
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-13-2008

Social Network Structure as a Critical Success
Condition for Open Source Software Project
Communities
David Hinds
Florida International University, dhh123@bellsouth.net

DOI: 10.25148/etd.FI08081525
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Hinds, David, "Social Network Structure as a Critical Success Condition for Open Source Software Project Communities" (2008).
FIU Electronic Theses and Dissertations. 27.
https://digitalcommons.fiu.edu/etd/27

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/27?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SOCIAL NETWORK STRUCTURE AS A CRITICAL SUCCESS CONDITION

FOR OPEN SOURCE SOFTWARE PROJECT COMMUNITIES

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

BUSINESS ADMINISTRATION

by

David Hinds

2008

 ii

To: Dean Joyce Elam
 College of Business Administration

This dissertation, written by David Hinds, and entitled Social Network Structure as a
Critical Success Condition for Open Source Software Project Communities, having been
approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

 Susan Clemmons

Kaushik Dutta

Kenneth Lipartito

Debra VanderMeer

Mary Ann Von Glinow

Ronald M. Lee, Major Professor

Date of Defense: March 13, 2008

The dissertation of David Hinds is approved.

Dean Joyce Elam

College of Business Administration

Dean George Walker

University Graduate School

Florida International University, 2008

 iii

© Copyright 2008 by David Hinds

All rights reserved.

 iv

DEDICATION

I dedicate this dissertation to my mother and to my father. There are no words to

express how important they have been in my life and how much I love them.

Lillian Marie Hinds

1916 - 2007

Richard Howard Hinds

1916 – 2007

 v

ACKNOWLEDGMENTS

I wish to thank my Major Professor, Ronald Lee, who walked with me throughout

this entire process, and who was both invaluable guide and source of inspiration. I am

grateful for all of my other committee members, each of whom provided me with his or

her special perspective and contribution to my thinking. I especially wish to thank Susan

Clemmons for her help and guidance through the statistical work. I am also appreciative

of the reading and helpful comments provided by J.C. Wang, as well as all of the help

and support provided by the “Musketeers,” my PhD student associates.

The data collection efforts for this research were extensive and I wish to thank

Karel Alemany who spent endless hours in extracting and compiling data, and also

Joseph Imperato who provided critical advice and help with the database work. We

utilized the research databases of the University of Notre Dame and the Libresoft Project,

and my thanks go to Greg Madey and the others who prepared and made these databases

available. I also recognize that funding for this work was provided through the

Dissertation Year Fellowship of the University Graduate School.

Without the love and support of my family, none of this would have been

possible. I thank my children Matthew, Kimberly, and Christopher for being so

wonderful and for encouraging me to go on. Finally, I am so grateful for my wife

Brenda who has always been the love of my life and who is my partner in so many ways.

 vi

ABSTRACT OF THE DISSERTATION

SOCIAL NETWORK STRUCTURE AS A CRITICAL SUCCESS CONDITION

FOR OPEN SOURCE SOFTWARE PROJECT COMMUNITIES

by

David Hinds

Florida International University, 2008

Miami, Florida

Professor Ronald M. Lee, Major Professor

In recent years, a surprising new phenomenon has emerged in which globally-

distributed online communities collaborate to create useful and sophisticated computer

software. These open source software groups are comprised of generally unaffiliated

individuals and organizations who work in a seemingly chaotic fashion and who

participate on a voluntary basis without direct financial incentive.

The purpose of this research is to investigate the relationship between the social

network structure of these intriguing groups and their level of output and activity, where

social network structure is defined as 1) closure or connectedness within the group, 2)

bridging ties which extend outside of the group, and 3) leader centrality within the group.

Based on well-tested theories of social capital and centrality in teams, propositions were

formulated which suggest that social network structures associated with successful open

source software project communities will exhibit high levels of bridging and moderate

levels of closure and leader centrality.

The research setting was the SourceForge hosting organization and a study

population of 143 project communities was identified. Independent variables included

 vii

measures of closure and leader centrality defined over conversational ties, along with

measures of bridging defined over membership ties. Dependent variables included

source code commits and software releases for community output, and software

downloads and project site page views for community activity. A cross-sectional study

design was used and archival data were extracted and aggregated for the two-year period

following the first release of project software. The resulting compiled variables were

analyzed using multiple linear and quadratic regressions, controlling for group size and

conversational volume.

Contrary to theory-based expectations, the surprising results showed that

successful project groups exhibited low levels of closure and that the levels of bridging

and leader centrality were not important factors of success. These findings suggest that

the creation and use of open source software may represent a fundamentally new socio-

technical development process which disrupts the team paradigm and which triggers the

need for building new theories of collaborative development. These new theories could

point towards the broader application of open source methods for the creation of

knowledge-based products other than software.

 viii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ... 1
1.1. Research Approach .. 5
1.2. Research Question ... 7
1.3. Definitions.. 7
1.4. Dissertation Structure... 9

2. LITERATURE REVIEW .. 13
2.1. Theoretical and Conceptual Foundations... 13
2.2. Social Networks ... 14

2.2.1. Social Network Analysis ... 15
2.2.2. Social Network Theory.. 16
2.2.3. Social Capital Theory .. 18

2.3. Open Source Software ... 20
2.3.1. Descriptive Studies .. 21
2.3.2. Mechanisms and Metaphors .. 28
2.3.3. Developer Motivation.. 32
2.3.4. Success Studies.. 33
2.3.5. Social Network Perspectives ... 37

2.4. Teams and Work Groups ... 40
2.4.1. Work Group Effectiveness .. 40
2.4.2. Emergent Organizations .. 43
2.4.3. Social Network Perspectives ... 44

2.5. Communities .. 46
2.5.1. Communities of Practice.. 47
2.5.2. Online Communities.. 50
2.5.3. Networks of Practice.. 51
2.5.4. Social Network Perspectives ... 52

2.6. Innovation .. 54
2.6.1. Exploration versus Exploitation .. 55
2.6.2. Open and Distributed Innovation... 56
2.6.3. Social Network Perspectives ... 57

3. RESEARCH MODELS AND PROPOSITIONS .. 58
3.1. Conceptual Research Model .. 58
3.2. Research Constructs... 60

3.2.1. Subgroups .. 62
3.2.2. Closure... 64
3.2.3. Bridging ... 67
3.2.4. Leader Centrality ... 68
3.2.5. Community Success... 69

 ix

3.3. Social Network Model and Propositions ... 70
3.3.1. Group Closure.. 70
3.3.2. Core Closure .. 72
3.3.3. Peripheral Two-Mode Closure .. 73
3.3.4. Core Bridging .. 74
3.3.5. Administrator Bridging.. 75
3.3.6. Administrator Centrality.. 75

4. RESEARCH METHODOLOGY... 77
4.1. Study Design.. 77

4.1.1. Unit of Analysis... 77
4.1.2. Study Population.. 77
4.1.3. Research Method ... 79

4.2. Research Setting... 81
4.2.1. Data Sources .. 82
4.2.2. Data Element Selection.. 82

4.3. Dependent and Control Variables.. 83
4.3.1. Community Success... 83
4.3.2. Controls.. 86

4.4. Social Network Variables .. 87
4.4.1. Networks.. 87
4.4.2. Subgroups .. 90
4.4.3. Formal Notation... 90
4.4.4. Formal Specification.. 93

4.5. Sampling and Data Collection ... 98
4.5.1. Sample Frame .. 98
4.5.2. Data Compilation... 101
4.5.3. Sample Profile ... 103

5. DATA ANALYSIS AND RESULTS.. 105
5.1. Preliminary Analyses ... 105

5.1.1. Transformation of Variables.. 106
5.1.2. Outlier Assessment .. 108
5.1.3. Reduction of Variables .. 108

5.2. Descriptive and Correlation Statistics.. 110
5.3. Hypothesis Testing... 113

5.3.1. Research Hypotheses ... 113
5.3.2. Regression Methods... 117

5.4. Testing Results.. 120
5.4.1. Group Density.. 120
5.4.2. Core Density .. 121
5.4.3. Peripheral Two-Mode Density .. 121
5.4.4. Core Membership Degree.. 122
5.4.5. Administrator Membership Degree ... 122
5.4.6. Administrator Class Centrality .. 122

 x

6. DISCUSSION.. 129
6.1. Summary of Findings... 129

6.1.1. Closure... 129
6.1.2. Bridging ... 134
6.1.3. Leader Centrality ... 137

6.2. Conjectures and Causality.. 139
6.3. The Insignificance of Structure.. 147

6.3.1. Substitutes for the Social Network .. 149
6.3.2. Reduced Need for Knowledge Transfer .. 151

7. CONCLUSIONS.. 154
7.1. Implications.. 155

7.1.1. Paradigm Disruption.. 155
7.1.2. Requirements for a New Theory.. 157
7.1.3. Research Implications.. 159
7.1.4. Practical Implications .. 161

7.2. Contributions.. 162
7.2.1. Theory.. 162
7.2.2. Methodology.. 163
7.2.3. Practice .. 164

7.3. Limitations ... 164
7.4. Future Research Directions.. 166

LIST OF REFERENCES... 168

APPENDICES ... 178

VITA .. 196

 xi

LIST OF TABLES

TABLE PAGE

1. A Framework of Community Types ..47

2. A Framework of Communities and Teams..49

3. Community Subgroups ..63

4. Social Network Constructs ..66

5. Community Success Variables ..84

6. Control Variables ...86

7. Social Network Variables ..94

8. Project Selection Criteria ...100

9. Profile Statistics for Sampled Project Communities..104

10. Normality Tests of Dependent Variables...107

11. Rotated Component Loadings for Accepted Dependent Variables110

12. Descriptive Statistics of Subgroups and Research Variables111

13. Correlation Matrix of Research Variables ...114

14. Summary of Regressions on Group Density..123

15. Summary of Regressions on Core Density ..124

16. Summary of Regressions on Peripheral Two-Mode Density125

17. Summary of Regressions on Core Membership Degree..126

18. Summary of Regressions on Administrator Membership Degree127

19. Summary of Regressions on Administrator Class Centrality128

20. Summary of Test Results for Closure Hypotheses ..130

21. Summary of Test Results for Bridging Hypotheses ..135

 xii

22. Summary of Test Results for Leader Centrality Hypotheses.....................................138

D-1. Software Downloads Regressed on Group Density...189

D-2. Page Views Regressed on Group Density ...190

D-3. Software Releases Regressed on Core Density ...191

D-4. Page Views Regressed on Core Density..192

D-5. Code Commits Regressed on Administrator Membership Degree..........................193

D-6. Software Releases Regressed on Administrator Class Centrality194

D-7. Page Views Regressed on Administrator Class Centrality......................................195

 xiii

LIST OF FIGURES

FIGURE PAGE

1. Conceptual Framework..10

2. A Theory of Social Capital ..19

3. Hackman’s Normative Model of Group Effectiveness..41

4. Conceptual Research Model ..58

5. Development Framework for Social Network Constructs...61

6. Social Network Model of Community Success ...71

7. Sample Frame Development Workflow ..99

8. Data Compilation Workflow..102

A-1. SourceForge Project Home Page Summary Screen...179

A-2. SourceForge Project Details and Public Areas..180

A-3. SourceForge Project Member Page ...181

A-4. SourceForge Project Forum Page Topic Listing ...182

A-5. SourceForge Project Forum Page Discussion Text ...183

A-6. SourceForge Project Statistics Page ..184

 1

1. INTRODUCTION

Communities of volunteer individuals and organizations are collaborating to

create and use public domain computer programs, commonly known as “open source

software.” In recent years, these communities have had a surprisingly powerful impact.

For example, 78 million web server sites now utilize the software products which were

created and freely distributed by the Apache open source community. Apache holds a

50% “market share” of this huge software base compared with a 35% share held by

Microsoft. What is even more surprising is that the Apache volunteers have maintained a

substantial market lead over Microsoft since 1995.

Industry players, such as IBM, HP, Computer Associates, Novell, Sun, and

Netscape, view the open source movement as a strategic opportunity, and are dedicating

significant resources to open source projects (Bessen 2005) and/or releasing their

previously closed source software, such as Eclipse, Open Office, and Mozilla, in an

attempt to create open source projects (West and O’Mahony 2005). Red Hat, a

distributor of Linux software, has a market capitalization value of $2 billion. Over a

recent eighteen-month period, 50 new ventures with an open source business model have

attracted some $400 million in venture capital (Lacey 2005). Governments and NGOs

around the world, including both industrial and developing countries, are mandating the

purchase of open source software by their agencies and are encouraging the development

of such software for public purposes (Evans and Reddy 2003, Weber 2003). In

particular, the Chinese government is supporting open source software by funding the

 2

development of a Chinese version of Linux, and by promoting the use of open source as

part of an ongoing program to combat software piracy (Trombly 2005).

In summary, open source software project communities have created much of the

software infrastructure of the internet, they are changing the structure of the computer

industry, they have spawned new entrepreneurial opportunities, and their activities are

increasingly viewed by governments as an important policy issue. Most organizations

and individuals can now benefit directly from the computer programs being produced by

these communities. Yet, all of this has been accomplished by non-paid volunteers and/or

by the employees of corporations who do not directly profit from their employees’

activities. These open source developers operate from remote locations around the globe,

they choose their own tasks, and they work at their own pace. The result has been

described as a kind of “bazaar” of activity (Raymond 1999).

How can this be? Traditional economic theory would predict that open source

projects should not even survive, let alone thrive. Efforts to explain this intriguing

phenomenon have referred to open source as a new form of organization, a new model

for production, and a new kind of innovation. Benkler (2002, 2006) considers open

source to be part of a more generalized set of web-based collective activities which are

characterized by a governance structure that is neither hierarchical nor market-directed,

but rather is a “bottom-up” communal type in which participation is open and voluntary

and is not motivated by economic incentive. Benkler (2002) refers to this phenomenon

as “commons-based peer-production.” Benkler (2002) and Lessig (2001) argue that these

kinds of open and web-based forms of development, production, and innovation offer

certain advantages over market-based and hierarchical forms. They suggest that these

 3

advantages include access to a broader pool of talent, more efficient matching of

contributors to tasks, improved motivation of contributors, and increasing returns

(network externalities) associated with contributor and user participation.

Prior to the introduction of the internet, these “web-based initiatives” were

constrained by high transaction costs associated with communication, coordination, and

transportation. The internet and worldwide web are now drastically lowering these costs,

thereby enabling new forms of collective action and collaboration. In essence, this

phenomenon is now possible because thousands of individuals throughout the world can

work together in developing a single product, as long as that product can be digitized and

made available on the web.

What exactly is open source software? In essence, it is computer software in

which the source code is revealed to the public. This is in contrast to proprietary

software, in which the source code is hidden from the public (e.g. as in the case of most

Microsoft products). The physical significance of revealing the source code is that it

enables anyone with the necessary skills to copy, modify, use, and/or distribute the

software. However, the application of this simple idea has broad and significant

implications with regards to collective production methods, innovation, property rights,

virtual communities, and even culture.

Similar to communities of practice (Wenger 1998, Brown and Duguid 2000),

open source software communities self-organize around a shared interest in the practice

of producing and using certain software applications. However, unlike communities of

practice in which members are often co-located and familiar with each other, these open

source communities are globally-distributed and comprised of largely unaffiliated

 4

individuals. While these groups are referred to in this study as “communities,” they often

do not even resemble the common notion of a community. In effect, they are more like

“communities of strangers.”

While most of the public attention has been directed to large efforts such as Linux

and Apache, the future of open source software may lie in the more than 100,000 open

source projects that have already been registered on the host site SourceForge.net.

However, only a small fraction of these projects have achieved clear success. A study of

SourceForge projects by Capiluppi et. al. (2003) concluded that most of the projects

hosted at the site in 2003 were dead, with only a small fraction showing any activity over

a six-month period. A review of SourceForge by the author showed that 87 projects have

been registered in the domain of genealogy, and yet only 4 or 5 of these appear to have

achieved any significant level of success. Why did these particular projects succeed,

while the others did not?

Efforts to explain the workings of open source software projects have taken

various perspectives, including technological, psychological, ecological, and

organizational. For example, a modular software design is considered to be a critical

technological feature (MacCormack et. al. 2006). In terms of psychological factors,

much research has been conducted into understanding the motivation of contributors who

spend time and effort on open source projects even though many of them receive no

direct financial compensation (Raymond 1999; von Hippel and von Krogh 2003; Lerner

and Tirole 2002; Lakhani et. al. 2002). From an ecological perspective, a survival of the

fittest argument has been proposed based on a limited set of niche opportunities for

particular types of software. As organizational entities, open source software projects

 5

have been studied in terms of the types of online groups or communities that form to

support and enact the projects.

