecA physically interacts with topoisomerase I to 

modulate the chromosomal DNA supercoiling.
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1. Introduction

Protein-protein interactions (PPIs) are essential features of almost every cellular process 

(Coulombe et al., 2004; Perkins et al., 2010). Genomic processes including DNA replication, 

transcription, translation, recombination, and repair require an ensemble of proteins 

(Coulombe et al., 2004). PPIs, especially transient protein interactions, are vital in the 

regulation of the above-mentioned genomic processes (Perkins et al., 2010; Ngounou Wetie 

et al., 2013). Proteins involved in transient interactions can function as independent units in 

the cells, and certain post-translational modifications on these proteins or binding of ligands 

can trigger the protein interactions. A protein's function is defined and controlled through 

interaction with other proteins, or biomolecules (Ngounou Wetie et al., 2013).

Understanding protein-protein interaction network in Escherichia coli would be essential in 

broadening current insight on the fundamental cellular processes. PPIs involved in DNA 

damage response would be important for the development of antibiotic resistance (Marceau 

et al., 2013). We are reporting here a direct physical interaction of RecA, the key player of 

homologous recombination and SOS DNA-damage response in E. coli, with DNA 

topoisomerase I. RecA family of recombinases, conserved in most of the bacteria, are ATP-

dependent proteins mediating homologous recombination, DNA repair and genome integrity 

(Karlin and Brocchieri, 1996; Lin et al., 2006; Cox, 2007). Homolog searches have provided 

evidence for conservation of RecA in bacteria, archaea, and eukaryotes, although, the 

functions of the homologs have diversified with evolution. Most of the archaeal species have 

two RecA homologs (RadA and RadB), whereas the eukaryotes have multiple 

representatives of the RecA family (Rad51, Rad51B, Rad51C Rad51D, Dmc1, XRCC2, 

XRCC3, and RecA) (Lin et al., 2006). RecA monomers bind to single-stranded DNA 

(ssDNA) in an ATP-dependent manner forming an active nucleoprotein filament (McGrew 

and Knight, 2003; Bell, 2005). E. coli RecA, a prototype of RecA family of proteins, has 

multiple roles in the cell. RecA catalyzes the DNA strand exchange mechanism by coupling 

with ATP hydrolysis, promoting the recombination process (Howard-Flanders et al., 1984; 

Cox, 1999; Cox, 2002; Lusetti and Cox, 2002; Cox, 2003). RecA can also function as a 

coprotease of LexA, and UmuD proteins. RecA facilitates the autocatalytic cleavage of 

LexA repressor, which is required for inducing the SOS response (Little, 1991; Harmon et 

al., 1996). It can also facilitate the autocatalytic cleavage of UmuD to an active UmuD’, 

which is a component of a low fidelity DNA polymerase V that is involved in the translesion 

DNA synthesis (Patel et al., 2010).

The topology of DNA is maintained by an important group of evolutionarily conserved 

enzymes called topoisomerases (Wang, 2002). The essential genomic processes such as 

replication, transcription, recombination, and repair can create topological strain or 

entanglement on the double helix of DNA (Vos et al., 2011). Topoisomerases transiently 

cleave and rejoin DNA (Wang, 1971) to resolve the topological strain or entanglement, and 

maintain the genomic stability (reviewed in (Wang, 1971; Berger, 1998; Champoux, 2001; 

Chen et al., 2013)).

E. coli DNA topoisomerase I is primarily involved in the relaxation of negatively 

supercoiled DNA by the stand passage mechanism (Brown and Cozzarelli, 1981; Tse-Dinh, 
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1986; Champoux, 2002). It has an important function in preventing excess negative 

supercoiling of DNA (Drlica, 1992) which can affect global transcription and result in 

growth inhibition. According to a previous report, the relaxation activity of E. coli 
topoisomerase I is stimulated by RecA; suggesting a functional interaction between RecA 

and topoisomerase I (Reckinger et al., 2007). It remains unclear whether this stimulatory 

effect is due to direct protein-protein interaction between E. coli RecA and topoisomerase I, 

