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Inclusive and Exclusive Scatterings from Tensor

Polarized Deuteron

M M Sargsian1, M I Strikman2

1 Department of Physics, Florida International University, Miami, FL 33199
2 Department of Physics, Pennsylvania State University, University Park, PA 16802

E-mail: sargsian@fiu.edu, strikman@phys.psu.edu

Abstract. The possibility of using a tensor polarized deuteron target in electroproduction
reactions creates new opportunities for studying different phenomena related to the short-range
hadronic and nuclear physics. The use of the tensor polarized deuteron allows us to isolate
smaller than average inter-nucleon distances for the bound two-nucleon system. In this report
we consider several high Q2 reactions which are particularly sensitive to the short-range two-
nucleon configurations in the deuteron. One is the relativistic dynamics of electron-bound-
nucleon scattering, which can be studied in both inclusive and exclusive reactions, and the
other is the strong final state interaction in close proximity of two nucleons that can be used as
a sensitive probe for color-transparency phenomena.

1. Introduction
The deuteron is the simplest nuclear system with the wave function strongly dominated by the pn
component. Thus, it can be used for studies of many aspects of pn strong interactions. One such
aspect is the study of the pn system at short distances where one hopes to gain access to many
fundamental issues of nuclear dynamics, such as a relativistic description of nuclear structure,
the dynamics of the NN repulsive core, the role of the non-nucleonic degrees of freedom, and
the hadron-quark transition at very short distances.

However one problem in realizing such a program of studies is that the deuteron is barley
bound with the charge-rms radius of about 2.1 fm. In the momentum space, this fact is reflected
in the very steep momentum distribution of the unpolarized deuteron wave function with the
strength concentrated predominantly at the small relative momenta in the pn system (see the
curve labelled as ρunp in Fig.1).

However the fact that the deuteron has a D-wave which vanishes at small momenta indicates
that isolating it in any given reaction with the deuteron will effectively suppress the small-
momentum/long-range contributions.

This can be seen from the polarized density matrix of the deuteron [1]:
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Figure 1. Momentum dependences of different combinations of the polarized density matrices.
Solid, dashed and dotted curves correspond to unpolarized, tensor polarized, and transverse
polarized distributions, respectively.

where u(k) and w(k) represent the S and D partial waves respectively. The polarization vector
~a is defined through the deuteron spin wave functions

ψ10 = i · az, ψ11 = − i√
2

(ax + iay), ψ
1−1 =

i√
2

(ax − iay), (2)

where ψ1µ is the projection of the deuteron’s spin in the µ direction. The unpolarized density
matrix of the deuteron is defined as ρunpd (k1, k2) = 1

3

∑
a ρ

a
d(k1, k2).

Since limk→0w(k) = 0, it follows from Eq.(1) that any polarization combination of ρ~ad, in
which the u2 term is canceled has an enhanced sensitivity to the larger internal momenta (smaller
distances) of the deuteron as compared to the unpolarized case. It follows from Eq.(1) that the
u(k1)u(k2) term does not depend on the polarization vector ~a, thus one can cancel this term
summing any two polarization components of the density matrix and subtracting the doubled
value of the third polarization component. One example is:

ρ20(k1, k2) ≡
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Fig. 1 presents the examples of the density matrices for unpolarized, ((ρ11 + ρ1−1 + ρ10)/3,
transverse, ρ10, and tensor polarized, ρ20, deuteron targets as they enter in the impulse
approximation term of the ~d(e, e′p)n cross section (in this case k1 = k2 = p). As it can be
seen from Eq.(3), the tensor polarized density matrix depends only on the terms proportional
to u(p)w(p) and w(p)2.

This suggests ways for studying several issues of nuclear physics related to the short-range
interactions using tensor polarized deuteron targets.
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1.1. The D-wave Component of the Deuteron
The presence of the D-wave component in the deuteron follows from the existence of the finite
quadruple momentum of the deuteron. It is directly related to the tensor part of the NN
interaction. The modern NN interaction potentials which fit the existing NN phase-shifts with
ξ2 ≤ 1 predict the overall probability of the D wave in the deuteron to be in the range of
4.87% (cdBonn [2]) to 5.76% (AV18 [3]). Although the difference seems rather small, these
parameterizations predict substantially different high momentum strengths above 400 MeV/c,
which is predominantly related to the D component. The need to understand the D-wave
momentum distribution became more pressing recently, due to the observation of the strong
dominance of pn short range correlations (SRCs) in nuclei as compared to the pp and nn
SRCs [4, 5], which is related to the tensor component of NN interaction in the SRC [6, 7].
The dominance of the tensor interaction in the high momentum component of the nuclear wave
function may play important role in the dynamics of the asymmetric nuclei [8, 9] with nontrivial
implications for superdense nuclear matter and neutron stars [10, 11].

Very recently another interesting aspect of the role of the D-wave was revealed in the
observation of k−4 scaling of the momentum distributions in the deuteron and nuclei [12] in
the momentum range of 300-600 MeV/c, which shows intriguing similarities with the contact
observed in the two-component symmetric atomic systems of fermions.