While its roots reach back into the 1960’s, the current open source software

movement only began in the 1980’s, with the most rapid growth occurring within the last

10 years. As would be expected with a relatively new phenomenon, most of the open

source research has been exploratory, descriptive and/or anecdotal. Explanatory work

has been mostly limited to studies of developer motivational factors, with very little

quantitative research involving the correlates of project success. In fact, the very

definition of “success” of an open source software project has been problematic. Based

on the current state of research, we are still unable to adequately address the question:

“Why do some open source software projects succeed while others fail?"

1.1. Research Approach

Part of the difficulty in addressing the mystery of success is the novelty of the

open source phenomenon and the fact that research is still at an early stage. However,

another part of the difficulty is that open source projects are dynamic and complex

entities, with many influencing factors and emergent properties that are difficult to define

and measure. In some respects, a new open source software project is similar to a start-

up new venture, in terms of defining the goal/mission, acquiring human and physical

resources, coordinating work efforts, and competing with other projects and

organizations.

An appropriate research perspective is needed which can adequately represent

these complex and dynamic entities and which can then address their conditions of

 6

success. A social network structural perspective is chosen in reference to that purpose.

Studies of social network structure have been conducted since the 1930’s in the social

sciences, and, more recently, are gaining prominence in many fields, ranging from

corporate strategy to network-based physics. A social network perspective focuses on

the nature and structure of the relationships between social entities, rather than the

attributes of the entities themselves.

The social structuralist perspective is useful because it provides a unifying

framework for a wide range of interdisciplinary concepts, and it also allows for the

precise definition of constructs and the quantitative investigation of success factors. In

addition, very little social network research has been conducted on open source software

project communities and the potential insight to be gained from such an approach is

expected to be significant. In this regard, Healy and Schussman (2003) suggest that:

… researchers should attend more closely to the social structure of the open
source software community. The process of open source software development
is embedded in particular structural and organizational contexts that theorists of
open source software have so far paid little attention to. Investigating them
offers a promising route for an original sociological perspective on this exciting
phenomenon.

A social network perspective is taken, based on the assertions of social capital

theory, which is one of the most prominent of the social network theories. Also

considered are other more domain-specific network studies of the impact of social

structure on the effectiveness of teams and work groups. The associated social network

concepts are used as a platform for synthesizing the results of theory and prior research in

 7

a diverse set of related areas including open source software, teams, communities, and

innovation.

1.2. Research Question

The primary motivation for this research is to investigate the conditions which are

associated with success in open source software project communities. Specifically, the

research is designed to apply a social network perspective towards the study of social

network structures which may be related to success. In pursuit of this goal, the following

research question is defined:

What is the relationship, if any, between the social network structure of an open
source software project community and the success of the community?

This research question defines the phenomenon of interest as being open

source software project communities, with social network structure and community

success as the primary constructs for investigation. The research definitions for

these three concepts are presented in the following section.

1.3. Definitions

In this section, three key constructs are defined which are central to the

specification of the research question, and which also help to define the scope and

approach for the overall research effort.

Open source software project community. In defining the notion of an open

source software project community, it is first necessary to define an open source software

 8

project. For the purposes of this research, an “open source software project” is defined as

a software development project which utilizes an open source license accepted by the

Open Source Initiative (OSI 2004), and which has a unique identity and repository of

source code.

The “community,” then, consists of the population of individuals that emerges to

carry out the open source project. Specifically, this includes individuals who spend a

non-trivial amount of their time and effort on project-related activities. These individuals

are considered to be “members” of the project community (also referred to in this

research as “actors” or “participants”). While it is possible to think of all open source

developers as comprising a kind of community, the study definition is limited to the

community of individuals who are associated with a particular project.

Social network structure. For the purposes of this research, the social network

structure of an open source software project community is defined as the pattern of

interactions and relationships among and between the members of the community

(ingroup ties), and between members of the community and other individuals outside of

the community (outgroup ties). The focus, then, is on the relationships between

individuals rather than the attributes of the individuals themselves.

Community success. The construct of open source software project community

success can be defined in various ways, depending upon the perspective of the relevant

stakeholder, as well as the type of community that is involved (Crowston et. al. 2004).

Perhaps the most fundamental definition for community success is “the general level of

 9

activity associated with the community.“ Thus, successful communities are those which

attract many participants who collectively spend a significant amount of time and effort

on community activities. For certain communities which create a product such as

software, another construct of success can be defined as the “output” of the community

(e.g. the quantity of software produced). Finally, community success can also be

measured in terms of “impact” beyond the boundaries of the community (e.g. extent to

which software produced by a community has resulted in industry-wide changes.) For the

purposes of this research, however, the success of an open source software project

community will be conceptualized in terms of its member activity level and its output of

software.

1.4. Dissertation Structure

In the opening chapter, the intriguing nature of the open source software

phenomenon is described along with its surprising impacts on business and society.

Some of the efforts to explain the “economic mystery” of its very existence are discussed,

although it is noted that much of this mystery seems to remain. The “success mystery” is

then described along with the social network based research approach that is being used

to address this mystery. The primary research question was posed and key related

constructs were defined. The remainder of this dissertation is organized into the

following six chapters and follows the conceptual framework which is presented on

Figure 1.

 10

Figure 1
Conceptual Framework

Chapter 2: This chapter begins with an overview of theoretical and conceptual

foundations, involving a description of the various relevant knowledge

domains and how they relate to this particular research work. For each

domain, a review of the literature is presented with special emphasis on

aspects of the literature that relate to the research question.

Social Capital
Theory

Social Network
Studies of

Teams

Studies of Open
Source, Communities

and Innovation

Constructs &
Propositions

Research
Variables

Hypothesis
Testing & Results

Discussion of
Findings

Implications of
Findings

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

 11

Chapter 3: Here, the overall research model is described. This model incorporates the

foundational theories and other research results into a conceptual model of

the relationship between social network structure and open source

software project community success. This is followed by a definition and

description of all research constructs and a description and justification of

the propositions to be considered.

Chapter 4: In this chapter, the research method and study design are presented, along

with a description and formal specification of the research variables that

are used in defining the testable hypotheses in Chapter 5. Then, the

sampling strategy is presented and the procedures for extracting and

compiling archival data for the sampled projects are described, followed

by a description of the resulting project sample and the associated research

dataset.

Chapter 5: Chapter 5 includes a discussion of the analytical procedures that were

performed on the research dataset to test the hypotheses. Key data

analysis procedures included principal component analysis, regression

assumption testing, and regression analysis, including both linear and

quadratic. This is followed by a presentation of the results.

 12

Chapter 6: In this chapter, the results presented in Chapter 5 are summarized in

reference to the hypotheses and prior literature. This is followed by the

presentation and analysis of a set of conjectures for explaining the results.

Chapter 7: In the last chapter, the fundamental conclusions of the research are

summarized and discussed, along with their implications for theory,

research and practice. This includes a discussion of the contributions to

research and practice, research limitations, and the directions for future

research work.

 13

2. LITERATURE REVIEW

This chapter contains a review of literature regarding theoretical work, empirical

studies and other publications which are relevant to the dissertation. In the first section,

each literature domain is noted and its relevance is described. In subsequent sections,

each of these domains is reviewed including social networks, open source software,

teams and work groups, communities, and innovation. Each section focuses on aspects of

the domain that are important for this work, ending with a subsection which describes the

social network perspectives and studies that have been conducted in the domain.

2.1. Theoretical and Conceptual Foundations

Social network analysis and theories involving social structure are fundamental to

the work. The structural dimension of social capital theory and social network studies of

centrality and prominence provide the primary theoretical foundations. Studies of social

structure that have been performed in various relevant domains including open source

software, teams, communities, and innovation are considered. Social network analytical

techniques are also applied in defining and calculating social structural measures for the

purpose of operationalizing and testing the hypotheses.

Of course, the target phenomenon for this work is open source software, and the

scope of the research includes the projects which are formed to create and update the

software as well as the communities of individuals that emerge to carry out the projects.

Beyond the social network studies, the other areas of interest regarding open source

software include explanatory mechanisms, community formation and participant roles,

developer motivation, work processes, and the measures and factors of success.

 14

The concept of “team” has been selected as the primary reference phenomenon,

and open source software project communities are presumed to be a kind of software

development team, considering that both groups are task-driven and that the software

product created by an open source project community may be virtually indistinguishable

from the software created by a traditional team. Key aspects of the team literature

include social structural studies of team and work group effectiveness as well as virtual or

emergent organizations, in that open source project communities are sometimes described

as virtual organizations.

While the team is used as the primary reference concept, it is also recognized that

open source software project groups are a kind of community. Therefore, prior studies of

communities are considered, especially those involving online or virtual communities.

The connection of open source software projects with innovation is recognized and

therefore some of the key aspects of innovation research are also reviewed, especially the

literature regarding open and distributed innovation.

2.2. Social Networks

In fundamental terms, a social network is a network representation, in which the

nodes of the network are social entities (such as people or organizations), and the links of

the network are relations between the social entities (such as advice-giving or trade). The

term “social network analysis” refers to a broad set of methods and tools for coding and

analyzing social network representations. In contrast, the domain of social network

theory involves the application of network concepts and perspectives to various aspects

of social psychology, sociology, and organizational science. The basic concepts of social

 15

network analysis are described in the next section, followed by a review of relevant social

network theories and a discussion of network-based theories of social capital.

2.2.1. Social Network Analysis

First noted in 1934 in the “sociograms” of Moreno (1934), social network

analysis has grown into a large collection of methodologies, measurements, and tools that

can be used for the description and analysis of social networks and social structure

(Wasserman and Faust 1994, Scott 2000, Carrington et. al. 2005). The primary

mathematical foundation for social network analysis is provided by graph theory, and the

methods draw heavily on matrix algebra for coding and manipulating network data.

The basic units of analysis are the dyads and triads which represent pairs and

triples of nodes. Features of dyads that are commonly studied include reflexivity,

symmetry, and transitivity (Wasserman and Faust 1994). At the network level, the

primary types of constructs that are defined include density, centrality and centralization,

cliques and components, and positions and structural equivalence (Scott 2000). The

social network analytical method is, by definition, a multi-level method, in that the nodes

reflect data at an individual unit of analysis, the links reflect data at the relational (dyadic)

level of analysis, and the resulting measures of network structure are produced at the

group or network level of analysis.

Centrality is one of the most ubiquitous of the social network measures. It is

typically described as a “location” of an individual actor within a network which is

associated with importance or prominence (Wasserman and Faust 1994). Many

alternative ways of defining centrality have been proposed, with the most popular being

 16

degree (the number of ties of the focal actor with other actors), closeness (the extent to

which the focal actor can reach other actors through “short paths”), and betweenness (the

extent to which the focal actor is located on paths which connect other actors to each

other).

A fairly recent extension of the notion of centrality has been suggested by Everett

and Borgatti (1999), in which the centrality definitions are applied to subgroups (of a

larger group or network) rather than to individual actors within a network. Questions

which could be addressed with such methods include: ‘how central are the women within

an organization, as opposed to the men?’ or ‘to what extent are financially-oriented

individuals central to the advice-giving networks of the firm?’

Social network analysis has a number of positive features with respect to its use as

an analytical tool. Its use can reveal patterns that are not discernable with other methods.

These patterns may be reflected in quantitative social network measurements or they may

be observed qualitatively in two- or three-dimensional graphical network representations.

Further, the use of social network analysis provides a quantitative method for studying

complex social phenomena such as kinship, community structure, corporate interlocks,

and elite power, whose investigation would otherwise be limited to the use of qualitative

tools.

2.2.2. Social Network Theory

Social network theories utilize a social structural perspective in which the focus of

investigation is the pattern of interactions and relationships among and between the social

entities. These theories consider the relationships between members rather than the

 17

attributes of the members themselves, and they involve the study of the social network

structures of groups and their impact on either individual outcomes or group outcomes.

There are two primary branches of theory development in social networks. The

oldest branch is based in the social sciences, primarily in sociology, social psychology,

and organizational theory. One of the primary theoretical domains of this branch is that

of social capital (which is described in the following section). The other main branch of

theory development is centered in the physics community. The physics studies began in

the late 1990’s based on the work of Watts (2003). In the process of studying the small-

world phenomenon, Watts discovered that a particular network structure, often identified

by a power-law distribution (also known as a Pareto or Zipf curve), is startlingly

common, and is found in a wide range of natural, social, and artificial phenomena

(Barabasi 2002, Watts 2003, Buchanan 2002). Such networks, which are often described

as “small world networks” or “scale-free networks,” are characterized by a set of

relatively large “hub nodes” which comprise 20 percent of all the nodes but which

account for 80 percent of all the links. This stream of research does not often connect

with the social science based structural research, even though many of the problems

addressed are essentially the same (Freeman 2004). Some of the structural research work

associated with open source software has been based on this physics genre.

In one respect, social network theory is a frame of reference which connects a

wide variety of organizational research including theories of resource allocation, power

differences, routine decision rules, complex cognitive constructions, sets of contractual

relationships, rational solutions to incentive problems, and complex adaptive systems

(Lomi and Pattison 2004). Lomi and Pattison (2004) argue that organizational

 18

researchers in many of these areas have a common interest in understanding the role of

network ties in the evolution of various social forms and settings such as firms, markets,

industries, and states. Within these research communities, they state that network-based

models and methods are valued for their ability to address a wide variety of substantive

and analytical issues.

2.2.3. Social Capital Theory

One domain in which social network theory is perhaps the most prominent is the

area of social capital. Social capital theory provides a collective context in which

individual relationships are embedded within a network of relationships (Granovetter

1985). Social capital consists of both the network itself and the assets that may be

mobilized through the network (Bordieu 1986). Social capital can be applied at an

individual level (considering individual benefits) or at a group level (considering group

benefits). Groups can be defined as teams, communities, organizations, and even regions

(Putnam 2000) and nations (Fukuyama 1995).

Social capital theory uses an information processing paradigm (Simon 1976) to

explain how social network structure affects social outcomes at the individual level and at

the group level. Social ties are viewed as conduits for the flow of information,

knowledge or other resources. Lin (2001) argues that social networks are the foundation

of social capital. As noted on Figure 2, his theory of social capital begins with the

collective assets of the network as a whole and the structural and positional

embeddedness of particular actors. These constructs are related to accessibility (extent to

which resources can be accessed) and mobilization (extent to which these resources are

 19

used). These constructs then result in returns to the individual or to the group, including

both instrumental returns and expressive returns.

Figure 2
A Theory of Social Capital
(Adapted from Lin 2001)

Nahapiet and Ghoshal (1998) identify three dimensions of social capital including

cognitive, relational, and structural. The cognitive dimension includes the shared

vocabulary and narratives of the social group. The relational dimension considers the

constructs of trust, norms, and identification. However, it is the structural dimension that

is most relevant to social structural research. This dimension considers constructs of

network ties, network configuration, and appropriable organization (whereby

organizations that create value in one context may have value in another context).

- economy
- technology
- social/ political/
 cultural participation

- network locations
- network resources

- use of contacts
- user of contact
 resources

- wealth
- power
- reputation

- physical health
- mental health
- life satisfaction

Mobilization

Accessibility

Collective
Assets Instrumental

Returns

Expressive
Returns

Structural &
Positional

Embeddedness

 20

Burt (2001) addresses an apparent paradox regarding the value of an open

network (with links extending outside of a social group) versus a closed network (which

is internally cohesive). He argues that both types of networks are valuable, depending

upon the context. Open or brokerage networks, which are the basis of Burt’s structural

holes theory (Burt 1992), are considered to be valuable if there is a need for accessing

resources outside of the group, where such resources tend to be non-redundant. Closed

networks, which are studied by Coleman (1988) and others, seem to be most useful when

resources are already available and the focus is on their use.

However, Burt’s notion of “brokerage” has an alternative interpretation based on

the intention of the actor in the brokering position. This type of network position can be

used to keep the other actors isolated in order to appropriate value from them. This is

referred to as the “tertius gaudens” orientation (or “the one who benefits”). The

contrasting viewpoint is a “tertius iungens” orientation (or “the one who joins”), in which

the focal actor utilizes the brokering position to help connect the other actors to their

benefit. This alternative interpretation of the structural holes position is often referred to

as “bridging.”