or is only due to the effect of E. coli RecA on DNA conformation. More recent results 

showed that mutations in E. coli topA gene coding for topoisomerase I can diminish the E. 
coli SOS response to DNA damage and antibiotics treatment (Yang et al., 2015). The 

interaction between RecA and topoisomerase I may influence the increase in antibiotic 

resistance (Hastings et al.; Beaber et al., 2004; Thi et al., 2011) and persistence shown to be 

associated with the SOS response (Dörr et al., 2009). In this study, we tested the hypothesis 

that E. coli RecA might physically interact with topoisomerase I to modulate the 

topoisomerase I catalytic activity and DNA supercoiling.

Herein, we present evidence for a direct physical interaction between E. coli RecA, and 

topoisomerase I in solution by pull-down assays (Yang et al., 2015) as well assess the 

influence of ATP, and the domains of topoisomerase I involved in the protein-protein 

interaction with RecA. We further investigated the inter-protein interaction between E. coli 
RecA and topoisomerase I by using surface plasmon resonance (SPR) and molecular 

docking. SPR is a widely accepted label-free biophysical tool in order to investigate 

biomolecular interactions (Wilson, 2002; Willander and Al-Hilli, 2009; Tiwari et al., 2014), 

including PPIs (Berggård et al., 2007; Tiwari et al., 2015), whereas molecular docking can 

be used to provide structural insights for PPIs (Smith and Sternberg, 2002; Gray et al., 

2003). The structural basis for the protein-protein interaction was predicted by molecular 

docking that shows the N-terminal domain (NTD) of topoisomerase I is involved in the 

interaction with RecA. The NTD (amino acids 1-597) contain the active site for DNA 

cleavage-religation (Lima et al., 1994). Experimental evidence supporting this prediction 

was provided from pull-down assays.

2. Material and methods

2.1. Bacterial strains and plasmids

E. coli strain BW25113 (Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ−, rph-1, Δ(rhaD-
rhaB)568, hsdR514), obtained from Yale CGSC (Datsenko and Wanner, 2000), was used for 

preparing the cell lysate used in the pull-down of RecA from total cellular proteins. Plasmid, 

pLIC-ETOP was used for the expression and purification of recombinant E. coli 
topoisomerase I with 6x-His tag (Sorokin et al., 2008). A plasmid, pLIC-NTD-ETOP was 

made similarly as pLIC-ETOP by introducing the coding sequence of the NTD of E. coli 
topoisomerase I (amino acids 1-597) into a pLIC-HK cloning vector that allows T7 RNA 

polymerase-dependent expression of His-tagged NTD of topoisomerase I for purification 

(Sorokin et al., 2008). A pET His6-Mocr TEV cloning vector (2O-T) (gift of Scott Gradia, 

Addgene #29710) was used for expression and purification of a recombinant viral protein, 

His-Mocr (DelProposto et al., 2009) that was used as negative control in the pull-down 

assays.
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2.2. Purified Proteins

E. coli topoisomerase I with a N-terminus 6x-His tag (His-EcTOP1) was expressed from 

pLIC-ETOP in E. coli BL21AI by induction with 1mM IPTG, 0.02% L-Arabinose as 

described previously (Sorokin et al., 2008). N-terminal domain of the E. coli topoisomerase 

I with a N-terminus 6x-His tag (His-NTD-EcTOP1) was expressed from pLIC-NTD-ETOP 

in BL21 Star (DE3) by induction with 1mM IPTG. Expression of recombinant His-tagged 

Mocr was induced in BL21 star (DE3) with 1mM IPTG. Ni Sepharose 6 Fast Flow beads 

(GE Healthcare Life Sciences) were used to purify these proteins by affinity 

chromatography (Cheung et al., 2012) to near homogeneity as described previously (Sorokin 

et al., 2008) with some modifications (Supplementary Material, section S1, Fig. S1). 

Purified E. coli RecA was purchased from New England BioLabs for use in assays involving 

verification of direct protein-protein interactions with topoisomerase I.

