

 116

Hypothesis 3d
The Peripheral Two-Mode Density of an open source software project community
has an inverted-U relationship with Page Views.

Hypothesis 4a
The Core Membership Degree of an open source software project community is
positively associated with Code Commits.

Hypothesis 4b
The Core Membership Degree of an open source software project community is
positively associated with Software Releases.

Hypothesis 4c
The Core Membership Degree of an open source software project community is
positively associated with Software Downloads.

Hypothesis 4d
The Core Membership Degree of an open source software project community is
positively associated with Page Views.

Hypothesis 5a
The Administrator Membership Degree extent of an open source software project
community is positively associated with Code Commits.

Hypothesis 5b
The Administrator Membership Degree extent of an open source software project
community is positively associated with Software Releases.

Hypothesis 5c
The Administrator Membership Degree of an open source software project
community is positively associated with Software Downloads.

Hypothesis 5d
The Administrator Membership Degree of an open source software project
community is positively associated with Page Views.

Hypothesis 6a
The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Code Commits.

Hypothesis 6b
The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Software Releases.

 117

Hypothesis 6c
The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Software Downloads.

Hypothesis 6d
The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Page Views.

5.3.2. Regression Methods

A multiple linear regression with ordinary least squares (Tabachnick and Fidell

2007) was used as the primary statistical testing method. For each hypothesis, the

relevant DV is regressed on the relevant IV. Control variables are included and tests are

performed for both linear and quadratic (inverted-U or U-shaped) relationships. The

quadratic test involves a transformation of the IV in which the IV is mean-centered and

squared (Allison 1999).

Because it is plausible that group size, core size, and/or conversational volume

may be positively related to community success, associated variables were defined and

applied as controls in every regression (refer to Section 4.3.2 for definitions). The

purpose of this approach is to isolate the effects of the independent variable from the

effects of the control variables. In this way, the resulting explanation of variance in the

dependent variable is incremental and does not reflect effects associated with control

variables.

A single three-step hierarchical regression test is applied which incorporates the

control variables, the linear testing, and the quadratic testing. The first step is a

regression of DV on the three control variables (“model 1”). The second step is the

regression of the DV on the three control variables and the relevant IV (“model 2”). The

 118

third step is the regression of the DV on the three control variables, the relevant IV, and

the relevant transformed (mean-centered and squared) IV.

To support an inverted-U relationship, the coefficient estimates for the

untransformed IV (in model 2) should be positive and the coefficient estimates for the

transformed IV (in model 3) should be negative and have a significant p-value. In

addition, model 3 should result in a significant change in the level of explained variance,

as measured by a significant F statistic for the change in R-squared from model 2 to

model 3. This quadratic method may also support a U-shaped relationship based on the

same criteria as described above except that the coefficient signs are reversed (i.e. the

model 2 coefficient is negative and the model 3 coefficient is positive).

The appropriate application of multiple linear regression requires the satisfaction

of certain assumptions. The testable assumptions include normality, homoscedasticity,

and linearity. It is also appropriate to look for multicollinearity among the IVs. In the

following paragraphs, the procedures that were used to test for these situations are

described and the results of this application are reported.

Normality. The normality of all variables was tested and a necessary

transformation of the DVs was made as reported in Section 5.1.2. In addition, the

normality of the standardized residuals in each regression run was tested using a

Kolmogorov-Smirnov statistic with a Lilliefors significance level, based on the null

hypothesis that the standardized residuals are normally distributed. A significance level

of less than .05 is taken as a rejection of the null hypothesis and an indication that the

values have a non-normal distribution (Mertler and Vannatta 2005). No Lilliefors

 119

significance levels were less than .05, and therefore no indication of non-normality in the

standardized residuals was found for any of the 24 regression runs.

Homoscedasticity. The extent to which a DV exhibits equal levels of variance

across the entire range of variation of the IVs is referred to as homoscedasticity. To

check for homoscedasticity, a scatterplot of the predicted values of the DV (as the x-axis)

against the standardized residuals (as the y-axis) was inspected for the presence of an

uneven spread in the vertical scatter from left to right (Mertler and Vannatta 2005). No

visual evidence was found for an uneven spread in any of the 24 regression runs.

Linearity. Linearity is the extent to which the relationship between the DV and

the IVs follows a straight-line shape. To check for linearity, a scatterplot of the predicted

values of the DV (as the x-axis) against the standardized residuals (as the y-axis) was

inspected for the presence of a non-linear pattern which deviated from a straight left to

right pattern (Mertler and Vannatta 2005). No visual evidence was found for a

significant deviation from linearity in any of the 24 regression runs.

Multicollinearity. For each regression run, multicollinearity among the control

variables and the IV was tested with a Tolerance statistic, which is a measure of the

collinearity among the tested variables. A Tolerance value of .10 or less is considered to

be a serious problem (Mertler and Vannatta 2005). No Tolerance values were found

below the 0.10 threshold, and therefore the multicollinearity test was satisfied for all 24

regression runs.

 120

5.4. Testing Results

In each of the following sub-sections, the results of each hypothesis test are

contained in a table which shows both the linear test results and the quadratic test results.

For the linear regressions and the quadratic regressions, the tables include the

unstandardized coefficient, the standard error, the standardized beta, the adjusted R-

squared and the change in R-squared from the first step to the second step for the linear

regressions and from the second step to the third step for the quadratic regressions. For

each regression which produced a significant result for the IV or transformed IV

coefficient (p < .05), the detailed results of all three models are shown in Appendix D.

In general, the predictive values of the models were relatively consistent across

the 24 regressions. Including the effect of the control variables, the explanation of

variance was highest for the regressions of Software Downloads with adjusted R-squared

values ranging from .306 to .393 for the linear regressions and from .302 to .400 for the

quadratic regressions. The predictive values for the regressions of Page Views were

nearly as high. The least predictive regressions were for Software Releases, where

adjusted R-squared values range from .011 to .070 for the linear versions and from .006

to .065 for the quadratic versions. The predictive values for the regressions Code

Commits were only slightly higher than these values.

5.4.1. Group Density

The four Group Density hypotheses (H1a through H1d) were tested and a

summary of the results are shown on Table 14. For the linear regressions on Group

Density, a significant negative relationship was found for both Software Downloads and

 121

Page Views (both at p < .001). For both of these regressions, the effect of an increase in

Group Density from the average value of .078 to a value of .178 would be to reduce

Software Downloads and Page Views by about 40 percent. Details for these two

regressions are contained in Tables D-1 and D-2 in Appendix D. Negative relationships

were also found for Code Commits and Software Releases, although at less significant p-

values of .066 and .063 respectively. For the quadratic testing, a near-significant result

was noted for the Software Downloads model and the Page Views model in support of a

U-shaped relationship.

5.4.2. Core Density

The four Core Density hypotheses (H2a through H2d) were tested and a summary

of the results are shown on Table 15. For the linear regressions on Core Density, a

significant negative relationship was found for Software Releases (at p < .05). Further

details of this regression are contained on Table D-3 in Appendix D. Near-significant

negative relationships were also found for Code Commits (p = .057) and Software

Downloads (p = .067). For the quadratic testing, a significant result was noted for the

Page Views model (p < .05) in support of a U-shaped relationship. Further details of this

regression are contained on Table D-4 in Appendix D.

5.4.3. Peripheral Two-Mode Density

The four Peripheral Two-Mode Density hypotheses (H3a through H3d) were

tested and a summary of the results are shown on Table 16. For the linear regressions on

Peripheral Two-Mode Density, a weak negative relationship was noted for only one of

 122

the IVs: Software Downloads (at p = .092). For the quadratic testing, no significant or

near-significant relationships were found.

5.4.4. Core Membership Degree

The four Core Membership Degree hypotheses (H4a through H4d) were tested

and a summary of the results are shown on Table 17. No significant or near-significant

relationships were found for the linear regressions on Core Membership Degree.

However, for the quadratic regressions, one very weak result was found for Software

Downloads (p = .099) in support of an inverted-U shaped relationship.

5.4.5. Administrator Membership Degree

The four Administrator Membership Degree hypotheses (H5a through H5d) were

tested and a summary of the results are shown on Table 18. For the linear regressions on

Administrator Membership Degree, no significant or near-significant relationships were

found. However, for the quadratic regressions, significant support (at p < .05) was noted

for an inverted-U shaped relationship with Code Commits. Details of this regression are

contained on Table D-5 in Appendix D.

5.4.6. Administrator Class Centrality

The four Administrator Class Centrality hypotheses (H6a through H6d) were

tested and a summary of the results are shown on Table 19. For the linear regressions on

Administrator Class Centrality, a significant positive relationship was found for Software

Releases (p < .01). Details of this regression are contained on Table D-6 in Appendix D.

For the quadratic regressions, significant support was also found for a U-shaped

 123

relationship with Page Views (p < .05). Details of this regression are shown on Table D-

7 in Appendix D.

Table 14
Summary of Regressions on Group Density,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H1a: Code Commits -3.374† 1.822 -.182 .049 .023

H1b: Software Releases -2.427† 1.295 -.186 .036 .024

H1c: Software Downloads -5.547*** 1.237 -.353 .393 .086

H1d: Page Views -4.871*** 1.285 -.311 .339 .067

Quadratic‡ regressions:
H1a: Code Commits 16.026 14.560 .175 .050 .008

H1b: Software Releases 9.643 10.359 .149 .035 .006

H1c: Software Downloads 16.375† 9.827 .210 .400 .012

H1d: Page Views 17.097† 10.203 .221 .348 .013

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .066 (Code Commits Linear), .063 (Software Releases Linear)

† p = .098 (Software Downloads Quadratic), .096 (Page Views Quadratic)

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 124

Table 15
Summary of Regressions on Core Density,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H2a: Code Commits -.707† .368 -.184 .050 .025

H2b: Software Releases -.570* .261 -.210 .044 .032

H2c: Software Downloads -.489† .265 -.150 .321 .016

H2d: Page Views -.267 .272 -.082 .276 .005

Quadratic‡ regressions:
H2a: Code Commits 1.552 1.201 .185 .055 .011

H2b: Software Releases .121 .855 .020 .037 .000

H2c: Software Downloads .596 .866 .084 .318 .002

H2d: Page Views 1.910* .877 .269 .295 .024

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .057 (Code Commits Linear), .067 (Software Downloads Linear)

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 125

Table 16
Summary of Regressions on Peripheral Two-Mode Density,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H3a: Code Commits -.249 .996 -.028 .025 .000

H3b: Software Releases -.399 .707 -.064 .013 .002

H3c: Software Downloads -1.200† .708 -.159 .318 .014

H3d: Page Views -.350 .728 -.047 .272 .001

Quadratic‡ regressions:
H3a: Code Commits .108 4.714 .002 .018 .000

H3b: Software Releases -2.829 3.339 -.091 .011 .005

H3c: Software Downloads 1.941 3.345 .052 .315 .002

H3d: Page Views 4.522 3.425 .121 .276 .009

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .092

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 126

Table 17
Summary of Regressions on Core Membership Degree,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H4a: Code Commits .099 .116 .071 .030 .005

H4b: Software Releases -.015 .083 -.015 .011 .000

H4c: Software Downloads .113 .083 .096 .313 .009

H4d: Page Views .052 .085 .045 .272 .002

Quadratic‡ regressions:
H4a: Code Commits -.068 .061 -.132 .032 .008

H4b: Software Releases .023 .044 .064 .006 .002

H4c: Software Downloads -.073† .044 -.167 .322 .013

H4d: Page Views -.022 .045 -.051 .268 .001

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .099

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 127

Table 18
Summary of Regressions on Administrator Membership Degree,
Controlling for Group Size, Core Size and Conversation Volume