2.3. Open Source Software

Most of the research regarding open source software has been conducted within

the last 10 years, and much of it has been descriptive and exploratory. The most

commonly used methods are qualitative except in the case of contributor motivation in

which surveys are primarily used. The main objectives of the work completed to date

have been to describe the phenomenon in general and to address the mystery regarding

how these projects can work at all.

 21

The literature review of open source software is divided into five sections. The

first section covers general descriptive literature, some of which has been written by open

source practitioners who often take the perspective of an advocate. In the next section,

the various metaphors are covered which have been used to describe the mechanisms by

which open source software projects function. The third section includes a review of

fairly extensive studies that have been performed which attempt to explain the motivation

of volunteer non-paid contributors. In the fourth, the limited studies that directly address

open source software project success factors are reviewed. In the final section, social

network studies of the open source phenomena are presented.

2.3.1. Descriptive Studies

The open source movement is characterized by self-organization, a modular

structure of goods, and a culture containing certain identifiable norms and standards, such

as notions of freely-redistributable products, strict customs regarding the rights of the

founder-leader, and contributor attribution (Raymond 1999, O’Reilly 1999, Iannacci

2003). Perhaps the most fundamental and enduring aspect of open source culture is the

notion of freely available software, as originally expressed in The GNU Manifesto

(Stallman 1985). As described by Raymond:

All members agree that open source (that is, software which is freely re-
distributable and can readily be evolved and modified to fit changing needs) is a
good thing and worthy of significant and collective effort. This agreement
effectively defines membership in the culture. (Raymond 1998)

However, it must be noted that the notion of “freely available software” refers to

its accessibility and not its price. As such, even though open source software is often

 22

made available free of charge, the fundamental premise of the movement is that the

software must be accessible to anyone for their use and modification, and charging a fee

for open source software is not prohibited.

Weber (2004) notes three essential features of the culture that are reflected in the

Open Source Definition (OSI 2004):

1. Source code must be distributed with the software or otherwise made available

for no more than the cost of distribution.

2. Anyone may redistribute the software for free, without royalties or licensing fees

to the author.

3. Anyone may modify the software or derive other software from it, and then

distribute the modified software under the same terms.

Descriptions of open source software projects indicate that they are typically

initiated by an individual (or a small group) who assumes the role of founder and usually

provides (or provides access to) systems and development components, as well as

communication infrastructure. Once an initiative has been started, a maintainer

(administrator or leader) role typically emerges that continues to monitor the progress of

the project and provides certain ongoing services such as maintenance of the enablement

system (e.g., the web site) and enforcement of (or possibly adjustment to) the project

norms (Almarzouk et. al. 2005).

The development and communications infrastructure is often provided by a

hosting organization such as SourceForge (2005) or Savannah (2005), which in some

respects acts as an incubation center for new projects. SourceForge, for example,

provides a web-based host platform which includes a source code repository (version

 23

control system), public forum facilities, project web pages and a search engine. This host

platform also includes the rules and policies which govern the behavior of community

members. The host organization will typically provide some general policies while

individual community leaders will often provide more specific policies geared to the

needs of their particular community.

As a project community grows, various developers may become aware of the

project and gain sufficient interest to join the community and to assist in expanding the

code. This process may progress as other individuals start to use the project software and

then sometimes choose to participate (e.g. by reporting bugs or requesting new features).

In large well-developed projects, third party organizations such as code distributors may

become involved to package, distribute and service the software. If the project is aligned

with their strategy, sponsoring corporations may provide contributions of cash or

facilities or in-kind contributions of employees who act as developers on the project.

Non-profit foundations may be formed to assist in promotional efforts, hold any physical

assets that may be needed, manage the intellectual property of the project (under open

source licenses), and protect the developers from law suits.

The individuals that participate in open source software projects are often

described as comprising a community. These communities have been described as

having an onion-like structure, with a central core of highly active individuals surrounded

by other layers of progressively less active individuals. One example of this is presented

by Ye et. al. (2005) in which the central core is composed of the project leaders and core

members, with five outer layers containing active developers, peripheral developers, bug

reporters, passive users, and stakeholders, respectively.

 24

Most studies of open source software do not differentiate the various types of

projects that may have quite different characteristics. However, there appear to be

significantly different kinds of projects that warrant separate treatment and a few studies

have addressed this issue. For example, West and O’Mahony (2005) describe mature

projects that require a kind of transformation in order to achieve their mature status:

Mature community managed projects have developed a series of major releases.
They have defined membership criteria or boundaries: contributors know whether
they are in or out of the project. Mature projects have adopted governance
mechanisms that enable representation in commercial and legal settings. They
also have an ecology of institutions that support and/or extend their work. These
institutions may be non-profit organizations such as the Open Source
Development Lab, firms developing complementary products, or other
community projects with which they collaborate. (West and O’Mahony 2005)

Ye et. al. (2005) identify three types of projects that are suggested to have

different characteristics in terms of goals, styles of control, and patterns of evolution for

the software code and the project community. These types include:

1. Exploration-oriented projects - attempt to create leading edge solutions
which involve innovative approaches.

2. Utility-oriented projects - are directed towards filling a void in
functionality.

3. Services-oriented projects – are geared to maintaining stable code and
providing ongoing services to large groups of stakeholders

Another typology of projects is noted by West and O’Mahony (2005), who

distinguish between community-founded projects and spin-off projects, in which

organizations attempt to open up previously proprietary code. The authors note that spin-

off projects seem to have a different life cycle. In the start-up phase, for example, the

 25

“seed” code base is usually large and well-established, and its introduction to a new open

source software project community often raises special technical, relational, and legal

issues. They hypothesize that mature spin-off projects require different kinds of project

leadership in order to address issues related to the intentions of the sponsor, assuming

that the sponsoring organization remains heavily involved. They further clarify that

spin-off projects are different from corporate-sponsored projects, in which corporations

supply various types of support but do not become directly involved in the governance of

the project.

Other types of projects may involve those which are dominated by paid

individuals working for sponsoring corporations, as opposed to those which are

dominated by non-paid volunteers. In terms of software type, Raymond (1999) has

suggested that open source software projects may have different characteristics

depending upon the type of software involved, where he identifies three types:

infrastructural software, application software, and middleware.

Somewhat related to the identification of different project types, developmental

taxonomies have been proposed to identify different project growth stages that are

associated with different project characteristics. For example, SourceForge recognizes

seven categories of “development status” (the first six of which are described by Rothfuss

2002), including:

1. Planning – No code has been written. The scope of the project is still in flux.

2. Pre-alpha – Very preliminary source code has been released. The code is not
expected to compile or even run.

 26

3. Alpha – The released code works at least some of the time, and begins to take
shape. Preliminary development notes may show up. Active work to expand the
feature set of the application continues.

4. Beta – The code is feature-complete, but retains faults. These are gradually
weeded out, leading to software that is ever more reliable.

5. Production/Stable – The software is useful and reliable enough for daily use.
Changes are applied very carefully, and the intent of changes is to increase stability,
not new functionality.

6. Mature – There is little or no new development occurring, as the software fulfills
its purpose very reliably. Changes are applied with extreme caution, if at all.

7. Inactive – There is no project activity of any kind.

The above life cycle description is somewhat idealized, and there is evidence that

many projects never move beyond the early stages (Capiluppi et. al. 2003). These types

of projects appear to become inactive without ever achieving any useful level of

functionality. Capiluppi et. al. (2003) suggest that this may be due to the limited supply

of open source software developers in relation to the large demand for such developers

that is generated by the many new open source software project startups.

In some cases, descriptions of open source software projects have been presented

as normative or prescriptive, although the basis for most of these descriptions is limited

because they are typically based on a single case, a very small sample of projects, and/or

non-systematic studies. Some of the important social and technological features that

have been proposed (Raymond 1999, Weber 2004, Sturmer 2005) include:

• Large number of project participants

• A bias against forking a single project into multiple projects

• Evolution of cooperative norms

 27

• The lack of specific deadlines or task assignments

• Version releases that begin early in the project and continue on a frequent basis

• Separate releases for stable versions versus cutting edge versions

• Toleration for many different ideas and allowing for code branches that remain
within the scope of the project

• A large and diverse group of developers and users with different skill sets

• Modular software design

• Sufficiently good seed code that must run and must have a compelling design

• Sufficient promotional activities designed to “get the word out”

• Application of an appropriate open source license

• Use of a well-known programming language

In terms of desirable features of the open source software project community,

Raymond (1999) has suggested that a strongly interconnected core combined with

loosely coupled collaborations in peripheral parts of the community is a necessary feature

to address the problem associated with Brooks’ Law, which states that the complexity

and communication cost of a software development project increases with the square of

the number of developers1, while the amount of work accomplished increases linearly

(Brooks 1975). However, this “solution” to the problems associated with Brooks’ Law

does have its cost, in terms of redundant efforts that typically occur within the loose

collaborations at the periphery. This problem appears to be mediated, at least in some

1 This geometric effect is noted if the software development team is conceptualized as a social network of
developers. In this case, if the team includes “g” developers, then the maximum number “L” of possible
links between the developers is calculated as L = g (g-1) / 2. (Raymond 1999)

 28

cases, by a global supply of open source software developers who may be willing to

participate.

The role of the project leader(s) has also been suggested to be of critical

importance (Pavlicek 2000), and some of the important features of open source software

project leadership that have been proposed (Raymond 1999, Weber 2004) include:

• Leadership style which is not based on a power relationship

• Delegation of as much as possible

• Treating users as co-developers

• Keeping developers and users constantly stimulated and rewarded

• Listening to the beta-testers

• Having the ability to recognize good designs and incorporate them into the
project

• Having good design and coding skills as well as people and communication
skills

2.3.2. Mechanisms and Metaphors

Various metaphors have been proposed in an attempt to describe the mechanisms

involved in open source software projects and to explain how they can work at all.

These metaphors have included collective actions (Benkler 2002; von Hippel and von

Krogh 2003), forms of production (Benkler 2002; Kogut and Metiu 2001), forms of

innovation (von Hippel and von Krogh 2003; von Krogh et. al. 2005), organizational

ecologies (Chengalur-Smith and Sidorova 2003), interactive social systems (Lanzara and

Morner 2003), self-organizing processes (Morner 2003), complex adaptive systems

 29

(Muffato and Faldani 2003), social networks (Gao et. al. 2003), virtual communities

(Crowston and Scozzi 2002), and political economies (Weber 2004).

The metaphors of community, innovation, and social network are discussed in

later sections. In this section, the metaphors of collective action, organizational

ecologies, and self-organizing agent-based systems are discussed. While these metaphors

can be useful in conceptualizing the kinds of mechanisms at work in open source

software, they do not, by themselves, represent an explanation of the antecedents for

success.

Open source software as a collective action. Collective action theory addresses

the logic and problems associated with the production and use of public goods (Hardin

1982). Public goods are defined as goods which are sometimes nondepletable but are

always nonexcludable (Barry & Hardin 1982, Olson 1965).2 Viewed from the

perspective of the consumer, public goods are nondepletable in that one individual’s

consumption does not impact another individual’s consumption – everybody can get a

copy. They are also nonexcludable in that consumption is open to every member of the

group, whether or not they have contributed to the provision of the good – everybody has

a right to a copy. Viewed from the perspective of a potential developer (contributor),

these properties describe a type of social dilemma (Dawes 1980, Hardin 1968), whereby

individuals may not be motivated to contribute but rather may choose to wait for others to

2 For example, public television is both nondepletable and nonexcludable, while a public park is only
nonexcludable – because it is physical space, it is depletable.

 30

make contributions, thereby leading to suboptimal results (involving quality, usefulness,

usability, stability, timeliness or even existence).

Open source software is clearly a public good, in that it is nondepletable (due to

its digital nature) and nonexcludable (due to the nature of open source licenses).

Therefore, open source software projects are viewed as collective actions, where the

projects must address the social dilemma and the fundamental supply problem. It is

addressing this collective action problem that has inspired the many studies of contributor

motivation.

Open source software as an organizational ecology. When viewed as an

organizational ecology, the persistence of certain open source software projects can be

explained by using a “survival of the fittest” argument, with respect to various niches that

exist for particular types of software. Also implied by an ecological view is the existence

of a first-mover advantage.

Lanzara and Morner (2003) view open source projects as knowledge creation

efforts which operate within an ecology of agents, artifacts, rules, resources, activities,

practices, and interactions. They examine the creation and use of knowledge artifacts,

and support the application of the metaphor by identifying ecological mechanisms of

variation, selection, and stabilization that are manifested in open source projects.

Chengalur-Smith and Sidorova (2003) use a population ecology perspective, and

propose (but do not test) four related hypotheses:

 31

1. More reliable open source projects are more likely to survive.

2. Size of the open source project will be positively related to project
reliability and hence to project survival.

3. Age of the open source project will be positively related to project
reliability and hence to project survival.

4. Open source projects that occupy a broad niche are less likely to survive in
the short term.

Open source software as a self-organizing agent-based system. A number of

researchers have concluded that open source software project communities are self-

organizing systems. For example, Morner (2003) uses autopoietic organization theory

(Luhman 1984), which is based on the self-organizing concept of autopoiesis (“self-

maintenance”) to describe and analyze open source projects. She concludes that

communication connectivity and systemic memory are important stabilizing factors

because “they reduce the overall need for coordination and therefore make the self-

organization of developers easier.” Muffatto and Faldani (2003) view open source

software as a complex adaptive system in which mechanisms of self-organization result

in emergent behaviors. They identify particular features of open source projects which

correspond with the complexity-related concepts of variation, interaction, and selection.

Another group of researchers take an explicit agent-based view and create agent-

based simulation models in an attempt to understand the dynamic mechanisms involved.

Madey et. al. (2004) have created a Swarm-based simulation model with parameters

based on data collected from the SourceForge archives. In their model, they define a

project swarm (for a particular project), which is embedded in a cluster swarm (a group

of interconnected projects), which is embedded within an open source software

 32

development swarm (representing, for example, the entire set of projects hosted by

SourceForge). Developers are represented as agents who, at each time point in the

simulation, can choose to start a new project, join an existing project, or quit an existing

project. The growth of an “artificial SourceForge” is then simulated and the results are

compared with empirical data from SourceForge. They conclude that preferential

attachment modified by a dynamic “fitness factor” provides the best fit (Barabasi 2002)

and they use this observation to conclude that open source software project communities

are self-organizing entities.

Wagstrom (2004) has created an agent-based model (Wagstrom et. al. 2005) with

parameters based on data collected from three sources: 1) the Advogato.org social

networking site, 2) web log aggregators which capture the blogs of open source

developers, and 3) mailing lists of selected open source projects. In the model,

developers are represented as agents who are seeking a particular kind of software. This

desire is represented using an NK model (Kauffman 1993) to represent a string of

features, and agents are able to change features at each time point in order to achieve a

better fitness value. Agents then make decisions regarding project participation based on

the extent to which the project features fit with their desires. The resulting simulated

growth and decline curves show patterns which resemble those observed in actual

projects.

2.3.3. Developer Motivation

Studies have shown that contributors are not normally motivated by traditional

economic incentives, but rather by instrumental factors associated with fulfilling a need,

 33

and by intrinsic factors such as enhanced reputation, expertise development (learning),

self-fulfillment, and basic fun and enjoyment (Raymond 1998, 1999, von Hippel and von

Krogh 2003, Lerner and Tirole 2002, Lakhani et. al. 2002). Raymond (1998) explains

this by characterizing the open source movement as a “gift culture,” where benefits

accrue from the reputation for giving away one’s time, effort, and creativity. However,

he also notes that some contributors may be more motivated by the notion of pride of

craftsmanship, which also accrues benefits in terms of reputation, but based on a different

motivational concept.

A great deal of this research has been motivated by the collective action problem

and for finding factors which explain how this problem can be overcome in active open

source software projects. It should be noted, however, that a survey by Lakhani and Wolf

(2005) shows that approximately 40 percent of open source developers are not

volunteers, but rather are paid employees of organizations which encourage or even

direct their employees to work on particular open source projects. In this context, the

collective action problem does not seem to apply and, in fact, a new avenue of research

that is developing involves studying the motivational factors of organizations that provide

such support (Bessen 2005).