2.3. Pull-down assays to study direct physical interactions between purified proteins

Pull-down assays were carried out to establish the physical interactions of proteins in 

solution (Yang et al., 2015). An assay involving the incubation of purified RecA and 

topoisomerase I was carried out to study the direct physical interactions between these 

proteins. Purified His-EcTOP1 serves as bait in these assays. Individual pull-down reactions 

were set up by incubating constant amount of bait (10nM) with varying concentrations 

(0-80nM) of RecA (prey) for 2 hours at 4°C. The bait-prey interactions were set up in pull-

down buffer with 10mM HEPES, pH 7.4, 100mM NaCl, 0.5mM MgCl2, 0.005% v/v 

Tween-20. The HisPur Cobalt Agarose resin (Thermofisher), previously equilibrated in the 

above-mentioned pull-down buffer, was mixed with the bait-prey reaction. Following an 

overnight incubation at 4°C, the reactions were centrifuged and the supernatant was 

discarded. The resin pellet was then washed three times in HEPES buffer, and the proteins 

bound to the resin were eluted with pull-down buffer containing 400mM imidazole. The 

eluates were electrophoresed in a polyacrylamide SDS gel, and RecA was detected by 

western blotting (Burnette, 1981) with Anti-RecA monoclonal antibody (MBL International 

Corp.). A C-DiGit blot scanner (LI-COR) was used to detect the chemiluminescent western 

blot signal, and the signal intensity was quantified (Image Studio Digits version 4.0).

A comparative study was performed to compare the RecA-topoisomerase I binding 

efficiency in the presence, and absence of 5 mM ATP. The assay was carried out with a 

constant amount (10nM) of His-EcTOP1 as bait, and varying concentrations (0-80nM) of 

RecA as prey. An independent similar assay was carried out with a constant amount (10nM) 

of NTD-EcTOP1 as bait, and varying RecA concentrations (0-60nM) as prey in the presence 

of ATP.

2.4. Pull-down assays on E. coli soluble cell lysate

In this assay, E. coli strain (BW25113) was allowed to grow in LB medium for 16 hrs to 

stationary phase (OD600=2.5), and the culture was pelleted. The cell pellet was suspended in 

pull-down buffer with 1mg/ml lysozyme. The suspended cells were subjected to lysis by 

four freeze-thaw cycles. The lysate was centrifuged at 13000xg for 2 hrs at 4°C. The soluble 

fraction was precleared with HisPur Cobalt Agarose resin before incubation with the bait. 

Either full length purified EcTOP1 or NTD-EcTOP1 was used as bait. A Bacteriophage T7 
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protein, Mocr, with a N-terminus 6x-His tag was used as bait in the negative control for the 

pull-down assay (DelProposto et al., 2009).

Bait (40nM), and total cellular proteins in lysate (150μg) were incubated at 4°C for 2 hrs. 

HisPur Cobalt Agarose resin (Thermofisher) was mixed with the reaction, and incubated 

overnight at 4°C. On the following day, the resin-reaction mixture was spun, and the 

supernatant was discarded. The bead pellet was washed three times in pull-down buffer with 

10mM imidazole to minimize non-specific binding of histidine rich proteins to the resin. The 

proteins bound to the resin were finally eluted in 400mM imidazole, and the eluates were 

subjected to SDS-PAGE analysis. A western blot was performed to probe for RNA 

polymerase, and RecA in the eluates using a monoclonal antibody against RNA polymerase 

beta (BioLegend), and RecA respectively.

2.5. SPR

Biacore T200 SPR instrument was used to record SPR sensorgrams. EcTOP1 was 

immobilized onto CM5 sensor surface using standard amine coupling chemistry. Buffered 

solutions with various concentrations of RecA were flown over EcTOP1 immobilized sensor 

surface. A detailed explanation of SPR experimental procedures, including data analysis, is 

included in the Supplementary Material (section S2).