(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H5a: Code Commits .022 .063 .029 .026 .001

H5b: Software Releases -.021 .045 -.040 .013 .002

H5c: Software Downloads .041 .045 .065 .308 .004

H5d: Page Views .017 .046 .027 .271 .001

Quadratic‡ regressions:
H5a: Code Commits -.040* .019 -.303 .049 .029

H5b: Software Releases .012 .014 .129 .011 .005

H5c: Software Downloads -.016 .014 -.138 .310 .006

H5d: Page Views -.007 .014 -.065 .267 .001

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 128

Table 19
Summary of Regressions on Administrator Class Centrality,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H6a: Code Commits .573 .471 .118 .035 .010

H6b: Software Releases .963** .326 .280 .070 .057

H6c: Software Downloads -.211 .339 -.051 .306 .002

H6d: Page Views -.247 .346 -.060 .273 .003

Quadratic‡ regressions:
H6a: Code Commits 1.709 1.474 .105 .038 .009

H6b: Software Releases -.515 1.026 -.045 .065 .002

H6c: Software Downloads .488 1.066 .035 .302 .001

H6d: Page Views 2.347* 1.069 .170 .293 .024

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 129

6. DISCUSSION

This chapter begins with a summary and discussion of the results in relation to the

hypotheses and in comparison with the limited empirical findings that have been reported

in the open source software literature. This is followed by a set of conjectures which

suggest plausible explanations for the alternative relationships that were implied by the

hypothesis testing results. In order to further interpret the meaning of the results, these

conjectures are then assessed with respect to their implications regarding the likely

direction of causality between social network structure and community success. Finally,

the unexpected lack of effect of structure on success is discussed and possible

explanations are offered.

6.1. Summary of Findings

This section presents a summary and discussion of the results of hypothesis

testing which were presented in Chapter 5. Each of the following sub-sections contains a

review of the results for the closure, bridging, and leader centrality hypotheses along with

an associated results summary table.

6.1.1. Closure

The results for the 12 regressions associated with closure are presented in Table

20. The table summarizes the results of regressions on Group Density, Core Density, and

Peripheral Two-Mode Density (as previously referenced on Tables 14, 15 and 16) and

shows each hypothesized relation in comparison with an alternative relation suggested by

the regression result, if applicable. All of the closure hypotheses posited an inverted-U

relationship, reflecting the expectation of a positive slope for lower levels of closure,

 130

Table 20
Summary of Test Results for Closure Hypotheses

Hyp# Independent Variable Dependent Variable Success
Dimension

Hypothesized
Relation

Suggested Alternative
Relation

Detail Results
Table

H1a Group Density Code Commits Output Inverted-U Negative (p=.066)
H1b Group Density Software Releases Output Inverted-U Negative (p=.063)
H1c Group Density Software Downloads Activity Inverted-U Negative *** Table D-1
H1d Group Density Page Views Activity Inverted-U Negative *** Table D-2

H2a Core Density Code Commits Output Inverted-U Negative (p=.057)
H2b Core Density Software Releases Output Inverted-U Negative * Table D-3
H2c Core Density Software Downloads Activity Inverted-U Negative (p=.067)
H2d Core Density Page Views Activity Inverted-U U-Shaped * Table D-4

H3a Peripheral TM Density Code Commits Output Inverted-U None
H3b Peripheral TM Density Software Releases Output Inverted-U None
H3c Peripheral TM Density Software Downloads Activity Inverted-U Negative (p=.092)
H3d Peripheral TM Density Page Views Activity Inverted-U None

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

 131

a negative slope for higher levels of closure, and a maximal point occurring at a moderate

level of closure. In effect, the positive segment of the hypothesized relationship reflects

the expected benefits associated with at least some level of density among the

conversations, while the negative segment reflects the prediction that additional

connections would be counterproductive and that the “cost of ties” would become

dominant, as discussed in Chapter 3.

For Group Density, the results did not support an inverted-U shape for any of the

hypotheses. Rather, a negative relationship was found. The strongest negative

relationship was found between Group Density and the two community activity variables,

Software Downloads and Page Views (at p-values < .001). There is also evidence of a

negative relationship between Group Density and the community output variables,

although the relationship is not as strong (with p-values of .066 and .063). With

reference to the results for the H1c and H1d hypotheses, it is noted that these regressions

showed both linear relationships and U-shaped relationships. Because the linear

relationships had a more significant p-value (< .001) than the U-shaped relationships

(.098 and .096), they were considered to be dominant and only the linear results are

shown in Table 20.

For Core Density, an inverted-U relationship was also expected but with a less

extensive negatively sloped segment, considering the additional positive benefits

associated with the needs of the core subgroup to be more interactive in creating the

software. For these hypotheses, a mostly negative relationship with community success

was observed, with three of four regressions showing a negative result. The negative

relationship was stronger and more consistent for the output variables than for the activity

 132

variables. The strongest result was between Core Density and Software Releases (p <

.05). In the case of the activity variables, one of the two relationships (with Page Views)

was found to be a U-shape (at p < .05). A U-shaped relationship involves a negative

slope for lower levels of the independent variable and then a positive slope for higher

levels of the independent variable, with a minimum occurring at a moderate level of the

independent variable.

For Peripheral Two-Mode Density, an inverted-U relationship was expected but

with less emphasis on the negative side because of the additional benefits associated with

the positive psychological effects of including the peripheral developers in core

discussions. The results of these regressions did not support the hypotheses, but rather

contained only one weak negative relationship (p = .092) on just one of the four success

variables – Software Downloads - with no effect seen on the other three variables.

While it was generally expected that the closure-success relationship would be an

inverted-U in which a segment of the curve is negatively sloped, it was surprising to find

a negative slope for the entire length of the curve in 8 of the 12 closure hypotheses. In

effect, these results suggest that there is essentially no benefit to closure within an open

source software project community.

The strongest negative relationships for Group Density were noted for the activity

variables, while the strongest negative relationships for Core Density were observed for

the output variables. Comparing the Group Density results with the results for Core

Density, it is noted that the negative relationships were less pronounced for the core

subgroup than for the group as a whole. This may be an indication that the expected

benefits associated with the needs of the core subgroup are influencing the result.

 133

However, it is still surprising to consider that density among the core subgroup seems to

produce no benefit with respect to community output. It is interesting to note that no

significant negative relationship was seen for the Peripheral Two-Mode Density

hypotheses which may indicate that the expected benefits of the peripheral-core

connectivity are acting to offset the otherwise negative aspects of closure as noted above.

It is difficult to compare these findings with reports in the open source software

literature because most of the prior social network studies of open source have been

descriptive and have not attempted to relate social network structure to success at the

level of the project community. Healy and Schussman (2003) study the statistical

characteristics of the entire set of projects on SourceForge but they do not address social

network structures at the project level. Krishnamurthy (2002) notes the surprisingly low

volume of conversations in open source projects but the author does not calculate

conversational density. Volume and density are distinct concepts and a finding of low

volume does not necessarily imply a finding of low density, although the two are not

inconsistent.

One recent paper by Crowston and Howison (2006) reported the results of an

empirical study of bug report forums. Their method of collecting data and defining the

conversational network was similar to the method used in this dissertation, except that

they focused their data collection efforts on bug report forums rather than general forums.

The authors calculated and reported density of the conversation networks and found a

negative relationship between conversational density and group size. This result

corresponds with the findings of the dissertation that group density and group size are

negatively correlated (Pearson correlation value of -.52, see Table 13). However, the

 134

Crowston and Howison (2006) study did not consider a success variable in their

regression. They regressed density on group size, while the dissertation study regressed

success on density while controlling for group size. Thus, the dissertation study

controlled for the relationship between density and group size, and still found a negative

relationship between density and success. Crowston and Howison did not perform such

an analysis.

6.1.2. Bridging

The results for the 8 hypotheses associated with bridging are presented on Table

21. A positive relationship was expected for these hypotheses, which includes Core

Membership Degree and Administrator Membership Degree. As discussed in Chapter 3,

there were a number of expected benefits associated with bridging ties such as providing

access to new ideas, obtaining help to solve problems, and increasing the likelihood of

recruiting new members to the focal project. While some cost-of-ties effect was

recognized, it was noted that this cost was not compounded as with intragroup ties and

therefore an overall positive relationship was expected.

The results for the bridging regressions did not support a positive relationship for

any of the hypotheses. For Core Membership Degree, only one of the four runs showed

an inverted-U result – Software Downloads - and that result was very weak (p=.099).

The other three runs showed no significant effect. Considering that a positive

relationship was expected, it was surprising to find that the extensiveness of bridging ties

did not have an effect on success, implying that such bridging ties are not an important

 135

Table 21
Summary of Test Results for Bridging Hypotheses

Hyp# Independent Variable Dependent Variable Success
Dimension

Hypothesized
Relation

Suggested Alternative
Relation

Detail Results
Table

H4a Core Member. Degree Code Commits Output Positive None
H4b Core Member. Degree Software Releases Output Positive None
H4c Core Member. Degree Software Downloads Activity Positive Inverted-U (p=.099)
H4d Core Member. Degree Page Views Activity Positive None

H5a Admin. Member. Degree Code Commits Output Positive Inverted-U * Table D-5
H5b Admin. Member. Degree Software Releases Output Positive None
H5c Admin. Member. Degree Software Downloads Activity Positive None
H5d Admin. Member. Degree Page Views Activity Positive None

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

 136

factor in open source software project communities. For Administrator Membership

Degree, again only one of the four runs showed an inverted-U result – Code Commits -

although in this case, the result was significant at p < .05. Again, the lack of an effect of

administrator bridging on three of the four success variables was surprising.

In a recent study by Grewal et. al. (2006), the authors collected data from 108

open source software project communities on SourceForge and related various measures

of bridging (which they refer to as “network embeddedness”) with the number of code

commits and the number of downloads (used as measures of project success). Overall,

the authors obtained a mixed set of positive, negative, and “no-effect” relationships

between bridging and success. Their conclusion that the impact of bridging was greater

on code commits than on downloads is consistent with the dissertation results. Their

suggestion that bridging has “powerful but subtle effects on project success” is generally

inconsistent with the dissertation finding that bridging had only a minor effect on success.

However, due to methodological differences, the comparability of the two studies is

questionable. For example, Grewal et. al. (2006) used many different bridging measures

which were not comparable to the measures used in the dissertation. In addition, their

study utilized a nominalist sampling approach in which 10 projects were selected based

on their common platform technology and then other projects were selected based on

known bridging ties with these original 10 projects. This is in contrast with the

dissertation study in which a random sampling strategy was used. It is possible that the

bridging results for a sample of projects with known bridging connections may be

different than the results for a randomly selected sample of projects.

 137

6.1.3. Leader Centrality

The results for the 4 hypotheses associated with leader centrality are presented on

Table 22. As discussed in Chapter 3, some positive relation was expected between

leader centrality and success in that a certain level of connectedness between the leaders

and the rest of the group would seem to be necessary to integrate the code contributions

of the members and to coordinate some activities as needed. However, at higher levels of

leader centrality, a cost-of-ties effect was expected in which too much centrality becomes

burdensome on the administrators, resulting in a negative curve at higher levels of

centrality. Therefore, the hypotheses linking Administrator Class Centrality with

community success posited an inverted-U relationship.