2.3.4. Success Studies

While many of the studies described in the previous sections have implications

regarding factors of success, none of these studies address the question of success factors

for specific projects in a systematic way. For example, the agent-based models of Madey

et. al. (2004) and Wagstrom et. al. (2005) attempt to suggest the general mechanisms by

 34

which projects grow and decline. However, these results are not applicable to the success

or failure of particular projects. In terms of studies of contributor motivation, Weber

(2004) recognizes the limitation of these works: “The summary point is that individual

motivations do not make up anything like a full explanation for the success of open

source.” In this section, a few studies that directly address open source software project

success factors are described.

A statistical analysis in April and May of 2002 by Krishnamurthy (2002) was

conducted on SourceForge projects which were categorized as being in a “mature”

development status. Descriptive statistics for these projects show that “the vast majority

were developed by a relatively small number of individuals, few of these projects

generated much discussion, projects with more developers tended to be viewed and

downloaded more often, the number of developers working on the project was correlated

with the age of the project, and a smaller percentage of participants were assigned as

project administrators in larger groups.” In this study, the implied measure of success

was the project’s status as “mature.”

In a large sample study of SourceForge projects, Healy and Schussman (2003)

take an approach similar to Krishnamurthy (2002) by generating various descriptive

statistics for active open source software projects including developers, commits,

downloads, site views, unique message authors, and messages. They observe that many

of these measures exhibit a power law distribution and that only a few projects achieve

clear success. They recognize that the work to date does not address the success

question, and they offer the following hypotheses for future research regarding success:

 35

1. The more successful an open source project, the more professional its core
contributors will be.

2. Successful open source projects will tend to have core participants
mobilized in a way similar to core participants in successful social movement
organizations. (Effective project leadership seems to us one of the most likely
candidates for differentiating successful projects from unsuccessful ones.)

3. Successful open source projects will tend to have a strong hierarchical
component, at least in the ways that they manage the relationships between lead
(and core) developers and other contributors.

4. The closer a successful project is to the core of the broader open source
software community, the more hierarchy will be found in its management style.
Thus, for instance, the social organization of kernel hackers will be more
hierarchical than that of developers of add-on applications for the GNOME or
KDE desktop environments, because the kernel is the essence of the operating
system, whereas additional text editors or desktop calculators are much less
important. (Healy and Schussman 2003)

Stewart and Ammeter (2002) conducted an analysis of 240 open source software

projects to investigate factors which lead to attracting user attention (“popularity”) and

developer activity (“vitality”). They examined the effect of organizational sponsorship,

target audience (developer versus end-user), license choice, and development status.

Their preliminary results indicate that vitality significantly affects popularity, and that

sponsored projects are more popular than non-sponsored projects. The surprising

preliminary conclusion was that vitality was not affected by sponsorship, development

status, or target audience.

Crowston and Scozzi (2002) conducted a multiple regression analysis of

SourceForge data from 2001 to test success measures that might support Katzy and

Crowston’s (2000) theory of competency rallying which relates to the success of virtual

organizations. Four open source software project measures were defined which were

 36

somewhat related to the four independent variables described by competency rallying

theory: 1) identification and development of individual competencies, 2) identification of

market opportunities, 3) marshalling of competencies, and 4) management of a short-term

cooperative effort. Three measures of success are defined: 1) interest shown by users, 2)

development status, and 3) intensity of work undertaken by developers. They find some

support for their hypotheses for two of the three success measures.

In a subsequent paper devoted to the subject of success measures, Crowston et. al.

(2004) present a range of measures that could be used to assess the success of open

source projects. They develop these measures based on a literature review, a

consideration of the nature of the open source development process, and the opinions of

open source project participants. They describe measures along the following

dimensions, based on the type of analysis that they conducted, and note that the use of a

particular set of measures is dependent upon the research purpose and the particular

stakeholder perspective of interest:

1. Review of literature
System and information quality
User satisfaction and use
Individual or organizational impacts

2. Consideration of the open source process

Project output and process
Outcomes for project members

3. Opinions from open source project participants

User - satisfaction and involvement
Product - meets requirement, code quality, portability, availability
Process - activity, adherence to process, bug fixing, time, age
Developers - involvement, varied developers, satisfaction, enjoyment
Use – competition, number of users, downloads
Recognition – referral, attention and recognition, spin-offs, influence

 37

In a more recent effort to address open source project success, Crowston et. al.

(2005) outlined an approach for studying the work practices of open source project

groups and relating these practices to team effectiveness. In this paper, the authors utilize

the Hackman model of group effectiveness (Hackman 1986)3, and combine it with

theories of coordination and collective mind to suggest a set of propositions for relating

work practices to team performance in open source software projects.

2.3.5. Social Network Perspectives

A limited number of studies of open source software projects and communities

have been conducted with the use of social network analysis, and of these, even fewer

have taken a social network theoretical perspective. Most of these studies have used

social network analytical methods to describe and characterize the projects and associated

project groups, while only a very small number have used a social network perspective as

a framework for theory building.

With the objective of determining what a “typical” open source software project

looks like, Hunt and Johnson (2002) studied the activity distribution of approximately

4,000 projects on the “most active list” of SourceForge in October and November of

2001, using number of downloads per week as the measure of activity. They found that

the distribution generally followed a Pareto curve. They suggest that this may result from

the winner-take-all nature of the projects.

Madey et. al. (2002) studied the social networks of 39,000 SourceForge projects

from January 2001 to March 2002. They defined a link to exist between two developers

3 The Hackman model is illustrated on Figure 3 and discussed in section 2.4.1.

 38

if those developers were both registered for the same open source project. They observed

that the number of developers on a project, number of projects served by a developer, and

cluster size (excluding the largest cluster) all followed power law distributions. Further,

they noted that networks associated with individual projects are connected together into

clusters by a small number of “linchpin developers.” They interpret the power law

results as evidence that open source projects are self-organizing entities.

In a subsequent study of 50,000 SourceForge projects by Gao et. al. (2003), they

define two types of nodes (bipartite graph): developer nodes and project nodes, and they

define a link to exist between a developer and a project if that developer is registered on

that project. The study was conducted over a two year period between 2001 and 2003 in

an attempt to identify dynamic patterns that exist within the overall SourceForge network

of practice. They also observed the power law in the degree distribution and the cluster

distribution, and they observed a clustering coefficient of 0.7 (compared with 0.2 for a

random network of similar size). In terms of the dynamics over the two year period of

study, they observed that the network diameter decreased from 8 to 6 and that the average

degree increased (indicating greater connectivity).

This line of research was continued by Xu, et. al. (2005). Using a 2003 data

dump from SourceForge, they again found the power law distributions in various

measures that are indicative of small-worlds networks. Based on an analysis of

diameters, they conclude that both core developers and non-core developers are important

in connecting the overall open source community, primarily due to their facilitation of

communication flow between projects.

 39

Wagstrom et. al. (2005) studied the structure of the overall open source

community by using a variety of data sources, including: 1) the Advogato.org social

networking site, 2) web log aggregators which capture the blogs of open source

developers, and 3) mailing lists of selected open source projects. Comparing his results

with the studies of Madey and others, Wagstrom concludes that there are more links

between projects than was originally thought, which indicates that the overall open

source community is cohesive. He further notes that the prior assumption that cliques

exist within this overall community may not be valid, in that such cliques were not found.

Crowston and Howison (2004) examined 120 project teams (communities) from

SourceForge and analyzed interactions associated with the bug reporting archives. In

particular, they measured and compared the “communication centralization”4 measures of

the different projects. They found a wide variation of centralization among the projects,

and further found that this variation was negatively correlated with the number of

developers and active users associated with the bug reporting system – i.e., the larger

projects were less centralized. They conclude that it is wrong to assume that all open

source projects are associated with a particular social structure and that the examination

of social structure offers an interesting avenue for future research. In a practice sense,

they suggest that open source project teams should spend more effort on creating social

structures which are considered to be favorable.

In summary, the works of Madey and Wagstrom are focused on the overall open

source community (across many projects), and do not address the networks associated

4 The authors differentiate “communication centralization” from “code development centralization”, and
suggest that the “onion models” of community structure depict the development-based measure, but not the
communication-based measure.

 40

with particular projects. Crowston and Howison do address the social networks of

individual projects. However, none of these works are explicitly informed by theories of

social structure, but rather they are based on research associated with software

development and team effectiveness (Crowston), or they are motivated by the desire to

parameterize agent-based models (Madey and Wagstrom).

2.4. Teams and Work Groups

This section begins with a review of relevant studies of teams and work groups

especially with regard to their effectiveness. Open source project communities are often

described as “emergent,” and the next section includes a discussion of emergent and

virtual organizations. This is followed by a discussion of social network perspectives that

have been applied to teams and work groups within an organizational context.

2.4.1. Work Group Effectiveness

Literally hundreds of studies of teams and work groups and the factors which

contribute to their effectiveness have been conducted over the past 50 years (Kozlowski

and Bell 2003). Some of the factors which have been suggested as antecedents of team

effectiveness include “collective efficacy, group cohesion, team-level goals, and

interpersonal conflict” (Balkundi and Harrison 2006).

One prominent example of a model for group effectiveness is the Hackman

framework (Hackman 1986). As shown on Figure 3, this model relates organizational

 41

Figure 3
Hackman’s Normative Model of Group Effectiveness

(from Hackman 1986)

Organizational context

A context that supports and
reinforces competent task
work, via:
• Reward system
• Education system
• Information system

Group design

A design that prompts and
reinforces competent work
on the task, via:
• Structure of the task
• Composition of the group
• Group norms about
performance processes

Process criteria of
effectiveness

• Level of effort brought to
bear on the team task
• Amount of knowledge and
skill applied to task work
• Appropriateness of the task
performance strategies used
by the team

Group synergy

Assistance to the group by
interacting in ways that:
• Reduce process losses
• Create synergistic process
gains

Material resources

Sufficiency of material
resources required to
accomplish the task well and
on time

Group effectiveness

• Task output acceptable to
those who receive or review it
• Capability of members to
work together in the future is
maintained or strengthened
• Members’ needs are more
satisfied than frustrated by the
group experience

 42

context and group design to process factors which then drive the group effectiveness

result. Mediating factors consist of group synergy effects and the material resources

required to perform the group tasks. In Hackman’s model, three dimensions of group

effectiveness are suggested: 1) task output acceptable to those who receive or review it,

2) capability of members to work together in the future is maintained or strengthened,

and 3) members’ needs are more satisfied than frustrated by the group experience.

A recent review of team effectiveness studies recognizes two dimensions of team

or group effectiveness (Kozlowski and Bell, 2003). These are team performance and

team viability. Team performance is mostly aligned with instrumental functions and is

the extent to which the team achieves its objectives and produces suitable output. Team

viability is more of a social or expressive concept, which relates to the team’s cohesion

and its ability to retain its members and to continue functioning. While these two

dimensions are conceptually distinct, a recent meta-analysis has established that there is a

close connection and cross-correlation between team performance and team viability

(Balkundi and Harrison 2006).

A virtual team is a particular type of team which has been defined by Luri and

Raisinghani (2001) as a “group of people who work together although they are often

dispersed across space, time, and/or organizational boundaries.” (Luri and Raisinghani

2001) In their study of the effectiveness of virtual teams, the authors identified team

processes and the relations among team members as having the strongest impact on team

performance and member satisfaction, while the leadership style was only moderately

associated with team effectiveness.

 43

2.4.2. Emergent Organizations

With respect to formal organizations versus emergent social structures, Brown

and Duguid (2000) comment that:

… self organization and formal organization are not simple alternatives. Nor are
they simply complementary. They live in tension with one another. Innovation is
often developed in the productive management of related tension between
emergent practice and formal process. (Brown and Duguid 2000)

Virtual organizations are sometimes viewed as emergent, and they are defined by

Malone and Davidow (1992) as being “a cooperation of independent partners who

combine their knowledge and skills to fulfill a certain goal, in the form of research or a

product.” Strader et. al. (1998) define a virtual organization as “a temporary network of

companies that comes together quickly to exploit fast-changing opportunities.”

Mowshowitz (2002) considers virtual organizations to be a type of organizational

approach, rather than a particular organizational form. In his view, the key characteristics

of virtual organizations are:

 the separation of conceptualization from execution of tasks, and the use of
objective criteria for the allocation of resources… one that allows for crafting
structures that enable management to switch at will between different options for
implementing an organization’s requirements. (Mowshowitz 2002)

Crowston and Scozzi (2002) argue that open source software project communities

are actually virtual organizations and they support this argument by showing the

relevance of the competency rallying theory (Katzy and Crowston 2000) which relates to

the success of virtual organizations. Markus et. al. (2000) describe the concept of a

 44

virtual organization and then use the open source project community as their canonical

example of such an organization.

Strader et. al. (1998) define the life cycle of an electronic virtual organization for

the purpose of discussing the requirements for a supportive information technology

infrastructure. The four phases of life cycle include:

1. Identification – opportunity identification and selection.

2. Formation – partner identification and selection, and partnership formation.

3. Operation – design, marketing, financial management, manufacturing, and
distribution.

4. Termination – Operational termination and asset dispersal.

2.4.3. Social Network Perspectives

Ahuja and Carley (1999) suggest a network model for virtual organizations in

which the fit between task characteristics and network structure is an important

determinant of network performance, where “network” refers to a virtual organization.

They use this model as a framework to study a research-based virtual organization

involving the design and development of an artificial intelligence architecture.

In a review of computational and mathematical organization theory, Carley

(1995) compares hierarchical-centralized structures (often associated with traditional

organizations) with democratic-decentralized structures (which are associated with virtual

organizations). She notes that hierarchical or centralized structures tend to exhibit lower

performance than democratic or decentralized structures. However, under certain

circumstances, hierarchical structures are more reliable. For simple tasks, decentralized

 45

structures perform better, while for complex tasks, hierarchies, network-forms, and

matrix-forms are superior. More democratic structures tend to learn faster and therefore

perform better in the short run, while hierarchical and centralized structures tend to

respond more slowly but more accurately to environmental changes.

In a meta-analysis of studies of the effect of social structure on team

effectiveness, Balkundi and Harrison (2006) conclude that teams with a high density of

ties within the team are more effective, and that teams that are more central within a

network of other teams are also more effective. Finally, team performance is positively

associated with the centrality of the team leader within the team network. These results

were applicable for both instrumental ties (associated with task-oriented activities) and

for expressive ties (associated with socially-oriented activities). The authors further

assess mediating factors, and found that the structural effects on team effectiveness are

weakened as a team matures and members become more familiar with each other.

Two particular types of teams that are especially relevant to open source software

project communities include software development teams and virtual teams. In the case

of software development teams, a social network study by Yang and Tang (2004)

concluded that group cohesion was positively related with performance and that the

group structures were critical to the overall team effectiveness. While no social network

studies of virtual teams were found, a study of effectiveness of virtual teams by Luri and

Raisinghani (2001) suggests that team cohesiveness is positively related with

effectiveness, a result which is consistent with the conclusion of Balkundi and Harrison

(2006) that teams with high density are the most effective.

 46

2.5. Communities

The individuals who participate in open source software projects have been

frequently described as communities. In one context, the individuals who work on a

particular project are viewed as comprising a project community. In another context, all

individuals who work on any open source project are viewed as members of the overall

open source community. Weber (2004), expands on this metaphor of community:

The open source community … is indeed marking out a set of organizing
principles. These include criteria for entering (and leaving), leadership roles,
power relations, distributional issues, education and socialization paths, and all
the other characteristics that describe a nascent culture and community structure.
(Weber 2004)

In this section, a variety of organizational forms are discussed including

communities of practice, online communities, and networks of practice. While the

community of practice form has been fairly well defined (Wenger 1998, Brown and

Duguid 2000), the other forms are somewhat overlapping and conflicting definitions have

been offered (Brown and Duguid 2000, Teigland 2003). In order to better understand

the connections between these various kinds of “communities,” a framework is developed

as shown on Table 1.

The framework involves two dimensions: 1) the primary motivation for the

community (social-driven, practice/knowledge-driven, or task-driven), and 2) the primary

communication mode for member participation (face-to-face or electronic / virtual /

online). The framework is consistent with the descriptions of communities of practice

offered by Wenger (1998), and with the classification of network of practice proposed by

 47

Brown and Duguid (2000). The definition proposed by Teigland (2003) maps to multiple

cells within the framework.

Table 1
A Framework of Community Types

Motivation of the community

Face- to-face interaction

Electronic (virtual, online)

interaction

Social-driven Social clubs

Online (social) communities

Practice/knowledge-driven

Communities of practice

Networks of practice

Task-driven Community action organizations
(e.g. Habitat for Humanity)

Open source software project
communities

Content production communities
(e.g. Wikipedians)

2.5.1. Communities of Practice

Huysman et. al. (2003) define communities as: “social entities whose actors share

common needs, interests, or practices: they constitute the basic unit of social experience.”