2.6. Molecular docking

The formation of inter-protein complex between EcTOP1 and RecA was optimized using 

pyDockWEB (Jiménez-García et al., 2013). Protein coordinates from pdb entries 4RUL (full 

length EcTOP1, (Tan et al., 2015)) and pdb entry 2REB (E. coli RecA, (Story et al., 1992)) 

were used in the docking study as receptor (EcTOP1) and ligand (RecA), respectively. The 

top ten docked complexes from the pyDockWEB outputs, based on energy scoring, were 

used to predict the RecA interaction site on EcTOP1. The output pdb file of the top scored 

complex was analyzed using PDBsum database (Laskowski et al., 1997; Laskowski, 2001). 

Chimera molecular graphics software (Pettersen et al., 2004) was used to visualize the 

structure and to generate images of the docked complexes.

3. Results

3.1. Pull-down assay demonstrates a direct physical interaction between E. coli RecA and 
topoisomerase I

A functional association between E. coli RecA and topoisomerase I have been reported 

previously (Cunningham et al. 1981; Reckinger et al., 2007). More recently, a role of 

topoisomerase I was observed in E. coli SOS response (Liu et al., 2011; Yang et al., 2015), 

which prompted us to verify the possibility of a direct physical interaction between these 

proteins. Purified His-EcTOP1 and RecA were incubated together in the presence of ATP, 

and pulled-down with Cobalt agarose resin. The amount of RecA bound to EcTOP1 was 

determined by western blot analysis of the eluates from the reaction with monoclonal 

antibodies against RecA. The results (Fig. 1) confirmed the possibility of a direct interaction 

between these proteins. Pull-down of RecA by the resin required the presence of His-

EcTOP1. Both E. coli RecA, and topoisomerase I bind strongly to single-stranded DNA. 
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However, according to this pull-down result with purified RecA and topoisomerase I, the 

association between these proteins does not require the presence of DNA.

3.2. Influence of ATP on the binding efficiency of RecA with EctopoI

The functional interactions between E. coli RecA and topoisomerase I were observed in the 

presence of ATP. According to a previous report (Konola et al., 1994), ATP binds to the P-

loop of RecA. E. coli RecA undergoes ATP dependent conformational change (Cox, 2003) 

that could affect its interaction with topoisomerase I (Cunningham et al. 1981; Reckinger et 

al., 2007). We, therefore tested the influence of ATP on the physical interaction between E. 
coli RecA and topoisomerase I with pull-down reactions in the absence or presence of ATP.

While the results from the pull-down assay suggested that the protein-protein interaction 

between E. coli RecA and topoisomerase I may not require ATP, the presence of ATP was 

found in pull-down assay to enhance the protein-protein interaction significantly (Fig. 2). 

Experimental data from one trial of pull-down experiment is shown here. Similar 

enhancement of the interaction by the presence of ATP were seen in two additional trials of 

the experiment (Supplementary Material, section S3, Fig. S3). However, ATP did not appear 

to be absolutely required for the interaction. Direct protein interaction between E. coli RecA 

and topoisomerase I in the absence of ATP has been confirmed by surface plasmon 

resonance (SPR) measurements (Supplementary Material, section S2). We could not obtain 

meaningful SPR sensorgrams for RecA-EcTOP1 interactions in the presence of ATP due to 

technical difficulty (Supplementary Material, section S2).

3.3. Molecular docking results for the complex formation between RecA and EcTOP1

Fig. 3 depicts the binding complex, as predicted by pyDockWEB, between EcTOP1 

(receptor) and RecA (ligand). Fig. 3A shows the surface representation for the binding of 

EcTOP1 (green) and with RecA (10 different colors, except green, representing the RecA 

conformations upon binding with EcTOP1). Fig. 3B shows the cartoon representation for the 

top-scored EcTOP1-RecA docked complex as well as the interacting amino acid residues, as 

predicted by PDBsum, across the binding interface. The amino acid residues predicted to be 

responsible for the formation of hydrogen bonds and salt bridges are listed in the 

Supplementary Material (section S4).