The results presented in Table 22 did not support an inverted-U shaped

relationship for any of the four leader centrality hypotheses. However, the suggestion of

an alternative relationship shape was inconclusive. In the case of Software Releases, an

alternative positive relationship is suggested (p < .01). Yet, in the case of Page Views, an

alternative U-shaped relationship is suggested (p < .05). For the other two hypotheses, no

significant effect was noted.

With regard to open source software literature, no studies were identified in which

leader centrality measures are investigated. However, the literature does suggest that

open source administrators tend to operate in low key roles, avoiding power relationships

and delegating as much as possible. These observations are not inconsistent with the

finding that leader centrality had a mixed relationship with success.

 138

Table 22
Summary of Test Results for Leader Centrality Hypotheses

Hyp# Independent Variable Dependent Variable Success
Dimension

Hypothesized
Relation

Suggested Alternative
Relation

Detail Results
Table

H6a Admin. Class Centrality Code Commits Output Inverted-U None
H6b Admin. Class Centrality Software Releases Output Inverted-U Positive ** Table D-6
H6c Admin. Class Centrality Software Downloads Activity Inverted-U None
H6d Admin. Class Centrality Page Views Activity Inverted-U U-Shaped * Table D-7

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

 139

In summary, of the 24 hypotheses that were tested, a total of 7 produced results

which were significant at p < .05 (see Tables D-1 through D-7), 6 produced results which

were significant at p < .10, and the remaining 11 hypothesis tests showed no significant

effects. While none of the hypothesized relationships were supported, the alternative

relationships that were suggested are summarized below:

1. In general, a negative relationship was observed between the closure
variables and the success variables (mainly considering the activity variables
regressed on Group Density, and the output variables regressed on Core Density).

2. U-shaped relationships were observed for Page Views (considering the
regressions on Core Density and Administrator Class Centrality).

3. An inverted-U relationship was observed between Administrator
Membership Degree and Code Commits.

4. A positive relationship was observed between Administrator Class
Centrality and Software Releases.

6.2. Conjectures and Causality

As discussed in the previous section, the results broadly deviated from

expectations. Considering that this was one of the first large-scale empirical studies of the

relationship between social network structure and success in open source software project

communities, it seemed likely that some surprising results would be found. However, the

extent of the deviation that was observed was dramatic considering that the hypotheses

were formulated based on well-established social network theories of team effectiveness

with plausible adjustments made to reflect expected differences between teams and open

source software project communities. In addition, even though the expected relationships

were not found, a number of other relational shapes were implied.

 140

In this section, conjectures are offered which attempt to explain each of the four

significant findings noted at the end of the previous section. These conjectures consist of

explanatory arguments which are plausible but which are not empirically tested in the

current study. Considering the extent of deviation from expectations, it is also

appropriate to reassess the causality assumptions which were inherent in the study’s

conceptual research model (Figure 4). Therefore, each conjecture is further reviewed

with respect to its implications for the most likely direction of the causal arrow between

social network structure and community success. In the remainder of this section, each

finding is stated, followed by one or more conjectures which are related to that finding.

Finding #1: in general, a negative relationship was observed between the closure

variables and the success variables. The closure of a network is essentially the

proportion of the total possible links in a network that are actually connected. Therefore,

a higher closure value indicates more connected links while a lower closure value

indicates fewer connected links. If the causal arrow is assumed to point from structure to

outcome, then the observed negative relationship between closure and success would

imply that a lack of network links can somehow cause or logically lead to success. No

plausible conjectures were identified which could explain such a relationship. Therefore,

the possibility of a spurious relationship was considered whereby a third factor is

identified which affects both closure and success.

Three conjectures were formulated which, if valid, imply that the negative

relationship between closure and success is spurious. All of these conjectures involve a

third factor which is associated with the attributes of certain project artifacts. One of

 141

these factors is the modularity of the software architecture, which is a technological

artifact. The other two factors include the quality of the software documentation and the

appropriateness of the project rules, both of which are informational artifacts of the

project. These three factors and their suggested impact on closure and success are

discussed below.

Software architecture. The modularity of the software architecture is recognized

as an important success factor for open source software projects (MacCormack et. al.

2006). Modular software architecture permits changes to source code within one module

without significant effects on code contained in other modules. An ineffective modular

design will tend to increase coding interdependencies in which the coding work of one

developer is more likely to affect the work of other developers.

As a result, ineffective modularity will tend to increase the closure level as multi-

person conversations are needed to discuss the impact of code changes and to investigate

complex bugs which are more likely to arise. At the same time, this may lead to a

reduction in developer productivity as efforts are shifted from coding to conversation,

and may also demotivate the developers who are focused on writing code and view

conversation as a distraction. The need for dense discussions may frustrate these

developers which may cause them to reduce their effort level and in some cases they may

even choose to abandon the project. The combined impact of reduced productivity and

reduced effort is to decrease the output dimension of success.

With regard to the activity dimension of success, ineffective modularity can

directly reduce the quality of the software that is produced, because of the increased

 142

likelihood of complex bugs and their negative impact on software usability. In addition,

the reduction in productivity and coding effort that was mentioned above will have an

indirect negative effect on software quality. A lower level of software quality will tend to

reduce the interest level of the community which will translate into a decrease in the

number of downloads and the number of page views, both of which are measures of the

activity dimension of success.

In summary, ineffective software modularity will tend to increase closure as a

result of the increase in coding interdependencies, and at the same time, it will tend to

decrease output due to losses in productivity and effort, and will decrease activity due to

negative impacts on software quality. The suggested positive relationship between

modularity ineffectiveness and closure and the suggested negative relationship between

modularity ineffectiveness and success will result in a negative correlation between

closure and success. However, because this negative correlation arises from the effects

of a third variable (software modularity ineffectiveness), the closure-success relationship

would be viewed as spurious and no causal relationship would be suggested between

closure and success.

Software documentation. In a software development project, the software

documentation contains a description of the overall architecture and modular structure of

the software, specific descriptions of the functionality of various procedures, data

definitions, and other important information about the software. High quality

documentation is clear and complete and it makes the overall software architecture

explicit. Poor or incomplete documentation can increase the level of closure as questions

 143

and discussions are necessary in order to clarify features of the software that are useful

and/or necessary to know as a developer writes source code. As with ineffective software

modularity, a low quality of software documentation will decrease output success as

effort is shifted from coding to conversation and as frustrated developers reduce their

overall level of effort.

Poor quality software documentation can directly reduce the quality of the

software that is produced, because of the increased likelihood that coding efforts will be

based on incorrect assumptions and missing information. In addition, the reduction in

productivity and coding effort will have an indirect negative effect on software quality,

which as was the case with ineffective software modularity, will translate into a decrease

in the activity levels of the project community.

Thus, poor quality software documentation will tend to increase closure as

questions and discussions are necessary to clarify knowledge needed for coding tasks. At

the same time, it will decrease output and activity as described above. As with the

software modularity conjecture, this suggests that the negative relationship between

closure and success is spurious and arises as a result of the positive relationship between

poor software documentation and closure and the negative relationship between poor

software documentation and success.

Project rules. Open source software projects are less reliant on hierarchy and

supervision than software development teams, and therefore the project rules play an

important role in guiding the behavior of the independent contributors. These rules may

be formally stated in a document or they may be informally stated in various public

 144

forum postings. The open source license that is chosen is also part of the project rules.

In effect, these rules provide guidelines regarding the rights and responsibilities of the

community members, and they specify certain types of behaviors that are either

encouraged or discouraged. Rules which are inappropriate or understated will tend to

lead to complaints, disputes and controversies that require multi-person discussions, thus

resulting in an increase in closure. As with the software architecture and software

documentation artifacts, this increase in closure will tend to reduce the output levels, and

the resulting indirect negative impact on software quality will tend to reduce the activity

levels. Therefore, this conjecture also implies that the closure-success relationship is

spurious, based on arguments that are similar to the two previous conjectures.

Finding #2: U-shaped relationships were observed for Page Views. As

previously noted, U-shaped relationships were observed between Core Density and Page

Views and between Administrator Class Centrality and Page Views. This suggests that a

negative relationship exists for lower levels of the independent variable and that a

positive relationship exists for higher levels of the independent variable. No conjecture

which assumes a homogeneous study population could be identified to explain this result.

However, if it is assumed that a subset of the study population has different

characteristics that would lead to a positive relationship with Page Views, then the

combination of this situation with a negative relationship for the remainder of the

population (as was seen in other regression tests) would result in a U-shaped relationship.

In particular, it is possible that certain project communities consist of individuals

who know each other in an off-line context and who choose to utilize the resources of

 145

SourceForge to collaboratively develop software. These groups may utilize planning and

control approaches that are associated with teams and that are not commonly used in

open source software project communities. In effect, these may be de facto software

development teams that use the SourceForge facilities to conduct their work. If this were

true, then these de facto teams would likely exhibit positive relationships between closure

and success and leader centrality and success, similar to the relationships that have been

observed for other kinds of teams.

If this conjecture is true, then the study population actually consisted of two

different regimes which would tend to dilute the results and reduce the significance of all

of the regression results. However, it is noted that only 2 of the 24 regressions resulted in

a significant U-shape and that various other regressions did show significant linear and

inverted-U results. In addition, a significant regime split can often be detected by an

obvious bimodal or multimodal distribution of the research variables, and no such

distribution pattern was noted. Therefore, it is suggested that the impact of the U-shaped

finding is secondary and that there are no important implications regarding the direction

of causality.

Finding #3: an inverted-U relationship was observed between Administrator

Membership Degree and Code Commits. This relationship involves a positive slope for

the lower values of bridging and a negative slope for the higher values of bridging. The

most plausible conjecture for this result is that the expected positive effects of bridging

are in fact being observed for the lower values of the bridging variable. However, at the

higher values of the variable, it is possible that a “cost-of-ties” effect is being seen, in

 146

which too many bridging ties become burdensome on the administrators and the effect on

community success is negative. This cost-of-ties effect was expected for closure and

leader centrality but was not expected for bridging because the tie only affected one

member of the community (the administrator) and the level of expected benefits was

extensive. However, because of the importance of the administrator, the cost-of-ties

effect may in fact be important. If this conjecture is true, then the implication is that the

causal arrow does point from social network structure (bridging) to output (Code

Commits) in reference to this finding.

Finding #4: a positive relationship was observed between Administrator Class

Centrality and Software Releases. The decision to make a software release is typically

made by the administrator. While a high level of coding activity (Code Commits) is

logically associated with frequent releases (Software Releases), it is possible for an

administrator to make frequent releases even if there is a relatively low volume of code

commits. In effect, the decision to release is somewhat arbitrary and it is possible that

certain administrators are biased towards frequent releases and therefore they have a

higher “propensity to release” than others. If this were the case, then those administrators

with high propensity to release would make frequent releases resulting in a high level of

Software Releases. In this situation, the frequent releases would tend to generate

questions and comments from developers who download the releases and these

conversations would tend to dominate the forums and would be directed to the releasing

administrator, resulting in high levels of Administrator Class Centrality. In effect, these

administrators would be generating their own centrality. If this conjecture were true, then

 147

the implication would be that the causal arrow points in a reverse direction from the

assumption of the research model – that is, it would point from outcome (Software

Releases) to social network structure (Administrator Class Centrality).

Summary. Of all the conjectures offered in this section, only the one for finding

#3 implies that the causal arrow points from social network structure to success.

Otherwise, all of the other conjectures imply spurious results, reverse causality, or the

presence of a qualitatively different subset of communities. Taken together with the

various other “no effect” results that were observed, the general implication is as follows:

The social network structure of an open source software project community
has no important effect on community success.