A community of practice, then, is a particular type of community in which practices are

shared. Communities can exist to develop the expertise of their members, to take action

(solve problems), and/or to satisfy member needs for group interaction.

Wenger views a community of practice as being both an organizational form and

a theory or mechanism of learning. The term “community of practice” was coined in

1991 by Lave and Wenger (1991) as an outgrowth of their research into “situated

learning.” The social theory of learning which is represented by Lave and Wenger

within the context of communities of practice conflicts with traditional theories of

 48

learning which typically assume that learning results from teaching. In the context of

communities of practice, the authors suggest that learning results from “doing.”

Wenger defines the boundary of a community of practice as a layered construct:

… a community of practice is a node of mutual engagement that becomes
progressively looser at the periphery, with layers going from core membership to
extreme peripherality.” (Wenger 1998)

Multiple communities of practice can intersect in various ways, resulting in

“constellations” of communities. These intersections provide important links to the rest

of the world through boundary objects (artifacts) and/or brokers.

In a related stream of work, Brown and Duguid also define and analyze the

features of communities of practice (Brown and Duguid 1991). Brown (1998) observes

that members of the community:

… pick up valuable ‘know-how’ … from being on the periphery of competent
practitioners going about their business and from being able to move from the
periphery to the center to participate in aspects of the practice and then move back
to the periphery to observe some more.

Wenger identifies two kinds of communities – communities of practice and

communities of interest – and compares them with two kinds of teams (Table 2). In

general, the communities are viewed as “emergent” forms of organization in that they

tend to evolve or end organically and are not the result of a planned action or any specific

hierarchical governance mechanism. The boundaries of these emergent forms tend to be

fuzzy or undefined, and their purpose is based on the needs and interests of the

community. In contrast, the formal operational teams and project teams are all “planned”

forms, in that they are typically organized and planned by management. The boundaries

 49

of these planned forms are normally quite clear, and their purpose is based on the needs

of the hierarchical organization in which they are embedded.

Table 2

A Framework of Communities and Teams
(Adapted from Wenger et. al 2002)

 What’s the

purpose?
Who belongs? How clear

are the
boundaries?

What holds
them together?

How long do
they last?

Communities
of Practice

To create,
expand, and
exchange
knowledge

Self-selection
based on
expertise or
passion for topic

Fuzzy Passion,
commitment
and group
identification

Evolve and end
organically

Communities
of Interest

To be
informed

Whoever is
interested

Fuzzy Access to
information

Evolve and end
organically

Operational
Teams

To take care
of an ongoing
operation or
process

Membership
assigned by
management

Clear Shared
responsibility
for the operation

Last as long as
the operation
exists

Project Teams To accomplish
a specified
task

People with a
role in
accomplishing
the task

Clear The project’s
goals and
milestones

Begin and end
per project
schedule

Wenger et. al. (2002) provide some guidance regarding the facilitation of

communities of practice. In general, they suggest that communities are not planned

organizational forms, and therefore are not managed in the traditional sense. Rather, they

are emergent organizational forms, and the most effective “management style” is one of

stimulation and facilitation, rather than command and control.

Based on experiences with 60 communities of practice, Gongla and Rizzuto

(2001) have defined five evolutionary stages for these types of communities:

 50

1. Potential stage – the fundamental function is connection as individuals find one
another and link up.

2. Building stage – the fundamental function is the promotion of memory and
context as core members learn about each other, share experiences, create roles
and norms, and share a repertoire of stories.

3. Engaged stage – the fundamental function is access and learning as members
build trust and commitment to the community and begin to reach out to new
members.

4. Active stage – the fundamental function is collaboration as individuals engage
with other community members and rely on the community’s knowledge in their
work.

5. Adaptive stage – the fundamental function is innovation and generation as the
community develops new capabilities and adapts to new environments.

2.5.2. Online Communities

There has been considerable discussion of online (or virtual) communities, and

yet there is little work which defines what an online community is and how it relates to a

community of practice. The generally accepted concept of an online community is as

shown on Table 1. When compared with a community of practice, an online community

mostly uses an electronic form of communication, while a community of practice is

primarily face-to-face. Another distinction shown on the table is that online communities

tend to be more socially driven, while communities of practice are more practice- or

knowledge-driven (although this observation is not relevant if open source software

project communities are viewed as being an online community). Little research was

found which focuses on the implications of these differences.

Brown and Duguid (2000) refer to the notion of “net communities” and view

them as being formed around textual documents:

 51

Net communities extend a long tradition of communities forming around
documents … Textual communities may be as old as texts themselves. Shared
and circulating documents, it seems, have long provided interesting social glue.

By extending this concept to include both source code repositories as well as

textual artifacts, it could be argued that open source software project communities are

online or “net” communities. However, the task-orientation of open source project

communities would seem to differentiate them from other forms of electronically-

mediated communities.

2.5.3. Networks of Practice

Brown and Duguid (2000) define the notion of “networks of practice” as:

“networks that link people to others whom they may never get to know but who work on

similar practices.” They state that networks of practice are known for their reach, and

that this reach has been significantly enhanced by information and communication

technology. They recognize Wenger’s definition of community of practice, and view

such communities as “subsections” of networks of practice.

Interpreted in terms of an open source software project community, then, the

overall network of developers who work on various projects (e.g. all developers

registered on at least one SourceForge project) can be viewed as a network of practice,

while the specific group of developers who work on a particular project can be viewed as

a task-driven (online) community.

 52

2.5.4. Social Network Perspectives

Structural studies of communities, in the sense of communities of practice and

related forms, are limited. Schenkel et. al. (2000) define five structural properties which

can be used to characterize communities of practice. These include:

1. Connectedness – In a community of practice, every member is connected,
directly or indirectly, to every other member.

2. Graph-theoretic distance – Relative to organizational networks in general,
communities of practice have shorter graph-theoretic distances between all pairs
of members.

3. Density – Relative to organizational networks in general, communities of
practice have a greater density of ties.

4. Core/periphery structure – Communities of practice have core/periphery
structures rather than clique structures.

5. Coreness – The greater an individual’s participation in a community of
practice, the greater his or her coreness score.

Further, Schenkel et. al. (2000) propose (but do not test) a set of relationships

between social structure of communities of practice and knowledge sharing and

performance. These are:

• Proposition 1A: For smaller communities of practice (less than or equal to 40
members), knowledge transfer increases linearly with density.

• Proposition 1B: For larger communities of practice (more than 40 members),
knowledge transfer increases curvilinearly with density.

• Proposition 2A: For communities of practice solving more complex problems,
performance will increase as the variance among members’ coreness values
decreases.

 53

• Proposition 2B: For communities of practice solving more routine problems,
performance will increase as the variance among members’ coreness values
increases.

• Proposition 3: Community participants with higher coreness scores will have
more community-specific knowledge and thus a higher level of individual
performance.

Using collective action theory as their conceptual framework, Wasko and

Teigland (2002) studied the social structure of a network of practice – a professional legal

association in the United States. They found that the pattern of contributions of

information was that of a generalized exchange network, in which direct reciprocity was

rare. They also found that a few contributors tended to provide a large portion of the

contributions, and these core contributors are viewed by the authors as forming a “critical

mass.” They further note that membership in this critical mass group is significantly

related to occupation, expertise, the availability of local resources, and the desire to

enhance one’s reputation.

In comparing and synthesizing her prior studies, Teigland (2003) notes that there

are significant differences in the social structures of different community forms. She

notes that communities of practice are characterized by strong ties based on personal

relationship, with a high degree of connectedness and “critical mass individuals” tied to

one another. This compares with electronic networks of practice in which individuals are

connected by weak ties based on online interaction, a high degree of connectedness is

noted, and critical mass individuals are not tied to one another.

In the physics genre, Adamic and Huberman (2000) studied the social structure of

visitors to web sites on the world wide web. (Such visitors might be viewed as online

 54

communities.) They found that site popularity fit a power-law distribution, which they

note is characteristic of winner-take-all markets. Further, they developed a dynamic

theory of site popularity which attempts to explain the distribution based on the age of the

site, its mean growth rate, and the variance of its usage fluctuations.

2.6. Innovation

Open source projects have been viewed as a form of innovation. For example,

von Krogh (2003) states that

The open-source movement’s unique development practices are challenging the
traditional views of how innovation should work. … The open-source
movement also provides important management lessons regarding the most
effective ways to structure and implement innovation.

Von Hippel and von Krogh (2003) propose that open source projects reflect a

compound “private-collective” model of innovation, in which aspects of the private

model of innovation (incentives to innovate are provided through the protection of

intellectual property rights) are combined with the collective action model (innovators

freely collaborate to produce innovation in the context of market failure).

However, the level of innovation associated with particular open source projects

may vary considerably. Taking the project typology offered by Ye et. al. (2005), it would

seem that exploration-oriented projects might involve radical or disruptive innovation,

utility-oriented projects might involve incremental or sustaining innovation, and that

service-oriented projects might involve little innovation at all. Raymond (1999) notes

that Linus Torvalds, the founder of the Linux project, was not seeking innovation as a

major objective: "Suppose Linus Torvalds had been trying to pull off fundamental

 55

innovations in operating system design during the development; does it seem at all likely

that the resulting kernel would be as stable and successful as what we have?"

Further, the concept of innovation generally involves both the creation of new

ideas and the diffusion of those ideas. In the context of open source software projects,

the emphasis seems to be on the creation of the new idea, while the diffusion process

occurs at least partly within a broader environment than the project itself.

In the following sections, the notion of exploration versus exploitation is

discussed, followed by a review of research in open and distributed innovation. The final

section presents social network perspectives that have been applied to innovation,

particularly as they relate to the “development” side of innovation (development of

innovations in groups) as opposed to the diffusion side (adoption of the innovation).

2.6.1. Exploration versus Exploitation

In the context of organizational learning, March (1991) describes the tension

between the exploration of new possibilities and the exploitation of old certainties, and he

discusses issues regarding the allocation of resources between the two approaches. He

considers innovation to be part of the exploration activity and production to be part of the

exploitation activity. The application of this argument to open source projects seem

relevant, given that projects tend to have an innovation component and a production

component. March (1991) discusses the tradeoffs between exploration and exploitation

in terms of organizational communication and coordination. He suggests that

organizations with effective instruments of communication and coordination (tightly

coupled) are more reliable in terms of performance variance, while more loosely coupled

 56

organizations are less reliable in terms of performance, but have a greater chance of

achieving an advantage over their competitors, due to their superior ability to execute

multiple independent projects.

2.6.2. Open and Distributed Innovation

The notion of open innovation has been described by Chesbrough (2003) as a new

and more effective model of innovation, in which individuals and organizations beyond

the boundary of the firm play a greater role in the process of innovation. New ideas may

originate from these outside entities or from internal sources. Then, the deployment of

the resulting innovations may be executed through in-house pathways to the market or by

utilizing outside firms for this purpose. This open model of innovation contrasts with the

traditional closed model, which focuses on internally generated ideas and in-house

pathways to the market.

Von Hippel and von Krogh (2003) argue that open source software is a

manifestation of a new “private-collective” model of innovation, and they describe this

model as a kind of “distributed innovation.” Based on their observation that the leaders

of open source project communities often designate who can be a member of a particular

social category (e.g. who is authorized to commit source code), the authors suggest that:

“… leadership in distributed innovation might in fact be analogous to that performed by a

playing coach.”

 Kogut and Metiu (2001) also describe open source software as a form of

distributed innovation:

 57

Open source software development is a production model that exploits the
distributed intelligence of participants in internet communities. This model is
efficient because of two related reasons: it avoids the inefficiencies of a strong
intellectual property regime and it implements concurrently design and testing
of software modules.

2.6.3. Social Network Perspectives

In a study of the social networks of individuals involved in organizational

innovation, and their behavioral orientation, Obstfeld (2005) compares the tertius iungens

(“the third who joins”) orientation associated with the notion of introducing connected

individuals and facilitating their collaboration, with the tertius gaudens (“the third who

benefits”) orientation associated with the structural holes notion of acting as a broker

between individuals in order to extract personal benefits. He finds that participation in

innovation (development) is positively related to the tertius iungens orientation, and that

other antecedents include dense social networks and diverse social knowledge.

 58

3. RESEARCH MODELS AND PROPOSITIONS

In this chapter, the research question is addressed by first presenting a conceptual

research model and then defining a set of research constructs which expand upon the

model. The constructs are then incorporated into a social network model of success for

open source software project communities and a set of six propositions is proposed and

justified.

3.1. Conceptual Research Model

In consideration of the research question and the review of theoretical and

empirical literature, a conceptual research model was formulated and is presented on

Figure 4. The model shows the relationship between social network structure and success

for open source software project communities.

Figure 4

Conceptual Research Model

Scope of Research

Community Success

Output

Activity

Community
Social Network

Structure

Closure
Bridging

Leader Centrality

Mediating
Factors

Community

Impact

Market
Factors

 59

Three kinds of social network structures are included in the model: closure,

bridging, and leader centrality. The closure and bridging structures are suggested based

on the assertions of social capital theory which have been made in various social

contexts, but especially with regard to team and work group outcomes. The leader

centrality structure refers to prior social network studies regarding team leaders and the

effect of their network position on the group effectiveness of the team.

In the model, community success is conceptualized as consisting of two

dimensions: output and activity. The output dimension consists of the quantity of

software that is produced by the project community while the activity dimension reflects

the quantity of participation by community members. As noted on Figure 4, these two

dimensions are modeled as having a reciprocal relationship. This is based on the

suggestion that the production of more software will generally lead to greater community

participation, and that increased participation will tend to attract and motivate even more

developers to produce more software. To the extent that higher quality software will tend

to generate a greater level of community activity than lower quality software, it is

suggested that community activity can also be viewed as a proxy for software product

quality.

As shown on Figure 4, it is recognized that various factors may mediate the

relationship between social network structure and success. These factors include group

size, project type, project maturity, process/task structure, community norms, and

organizational environment, among others. Even though the research propositions are

limited to constructs of social network structure and success, steps are taken to control for

the effect of these mediating factors, as further discussed in Sections 4.1.2 and 4.3.2.

 60

This model suggests that community success in terms of output and activity will

be related to the impact of the community beyond its boundaries, and that such

community impact will be affected by market factors such as user demand or

competition. Examples of community impact might include the incorporation of the

produced software into the broader internet infrastructure (e.g. Linux) or the widespread

acceptance of the software by the public (e.g. Mozilla). As discussed in Chapter 1, it is

recognized that community impact can also be considered as a dimension of success.

However, for the purposes of this research, success is defined as consisting of the output

and activity dimensions and the consideration of community impact is beyond the scope

of the research.

3.2. Research Constructs

Expanding on the social structural concepts of closure, bridging, and leader

centrality, a set of social network constructs are proposed including Group Closure, Core

Closure, Peripheral Two-Mode Closure, Core Bridging, Administrator Bridging, and

Administrator Centrality. The theories and concepts which influenced the development

of these constructs are illustrated on Figure 5. Using the area of teams and work groups

as a primary reference domain, social network theories associated with closure, bridging,

and centrality are considered in defining the six corresponding constructs. Five of these

constructs consider the role of the three key community subgroups of core developers,

peripheral developers, and project administrators. Aspects of these subgroup roles and

positions which might be relevant to community success are considered, based on the

 61

Figure 5
Development Framework for Social Network Constructs

C
L
O
S
U
R
E

B
R
I
D
G
I
N
G

C
E
N
T
R
A
L
I
T
Y

Administrator
Centrality

Core
Subgroup

Peripheral
Subgroup

Administrator
Bridging

Core
Bridging

Peripheral
Two-Mode

Closure

Core
Closure

Group
Closure

Administrator
Subgroup

 62

review of the open source software literature, as well as other literatures in the areas of

communities and innovation. In addition to the social network constructs, this section

also includes a discussion of the construct of Community Success.

3.2.1. Subgroups

In adapting the theories of team effectiveness to open source communities, it is

recognized that communities typically have cores and peripheries while teams generally

do not. Therefore, three key community subgroups are identified for the purpose of

devising social network constructs: core developers5, peripheral developers, and

administrators. The core and peripheral subgroups are relevant because they connect

with prior research regarding core and peripheral developers in open source software

literature (Almarzouk et. al. 2005), as well as the core-periphery concepts reflected in

general studies of communities (Wenger 1998). The administrator subgroup is relevant

because it connects with team research regarding team leaders and leader centrality

(Balkundi and Harrison 2006) while reflecting the fact that many open source software

project have more than one administrator/leader.