3.4. Pull-down assay for complex formation between NTD-EctopoI and RecA

Molecular docking results (section 3.3) have suggested that the NTD of EctopoI can interact 

with RecA in E. coli. The possibility of the direct interaction of RecA with the NTDEctopoI 

was verified by pull-down assays, involving the direct incubation of purified recombinant 

NTD-EctopoI and RecA, in the presence of ATP. In these assays, NTD-EctopoI (bait) and 

RecA (prey) were incubated with HisPur Cobalt agarose resin, in the presence of ATP. The 

eluates from the pull-down reactions were analyzed by western blotting with monoclonal 

RecA antibodies. The results from the assay suggest that the N-terminal domain of 

topoisomerase I and RecA can interact physically (Fig. 4).
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3.5. Pull-down of RecA from E. coli soluble cell lysate by recombinant EcTOP1 and NTD-
ECTOP1

E. coli RecA has a stimulatory effect on the topoisomerase I relaxation activity, suggesting a 

possible protein-protein interaction between RecA and topoisomerase I (Reckinger et al., 

2007). We were able to verify a direct physical interaction between RecA and EcTOP1 with 

purified proteins in solution (Fig 1A). A pull-down assay using the E. coli cell lysate was 

performed to further confirm the interaction of E. coli topoisomerase I NTD with E. coli 
RecA. The cell lysate, and EcTOP1 or NTD-EcTOP1 were incubated together with HisPur 

Cobalt agarose beads that have high affinity for the 6x-Histidine tag. The complexes 

recovered from the beads after the pull-down protocol were resolved by SDS-PAGE, and 

analyzed by western blot. The nitrocellulose membrane was probed for RecA and RNA 

polymerase with monoclonal antibodies against RecA and RNA polymerase beta subunit 

respectively. EcTOP1 is known to interact with E. coli RNA polymerase via its CTD (Cheng 

et al., 2003).

The results showed that both RecA, and RNA polymerase were pulled down by full-length 

topoisomerase I as expected (Fig. 6, lane 2). The data also confirmed that the NTD of 

topoisomerase I can interact with RecA (Fig. 6, lane 3). Interaction between NTD-EcTOP1 

and RNA polymerase was not observed, demonstrating the domain specific interactions 

between EcTOP1 and its partners (Cheng et al., 2003).

4. Discussion

In a previous study (Reckinger et al., 2007), the stimulation of topoisomerase I relaxation 

activity by E. coli RecA was seen only for topoisomerase I protein from E. coli and not for 

the topoisomerase I proteins from other species. This indicated that the stimulation of 

relaxation activity by RecA was not entirely due to the effect of RecA on DNA 

conformation. Even though this previous results suggested that E. coli RecA may stimulate 

topoisomerase I relaxation activity via direct protein-protein interaction, data to support such 

interaction was not available (Reckinger et al., 2007). We have presented evidence here for 

the first time to confirm the direct physical interaction between E. coli RecA and 

topoisomerase I. The presence of DNA was not required for this interaction. ATP, although 

not absolutely required, can enhance the protein-protein interaction between E. coli RecA 

and topoisomerase I. E. coli topoisomerase I plays an important role in the regulation of 

local and global DNA supercoiling (Liu and Wang, 1987; Drlica, 1992). The stimulation of 

topoisomerase I relaxation activity by RecA via direct protein-protein interaction allows 

RecA to add modulation of DNA supercoiling to its multiple roles. This stimulation of 

topoisomerase I relaxation activity by RecA may enable relaxation-dependent E. coli 
promoters to have higher transcription activities following DNA damage (Reckinger et al., 

2007).

As a type IA DNA topoisomerase, EcTOP1 binds to the single-stranded region of negatively 

supercoiled DNA to initiate its relaxation activity (Champoux, 2001). The active site region 

with the Tyr-319 nucleophile for single-stranded DNA cleavage and religation by EcTOP1 is 

located in its NTD, formed at the interface between the subdomains that enclose the toroid 

hole in its structure (Lima et al., 1994; Berger, 1998). Molecular docking and pull-down 
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results reported here showed that RecA interacts with the NTD of topoisomerase I. The 

protein-protein interactions may either facilitate the loading of negatively supercoiled DNA 