In addition, the three conjectures associated with the negative relationship

between closure and success (finding #1) imply that:

The closure of an open source software project community is a condition or
indicator of community success, but is not a driver or cause of such success.

6.3. The Insignificance of Structure

In the previous section, it was concluded that the social network structure of the

open source software project communities that were studied had no important effect on

community success. In this section, this insignificance of structure with respect to

success is further discussed. In particular, explanations are offered regarding how it

could be that social network structure has no important effect on community success,

even though social network theory, supported by numerous empirical studies, suggests

that structure should be important with respect to group performance.

 148

As previously discussed, social network theory is based on the notion that a social

network acts as a conduit for the flow of resources such as knowledge and the tangible

resources that can be accessed based on that knowledge. Social capital theory suggests

that a structure with high closure within a group will improve the performance of tasks

which require the utilization of the knowledge of the group, while a structure with many

bridging ties between group actors and non-group actors will improve the performance of

tasks which require access to knowledge which is beyond the boundaries of the group. In

effect, social network structure is predicted to be important to success in work groups

because it can enable or impede the transfers of knowledge, where such transfers are

needed to support activities such as learning, problem-solving, coordination and task

completion, all of which are necessary for successful group outcomes.

Considering this knowledge transfer view as a frame of reference, there are two

general reasons that can be offered to explain the insignificance of social network

structure with respect to community success. One possibility is that knowledge transfers

are somehow being mediated without the involvement of the social network. In effect,

other mechanisms may substitute for the social network as a mode of knowledge transfer.

The other possibility is that there may simply be less need for knowledge transfers in

successfully completing the work associated with open source software projects.

Ultimately, both of these reasons may contribute to the explanation of the

counterintuitive findings that were previously described. In the remainder of this section,

various conjectures are offered which expand upon these two possibilities.

 149

6.3.1. Substitutes for the Social Network

While it may be possible to imagine knowledge transfers that are mediated

through shared cognition and/or strong culture, the most tangible possibility seems to be

that knowledge could be transferred indirectly through artifacts rather than directly

through the social network. Open source software developers operate in a network-

mediated computing environment involving many types of tools and other technical

artifacts such as source code repositories, programming languages, project web pages,

and others (Scacchi 2002). The scenario in which artifacts can successfully mediate

knowledge transfer is feasible to the extent that the artifacts can be inscribed with

knowledge and that the task can be structured to allow for workflows from person to

artifact to person, rather than from person to person. In this case, the artifacts become the

mediators of knowledge transfer and they act as a substitute for the social network in this

regard. This is somewhat similar to the “knowledge ecology” view offered by Lanzara

and Morner (2003).

For example, the source code is an artifact of the project. The statement

sequence, algorithmic logic, and general organization of the code can be viewed as a kind

of inscription of knowledge. When a developer checks out a batch of code from the

source code repository, the knowledge that was inscribed by all of the previous

contributors to that code becomes available to that developer. In a sense, these prior

developers are “speaking” to the new developer through the code. As this developer

makes changes to the code, he or she is inscribing their own knowledge into the code, and

this new knowledge becomes available to other developers as soon as the new code is

committed into the repository.

 150

An example of artifact mediation as a substitute for social network structure may

be found in the use of outside project records by teams versus open source software

project communities. In the case of teams, the detail and accessibility of these outside

records is relatively limited compared with the transparency and accessibility of open

source software project records. Team members commonly use their bridging ties in

order to obtain this outside information and therefore the bridging structure of their social

network is important for successful outcomes. In the case of open source software

developers, however, it is possible to obtain a great deal of information about outside

projects from the publicly accessible work records in the form of source code

repositories, public forums, and other informational artifacts which are posted on the

project web site, all of which can be located with the use of an efficient search engine.

These records can be used by developers to learn about other projects and to obtain useful

artifacts such as source code fragments and even problem solutions which are noted in

public forums. Therefore, the importance of the bridging ties is reduced and the public

record artifacts act to substitute for the social network structure with regard to mediating

these knowledge flows. The use of open source software project records in this manner

was noted by von Krogh et. al. (2005) who found that developers often reported reading

the mailing lists of other projects:

The barriers between open source projects seem to be less distinct as one might
assume. Since developers stated that they tend to read several projects’ mailing
lists, it is difficult if not impossible to track ‘silent’ and uncredited knowledge
transfer in the form of ideas between projects as there is no formal system for
recording these kind of transfers.

 151

In the case of social network mediated knowledge transfers, an ineffective social

network structure can act to impede the knowledge flow (for example, as where low

closure limits the interpersonal flow of knowledge). In a similar way, an ineffective

design for a knowledge-mediating artifact may act to impede the flows of knowledge.

For example, if the software documentation artifact is of high quality, then it can be

relied upon to facilitate knowledge transfers. If however it is of low quality, then it can

impede such transfers and require that the social network be used in its place. If the

overall task structure is designed for artifact mediated transfers, as may be the case in

open source software projects which must operate in a geographically dispersed and

asynchronous environment (Yamauchi et. al. 2000), then this can represent an

inefficiency which is reflected in a lower level of success.

6.3.2. Reduced Need for Knowledge Transfer

Various possible explanations can be offered regarding why there may be less

need for knowledge transfer in open source software project communities, when

compared with the needs of traditional teams. These explanations are listed and

described below.

Modular software architecture. Modular software architecture permits changes to

source code within one module without significant effects on code contained in other

modules. This reduces the need for knowledge transfer between developers who are

working on different modules.

 152

Accepted standards and tools. The use of well-known coding standards, design

approaches, and programming languages may act to reduce the need for knowledge

transfer because developers will already be familiar with these tools and will not require

additional knowledge in order to use them.

Highly skilled developers. Project community members may be so highly skilled

and experienced that knowledge transfer is not very important for learning and problem

solving. These experienced individuals may not need direction from a central leader but

rather are self-directed such that their choice of task and work method productively

contributes to the overall software development task. They may also not need or want

help from other members of the project community or from individuals outside of the

project community.

Familiarity. It has been observed that familiarity among the members of teams

can act to weaken the relationship between social network structure and team

performance, implying a reduced need for knowledge transfers (Balkundi and Harrison

2006). This may also be observed in open source software projects. However, the study

population involved the two-year period following the first release of software, and

therefore the familiarity effect may not be so important in this study as compared with the

familiarity that develops in teams over the span of many years. In open source projects, it

is also possible that the core developers become familiar with the source code itself to the

extent that they have contributed to its growth from an early seed stage. This kind of

familiarity may also reduce the need for knowledge transfer.

 153

Developer as user. In developer-targeted software projects, the developer is also

the user and therefore the communication that would normally occur between user and

developer is not necessary. This would result in a reduction in the need for knowledge

transfer, based on a comparison with a traditional team-based approach in which external

users are usually consulted in developing software requirements and in evaluating the

project output.

Open source culture. The culture of the broader open source software

community is characterized as a kind of meritocracy in which a rational approach is

favored over other approaches which resort to hierarchical position or relationships of

power and influence (Raymond 1999). Such a culture may result in limited exchanges of

knowledge compared with hierarchical cultures which require more protracted and

extensive knowledge transfers as may be seen within a bureaucratic structure (Yamauchi

2000).

Shared mental models. To the extent that participants have shared mental models,

it is possible that these shared models may reduce the need for knowledge flows

associated with coordination and other development activities (Scozzi et. al. 2008). In

some respects, this may be related to the notion of familiarity as described above. In

addition, shared mental models can also be viewed as an aspect of the open source

culture.

 154

7. CONCLUSIONS

The objective of this dissertation research was to investigate the social network

structural conditions that are associated with success in open source software project

communities. In pursuing this goal, a set of propositions were developed based on social

network theories of teams and other relevant theoretical and empirical literature. These

propositions were operationalized in the form of 24 hypotheses which were then tested

using data obtained from open source software project archives. The results deviated

broadly from the expectations and an alternative set of relationships was observed.

Plausible explanations for the alternative relationships were suggested and

analyzed and the two primary implications were that 1) the social network structure of an

open source software project community has no important effect on community success,

and 2) the closure of an open source software project community is a condition or

indicator of community success, but is not a driver or cause of such success. This

“insignificance of structure” was examined and a series of explanations were offered

which suggested that artifacts may be substituting for the social network as a knowledge

transfer medium, and that the overall need for knowledge transfer within an open source

software project may be lower than in a traditional team-based project.

In this final chapter, the implications of these surprising results are further

explored. This begins with the suggestion that the observed anomalies may represent a

paradigm disruption which triggers the need for theory building. Some requirements for

such a theory building effort are offered along with two propositions which are suggested

as extensions of explanations offered in Section 6.3. This is followed by a discussion of

 155

the implications for research and practice, the contributions of the work, a discussion of

research limitations, and a presentation of future research directions.

7.1. Implications

The arguments presented in Chapter 6 suggest that the findings of this work

represent an anomaly with respect to currently accepted theories of team effectiveness

and social capital. More broadly, this work suggests that what is referred to as an “open

source software project community” is actually neither “team” nor “community” but is a

new kind of social entity which is built upon a socio-technical development process

involving extensive interactions between humans and technical artifacts. In this section,

these suggestions are further explored regarding the possibility that open source software

may represent a disruption to the team development paradigm. This is followed by a

discussion of requirements for building this new theory. Finally, the implications of

these conclusions with respect to research and practice are considered.

7.1.1. Paradigm Disruption

A paradigm is characterized by well-accepted theories and ways of thinking

(Kuhn 1996). The disruption to an existing paradigm is often identified by observations

which are counterintuitive and by the failure of existing theories and paradigmatic

thinking to account for these observations (Kuhn 1996). In addition, Kuhn notes that

technology changes will often lead to paradigm disruptions: “… technology has often

played a vital role in the emergence of new sciences.” (Kuhn 1996)

It is argued that the concept of teams and the social network theory of team

effectiveness are aspects of a team development paradigm. In particular, the notion that

 156

teams are the fundamental means for developing knowledge products is certainly well

accepted in research and practice. In addition, the assertions of social capital theory

regarding the importance of closure and bridging structures for work group outcomes are

well-tested and broadly applied throughout the social network theoretical literature.

In the case of open source software project communities, it is noted that open

source is a relatively new phenomenon which has emerged along a track which is

generally parallel to the developmental track of the internet. Further, open source

projects are highly dependent on the internet and advanced information technology tools

which have only recently become available. Therefore, it is certainly possible that a

technology as pervasive and disruptive as the internet could be leading to the emergence

of a new form of collaborative development which might represent a disruption to the

team paradigm.

The findings of this research that the social network structures of an open source

software project community have no important effect on its success are certainly

counterintuitive. How could social networks not be important for developing software in

these communities when they are so important in teams? In particular, it is difficult to

fathom how a knowledge-based product as complex as computer software could be

developed without the need for dense interactions to facilitate knowledge flows between

and among the participating developers.

In Chapter 6, the results of this work were analyzed in depth with reference to the

current social network theories and it was apparent that these theories offer little or no

predictive value regarding the success of open source software project communities.

Taken together with the presence of counterintuitive findings and the possibility that the

 157

internet has spawned a new kind of collaborative development process, these arguments

suggest that:

The open source software project community may represent a disruption to the
team development paradigm.

A paradigm disruption triggers the need for theory building. If open source is in

fact a paradigm disruption, then the need for new theories is apparent. However, even if

open source does not qualify as a “full blown” paradigm disruption as defined by Kuhn

(1996), the results of this study, if confirmed by future studies, would certainly suggest

that a significant anomaly has been found and a confirmed anomaly is a reason for theory

building (Weick 1989).