As noted on Table 3, the three subgroups are defined based on their different

functional roles and/or levels of participation on the project. Core developers are

developers who are actively involved with the project and who contribute the majority of

design concepts and source code for the project software. Peripheral developers are

developers who are somewhat involved with the project and who have either contributed

5 For the purposes of this research, all members of the open source software project community are referred
to as “developers” because they all contribute in some way towards the development of the software
product. However, we recognize that many of these members are software users who have little or no
technical expertise in the methods of software development.

 63

source code or have posted requests or comments to the public project communication

records. By definition, a developer cannot be both a core developer and a peripheral

developer at the same time, although individuals will sometimes move from one

subgroup to another during the course of a project, as their role and activity level

changes.

Table 3
Community Subgroups

Subgroup

Defining criteria

Possible indicators

Core developers
(or “Core”)

Individuals who are actively involved
with the project and who contribute the
majority of design concepts and source
code for the project software

Official designation in project records
Writes and submits source code
Makes design or coding suggestions

Peripheral developers
(or “Periphery”)

Individuals who are somewhat involved
with the project and who have either
contributed source code or have posted
requests or comments to the public
project communication records

Submits bug reports and feature requests
Participates in project forum discussions
May write and submit source code

Administrators

Leaders of the project who take
responsibility for monitoring and
guiding the progress of the project, and
who are recognized as such by most
group members

Official designation in project records
Founded the project
Designated by the project founder or
 by existing administrators
Exerts access control over project source
 code repositories (is a “committer”)

Administrators are developers who lead the project. They take responsibility for

monitoring and guiding the progress of the project, and their special role is recognized by

most group members. By definition, an administrator is also a core developer. Many

projects have only one administrator, although it is not uncommon for a project to have

multiple administrators who share in the leadership and administrative tasks (Almarzouk

et. al. 2005, Sturmer 2005, and Ye et. al. 2005). For communities which have only one

 64

administrator, the subgroup notion is not meaningful and the “administrator subgroup”

collapses to a single individual community member.

3.2.2. Closure

In social capital theory, closure is viewed as the extent to which the members of a

group are connected through informal ties. This is typically represented by the social

network measure of “density,” which is defined as the total number of observed ties

divided by the total number of possible ties. In this respect, closure can be viewed as the

proportion of all possible ties that are actually connected, and a group’s social network

structure can be described as either “dense” if the proportion is high or “sparse” if the

proportion is low.

Considering the information flow paradigm of social capital theory, closure

reflects the pattern of information flows among and between the community members. In

social capital theory, closure is generally portrayed as leading to positive social outcomes

involving utilization of resources and group health and viability. However, some

negative effects are sometimes noted, regarding groupthink and a reduced tendency to

associate with outsiders. In work group effectiveness studies, closure has been generally

associated with a positive impact on effectiveness, although at least one study suggested

that the relationship is an inverted-U shape (Oh et. al. 2004).

The closure concept can be applied to the group as a whole, or it can be applied to

any particular subgroup, in which case only the ties within the subgroup are considered.

For the purposes of this research, the closure concept is extended to also consider the

connections between one subgroup and the rest of the community. For this reason, the

 65

concept of “two-mode closure” is defined to consider only the ties between members of

one subgroup (mode #1) and the other members of the community (mode #2). With two-

mode closure, ties which are internal to either the subgroup or internal to the group of

other community members are excluded.

Group Closure. As documented on Table 4, Group Closure is defined as the

closure of the social network of informal ties within the total project community.

Referring to social network studies of team performance, the Group Closure construct is

analogous to the construct of team closure, and with this construct the “team” is viewed

as consisting of all community members, regardless of whether they are core developers

or peripheral developers. This is justified because it is recognized that peripheral

developers contribute to the project in important ways, even though their total

contribution is normally not as great as that of the core developers.

Core Closure. Applying the notion of closure to the core subgroup, the construct

of Core Closure is defined as the closure of the social network of informal ties within the

core subgroup of the project community. This construct views the “team” as consisting

primarily of the core developers. This is an alternative view to considering the whole

project community as a team. However, it is also a reasonable proposition considering

that the core developers in an open source project are the most active and make the

greatest total contribution to the production effort. A positive impact on the core

subgroup should result in a positive impact on the entire project community.

 66

Table 4
Social Network Constructs

Construct

Definition

Relevant subgroup

Group Closure Extent (density) of informal ties considering all
possible connections between members of the
project community

None

Core Closure Extent (density) of informal ties considering only
the possible connections between members of the
core developer subgroup, excluding all other
possible ties

Core subgroup

Peripheral Two-Mode
Closure

Extent (density) of informal ties considering only
the possible connections between peripheral
subgroup members and the rest of the project
community, and excluding all other ties

Peripheral subgroup
Core subgroup

Core Bridging Extent of bridging ties, considering connections
between members of the core subgroup and
members of other project communities

Core subgroup

Administrator
Bridging

Extent of bridging ties, considering connections
between members of the administrator subgroup
and members of other project communities

Administrator subgroup

Administrator
Centrality

Central network position of the administrator or
administrator subgroup in relation to the remainder
of the project community

Administrator subgroup

Peripheral Two-Mode Closure. The two-mode closure concept is used to define

the Peripheral Two-Mode Closure construct, which is the closure of the social network of

informal ties, considering only the possible ties between the peripheral subgroup and the

rest of the community6. This construct is defined based on the social capital notion of

closure, as well as the assertions of open source literature which suggest that the

involvement of peripheral members in core processes will help to fulfill their need for

challenge and skills development, which will lead to an increase in their identification

6 Considering that the “rest of the community” is equivalent to the core subgroup, this construct could just
as easily be described as “Core Two-Mode Closure”.

 67

with the project community. It is expected that this will result in an increase in their

participation level, thereby having a positive impact on community output and activity.

3.2.3. Bridging

Bridging is the extent to which project community members or subgroup

members are connected to members of other open source software project communities.

This is consistent with Burt’s (1992) notion of brokerage, in the case where the brokers

have a “tertius iungens” philosophy (Obstfeld 2005) which compels them to apply their

positional advantage towards the benefit of the whole group, rather than using it primarily

for their own personal gain. In the social capital literature, bridging is generally

associated with improved access to resources and an associated increase in performance.

This result has been observed in the team performance literature as well (Balkundi and

Harrison 2006).

The bridging constructs are defined in relation to the bridging ties of core

subgroup members and administrator subgroup members (Table 4). No bridging

constructs are defined for the peripheral subgroup or the group as a whole, based on the

premise that the group will not benefit from bridging ties that are held by peripheral

developers who have a limited role in the project.

Core Bridging. The Core Bridging construct is the extensiveness of ties between

members of the core subgroup and members of other project communities (excluding

members of the focal project community). Comparing with the teams literature, this is

 68

analogous to the notion of team bridging or team centrality, where the core subgroup is

considered to be “the team.”

Administrator Bridging. The Administrator Bridging construct is also defined

based on a more restrictive view of “team,” in that it considers only the bridging ties of

the administrator subgroup members to be important.

3.2.4. Leader Centrality

Leader centrality is the extent to which a team leader occupies a pivotal position

within the network of information flows that are internal to the team. This central

position is often associated with a perceived level of importance or prominence for an

individual within the group (Wasserman and Faust 1994). In this context, a central

structural position is typically represented by social network concepts such as degree

centrality or betweenness centrality. Most applications of centrality involve individual

nodes, although Everett and Borgatti (1999) have defined the concept of “class

centrality,” in which the centrality concept is extended from an individual within a

network to a subgroup within a network.

Administrator Centrality. As shown on Table 4, the construct of Administrator

Centrality is defined as the centrality of the administrator or administrator subgroup with

respect to the total project community. In team literature, leader centrality is considered

to have a positive relationship with team performance. In studies of open source

projects, no works were identified which relate administrator centrality to community

 69

success. However, it is noted that the open source literature suggests that project

community members are motivated by a sense of ownership in the project, and that

heavy-handed control by administrators can reduce the motivation of both core

developers and peripheral developers. The Administrator Centrality construct is an

attempt to represent the team-related positive aspects of leader centrality with the implied

negative aspects suggested by the open source literature.

3.2.5. Community Success

Community Success for an open source software project community is defined

along the two dimensions of output and activity. The output level of a project community

is the quantity of software that is produced by the community while the activity level is

the quantity of participation by community members. These two dimensions of success

include the elements of effort (reflected in the quantity of software produced) and

performance (reflected in the acceptance of the community-market as evidenced by

activity levels such as software downloads and page views). This is consistent with the

work of Grewal, et. al. (2006) in which the authors measure “technical success” with the

number of code commits and “commercial success” with the number of software

downloads associated with the project.

This Community Success construct can be compared with the performance

dimension of the group effectiveness construct commonly used in the team literture.

Team performance is often aligned with the extent to which a team achieves its objectives

and produces suitable output. An open source software project community which

produces software that is widely downloaded and viewed can be said to have achieved its

 70

objectives. Therefore, the Community Success construct as defined above is generally

equivalent to group performance in teams with regard to the accomplishment of task and

group objectives.

3.3. Social Network Model and Propositions

A social network model of success for open source software project communities

is proposed as shown on Figure 6. The six social network constructs are shown on the

left side of the figure, and the community success construct is shown on the right. A total

of six propositions are derived. In the following sections, each of these propositions is

described and the associated claims are justified based on the theoretical and conceptual

foundations discussed in Chapter 2.

3.3.1. Group Closure

With respect to task performance, the design and production of software requires

a certain level of interaction among the project community. Solving problems,

integrating code contributions, and coordinating work require a certain extensiveness of

discussion. However, the tools typically used by open source software project

community members (e.g. version control systems, bug-trackers, etc.) act to reduce the

level of direct interaction that is required. Further, the typical modular architecture of

open source software projects is associated with a task design containing loosely coupled

tasks and a limited need for interacting across modules. Therefore, a certain level of

interaction is required, but only to a point.

 71

Figure 6
Social Network Model of Community Success

The capacity of the project community to continue working together and to

sustain itself depends upon the creation of a certain amount of trust among community

members. One of the key positive effects that has been associated with closure is the

facilitation of trust building (Coleman 1988). However, the open source software

environment provides a relatively strong communal culture (Raymond 1999) and

therefore a high level of closure may not be necessary because the members tend to share

the strong values of the open source culture.

Peripheral
Two-Mode

Closure

Community Success

Proposition 1

Proposition 2

Proposition 3

Proposition 4

Proposition 5

Proposition 6

Administrator
Centrality

Core
Closure

Group
Closure

Core
Bridging

Administrator
Bridging

 72

It is “costly” to develop and maintain ties. While the effort required to post a

comment to a discussion forum seems to be trivial, consideration should be given to the

time necessary to read and understand the content of previous forum posts and to start

and maintain a dialogue with other members. Further, open source software projects, as

defined in this research, involve volunteers who typically have a limited amount of time

to contribute to the project. Thus, each additional tie that is established represents a cost

to the actors involved and the group as a whole.

For the group as a whole, it is anticipated that a certain level of closure is required

as described above. However, after a certain point, additional closure becomes a burden,

it is distracting, and therefore it reduces the smooth functioning of the community.

Closure above the required level will not incur further net benefits and so, the effect of

the increasing cost of ties will be to reduce community success. Therefore, the

relationship between Group Closure and Community Success is posited to be an inverted-

U shape:

Proposition 1
The Group Closure of an open source software project community has an
inverted-U relationship with Community Success. Community Success is
maximized at a moderate level of Group Closure.

3.3.2. Core Closure

The subgroup of core developers is characterized by a higher level of activity than

the peripheral developers. Most of the code for the project is created by these core

developers. As a result, their need for interaction should be considerably greater than the

needs of the group as a whole (which includes both the core and the periphery).

 73

However, the cost-of-ties effect is still important and therefore, as with Proposition 1, an

inverted-U shaped relationship is suggested:

Proposition 2
The Core Closure of an open source software project community has an
inverted-U relationship with Community Success. Community Success is
maximized at a moderate level of Core Closure.

3.3.3. Peripheral Two-Mode Closure

For peripheral developers, a greater level of two-mode closure between the

peripheral subgroup and the rest of the group should lead to a greater sense of

identification with the project, as well as feelings of satisfaction and challenge. As

Raymond (1999) notes, it is important to “listen to the beta testers.” Greater two-mode

closure should translate into increased feelings of obligation and commitment to make

contributions and to remain with the project. More connected peripheral developers are

more likely to contribute code, bug reports, and assist with the production of the project

software. These peripheral developers may be the source of new ideas and methods of

development that could improve the group processes. Further, one or more may decide,

at some point, to become core developers.

On the negative side, the cost-of-ties may become a significant factor as

peripheral two-mode closure increases. Higher levels of connectedness with the core

developers may become a distraction for these more active individuals, which may offset

the benefits of having more motivated peripheral developers. Therefore, the relation

between Peripheral Two-Mode Closure and Community Success is expected to have an

inverted-U shaped relationship:

 74

Proposition 3
The Peripheral Two-Mode Closure of an open source software project
community has an inverted-U relationship with Community Success.
Community Success is maximized at a moderate level of Peripheral Two-Mode
Closure.

3.3.4. Core Bridging

There are various positive effects associated with bridging ties. The bridged

members will have access to new ideas regarding production and design methods. In

addition, these members may be able to bring in members from other projects on a one-

time basis to solve particular problems and/or provide other special kinds of support.

Bridging ties may also increase the likelihood of recruiting new project community

members from other projects, as the focal actor utilizes his or her bridging ties to

communicate the features of the focal project to potential members from other project

communities. These effects result in additional resources which should help to improve

task performance.

Bridging ties may also allow the focal actor to become aware of certain

opportunities or threats to the focal project. For example, the bridged actor might

identify a niche of related open source software projects which provides new

opportunities for expanding the scope of the project to include interoperability with these

other projects. Alternatively, the bridged actor might become aware of new or increased

“competition” from other projects. In either event, the bridged actor may then be able to

help guide the focal project through and around these environmental issues, which should

lead to sustainable project community success.

 75

In the case of bridging ties, the cost-of-ties effect is only a burden on the

individual actor, because the ties are between that actor and the members of other project

communities (not the focal community). However it is possible that too many bridging

ties would result in a lack of time and attention given to the focal project by the bridging

actor. Again, this is only one actor and the net negative effect of this on the overall

project is expected to be minor. Therefore, the relationship between Core Bridging and

Community Success is expected to be positive:

Proposition 4
The Core Bridging extent of an open source software project community is
positively associated with Community Success.

3.3.5. Administrator Bridging

Considering the special influential position of administrators, it is possible that the

bridging ties of administrators are the most important with regard to community success.

In effect, the special position of administrators allows them to leverage the positive

impact of their bridging ties. So, although the effect of administrator bridging may be

stronger than for core bridging, a positive relationship is expected:

Proposition 5
The Administrator Bridging extent of an open source software project
community is positively associated with Community Success.

3.3.6. Administrator Centrality

For administrators, a certain level of centrality is necessary in order for them to

coordinate and integrate the work of the other developers. However, as the level of

centrality increases, the administrators face the possibility of becoming overburdened and

subject to “burn-out,” which would have significant negative effects on both task

 76

performance and group viability. This is essentially the cost-of-ties effect observed at the

individual level of the administrator. Pavlicek (2000) suggests that administrators should

delegate as much as possible.

With regard to effects on the other (non-administrator) community members,

again, a certain level of contact with administrators is valuable in that these members

need to feel welcomed and accepted into the group. At a point, however, too much

contact with the administrator subgroup can lead to a loss in the “feeling of ownership”

that is apparently so important for open source software contributors. As noted by von

Krogh (2003):

Recent work by Karim Lakhani and Eric von Hippel and by Jae Yun Moon and
Lee Sproull shows that contributors to open source software projects value a sense
of ownership and control over the work product, something they do not
experience in programming work carried out for hire. (von Krogh 2003)

Considering that an increase in administrator centrality will have a positive effect

on success up to a certain point based on the involvement of administrators in task

performance, and that further increases in centrality may have negative impacts with

regard to excessive demands on the administrator and reduced motivation for the other

members, the relationship between Administrator Centrality and Community Success is

expected to be an inverted-U shape:

Proposition 6
The Administrator Centrality of an open source software project community has
an inverted-U relationship with Community Success. Community Success is
maximized at a moderate level of Administrator Centrality.