onto topoisomerase I, or increase the catalytic rate of DNA relaxation by inducing 

conformational change in topoisomerase I. It is notable that EcTOP1 interacts with RNA 

polymerase via its CTD (Cheng et al., 2003) so that the transcription-driven negative 

supercoiling can be relaxed efficiently to prevent hypernegative supercoiling of DNA and 

suppress R-loop stabilization (Tan et al., 2015). Interaction with RecA takes place via a 

different domain in topoisomerase I and may also have functional significance for the 

physiological response of E. coli to DNA damage and antibiotics to improve survival. Future 

studies will investigate further the mechanism of the RecA-topoisomerase I interaction, and 

the physiological consequence of perturbation of this specific protein-protein interaction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

➢ E. coli topoisomerase I (EcTOP1) physically interacts with RecA.

➢ EcTOP1 can interact with RecA directly in the absence of DNA.

➢ RecA interacts with the N-terminal domain of EcTOP1 that forms the active site 

region.

➢ RecA interaction with EcTOP1 is stimulated by ATP.
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Fig. 1. Direct physical interaction between purified E. coli RecA and topoisomerase I
(A) pull-down scheme (B) Pull-down of E. coli RecA by topoisomerase I at an increasing 

RecA:EcTOP1 molar ratios, as measured by western blot using antibodies against RecA. 

Lanes 1-4: Eluates from pull-down reactions with increasing RecA:EcTOP1 molar ratios. 

Lane 5: Negative control in the absence of EcTOP1. (C) Graph showing average values 

(symbols) of RecA band intensities, from three independent experiments, relative to the 

maximal intensity of RecA in the pull-down reactions. The error bars represent standard 

deviations of three measurements.

Banda et al. Page 13

Gene. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. ATP promotes binding of E. coli RecA to topoisomerase I
(A) Comparative analysis of ATP's influence on the direct protein interactions between 

RecA, and EcTOP1. Lanes 1-4: Eluates from pull-down reactions in the presence of 5mM 

ATP. Lanes 5-8: Eluates of pull down reactions devoid of ATP. Lane 9: negative control with 

no EcTOP1 present. (B) The quantified RecA band intensities.
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Fig. 3. RecA-EcTOP1 complex predicted by molecular docking
(A) Green colored surface represents EcTOP1 with light green as its C-terminal domain 

(CTD) and dark green as N-terminal domain (NTD). The surfaces in the other colors 

represent ten different predicted RecA conformations when it binds to EcTOP1, all with 

NTD of EcTOP1 as the binding domain interacting with RecA. (B) Cartoon representation 

of the top scored docked RecA-EcTOP1 complex. EcTOP1 is shown in green color and 

RecA in blue color. The amino acid residues across the EcTOP1-RecA binding interface that 

form hydrogen bonds and salt bridges are shown in sticks representation (orange colored 

sticks for EcTOP1 and magenta colored sticks for RecA).
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Fig. 4. NTD of EcTOP1 can interact with RecA as efficiently as full length EcTOP1
(A) Pull-down of RecA, at an increasing RecA: NTD-EcTOP1 molar ratios, as measured by 

western blot using antibodies against RecA. Lane 1-4: Eluates from the pull-down reactions 

of increasing RecA (prey) to NTD-EctopoI (bait) in the presence of ATP. Lane 5: negative 

control for the assay with RecA only. Lane 6, 7: Eluates from reaction carried out with full-

length EcTOP1, as bait. (B) Quantified RecA band intensities relative to the band intensity 

observed with pull-down reaction corresponding to 1: 6 molar ratios of EcTOP1 RecA in 

lane 7 of Fig. 4A. The average values of three experiments (symbols) are shown here with 

the error bars representing the standard deviations.
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Fig. 5. Pull-down of RecA from E. coli cell lysates by EcTOP1 and NTD-EcTOP1
Lane 2 and 3 represent the eluates from the pull-down reactions containing EcTOP1, NTD-

EcTOP1 as bait respectively. Lane 1, representing the eluate from the pull-down reaction 

with Mocr as bait, serves as a negative control.
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