7.1.2. Requirements for a New Theory

Kuhn (1996) describes the typical theory building process that is associated with a

paradigm disruption:

Discovery commences with the awareness of anomaly, i.e., with the recognition
that nature has somehow violated the paradigm-induced expectations that govern
normal science. It then continues with a more or less extended exploration of the
area of anomaly. And it closes only when the paradigm theory has been adjusted
so that the anomalous has become the expected. (Kuhn 1996)

The scope of a new theory which addresses the disruption of the team paradigm

could possibly encompass all forms of collaborative development involving the structures

and behaviors of teams, virtual development communities such as open source software

project communities, and similar forms of organization and activity. However, in the

short-run, an important starting point would be to build and test theories which are

focused on explaining the anomalies of open source software development.

 158

The overall problem to be addressed by the new theory is explaining how open

source software project communities can successfully develop complex artifacts such as

software without being impacted by the social network structures of closure, bridging or

leader centrality. In particular, the theory should explain why social network structure is

not important for learning, problem-solving, coordination and task completion in open

source software project communities, even though it is important for the successful

performance of these activities in teams.

Based on the discussions and possible explanations that were offered in Section

6.3, the following two propositions are suggested as a foundation for future theory

building:

Proposition A
Compared with software development teams and teams in general, open source
software project communities substitute artifact mediation for social networks as a
mechanism for knowledge transfer.

Proposition B
Compared with software development teams and teams in general, open source
software project communities have less need for knowledge transfer in achieving
successful outcomes.

The conjectures and explanations offered in Chapter 6 may provide a starting

point for further elaborating these propositions and developing testable hypotheses. For

example, in expanding on Proposition A, it may be useful to consider the source code

repository, software documentation and project rules as artifacts which may be

substituting for social networks. In this case, the theory would need to specify how these

types of artifacts are mediating knowledge flows and also how the overall task structure

and workflow patterns could be organized to permit such flows to lead towards

 159

successful task completion. Such a theory might incorporate the notions of self-

organization and evolutionary mechanisms. In expanding on Proposition B, the various

explanations offered in Section 6.3.2 may provide the basis for defining various

hypotheses. Again, the theory would need to specify the manner in which successful task

completion can occur without the related knowledge flows taking place.

7.1.3. Research Implications

In many respects, the new theory building process has already begun as evidenced

by the significant level of research interest in developing new frameworks and

mechanisms for describing and explaining the unique aspects of open source software

projects. In a recent article by von Krogh and von Hippel (2006), the authors organize

their review of the current status of open source software research into three categories:

1) motivations of open source software contributors, 2) governance, organization, and the

process of innovation in open source software projects, and 3) competitive dynamics

enforced by open source software. The propositions suggested in Section 7.1.2 involve

aspects which are part of von Krogh and von Hippel’s second category of research.

With regard to other open source software research efforts, the works of Lanzara and

Morner (2003) and Lee and Cole (2003) may be especially relevant to the suggested new

theory in that these authors discuss the importance of evolutionary mechanisms in the

open source development process, and these mechanisms may help to explain how

artifact-mediation can substitute for social network structure and still provide adequate

support for successful group outcomes.

 160

With respect to organizational theories, even though it is suggested that open

source software project communities are not teams, they are still collective forms of work

production and therefore organizational theories should be relevant. In particular, some

of the earlier organizational research works in the areas of substitutes for leadership

(Howell, et. al. 1986), self-regulating teams and socio-technical systems (Cummings

1978), and centralization versus decentralization (Carley 1995) may be productive areas

for further investigation. As an example, Kerr and others (Kerr and Jermier 1978) have

proposed a substitutes for leadership theory which suggests that highly structured tasks

may require lower levels of leadership. In effect, the greater the task structure, the less

the requirement for direction. This implies a certain reduction in the required knowledge

transfers between the leader and the other team members. As a result, this theory may

help to explain the reduced need for knowledge transfer in open source software project

communities based upon the structure of the open source tasks. This may be especially

applicable for explaining the lack of effect of leader centrality on community success.

In a broader sense, the possible presence of a paradigm disruption should alert

researchers in the fields of open source software, team effectiveness and social capital

theory to reconsider and more explicitly state their assumptions. In general, the presence

of a paradigm can cause a kind of “blindness” to other possibilities and the resistance to

paradigm changes is well-established (Kuhn 1996). As a result, researchers in these

domains should recognize the possibility that their paradigmatic perspective may be

limiting their choice of research phenomena to be studied. In particular, it is possible that

existing open source software researchers have been unduly influenced by the team

paradigm and it may be appropriate to step back and consider the possibility that open

 161

source software communities may be a fundamentally new form of collaborative

development. This might involve taking a more grounded approach which explicitly

identifies and isolates the team-oriented concepts. In the domain of social network

theory, researchers should reconsider their basic assumptions about the social network as

a conduit for knowledge flow and consider alternative perspectives in which artifacts may

play a key role in knowledge transfer. This may be especially relevant in the study of

socio-technical systems.

7.1.4. Practical Implications

One practical implication of the study relates to the finding that administrator

bridging has an inverted-U relationship with code commits. This implies that a project

community can benefit from the membership ties of the administrator and therefore

connections with other projects should be pursued. However, too many ties can be

counterproductive and administrators should be aware of how their other memberships

and commitments may be having a negative impact on the success of their projects.

In terms of artifact design, the study results imply that certain project artifacts

including software architecture, software documentation, and project rules may be

important factors of success. Administrators and host platform designers should be

aware of the importance of these artifacts and should take actions to ensure that they are

properly designed. If problems arise, these artifacts should be carefully evaluated to see

if there are any deficiencies that can be corrected.

In more general terms, perhaps the most important implication for practice is the

recognition that open source may represent a fundamentally new form of collaborative

 162

development. Practitioners should expand their perspectives and reconsider their

assumptions that a team is the only organizational form which can be used for

collaboratively developing a knowledge product. Open source methods have been shown

to be a useful and interesting alternative to team-based software development methods.

However, practitioners should be aware that other possible applications of open source

methods may be feasible in areas such as the development of innovative product designs,

knowledge repositories, and other kinds of knowledge-based products.

7.2. Contributions

Overall, this was one of the first large-scale empirical studies of the relationship

between social network structure and success in open source software project

communities. In particular, it is the first known study to relate closure and leader

centrality to success, and the second known study (after Grewal, et. al. 2006) to relate

bridging to success in open source project communities. In the remainder of this section,

the specific contributions to theory, methodology, and practice are described.

7.2.1. Theory

This work contributes a social network perspective to the emerging theories of

open source software with respect to governance, organization, and development

processes. In particular, the anomalous results point towards the consideration of artifact-

mediation and knowledge transfer reductions as possible elements which may ultimately

be synthesized with these new open source theories. Further, the work has connected

open source software research with team effectiveness research in terms of social capital

theory and leader centrality.

 163

For team effectiveness researchers and social network theorists, this work

provides an interesting counterpoint to well-tested concepts and theories. The results

suggest the presence of a paradigm disruption which may require the re-evaluation of

assumptions and new theory building efforts with regard to theories of workgroups and

the roles and effects of social network structures. In the domain of social network

research, the dissertation has extended the application of social network theory to a new

form of socio-technical activity and has applied the concept of core and peripheral

subgroups within the context of social capital theory.

Ultimately, though, the most significant theoretical contribution of this research

may not be in adding to any existing theory but rather in tracing the outlines for a new

theory - one which suggests that artifacts may substitute for social networks as mediators

of knowledge transfer. As noted by Weick (1989):

… the contribution of social science does not lie in validated knowledge, but
rather in the suggestion of relationships and connections that had previously not
been suspected, relationships that change actions and perspectives.

7.2.2. Methodology

The use of a two-year observation window following first software release date is

a methodological contribution which provides for a more controlled study population

with respect to project maturity. The study has also demonstrated the use of archival

statistics for defining and measuring social network structural variables, and has made a

connection between two important research databases which were not previously used in

tandem.

 164

Further contributions to social network analytical methodology include the

definition of two-mode density in the context of a priori subgroups. Even though two-

mode density is a basic social network concept that is often used in practice, it is not

commonly used in research and there appears to be potential for further similar

applications. Also, the study applies the relatively new concept of class centrality in a

unique way, by using it to measure the centrality of a subgroup (administrators) as an

independent variable.

7.2.3. Practice

With regard to practice, the study will be useful to individuals and firms who

sponsor, manage, and/or participate in open source software projects. In a pragmatic

sense, the results of this work may provide practical measurement tools which can be

efficiently applied to pre-existing digital archives such as email, instant messaging and

online forums (Hinds and Lee Forthcoming). Even though social network structures

were not established as likely causes of success, the closure structure was noted to be an

important indicator of success, which makes it a useful evaluation metric. Open source

software project administrators can use such measures to assess their own communities

and to determine if they have the right kinds of structures or if changes might be

necessary.

7.3. Limitations

It is recognized that the study population was limited to early-stage projects which

were targeted to developers and not sponsored by corporations. The results may not be

 165

generalizable to more mature projects and/or projects which are user-targeted or

corporate-sponsored.

With regard to the variable selection, it is noted that the choice of bridging

variables was limited by the availability of data, and that more appropriate variables may

produce different results. In addition, the conversational networks are built from online

public forum records, and it is possible that there were other offline conversations among

project members which were not captured in the data. However, the norms of open

source software promote a high level of openness and transparency which may limit the

extent to which these offline conversations actually take place.

The choice of SourceForge as the sole research setting is a limitation in that it is

possible that the projects hosted by SourceForge are not representative of the broader

population of projects which may be found on other hosting sites and/or which may have

their own hosting platform. Also, the extensive transparency associated with

SourceForge may not be representative of other hosting sites. However, SourceForge is,

by far, the largest of the available hosting platforms and SourceForge projects include a

wide variety of software types, application domains, and open source licenses.

With regard to the choice of research method, it is recognized that the use of

historical statistics may result in reliability issues (Babbie 2005). Existing statistical

records are usually kept for purposes other than research, and various changes can occur

in record-keeping methods, information processing systems, definition of fields, and so

forth. These matters are addressed by taking proactive steps to identify changes in

recording method and other changes which might affect data reliability. Fortunately, the

SourceForge foundation is well aware that they are the source of considerable research

 166

efforts and, along with their open policy, they appear to be conscientious about

publishing their record-keeping methods and announcing any changes. These

announcements are carefully reviewed to determine the impact on data reliability and

other steps are taken to check the integrity of the data.

Finally, a cross-sectional study design normally results in ambiguity with respect

to the direction of the causal arrow between independent and dependent variables, since

time precedence cannot be established. Various conjectures were offered and their

implications regarding causal direction were discussed. However, as noted in that

section, these conjectures are not tested in this study and would require longitudinal

studies to more strongly support an argument of causality.

7.4. Future Research Directions

A number of future research directions can be envisioned. In the short-term,

attempts to generalize the results of this work to other types of open source software

projects would be worthwhile. This would involve relaxing some of the restrictions

imposed by the study population definition and re-testing the hypotheses for projects of

different maturity levels, projects involving user-targeted software, and projects which

are corporate-sponsored rather than community-based. Projects from host organizations

other than SourceForge should also be considered.