 77

4. RESEARCH METHODOLOGY

This chapter includes a presentation of the study design and a description of the

research setting. This is followed by a description and formal definition of the variables

which operationalize the research constructs presented in Chapter 3. Finally, the

sampling and data collection procedures are described and the resulting sample and

research dataset is presented.

4.1. Study Design

A cross-sectional study design is chosen in which data are collected from a

sample of open source software project communities. In the following sub-sections, the

unit of analysis and study population are defined and the research method is discussed.

4.1.1. Unit of Analysis

The primary unit of analysis is the open source software project community.

While it is possible to think of all open source developers as comprising a kind of

community, the study definition of “project community” is limited to individuals

associated with a particular project. Some data are collected at the lower level of

community subgroup and even at the individual member level. However, social network

analytical methods are then used to aggregate these results to the project community

level.

4.1.2. Study Population

Considering the complex nature of open source software project communities and

the various possible influencing factors (refer to section 3.1), a particular study

 78

population is defined in an attempt to control for some of these factors. In particular, the

study population is limited to early-stage projects in order to control for project maturity,

developer-targeted projects to control for project type and task structure, and corporate-

sponsored projects are excluded to control for community norms and organizational

environment.

Early-stage projects are identified by selecting those which have only two years of

history following their first release of executable software. This study population

definition results in a sample of projects that have similar age and developmental

characteristics. In effect, these are all “start-up” or “early-stage” projects, which are

viewed from a commonly defined starting point, regardless of the actual start date or

current age of the project. The expected result is that the sample will be more

homogeneous and represent a more focused group of projects, which will increase the

likelihood of uncovering significant explanations of variance in the dependent variables.

With regard to developer-targeted projects, most prior studies of open source

software projects have assumed the notion that “the user is also a developer,” and have

used the concept of “user-developer.” However, many projects, such as Open Office, are

targeted to end-users. While it is recognized that such projects exist, the developer-

targeted project is accepted as the project type of focus in order to be consistent with

prior studies and also to control for differences in project type. Therefore, end-user

targeted projects are excluded from the study population.

Regarding community-founded projects, the salient view in most open source

software research is the volunteer nature of the projects, and most of the motivational

research has assumed this. However, it is increasingly recognized that many open source

 79

software contributors are paid by their companies to do the work (West and O’Mahoney

2005). It seems possible that this distinction would change the motivational factors and

the underlying dynamics of the project. Therefore, the study definition of “open source

software project” is limited to the traditional notion of a community-founded project.

Corporate-sponsored projects and spin-off projects are excluded from the study

population.

4.1.3. Research Method

The research method used is “analysis of existing statistics” (Babbie 2005). With

this unobtrusive method, existing statistics and other types of historical records are the

primary source of data. One advantage of this method is that there is no impact of the

researcher on what is being studied. Another advantage is that data are not based on the

perceptions of the research subjects, but the residuals of actual activity. A disadvantage

is that certain reliability and validity problems are associated with this method (Webb et.

al. 2000), as discussed further in section 7.3.

The other research method that could have been chosen to test the hypotheses is

survey analysis. The analysis of existing statistics method was chosen for this study

primarily because of the advantages of building social network variables from existing

online discussion archives and project records. Such a method allows for a large number

of networks to be sampled. This compares with laborious survey-based methods for

creating social networks in which entire studies are typically devoted to studying one or a

small number of networks. In addition, prior research has shown that subjects’

perception of their social network is often quite different from their actual social network

 80

(Krackhardt 1999). Calculation of social networks from archival data provides a

representation of actual communications, and not merely perceived communications.

Thus, having the ability to capture a large sample of objectively-created social networks

is a relatively rare opportunity with respect to the study of groups.

In collecting existing statistics, a two-year observation window is utilized. The

observation period begins with the date of first project release of executable software and

ends at a point 24 months later. Even though data are collected over a period of time, a

cross-sectional design is still utilized in that the entire two-year period is viewed as a

single observational point. The two-year length of the window was chosen to provide a

sufficiently long period for observing the formation of the relevant social networks and

their effects on community success, without being so long as to be confounded by

fundamental changes in the conditions in which the project operates. Open source

software project life cycles on SourceForge are observed to range upwards of 7 or more

years, and other projects, such as Linux, continue to mature after 15 years. During the

project life cycle, various changes may occur in leadership or other conditions which

change the nature of the social network structures. Also, the nature of the project

undergoes a qualitative change as it grows substantially. Studies of the effect of social

network structure on work group effectiveness have concluded that the intensity of the

effect is reduced as the project matures and the group gains familiarity (Balkundi and

Harrison 2006). Thus, this familiarity factor can mediate the relationship. Similar effects

may occur in open source software project communities.

 81

4.2. Research Setting

The research setting chosen for this study is the SourceForge hosting organization

for open source software projects. On the SourceForge hosting site, individual projects

are maintained and recognized based on a unique project name and a unique set of project

web pages. Each project has at least one registered administrator who organizes and sets

access privileges for the dedicated source code repository and public forum facilities

which are made available by SourceForge. The project community members can be

identified based on their registration with the project and/or by their participation in

project forums.7

SourceForge is the largest and most diverse of the hosting platforms, with over

129,984 registered projects and 1,395,827 individual registered users8. Of these, 81,753

projects were registered with a valid “topic,” and of these, a total of 35,231 were in a

planning or pre-alpha stage, 39.145 were in an alpha or beta stage, 20,105 were in a

production/stable or mature stage, and 1,968 were recorded as inactive, based on self-

reported development status codes9.

Other hosting platforms such as Savannah, Freshmeat, and others could have been

selected. However, SourceForge was chosen in order to provide a uniform basis for

sample selection and data collection, which has advantages both in terms of controlling

for variations associated with the nature of the hosting platform and also in terms of

7 It is recognized that individuals, sometimes referred to as “lurkers,” may view the project pages and
forum without posting to the forum or registering with the project. These individuals are not considered to
be members of the project community for the purposes of this study.

8 As of September 21, 2006

9 Amounts do not total to 81,753 due to multiple codes being recorded for individual projects

 82

logistical considerations. In effect, the choice of a single hosting organization may help

to control for differences in community norms and organizational environment.

4.2.1. Data Sources

The SourceForge organization is the source of archival data. An intensive review

of the SourceForge platform was performed to identify the availability of various data

elements and to determine appropriate data extraction methods. Part of this review

included the reading of SourceForge procedural documents and announcements to

identify any situations or changes that might influence the integrity of the data on the site.

Data were acquired from SourceForge through two kinds of channels. One

channel involves the direct capture of data (using cut-and-paste) from existing or archival

project web sites10. The other channel involves acquiring access to and querying research

databases which have been previously created by third parties based on data dumps from

the SourceForge archives. The two research databases which were used in this study

include the University of Notre Dame (UND) database and the Libresoft (LS) database.11

4.2.2. Data Element Selection

Based on a review of the various SourceForge data sources, various data elements

were selected based on their availability and the extent to which they could be used in

creating research variables to operationalize the previously defined research constructs.

These variables, which are described in the following sections, were defined so as to

logically and directly correspond with the associated constructs. Because an existing

10 Selected web page screen images are contained in Appendix A.

11 Descriptions of these research databases are contained in Appendices B and C.

 83

statistics research method was selected, it was also necessary to consider both the

availability and the integrity of the SourceForge data elements as these research variables

were defined.

4.3. Dependent and Control Variables

In this section, the variables which operationalize the success construct

dimensions of community output and community activity are defined and specified, along

with the control variables that are used in the regression analyses.

4.3.1. Community Success

Six variables are defined for the community success dimensions of output and

activity, all of which are calculated as the sum of the 24 monthly statistics which span the

two-year observation window (Table 5). Three of these variables correspond with the

output dimension and three correspond with the activity dimension. Each of these

variables is described in the following paragraphs. Most of the community success

variables are extracted from the UND research database, with the exception of the “code

commits” variables which is extracted from the LS research database.

Community output variables. The community output variables consist of “code

commits,” “software releases” and “trackers closed.” In producing software, developers

normally work with a human-readable form known as “source code.” Along with the

first release of software, a production repository of the related source code is established

and maintained on the host platform. As batches of new and/or improved source code are

written and validated, these batches are entered (or “committed”) into the source code

 84

repository. In creating the LS research database, the project source code repository

records are examined and each commit is recorded along with its date. The variable

“code commits” is a count of the number of these “commits” that are made over the two-

year observation window.

Table 5
Community Success Variables

Variable
Name

Variable
Description

Success
Dimension

Data Source Reference

Code
Commits

Number of source code
commits

Ouput SourceForge CVS
records (LibreSoft
database)

Healy and
Schussman 2003

Software
Releases

Number of software
releases

Ouput Project monthly
statistical records
(UND database)

Stewart and Ammeter
2002
Crowston, et. al.
2003

Trackers
Opened

Number of closed
trackers

Ouput Project monthly
statistical records
(UND database)

Healy and
Schussman 2003,
Crowston, et. al.
2003

Software
Downloads

Number of software
downloads

Activity Project monthly
statistical records

Healy and
Schussman 2003

Page Views

Number of page views Activity Project monthly
statistical records

Healy and
Schussman 2003

Trackers
Closed

Number of opened
trackers

Activity Project monthly
statistical records
(UND database)

Healy and
Schussman 2003,
Crowston, et. al.
2003

At various points in time, based on the discretion of the administrators, the current

production source code repository is “compiled” and a new release of executable

software is made. This is essentially a working version of the software which can be

used by developers or by non-technical users. Each release of this software is recorded in

the project archives, and the variable “software releases” is a count of the number of such

releases during the two-year window.

 85

As community members identify the need for various kinds of changes to the

software, the administrators may open a “tracker.” These trackers are essentially work

orders which specify requests from the community for development work, such as fixing

a software bug or adding a functional feature. As the development work needed for a

particular tracker is finished, the tracker is “closed.” Each closed tracker is recorded in

the project archives, and the variable “trackers closed” is a count of the number of

trackers which are closed during the two-year window.

Community activity variables. The community activity variables consist of

“software downloads,” “page views,” and “trackers opened.” As software releases are

made by the project administrators, new software versions are made available to the

public. An individual who wishes to acquire and use this software is required to

download the executable version from the project web site. Each such download is

recorded in the project archives, and the variable “software downloads” is a count of the

number of such download actions which occur during the two-year window.

The “page views” variable is measured by the number of times that any one of the

project web pages are viewed. The project web pages include a home page, developer’s

page, and various other pages of interest to project developers and software users. The

number of views which are made to these pages are recorded in the project archives, and

the variable “page views” is a count of the number of such viewing actions which occur

during the two-year window.

Finally, the variable “trackers opened” is defined as the count of the number of

trackers which are opened during the two-year window (note “trackers closed” above).

 86

The trackers opened variable is considered to be a measure of community activity

because it reflects requests made by the entire project community and a greater level of

downloading and page viewing should be associated with a greater level of tracker

opening. As previously described, “trackers closed” is considered to be a measure of

community output because the closing action occurs as the result of developmental work

which is completed.

4.3.2. Controls

Previous studies have identified group size as having an effect on team

effectiveness and this effect might also be expected in open source project communities.

In addition, some social network variables, such as those involving density

measurements, are sensitive to the total size of the group. Therefore, both group size and

core size are used as controls. As noted on Table 6, “group size” and “core size” are

defined as the number of project community members and the number of core subgroup

members as of the midpoint in the two-year observation window.

Table 6

Control Variables

Variable Name Variable Description Data Source Calculation
Group Size Number of project

community members
Project
membership
records (UND
database)

Counted at mid-point
of two-year
observation window

Core Size Number of core
developer subgroup
members

Project
membership
records (UND
database)

Counted at mid-point
of two-year
observation window

Conversation
Volume

Number of forum
posts

Project
monthly
statistical
records

Aggregated over two-
year observation
window

 87

In addition, it is plausible that the success of the community could be related to

the total volume of conversation, rather than the structure of the conversational network

itself. Therefore, an additional control variable is defined to be “conversation volume,”

which is measured as the sum of the number of forum posts over the two-year

observation window.

4.4. Social Network Variables

In this section, the networks and subgroups are defined and specified within the

SourceForge research setting. A formal system of notation is defined and specified to

include graph theoretic and sociometric notations. This notational system is used to

define and formally specify the networks, subgroups, and the six social network variables

which operationalize the six social network constructs described in Chapter 3.

4.4.1. Networks

The social network structural constructs defined in Chapter 3 are based on the

information flow paradigm which is a fundamental premise of social capital theory.

Therefore, an appropriate network definition for use in operationalizing these constructs

would include links which are logically connected with information flow, as in a

conversational connection or other form of communication.

Conversational network. Considering the availability of data from the

SourceForge archives, a conversational network was defined based on data obtained from

 88

the project public forum records. Each project may have one or more public forums12 on

their SourceForge project site. Any SourceForge member can post an initial message to

the forum. Individuals who view the forum can then respond with their own posts,

resulting in a thread of discussion. While other forms of communication are recognized

and certainly exist (direct emails, instant messaging, etc.), the norms of open source

encourage the use of these transparent public forums and therefore the forum

conversations were selected as a representative source of communicative connections

between project members.

In defining the conversational network from public forum data, each node in the

network is associated with a particular member of the project community, where a project

community member is defined as an individual who has registered with the project or

who has posted a comment to a project public forum. A link is then said to exist between

two member-nodes if those two members participate in a single discussion thread on a

project public forum during the two-year observation window. Crowston and Howison

(2004) used a similar type of conversational network to study the social structural

patterns of open source software projects by extracting textual data from bug report

trackers.

Project membership network. The conversational network is adequate for

calculating social network measures associated with the closure and leader centrality

constructs because these constructs relate to conversations that occur within the project

12 Public forums may be for general purposes (e.g. for “open discussion”) or they may be designated for
specific purposes (e.g. “user help”).

 89

community. However, the bridging constructs involve information flows that occur from

inside the project community to individuals who are not part of the focal project

community. Unfortunately, the SourceForge archives contained no public forums or

other systematic data sources which could be used to calculate appropriate conversational

measures for these external information flows. Therefore, cross-membership status was

chosen as a proxy for such information flow and an appropriate project membership

network was defined.

The defined project membership network consists of two types of nodes. One

node type is specified to be a registered member of the focal project community. The

other node type is defined to be a SourceForge project. A link between a member-node

and a project-node is recognized if that particular individual is a member of that

particular project. Therefore, the members of a focal project community will, by

definition, have a link between their member-node and the focal project. However, if an

individual is also a member of another SourceForge project, then a link is recognized

between that individual and the other project. Gao, et. al. (2003) defined a similar type of

project membership network in studying the connections between various open source

software projects hosted by SourceForge. The key assumption in using this network for

the calculation of bridging constructs is that membership in another project implies

communication with members of that other project.

 90

4.4.2. Subgroups

All of the social network structural constructs defined in Chapter 3, except for

Group Closure, make reference to a particular subgroup13 of the project community.

Therefore, it is necessary to specify how subgroup membership is determined within the

SourceForge research setting. The three subgroups of interest include core developers,

peripheral developers, and administrators.

An individual is considered to be a core developer if that individual was formally

registered with the focal project during the two-year observation window. An individual

is recognized to be a peripheral developer if that individual posted a message to a project

public forum during the two-year window (but was not formally registered with the

project). Therefore, the core developer subgroup and the peripheral developer subgroup

are mutually exclusive and exhaustive subsets of the set of members comprising the

project community. An individual is considered to be an administrator if that individual

is formally registered as an administrator with the focal project on the SourceForge

records. Because registered administrators are also registered members, the administrator

subgroup is a subset of the set of members comprising the core developer subgroup.

4.4.3. Formal Notation

In this subsection, the application of graph theory and sociometric notation to

social network analysis is briefly reviewed, followed by a discussion of the basic

concepts and notational systems that are relevant to the work. In general, the notational

13 A “subgroup” is defined based on the a priori individual attributes of the subgroup members. This is in
contrast to the typical notion of “subgroup” in social network analysis, in which the subgroup is defined by
certain structural attributes using methods such as block modeling or hierarchical clustering (Wasserman
and Faust, 1994).

 91

conventions used by Wasserman and Faust (1994) are followed. In addition, definitions

for one-mode and two-mode networks are provided as needed for this work.