As it follows from Eq.(3), the processes involving a tensor-polarized deuteron target are
directly related to the structure of the D-partial wave component in the deuteron.

1.2. Relativistic Dynamics of the NN Bound System
One of the important issues in studying nuclear structure at short distances is the need for a
relativistic description of the bound system. This is an important issue also in understanding
the QCD medium effects with recent studies indicating that parton distribution modifications
in nuclei are proportional to the high momentum component of nuclear wave function [13].

The deuteron is the simplest bound system and naturally any self-consistent attempt to
understand the relativistic effects in the bound nuclear systems should start with the deuteron.
The issue of the relativistic description of the deuteron has long history with extensive research
started already in late 1970’s (see e.g. [14, 15, 16, 17]).

The experimental studies of the relativistic effects in the unpolarized deuteron up to now
included the large Q2 elastic ed scatterings [18]. However, due to complexities in the reaction
mechanism the relativistic effects were difficult to isolate.

The processes involving a tensor polarized deuteron target are expected to exhibit enhanced
sensitivity to the relativistic effects due to higher average momentum of the bound nucleon
entering in the polarized nuclear density matrix as compared to the unpolarized case. Thus one
can discuss possible high momentum transfer reactions off tensor polarized deuterons and study
their sensitivity to the relativistic effects of the bound nucleon motion.

1.3. Final Sate Hadronic Interactions
The fact that the tensor polarized deuteron is characterized by a larger average internal momenta
indicates that the two nucleons are in close proximity and scattering from such target can
yield large final state hadronic interactions in exclusive reactions. The latter can be used in
studies of the hadronic properties of produced particles such as nucleons [1, 19, 20] or vector
mesons [21, 22, 23].

2. Electroproduction Reactions Involving Tensor Polarized Deuterons
We will discuss several electroproduction reactions in which utilizing the unique features of the
tensor polarized deuteron would allow us to study the above discussed properties of high energy
processes.
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Figure 2. The xBj dependence of Azz asymmetry. The “VN” and “LC” labels correspond to
the VNA and and LC calculations described in the text. Solid line AV18 [3] and dashed line
cdBonn [2] NN potentials are used in the calculations.

2.1. High Q2 Near-Threshold Inclusive Scattering
High Q2 (> 1 GeV2) inclusive scattering at xBj > 1 is known to probe large longitudinal
momenta of bound nucleon interacting with the virtual photon. One of the important indications
that these reactions indeed probe the high momentum component of the nuclear wave function
is the observation of the scaling in the ratios of the A(e, e′)X cross sections to that of
deuteron [24, 25] or light nuclei [26, 27].

Using the tensor polarized deuteron in such reactions allows us to prepare the nucleus in the
most compact state in which, due to the absence of the pure (S-wave)2 contribution (Fig. 1),
the system in average is sensitive to a higher momentum of the nucleon in the deuteron for
given x and Q2. At large Q2 > 1 GeV2 kinematics, the probed longitudinal momenta of the
bound nucleon is pz ≈ mN (1−x), or the light cone momentum fraction α ≥ x. Because of these
kinematic conditions and the absence of the (S-wave)2 contribution, one expects a measurable
relativistic effects already at x ∼ 1.2. Such an early onset of the relativistic effects indicates
that one should be able to separate them from the uncertainty related to the choice of the NN
potential.

The sensitivity to the relativistic effects is estimated using the theoretical calculations based
on two very different approaches. The first approach describes the bound nucleon in the deuteron
rest frame treating the interacting nucleon as being virtual (virtual nucleon approximation
(VNA)) by taking the residue over the positive energy pole of the spectator nucleon. In this
case the deuteron wave function satisfies the covariant equation of a two-nucleon bound system
with the spectator being on mass-shell (see e.g. [28, 29]).

Another approach is based on the observation that high energy processes evolve along the
light-cone. Therefore, it is natural to describe the reaction within the light-cone non-covariant
framework [16, 17]. Negative energy states do not enter in this case, though one has to take into
account so called instantaneous interactions. In the approximation when non-nucleonic degrees
of freedom in the deuteron wave function can be neglected, one can relate the light-cone wave
functions to those calculated in the lab frame by introducing the LC pn relative three momentum

k =

√
m2+p2t
α(2−α) −m2.
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In Fig. 2 the predictions for VNA [28] and LC [24] approximations are given for the tensor

asymmetry, Azz = T 20

σunp , at the highest Q2 kinematics for the recently proposed experiment at
Jefferson Lab [30]. As the figure shows for 1.2 ≤ x ≤ 1.4 the uncertainty due to the NN potentials
used in the calculations is much smaller than the relativistic effects, while at high x > 1.4 we
have substantial uncertainty due to the potentials. The calculations predict large Azz asymmetry
in x > 1 region with significant potential of discrimination between both relativistic and NN
potential effects.