Because of the anomalous nature of the results, it is important that alternative

research methods be used to either confirm or refute the observed deviation from theories

of teams and social capital theories. This might involve more intensive field studies in

which a small number of project communities are investigated in order to evaluate some

 167

of the conjectures that have been offered but have not been empirically tested. These

studies can search for the presence of alternative forms of communication among project

developers. Also important is to further investigate the possible existence of two

different types of project communities, which may be the basis for the U-shaped

relationships that were observed.

With regard to theory building, the propositions suggested in Section 7.1.2 should

be further developed and elaborated into testable hypotheses. Various kinds of research

methods might be applied depending upon the nature of the hypotheses that are

suggested. In the short-term, these efforts would be focused on explaining the anomalous

results that were seen in open source software project communities. In the longer term, it

is possible that these efforts could be expanded to consider other types of virtual

development communities that may utilize open source methods and principles in

building a more general theory of collaborative development.

Finally, there appears to be significant potential in considering the role and impact

of technical artifacts with regard to the open source development process. Ongoing work

in socio-technical design research is associated with this type of study. Initially, this

work might involve comparative studies of artifacts and their roles in the development

process, for example as in comparing a prominent open source software project with the

development of a non-software product such as the Wikipedia. More generally, there is

the potential to conduct design research studies which use laboratory and field

experimental methods to test the impact of different design strategies on the nature and

success of the development community that emerges.

 168

LIST OF REFERENCES

Adamic, L. A. and B. A. Huberman (2000). "The nature of markets in the world wide
web." Quarterly Journal of Electronic Commerce 1: 5-12.

Ahuja, M. K. and K. M. Carley (1999). "Network structure in virtual organizations."

Organization Science 10(6): 741-757.

Allison, P. D. (1999). Multiple regression: a primer. Thousand Oaks, CA, Pine Forge

Press.

Almarzouk, M., L. Zheng, et al. (2005). "Open source: concepts, benefits and

challenges." Communications of the AIS 16: 756-784.

Axelsson, B. and G. Easton, Eds. (1992). Industrial networks: a new view of reality.

London, Routledge.

Babbie, E. (2005). The basics of social research. Belmont, CA, Thomson Wadsworth.

Balkundi, P. and D. A. Harrison (2006). "Ties, leaders, and time in teams: Strong

inference about network structure's effects on team viability and performance."
Academy of Management Journal 49(1): 49-68.

Barabasi, A.-L. (2002). Linked: the new science of networks. Cambridge, MA, Perseus

Publishing.

Barry, B. and R. Hardin, Eds. (1982). Rational man and irrational society. Beverly Hills,

CA, Sage.

Beal, D. J., R. R. Cohen, et al. (2003). "Cohesion and performance in groups: A meta-

analytic clarification of construct relations." Journal of Applied Psychology 88:
989-1004.

Benkler, Y. (2002). "Coase's penguin, or, Linux and the nature of the firm." The Yale

Law Journal 112(3): 369-446.

Benkler, Y. (2006). The wealth of networks: How social production transforms markets

and freedom. New Haven, Yale University Press.

Bessen, J. (2005). Open source software: free provision of complex public goods. MIT

open source working papers.

Bordieu, R. (1986). The forms of capital. Handbook of theory and research for the

sociology of education. J. G. Richardson. New York, Greenwood Press: 241-258.

 169

Borgatti, S. P., C. Jones, et al. (1998). "Network measures of social capital." Connections
21(2): 25-36.

Brooks, F. P. (1975). The mythical man-month: essays on software engineering. Reading,

MA, Addison-Wesley.

Brown, J. S. (1998). "Internet technology in support of the concept of "communities of

practice." Accounting, Management, and Information Technologies 8: 227-236.

Brown, J. S. and P. Duguid (1991). "Organizational learning and communities of

practice." Organization Science 2(1): 40-57.

Brown, J. S. and P. Duguid (2000). The social life of information. Boston, MA, Harvard

Business School Press.

Buchanan, M. (2002). Nexus: small worlds and the groundbreaking science of networks.

New York, W. W. Norton & Company.

Burt, R. S. (1992). Structural holes: The social structure of competition. Cambridge,

Mass., Harvard University Press.

Burt, R. S. (2001). Structural holes versus network closure as social capital. Social

capital: theory and research. N. Lin, K. Cook and R. S. Burt. New York, Aldine
De Gruyter: 31-56.

Capiluppi, A., P. Lago, et al. (2003). Evidences in the evolution of OS projects through

changelog analysis.

Carley, K. M. (1995). Computational and mathematical organization theory: perspective

and directions. 1995 Informs meetings in Los Angeles, CA.

Carrington, P. J., J. Scott, et al., Eds. (2005). Models and methods in social network

analysis. Cambridge, Mass., Cambridge University Press.

Chengalur-Smith, S. and A. Sidorova (2003). Survival of open-source projects: a

population ecology perspective. Twenty-Fourth International Conference on
Information Systems.

Chesbrough, H. W. (2003). Open innovation: the new imperative for creating and

profiting from technology. Boston, Mass., Harvard Business School Press.

Christensen, C. M. (1997). The innovator's dilemma: when new technologies cause great

firms to fail. Boston, Mass., Harvard Business School Press.

 170

Coleman, J. S. (1988). "Social capital in the creation of human capital." American
Journal of Sociology 94: S95-S120.

Conklin, M., J. Howison, et al. (2005). Collaboration using OSSmole: A repository of

FLOSS data and analyses. International Conference on Software Engineering
Workshop on Mining Software Repositories, St. Louis, MO.

Crowston, K., H. Annabi, et al. (2004). Towards a portfolio of FLOSS project success

measures. The 4th Workshop on Open Source Software Engineering, Edinburgh,
Scotland.

Crowston, K., H. Annabi, et al. (2005). Effective work practices for FLOSS

development: A model and propositions. 38th Hawaii International Conference on
System Sciences - 2005, Hawaii.

Crowston, K. and J. Howison (2004). The social structure of free and open source

software development. Syracuse FLOSS Working Paper.

Crowston, K. and J. Howison (2006). “Hierarchy and centralization in free and open

source software team communications.” Knowledge, Technology, & Policy 18(4):
65-85.

Crowston, K. and B. Scozzi (2002). "Open source software projects as virtual

organizations: competency rallying for software development." IEE Proceedings
Software 149(1): 3-17.

Cummings, T. G. (1978). Self-regulating work groups: A socio-technical synthesis.” The

Academy of Management Review 3(3): 625-634.

Davila, T., M. J. Epstein, et al. (2006). Making innovation work: how to manage it,

measure it, and profit from it. Upper Saddle River, NJ, Wharton School
Publishing.

Dawes, R. (1980). "Social dilemmas." Annual Review of Psychology 31: 169-193.

Evans, D. S. and B. J. Reddy (2003). "Government preferences for promoting open

source software: a solution in search of a problem." Michigan
Telecommunications and Technology Law Review 9: 313-394.

Everett, M. G. and S. P. Borgatti (1999). "The centrality of groups and classes." Journal

of Mathematical Sociology 23(3): 181-201.

Freeman, L. C. (2004). The development of social network analysis: a study in the

sociology of science. Vancouver, BC, Empirical Press.

 171

Fukuyama, F. (1995). The social virtues and the creation of prosperity. London, Hamish
Hamilton.

Gao, Y., V. Freeh, et al. (2003). Analysis and modeling of open source software

community. North American Association for Computational Social and
Organizational Science (NAACSOS) Conference 2003.

German, D. and A. Mockus (2003). Automating the measurement of open source

projects. The 3rd Workshop on Open Source Software Engineering, Portland, OR.

Gongla, P. and C. R. Rizzuto (2001). "Evolving communities of practice: IBM global

services experience." IBM Systems Journal 40(4): 842-862.

Granovetter, M. (1973). "The strength of weak ties." American Journal of Sociology 78:

1360-1380.

Granovetter, M. (1985). "Economic action and social structure: the problem of

embeddedness." American Journal of Sociology 91(3): 481-510.

Grewal, R, G.L. Lilien, et. al. (2006). “Location, location, location: How network

embeddedness affects project success in open source systems.” Management
Science 52(7): 1043-1056.

Hackman, J. R. (1986). The design of work teams. The handbook of organizational

behavior. J. W. Lorsch. Englewood Cliffs, NJ, Prentice-Hall: 315-342.

Hahsler, M. and S. Koch (2005). Discussion of a large-scale open source data collection

methodology. 38th Hawaii International Conference on System Sciences - 2005,
Hawaii.

Hardin, G. (1968). "The tragedy of the commons." Science 162: 1243-1248.

Hardin, R. (1982). Collective action. Baltimore, The John Hopkins University Press.

Healy, K. and A. Schussman (2003). The ecology of open-source software development.

Working Paper: Department of Sociology, University of Arizona. URL:
http://www.opensource.mit.edu/papers/healyschussman.pdf.

Hinds, D. and Lee, R.M. (Forthcoming). Assessing the social network health of virtual

communities. Handbook of Research on Socio-Technical Design and Social
Networking Systems . B. Whitworth and A. de Moor, to appear.

Howell, J.P., Dorfman, P.W., S. Kerr (1986). “Moderator variables in leadership

research.” The Academy of Management Review 11(1): 88-102.

 172

Howison, J. and K. Crowston (2004). The perils and pitfalls of mining SourceForge.
Mining Software Repositories Workshop, International Conference on Software
Engineering - 2004, Edinburgh, Scotland.

Hunt, F. and P. Johnson (2002). On the Pareto distribution of SourceForge projects. Open

Source Software Development Workshop, Newcastle.

Huysman, M., E. Wenger, et al. (2003). Communities and technologies: proceedings of

the first international conference on communities and technologies; C&T 2003.
First international conference on communities and technologies; C&T 2003,
Kluwer Academic Publishers.

Iannacci, F. (2003). "The Linux managing model." First Monday 8(12).

Katzy, B. R. and K. Crowston (2000). "A process theory of competency rallying in

engineering projects." Submitted to IEEE Transactions on Engineering
Management.

Kauffman, S. (1993). The origins of order. Oxford, UK, Oxford University Press.

Kerr, S. and J. Jermier (1978). “Substitutes for leadership: Their meaning and

measurement.” Organizational Behavior and Human Performance 22: 375-403.

Kogut, B. and A. Metiu (2001). "Open-source software development and distributed

innovation." Oxford Review of Economic Policy 17(2): 248-264.

Kozlowski, S. W. J. and B. S. Bell (2003). Work groups and teams in organizations.

Handbook of psychology: Industrial and organizational psychology. W. C.
Borman, D. R. Ilgen and r. Klimoski. New York, Wiley: 333-375.

Krackhardt, D. (1999). "The ties that torture: Simmelian tie analysis in organizations."

Research in the Sociology of Organizations 16: 183-210.

Krishnamurthy, S. (2002). "Cave or community? An empirical examination of 100

mature open source projects." First Monday 7(6).

Kuhn, T. S. (1996). The structure of scientific revolutions (third edition). Chicago, IL.

The University of Chicago Press.

Lacy, S. (2005). Open source - now it's an ecosystem. BusinessWeek Online.

Lakhani, K. R., B. Wolf, et al. (2002). Hacker Survey (release 0.3), Boston Consulting

Group.

 173

Lakhani, K. R. and R. G. Wolf (2005). Why hackers do what they do: understanding
motivation and effort in free/open source software projects. Perspectives on free
and open source software. J. Feller, B. Fitzgerald, S. Hissam and K. R. Lakhani.
Cambridge, MA, MIT Press.

Lanzara, G. F. and M. Morner (2003). The knowledge ecology of open-source software

projects. 19th EGOS Colloquium (European Group of Organizational Studies),
Copenhagen.

Lave, J. and E. Wenger (1991). Situated learning: legitimate peripheral participation.

Cambridge, MA, Cambridge University Press.

Lee, G.K. and R.E. Cole (2003). “From a firm-based to a community-based model of

knowledge creation: The case of the Linux kernel development.” Organization
Science 14(6): 633-649.

Lerner, J. and J. Tirole (2002). "The simple economics of open source." Journal of

Industrial Economics 52: 197-234.

Lessig, L. (2001). The future of ideas. New York, Random House, Inc.

Lin, N. (2001). Building a network theory of social capital. Social capital: theory and

research. N. Lin, K. Cook and R. S. Burt. New York, Aldine De Gruyter: 3-29.

Lomi, A. and P. Pattison (2004). "Introduction to the CMOT special issue on

mathematical representations and models for the analysis of social networks
within and between organizations." Computational and Mathematical
Organization Theory 10: 5-15.

Luhmann, N. (1984 (translated 1995)). Social Systems. Stanford, CA, Stanford

University Press.

Luri, J.S. and M.S. Raisinghani (2001). “An empirical study of best practices in virtual

teams.” Information & Management 38: 523-544.

MacCormack, A., J. Rusnak, et. al. (2006). “Exploring the structure of complex software

designs: An empirical study of open source and proprietary code.” Management
Science 52(7): 1015-1030.

Madey, G., V. Freeh, et al. (2002). The open source software development phenomenon:

an analysis based on social network theory. Eighth Americas Conference on
Information Systems, Dallas, Texas.

 174

Madey, G., V. Freeh, et al. (2004). Modeling the free/open source software community: a
quantitative investigation. Free/open source software development. S. Koch.
Hershey, PA, Idea Group: 203-220.

Malone, M. and W. Davidow (1992). Virtual corporation. Forbes 150: 102-107.

March, J. G. (1991). "Exploration and exploitation in organizational learning."

Organization Science 2(1): 71-87.

Markus, M. L., B. Manville, et al. (2000). "What makes a virtual organization work?"

Sloan Management Review 42: 13-26.

Mertler, C. A. and R. A. Vannatta (2005). Advanced and multivariate statistical methods.

Los Angeles, CA, Pyrczak Publishing.

Moreno, J. (1934). Who shall survive? New York, Beacon Press.

Morner, M. (2003). The emergence of open-source software projects: how to stabilize

self-organizing processes in emergent systems. Autopoietic organization theory:
drawing on Niklas Luhmann's social system perspective. T. Bakken and T.
Hernes. Oslo, Copenhagen Business School Press: 259-271.

Mowshowitz, A. (2002). Virtual organization: toward a theory of societal transformation

stimulated by information technology, Quorum Books.

Muffatto, M. and M. Faldani (2003). "Open source as a complex adaptive system."

Emergence 5(3): 83-100.

Nahapiet, J. and S. Ghoshal (1998). "Social capital, intellectual capital, and

organizational advantage." Academy of Management Review 23(2): 242-266.

Obstfeld, D. (2005). "Social networks, the tertius iungens orientation, and involvement in

innovation." Administrative Science Quarterly 50: 100-130.

Oh, H., M.-H. Chung, et al. (2004). "Group social capital and group effectiveness: The

role of informal socializing ties." Academy of Management Journal 47: 860-875.

Olson, M. J. (1965). The logic of collective action. Cambridge, MA, Harvard University

Press.

O'Reilly, T. (1999). "Lessons from open-source software development." Communications

of the ACM 42(4): 32-37.

OSI (2004). The open source definition, Open Source Initiative; URL:

http://www.opensource.org/docs/definition.html.

 175

Pavlicek, R. C. (2000). Embracing insanity: open source software development.
Indianapolis, IN, Sams.

Putnam, R. D. (2000). Bowling alone: the collapse and revival of American community.

New York, Simon and Schuster.

Raymond, E. S. (1998). "Homesteading the noosphere." First Monday 3(10).

Raymond, E. S. (1999). The cathedral and the bazaar: musings on Linux and open source

by an accidental revolutionary. Sebastopol, CA, O'Reilly & Associates, Inc.

Rothfuss, G. J. (2002). A framework for open source projects. Department of Information

Technology. Zurich, Switzerland, University of Zurich: 157.

Savannah (2005). URL: http://savannah.gnu.org/.

Scacchi, W. (2002). “Understanding the requirements for developing open source

software systems.” IEE Software Proc. 149(1): 24-39.

Schenkel, A., R. Teigland, et al. (2000). Theorizing communities of practice: a social

network approach. Academy of Management: Organization and Management
Theory Division.

Scott, J. (2000). Social network analysis: a handbook (second edition). London, Sage

Publications.

Scozzi, B., K. Crowston, et. al. (2008). Shared mental models among open source

software developers. 41st Hawaii International Conference on System Sciences -
2008, Hawaii.

Simon, H. A. (1976). Administrative behavior (3rd edition). New York, Free Press.

SourceForge (2005). URL: http://www.sourceforge.net.

Stallman, R. (1985). The GNU Manifesto. URL: http://www.gnu.org/gnu/manifesto.html.

Stewart, K. J. and T. Ammeter (2002). An exploratory study of factors influencing the

level of vitality and popularity of open source projects. Twenty-Third
International Conference on Information Systems.

Strader, T. J., F.-R. Lin, et al. (1998). "Information infrastructure for electronic virtual

organization management." Decision Support Systems 23: 75-94.

Sturmer, M. (2005). Open source community building. MIT Open Source collection.

 176

Tabachnick, B.G. and Fidell, L.S. (2007). Using multivariate statistics. Boston, MA,
Pearson.

Teigland, R. (2003). Knowledge networking: structure and performance in networks of

practice. Institute of International Business. Stockholm, Stockholm School of
Economics.

Trombly, M. (2005). Open source may help China curb software piracy. CIO Insight.

UCINET (2005). URL: http://www.analytictech.com/ucinet.htm.

von Hippel, E. (2001). "Innovation by user communities: learning from open-source

software." MIT Sloan Management Review 42(4): 82-86.

von Hippel, E. and G. von Krogh (2003). "Open source software and the "private-

collective" innovation model: issues for organization science." Organization
Science 14(2): 209-223.

von Krogh, G. (2003). "Open-source software development." Sloan Management

Review: 14-18.

von Krogh, G., S. Spaeth, et. al. (2005). Knowledge reuse in open source software: An

exploratory study of 15 open source projects. 38th Hawaii International
Conference on System Sciences - 2005, Hawaii.

von Krogh, G and E. von Hippel (2006). “The promise of research on open source

software.” Management Science 52(7): 975-983.

Wagstrom, P. A. (2004). Toward a simulation model of open source software

development. NAACSOS, Pittsburgh, PA.

Wagstrom, P. A., J. D. Herbsleb, et al. (2005). A social network approach to free/open

source software simulation. First International Conference on Open Source
Systems, Genova.

Wasko, M. M. and R. Teigland (2002). The provision of online public goods: examining

social structure in a network of practice. Twenty-Third International Conference
on Information Systems - 2002.

Wasserman, S. and K. Faust (1994). Social network analysis: methods and applications.

Cambridge, UK, Cambridge University Press.

Watts, D. J. (2003). Six degrees: the science of a connected age. New York, W. W.

Norton & Company.

 177

Webb, E. J., D. T. Campbell, et al. (2000). Unobtrusive measures. Thousand Oaks, CA,
Sage.

Weber, S. (2003). Open source software in developing economies. Social Science

Research Council Working Paper.

Weber, S. (2004). The success of open source. Cambridge, Mass., Harvard University

Press.

Weick, K. E. (1989). “Theory construction as disciplined imagination.” Academy of

Management Review 14(4): 516-531.

Wenger, E. (1998). Communities of practice: learning, meaning, and identity.

Cambridge, UK, Cambridge University Press.

Wenger, E., R. McDermott, et al. (2002). Cultivating communities of practice: a guide to

managing knowledge. Boston, Mass, Harvard Business School Press.

West, J. and S. O'Mahony (2005). Contrasting community building in sponsored and

community founded open source projects. 38th Hawaii International Conference
on System Sciences - 2005, Hawaii.

Xu, J., Y. Gao, et al. (2005). A topological analysis of the open source software

development community. 38th Hawaii International Conference on System
Sciences - 2005, Hawaii.

Yamauchi, Y., M. Yokozawa, et. al. (2000). Collaboration with lead media: How open

source software succeeds. ACM 2000 Conf. Comput. Supported Cooperative
Work, Philadelphia.

Yang, H. and J. Tang (2004). “Team structure and team performance in IS development:

A social network perspective.” Information & Management 41: 335-349.

Ye, Y., K. Nakakoji, et al. (2005). The co-evolution of systems and communities in free

and open source software development. Free/open source software development.
S. Koch. Hershey, PA, Idea Group Inc (IGI): 59-82.

 178

APPENDICES

Appendix A

Sourceforge.net screen images

This appendix contains screen images obtained from the SourceForge.net web site.

 179

Sourceforge.net screen images

Figure A-1
SourceForge Project Home Page Summary Screen

Source URL: https://sourceforge.net/projects/easysoap

https://sourceforge.net/projects/easysoap�

 180

Sourceforge.net screen images

Figure A-2
SourceForge Project Home Page Project Details and Public Areas

Source URL: https://sourceforge.net/projects/easysoap

https://sourceforge.net/projects/easysoap�

 181

 Sourceforge.net screen images

Figure A-3
SourceForge Project Member Page

Source URL: https://sourceforge.net/project/memberlist.php?group_id=19009

https://sourceforge.net/project/memberlist.php?group_id=19009�

 182

Sourceforge.net screen images

Figure A-4
SourceForge Project Forum Page Topic Listing

Source URL: https://sourceforge.net/forum/forum.php?forum_id=60193

https://sourceforge.net/forum/forum.php?forum_id=60193�

 183

Sourceforge.net screen images

Figure A-5
SourceForge Project Forum Page Discussion Text

Source URL:
https://sourceforge.net/forum/forum.php?thread_id=1254140&forum_id=60193

https://sourceforge.net/forum/forum.php?thread_id=1254140&forum_id=60193�

 184

Sourceforge.net screen images

Figure A-6
SourceForge Project Statistics Page

Source URL:
https://sourceforge.net/project/stats/?group_id=19009&ugn=easysoap&type=&mode=allt
ime

https://sourceforge.net/project/stats/?group_id=19009&ugn=easysoap&type=&mode=alltime�
https://sourceforge.net/project/stats/?group_id=19009&ugn=easysoap&type=&mode=alltime�

 185

Appendix B

University of Notre Dame Research Database

SourceForge.net Research Data

SourceForge.net is the world's largest Open Source software development web site, with
the largest repository of Open Source code and applications available on the Internet.
Owned and operated by OSTG, Inc. ("OSTG"), SourceForge.net provides free services to
Open Source developers. The SourceForge.net web site is database driven and the
supporting database includes historic and status statistics on over 140,000 projects and
over 1.5 million registered users' activities at the project management web site. OSTG
has shared certain SourceForge.net data with the University of Notre Dame for the sole
purpose of supporting academic and scholarly research on the Free/Open Source
Software phenomenon. OSTG has given Notre Dame permission to in turn share this data
with other academic researchers studying the Free/Open Source Software phenomenon.

Source URL: http://www.nd.edu/~oss/Data/data.html

Release of the SourceForge.net Research Data

To advance the understanding of, and research on, the Free/Open Source Software
phenomenon, portions of the data that may support such research, will be made available
to academic or scholarly researchers. All requests for data must be submitted in writing
(e-mail) to the Notre Dame PI, (Greg Madey). Only academic and scholarly researchers
are eligible to receive the data. To receive the data, a short questionnaire and agreement
must be completed, signed and returned. A wiki for users of the research data is available
here.