2.2. High Momentum Transfer Exclusive Electrodisintegration of the Deuteron
The possibility of the extension of inclusive measurements to the exclusive electrodisintegration
reactions in which struck nucleon carries almost all the momentum of the virtual nucleon gives
direct access to the dynamics of the bound nucleon. Recently the first high Q2 experiments
were completed for d(e, e′p)n reactions [31], in which it was observed that due to the onset of
the eikonal regime in the final state interaction (FSI) of the stuck proton with the spectator
neutron it is possible to isolate kinematic regions with minimal and maximal FSI effects. This
observation is in agreement with the theoretical calculations which are based on high energy
approximations in the description of FSI effects (see e.g. [1, 19, 20, 32, 28, 33]).

The pattern of FSI in d(e, e′p)n reaction is best seen by considering the ratio of the cross

section of the full calculation to that of the plane wave impulse approximation: T = σFull

σPWIA .
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Figure 3. The dependence of the transparency T on the angle - θsq and the momentum, ps of
the recoil nucleon. The angle is defined relative to q.

Fig. 3 presents the expectations for T as a function of the recoil nucleon angle θsq relative
to ~q for different values of recoil nucleon momentum. The figure demonstrates the distinctive
angular dependence of the ratio T . At recoil nucleon momenta ps ≤ 300MeV/c, T ≤ 1 and
has a minimum, while at ps > 300MeV/c, T > 1 and has a distinctive maximum. It can
be seen from this picture that the FSI is small at kinematics in which recoil momenta in the
reaction is parallel or anti-parallel to q (referred to as collinear kinematics). The FSI dominates
in the kinematics where θpq ≈ 900, more precisely the maximal re-scattering corresponds to the

kinematics in which α ≡ Es−psz
m = 1 (referred to as transverse kinematics). The analysis of

Fig. 3 shows that one can indeed isolate the kinematic domains where PWIA term is dominant
from the domain in which FSI plays a major role. The ability to identify these two kinematics
is an important advantage of high Q2 d(e, e′p)n reactions. It allows us to concentrate on the
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different aspects of the dynamics of d(e, e′p)n reaction with less background effects. Namely the
collinear kinematics are best suited for studies of bound nucleon dynamics, while in transverse
kinematics one can concentrate on the physics of hadronic re-interaction.
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Figure 4. The ps dependence of the d(e, e′p)n tensor polarization asymmetry at θsq = 1800.
Solid and dashed lines are PWIA predictions of the LC and VNA approximations. The marked
curves present the same (LC, VNA) calculations including the FSI effects.

To quantify these statements, in Fig. 4 we present the calculation of Ad (which is similar to
Azz but for exclusive processes) in collinear kinematics (θsq = 180o) within virtual nucleon and
light-cone approximations described above. These estimates, similar to the inclusive scattering
case, show significant relativistic effects already at moderate momenta of 250 − 300MeV/c for
the spectator nucleon. It is interesting that the FSI effects further increase the difference
between VNA and LC predictions, making it even easier to discriminate between VNA and
LC approximations.

2.3. Dynamics of the Final State Interactions
As it follows from Fig. 3, studying the d(e, e′p)n reactions at transverse kinematics allows us to
enhance the effects due final state interaction of the struck nucleon off the spectator nucleon.
One expects that FSI effects will be further enhanced for tensor-polarized deuterons since it
corresponds, on average, to a smaller configuration than in the case of the unpolarized target.

If one assumes that FSI are determined by diffractive small angle pn rescatterings, one can
estimate the effect of the FSI on Ad, which is presented in Fig. 5.

The comparison of Fig. 5(a) and (b) shows the very strong sensitivity of the asymmetry
Ad to the final state interaction at the transverse kinematics: the FSI significantly diminishes
the asymmetry starting at pn = 300 MeV/c and θnq ∼ 900 (or αn ≈ 1). This indicates that
the quantity Ad can be used as a very sensitive observable for studying the FSI dynamics; for
example, the onset of the Color Transparency (CT) phenomena (for details of CT phenomena
see Ref. [34]) at large Q2 (≥ 4 GeV2).

For numerical estimates, we consider the Q2 dependence of the asymmetry Ad for fixed and
transverse momenta of the spectator neutron. This dependence for pt = 300 MeV/c, is presented
in Fig. 6. One can see from this figure that CT effects can change Ad by as much as factor of
two for Q2 ∼ 10 GeV2. It is worth noting that the same models predict only 10-15% effect for
(e, e′p) reactions on unpolarized nuclear targets.
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3. Conclusion and Outlook
The use of the tensor polarized deuteron targets in high energy electro-production reactions
would provide a unique possibility for studying the NN strong interaction at short space-time
separations. We demonstrate that such reactions allow a direct test of the relativistic effects
in the short range NN interaction. They also allow us to discriminate between different NN
potentials.

Another advantage of the tensor polarized deuteron as a compact two-nucleon system is the
possibility to significantly enhance the final state hadronic interaction in the exclusive d(e, e′, p)n
reactions. This provides a very sensitive tool for studying color transparency phenomena, which
will be manifested in the suppression of the FSI effects at large Q2 kinematics.

All these studies are a part of the broad program dedicated to the investigation of the structure
of deeply bound nucleons as well as the physics of color transparency [37]. This program could
benefit tremendously from the advances of building polarized deuteron targets that can be
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operated with high current electron beams.
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