Source URL: http://www.nd.edu/~oss/Data/data.html

http://sourceforge.net/�
http://www.nd.edu/~oss/Data/data.html�
mailto:oss@nd.edu�
mailto:oss@nd.edu�
http://www.nd.edu/%7Eoss/Data/Sublicense5.pdf�
http://zerlot.cse.nd.edu/�
http://zerlot.cse.nd.edu/�
http://www.nd.edu/~oss/Data/data.html�

 186

University of Notre Dame Research Database

Description of Data Available

SourceForge.net uses relational databases to store project management activity and
statistics. There are over 100 relations (tables) in the data dumps provided to Notre
Dame. Some of the data have been removed for security and privacy reasons.
SourceForge.net cleanses the data of personal information and strips out all OSTG
specific and site functionality specific information. On a monthly basis, a complete dump
of the databases (minus the data dropped for privacy and security reasons) is shared with
Notre Dame. The Notre Dame researchers have built a data warehouse comprised of
these monthly dumps, with each stored in a separate schema. Thus, each monthly dump is
a snapshot of the status of all the SourceForge.net projects at that point in time. As of
March 2007, the data warehouse was almost 500 GBytes in size, and is growing at about
25 GBytes per month. Much of the data is duplicated among the monthly dumps, but
trends or changes in project activity and structure can be discovered by comparing data
from the monthly dumps. Queries across the monthly schema may be used to discover
when changes took place, to estimate trends in project activity and participation, or even
that no activity, events or changes have taken place. To help researchers determine what
data is available, an ER-diagram and the definitions of tables and views in the data
warehouse are provided.

Source URL: http://www.nd.edu/~oss/Data/data.html

http://www.nd.edu/~oss/Data/data.html�

 187

Appendix C

Libresoft Project Research Database

Libre Software Engineering
Welcome to the Libre Software[1] Engineering web site at the Grupo de Sistemas y
Comunicaciones (System and Communication Group, GSyC) at the Universidad Rey
Juan Carlos located in Móstoles, near Madrid (Spain).

Libre Software offers Software Engineering scientists the possibility not only of having a
closer look at the product that is being created, but also of studying in detail the whole
development process and its technical, social and economic consequences.

The main research topic at the Universidad Rey Juan Carlos is the quantitative
measurement of libre software development patterns and characteristics in order to gain
knowledge on the process, mainly by studying the different agents that participate in it,
the use of the different development and development-supporting tools as well as the
methods that have been followed. The main focus is technically oriented having
principally an engineering perspective of the research area in contrast to other research
groups which are primarily centered on social and economic aspects.

NEWS: We also drive the FLOSS Research Planet which syndicates other research
blogs from researchers who investigate libre software.

Source URL: http://libresoft.es/description

http://libresoft.es/description#libre�
http://libresoft.urjc.es/planet/�
http://libresoft.es/description�

 188

Appendix D

Detailed Regression Results

This appendix contains tables with detailed results of regressions which produced

a significant result (p < .05). These regressions are referred to in Tables 20, 21, and 22,

and in the corresponding subsections of Section 5.4.

 189

Detailed Regression Results

Table D-1
Log-Transformed Software Downloads Regressed on Group Density,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size .014*** (.002) .009*** (.002) .007** (.003)

Core Size .003 (.021) .001 (.020) -.001 (.020)

Conversation Volume -.001* (.000) .000 (.000) .000 (.000)

Group Density -5.547*** (1.237) -8.881*** (2.349)

Group Density 16.375† (9.827)
mean-centered and squared

R2 .324 .410 .421
F-Statistic 22.184*** 23.952*** 19.963***

Adjusted R2 .309 .393 .400

∆R2 .086 .012
∆F-Statistic 20.106 2.777

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .098

 190

Detailed Regression Results

Table D-2
Log-Transformed Page Views Regressed on Group Density,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size .011*** (.002) .007** (.002) .005† (.003)

Core Size .042† (.021) .040† (.020) .038† (.020)

Conversation Volume .000 (.000) .000 (.000) .000 (.000)

Group Density -4.871*** (1.285) -8.353** (2.439)

Group Density 17.097† (10.203)
mean-centered and squared

R2 .291 .358 .371
F-Statistic 19.019*** 19.233*** 16.150***

Adjusted R2 .276 .339 .348

∆R2 .067 .013
∆F-Statistic 14.382 2.808

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .053 (Model 1 Core Size), .053 (Model 2 Core Size), .057 (Model 3 Group Size)

† p = .064 (Model 3 Core Size), .096 (Model 3 Group Density mean-centered and squared)

 191

Detailed Regression Results

Table D-3
Log-Transformed Software Releases Regressed on Core Density,
Controlling for Group Size, Core Size and Conversation Volume

(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size -.001 (.002) -.002 (.002) -.002 (.002)

Core Size -.026 (.021) -.044* (.022) -.044† (.022)

Conversation Volume .000 (.000) .001* (.000) .001* (.000)

Core Density -.570* (.261) -.615 (.412)

Core Density .121 (.855)
mean-centered and squared

R2 .039 .071 .071
F-Statistic 1.876 2.641* 2.102†

Adjusted R2 .018 .044 .037

∆R2 .032 .000
∆F-Statistic 4.781 .020

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .050 (Model 3 Core Size), .069 (Model 3 F-Statistic)

 192

Detailed Regression Results

Table D-4
Log-Transformed Page Views Regressed on Core Density,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size .011*** (.002) .011*** (.002) .011*** (.002)

Core Size .042† (.021) .033 (.023) .036 (.023)

Conversation Volume .000 (.000) .000 (.000) .000 (.000)

Core Density -.267 (.272) -.977* (.422)

Core Density 1.910* (.877)
mean-centered and squared

R2 .291 .296 .319
F-Statistic 19.019*** 14.502*** 12.864***

Adjusted R2 .276 .276 .295

∆R2 .005 .024
∆F-Statistic .964 4.741

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .053

 193

Detailed Regression Results

Table D-5
Log-Transformed Code Commits Regressed on Administrator Membership Degree,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size -.005† (.003) -.005† (.003) -.006* (.003)

Core Size .059* (.029) .059* (.029) .060* (.029)

Conversation Volume .001* (.000) .001* (.000) .001* (.000)

Administrator
Membership Degree .022 (.063) .212† (.110)

Administrator
Membership Degree -.040* (.019)
mean-centered and squared

R2 .052 .053 .082
F-Statistic 2.564† 1.941 2.455*

Adjusted R2 .032 .026 .049

∆R2 .001 .029
∆F-Statistic .120 4.324

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .073 (Model 1 Group Size), .073 (Model 2 Group Size)

† p = .057 (Model 3 Administrator Membership Degree), .057 (Model 1 F-Statistic)

 194

Detailed Regression Results

Table D-6
Log-Transformed Software Releases Regressed on Administrator Class Centrality,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size -.001 (.002) .002 (.002) .002 (.002)

Core Size -.026 (.021) -.010 (.021) -.011 (.021)

Conversation Volume .000 (.000) .000 (.000) .000 (.000)

Administrator
Class Centrality .963** (.326) .890* (.358)

Administrator
Class Centrality -.515 (1.026)
mean-centered and squared

R2 .039 .096 .098
F-Statistic 1.876 3.660** 2.963*

Adjusted R2 .018 .070 .065

∆R2 .057 .002
∆F-Statistic 8.701 .252

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

 195

Detailed Regression Results

Table D-7
Log-Transformed Page Views Regressed on Administrator Class Centrality,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size .011*** (.002) .011*** (.002) .011*** (.002)

Core Size .042† (.021) .038† (.022) .042† (.022)

Conversation Volume .000 (.000) .000 (.000) .000 (.000)

Administrator
Class Centrality -.247 (.346) .084 (.373)

Administrator
Class Centrality 2.347* (1.069)
mean-centered and squared

R2 .291 .294 .318
F-Statistic 19.019*** 14.342*** 12.756***

Adjusted R2 .276 .273 .293

∆R2 .003 .024
∆F-Statistic .511 4.822

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .053 (Model 1 Core Size), .090 (Model 2 Core Size), .059 (Model 3 Core Size)

 196

VITA

DAVID HINDS

1972 B.S., Engineering Science
 University of Miami

Miami, Florida

1973 M.S., Management Science
 University of Miami
 Miami, Florida

1974 – 1980 Metro Dade County Transportation

1980 – 1983 Cordis Corporation

1983 M.B.A.
 Florida International University
 Miami, Florida

1983 – 1985 Cordis Bio-Synthetics, Inc.

1985 – 1988 Deloitte Haskins and Sells

1988 – 1998 Trend Distributors

1998 – 2002 The Wurth Group

2003 – 2008 Doctoral Candidate
 Business Administration
 Florida International University
 Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Franceschi, K., Lee, R. M. and Hinds, D. (January 2008). “Engaging e-learning in virtual
worlds: supporting group collaboration.” Presented at the 41st Hawaii International
Conference on System Sciences.

Hinds, D., Roark, A., Schimpeler, C., and Corradino, J. (1978). “Transportation modeling
in a changing world: a Miami case study.” Transportation Planning and Technology 4:
125-135.

 197

Hinds, D. (1979). “RUCUS scheduling software: A comprehensive status report and
assessment.” Transit Journal 5(1): 17-34.

Hinds, D. (2004). "Micropayments: a technology with a promising but uncertain future.”
(short note included in "Mobile banking services" by Niina Mallat, Matti Rossi and Virpi
Tuunainen). Communications of the ACM 47(5): 44.

Hinds, D. (2004). “Critical mass behavior and transaction costs in open source and open
content projects.” North American Association for Computational Social and
Organizational Science (NAACSOS) Conference 2004, Pittsburgh, PA (CMU).

Hinds, D. (2005). “Open web learning - achieving creative synergy in the open
development and use of e-learning resources.” 7th International Conference on
Enterprise Information Systems - Doctoral Consortium, Miami, Florida.

Hinds, D. and Lee, R. M. (2006). “Why do some open source software projects succeed
while others fail? Group centrality constructs as predictors of project outcome.”
International Sunbelt Social Network Conference XXVI, Vancouver, British Columbia.

Hinds, D. and Lee, R. M. (January 2008). “Social network structure as a critical success
condition for virtual communities.” Presented at the 41st Hawaii International
Conference on System Sciences.

Hinds, D. and Pasztor, A. (August 2008). “What’s wrong with our concept of
knowledge? A case of semantic pathology.” To be presented at the 2008 Academy of
Management Annual Meeting, Anaheim, California.

Hinds, D. and Lee, R.M. (Forthcoming). Assessing the social network health of virtual
communities. Handbook of Research on Socio-Technical Design and Social Networking
Systems, Edited by Whitworth, B. and de Moor, A., to appear.

Lee, R. M., Dominguez, C. E., Franceschi, K. and Hinds, D. (2006). “Mitigating culture
shock: e-learning cultural affordances.” 2nd Workshop on Tourism and ICT: Dynamic
and Intelligent Configuration of Tourism Services, University of Twente, Enschede, The
Netherlands.

O'Neil, B. F., Catanese, A. J. and Hinds, D. (1978). Transportation systems. Handbook of
Operations Research: Models and Applications. J. J. Moder and S. E. Elmaghraby. New
York, Van Nostrand Reinhold Company. 2: 477-502.