Graph theory, a branch of mathematics, has been used extensively for modeling

social systems including applications in anthropology, social psychology,

communications, business, organizational research and geography (Wasserman and Faust

1994). For social network analysis, graph theory provides a useful vocabulary and a set

of primitive concepts for representing social networks. It is also associated with visual

representations which have proven to be valuable in helping to understand network

concepts.

Sociometric notation was first introduced by Moreno (1934) and is perhaps the

most widely used and practical notational system for social network analysis (Wasserman

and Faust 1994). It can be used by itself or combined with graph-theoretic notation in

describing social networks. In addition, most social network analysis software packages

use a sociometric representation and take advantage of matrix algebra for network data

manipulation and calculation of social network analytical measures. In the following

formal network representations, both graph-theoretic and sociometric notations14 are

utilized.

One-mode15 network. In Chapter 2, a social network was described as a network

representation in which the nodes of the network are social entities and the links of the

14 In defining the networks and graphs, we assume that there is only one relation in any given graph and
that this relation is dichotomous and nondirectional. Consideration of multiple, valued, and/or directional
relations is possible but is unnecessary for the purposes of this research.

15 A “mode” is a type of node. Refer to “two-mode network”.

 92

network are relations between the social entities. Using graph theoretical notation, a

social network can be more formally defined as consisting of a node set, a line set and a

relation, whereby the node set includes all actors who are within the group of interest

(e.g. the focal project community), and the line set includes all pairs of actors from the

node set for which the relation applies (e.g. members who co-participate in a discussion

thread).

An actor is denoted as “n” and the “node set” is defined as a set N which contains

a total of g actors:

N = {n1, n2, …. ng}.

A nondirectional relation is defined which may or may not exist between any two

actors, whereby an unordered actor pair for which the relation exists is denoted as line

“l”, and the “line set” is defined as a set L which contains a total of L lines:

L = {l1, l2, … lL}.

Using the above graph theoretic notations, a complete specification for a

nondirectional one-mode network (graph) can now be presented, as denoted by G, where

G contains set N and set L.

A sociometric notational definition of a social network begins with the same

graph theoretic notation of a set N which contains g actors. However, instead of using

the concept of a line set L, a sociometric approach is taken to define the actor pairs

connected by a relation to be the cells of a matrix. Thus, a sociometric matrix X is

defined on a single relation over the set of g actors in which the value of the matrix cell

 93

xij is “1” if the relation exists between actor ni and actor nj, and “0” if the relation does

not exist between actor ni and actor nj. For a nondirectional one-mode network, then, X

is a symmetrical g x g matrix and it completely specifies the network.

Two-mode network. The above concepts are now extended to define a “two-mode

network” in which two different node sets are permitted. For a two-mode network, a

mode-1 actor is denoted as “n” and a mode-2 actor as “m”, and two mutually exclusive

node sets N and M are defined to contain a total of g and h actors respectively:

N = {n1, n2, …. ng}, M = {m1, m2, … mh}.

The two sets N and M may contain actors which are of the same type, or set N

may contain actors which are of a different type than those contained in set M. The

associated sociometric matrix X is not square, but rather is rectangular and of dimension

g x h, where each matrix row is associated with a unique actor “n” and each matrix

column is associated with a unique actor “m”. One special kind of two-mode network is

an “affiliation network” in which N contains a set of actors and M contains a set of events

or organizational entities, and the relation is defined by the affiliation of the actors with

the event-organizations.

4.4.4. Formal Specification

As shown on Table 7, each social network structural construct defined in Chapter

3 is operationalized with a particular social network variable. The table indicates the

construct name, variable name, data source, and reference in the social network analysis

 94

literature. Using the notational system defined in the previous subsection, definitions are

first presented for the social network measures of “density,” “nodal degree,” “mean nodal

degree,” and “standardized actor degree centrality.” These definitions are then used in

defining the formal specification for each of the six social network variables below.

Table 7
Social Network Variables

Construct

Name
Variable Name Data Source Social Network Analysis

Reference
Group
Closure

Group density Public forums Wasserman and Faust 1994

Core
Closure

Core density Public forums,
Project membership
records

Wasserman and Faust 1994

Peripheral
Two-Mode
Closure

Peripheral two-
mode density

Public forums,
Project membership
records

Borgatti, et. al. 1998
Wasserman and Faust 1994

Core
Bridging

Core
membership
degree

SourceForge
membership records,
Project membership
records

Wasserman and Faust 1994

Administrator
Bridging

Administrator
membership
degree

SourceForge
membership records,
Project membership
records

Wasserman and Faust 1994

Administrator
Centrality

Administrator
class centrality

Public forums,
Project membership
records

Everett and Borgatti 1999

Density. The “density” of a graph is the actual number of lines in a graph as a

proportion of the total possible number of lines in the graph. Denoting density as ∆, the

calculation for density is specified by the formula:

∆ = 2L / g(g-1).

 95

Nodal degree. The “nodal degree” of a node ni, denoted by d(ni), is the number of

lines that are incident with the node ni (Wasserman and Faust 1994). A node is incident

with a line if that node is one of the unordered pair of nodes which defines the line

(Wasserman and Faust 1994). Using sociometric notation, nodal degree is defined for a

one-mode network as:

d(ni) = ∑all j xij = ∑all i xij

The nodal degree for the mode-1 actors in an affiliation network is defined as:

d(ni) = ∑all j xij

Mean nodal degree. The “mean nodal degree” of a graph, denoted by d^, is the

average nodal degree for all nodes in the network. Applied to the actors in an affiliation

network, mean nodal degree is:

d^ = ∑from i=1 to g d(ni) / g = 2L / g.

Standardized actor degree centrality. The “standardized actor degree centrality”

of a node ni, denoted by C'D (ni), is defined as:

C'D (ni) = d(ni) / (g-1). (Wasserman and Faust 1994)

The general social network measures defined above are now used in defining the

specific social network variables to be used in this research.

 96

Group density. The “group density” (GD) is the density of the “total conversation

network,” which is a one-mode network where actors are members of the focal project

community and the relation is forum conversation.

Core density. The “core density” (CD) is the density of the “core conversation

network,” which is a one-mode network where the actors are members of the core

subgroup of the focal project community and the relation is forum conversation16.

Peripheral two-mode density. The “peripheral two-mode density” (PTD) is the

density of the “periphery-core conversation network,” which is a two-mode network

where the mode-1 actors are members of the peripheral subgroup, the mode-2 actors are

members of the core subgroup, and the relation is forum conversation which is only

defined for actor pairs containing one core actor and one peripheral actor. Centralization

of the total conversation network was considered as a candidate for operationalizing the

Peripheral Two-Mode Closure construct. However, peripheral two-mode density was

chosen instead because it takes advantage of the explicit definition of the core and

peripheral subgroups, while centralization implicitly defines a core-periphery structure

using network properties.

Core membership degree. The “core membership degree” (CMD) is the mean

nodal degree (defined for an affiliation network) for all actors in the “core project

membership network,” which is an affiliation network where the actors are core subgroup

16 This is a node-generated subgraph of the total conversation network graph (Wasserman and Faust 1994).

 97

members of the focal project community, the events are SourceForge projects, and the

relation is project membership. Class centrality measures (Everett and Borgatti, 1999)

could also have been used to operationalize the bridging constructs. However, the

decision was made not to process the entire SourceForge membership network and

therefore the average degree measure was selected because it only requires the collection

of project membership data for the focal project actors.

Administrator membership degree. The “administrator membership degree”

(AMD) is the mean nodal degree (defined for an affiliation network) for all actors in the

“administrator project membership network”, which is an affiliation network where the

actors are administrator subgroup members of the focal project community, the events are

SourceForge projects, and the relation is project membership.

Administrator class centrality. The “administrator class centrality” (ACC) is the

standardized actor degree centrality of the super-node in the “administrator-other

conversation network17,” which is a special type of two-mode network (Everett and

Borgatti 1999) where the administrator subgroup members are represented as a single

mode-1 “super-actor,” the mode-2 actors are the other members of the focal project

community, and the relation is forum conversation which is only defined for actor pairs

containing the single super-actor and a mode-2 actor18. Degree centrality was chosen

17 If the super-node contains only one actor, then administrator class centrality is equivalent to standardized
nodal degree centrality for the one actor.

18 In this definition, the effect of the mode-1 “super-actor” is that ties from a single mode-2 actor to
multiple members of the administrator subgroup are counted only once.

 98

over other possible centrality measures such as closeness or betweenness because it is a

well-tested measure and there is no compelling reason to make other choices.

4.5. Sampling and Data Collection

In this section, the overall sampling and data collection process is described. This

process involves a series of data extraction, screening, and compilation procedures which

were used to create a sample frame. This frame is then screened for conformance with

study population, data availability and data integrity criteria. The screened sample frame

is then used for selecting a sample of projects for which the appropriate data elements are

extracted and research variables are computed, resulting in a research dataset to be used

in the analysis phase (described in Chapter 5).

4.5.1. Sample Frame

The sampling strategy was to use the UND database to select either a probability

sample or a complete sample (Babbie 2005). The probability sampling method is close to

random sampling when the sample frame contains no systematic bias (Babbie 2005). The

target sample size is 200 project communities.

As noted on Figure 7, an initial sample frame was created by querying the UND

database for January 2006. This month was chosen because it was the most recent month

for which data was also available from the LS database. The query script includes a

selection for projects which conform to the study population definitions for target

audience and project maturity (Table 8). This query also extracted certain data, such as

open source license used, which were useful for profiling the selected sample. The initial

 99

sample frame was recorded on the Initial Sample Frame Worksheet, and it contained 934

project communities.

Figure 7
Sample Frame Development Workflow

The initial sample frame was randomized in preparation for the probability

sampling procedures included in the data compilation process. The Initial Sample Frame

Query to create
sample frame &

randomize

Screen sample
frame

Query to create
project ID# list

List of projects
and project ID#

Initial Sample
Frame

Worksheet

UND Database

Reduced
Sample Frame

Worksheet

LS Database

Sourceforge.net

 100

Worksheet was sorted alphanumerically by project name, and this sorted list was used to

apply a systematic sample with a random start (Babbie 2005). With this approach, an

initial position is randomly chosen within the list and every nth project after that starting

point is selected for possible inclusion in the sample.

Table 8
Project Selection Criteria

Criteria Category

Test Criteria (“Reject if…”)

Application Step

Study Population

Evidence is found of corporate ownership or sponsorship
Project type is not developer oriented
First release date is less than 2 years prior to query date
Only one core member is found

Screening
Frame Query
Frame Query
Compilation

Data Availability

Administrators allow anonymous forum postings
Public forums contain less than 50 posts during 2-year window
Libresoft Project ID# not available
All commit values are zero

Screening
Screening
Screening
Compilation

Data Integrity

Evidence is found of ambiguity in date of first software release
Evidence if found of data corruption in monthly statistics

Screening
Screening

This initial frame is then screened for compliance with additional study

population criteria, and is subjected to various tests for data availability and data integrity

(Table 8). This resulted in a reduced sample frame which was recorded on the Reduced

Sample Frame Worksheet, and it contained 257 project communities. The screening

procedures were performed by the author and reliability was verified by a third party.

The randomized and reduced sample frame was then passed to the data compilation

process, which is described in the next sub-section.

 101

4.5.2. Data Compilation

In compiling the extracted data and computing the research variable values,

Microsoft Excel was used for data manipulation and UCINET social network analysis

software was used for the manipulation of network data and the calculation of social

network measures. In the process, Microsoft Access was used to build a secondary

database which contains the public forum data extracted from the UND database. The

Access scripts to create and use this database were created by a third party and validated

by the author using independent compilation methods. All other query scripts were

created and validated by the author.

As noted on Figure 8, the compilation process begins with the randomized

Reduced Sample Frame Worksheet (from Figure 7). The first project is selected at

random from this worksheet and appropriate data items are extracted and compiled onto a

Weekly Data Worksheet. This compilation process was performed by the author as well

as by a third party who was closely supervised by the author. The results were checked

by the author and/or by another third party for accuracy and compliance with compilation

procedures. Cases for which errors were found were returned for reworking. Other cases

for which no errors were found were entered into the final sample on the Data Analysis

Worksheet. Another case was selected from the Reduced Sample Frame Worksheet and

the process was repeated.

This process was to continue until either a total of 200 cases were included in the

selected sample or the reduced sample frame was exhausted. Based on the 257 cases in

the reduced sample frame and the application of additional study population and data

availability tests (Table 8), the sample frame was exhausted, resulting in a complete

 102

sample consisting of 160 projects. The associated Data Analysis Worksheet represented

the research dataset to be used for analysis.

Figure 8
Data Compilation Workflow

No

Yes

Yes

No

Select next
project

Extract and
compile data

elements

Weekly Data
Worksheet

UND Database

Reduced
Sample Frame

Worksheet

LS Database

Sourceforge.net

Build Public
Forum Database

PF Database

QC
Accept?

Enter into
selected sample

n=200 or
list is

exhausted?
Data Analysis

Worksheet
Process is
complete

 103

4.5.3. Sample Profile

Profile statistics for the selected sample are shown on Table 9. All statistics

shown on the table were extracted at or near the midpoint of the two-year observation

windows for each project. The year of first software release was spread fairly evenly

across the sample, ranging from the Year 2000 to the Year 2003. A number of projects

were initiated in 1998 and 1999. However, the data for these projects were corrupted or

no longer available. The most frequently self-reported status levels of development were

Beta and Production, accounting for over 70 percent of the project communities. The

most common open source license used was the GPL (GNU General Public License)

accounting for 58% of the total, followed by the LGPL (GNU Lesser General Public

License) and the BSD (Berkeley Software Distribution) license which accounted for 13%

and 9% respectively.

 104

Table 9
Profile Statistics for Sampled Project Communities

 (n = 160)

 No. projects % of total
Year of first release:
1999 1 0.6
2000 34 21.3
2001 45 28.1
2002 41 25.6
2003 39 24.4
Total 160 100.0

Project development status:
1 Planning 2 1.3
2 Pre-alpha 11 6.9
3 Alpha 27 16.9
4 Beta 57 35.6
5 Production 58 36.3
6 Mature 5 3.1
7 Inactive 0 0.0
Total 160 100.0

Open source license used:
GPL 93 58.1
LGPL 21 13.1
BSD 15 9.4
Apache 7 4.4
Other 24 15.0
Total 160 100.0

 105

5. DATA ANALYSIS AND RESULTS

This chapter includes a description of the preliminary analyses which included

normality testing and variable transformation, outlier assessment and removal, and factor

analysis and variable reduction. Descriptive and correlation statistics are then presented.

Finally, the regression procedures that were applied in testing the hypotheses are

described, the hypotheses are listed, and the testing results are reported, including both

linear and quadratic analyses19.

5.1. Preliminary Analyses

Prior to performing regression analyses, a series of preliminary statistical and

analytical procedures were applied to the research dataset associated with the sampled

project communities. The distributions of the variables were first checked for normality

and based on the findings, the dependent variables were log transformed. Outlier tests

were then performed on the transformed variables including both univariate and

multivariate procedures. This resulted in the removal of 17 cases. In the final

preliminary step, possible reductions of the transformed dependent variables were

considered based on the appliation of a factor analysis method. This step resulted in the

removal of 2 of the 6 variables, resulting in a total of 4 community success variables to be

used for hypothesis testing.

19 The statistical data analyses presented in this chapter were performed using the software package: SPSS
for Windows, Version 14.0.

 106

5.1.1. Transformation of Variables

An initial test of normality was performed for all research variables and high

levels of skewness and non-normality were found in most of the variables. In order to

rely on the results of a linear regression test, it is important that the standardized residuals

resulting from the regression exhibit a normal distribution (Allison 1999), and a non-

normal result is often associated with non-normality of the dependent variables.

Preliminary linear regression analyses were performed between each dependent variable

and each independent variable and, as expected, non-normality was noted in the

standardized residuals.

The dependent variables were then transformed using a natural logarithmic

function. Normality was then tested using a Kolmogorov-Smirnov statistic with a

Lilliefors significance level, based on the null hypothesis that the standardized residuals

are normally distributed. A significance level of less than .05 is taken as a rejection of

the null hypothesis and an indication that the values have a non-normal distribution

(Mertler and Vannatta 2005). The normal Q-Q plots were also inspected for each

variable to check for a straight-line appearance which is an indication of normality

(Mertler and Vannatta 2005). The results, which are shown on Table 10, indicate that the

log transformation resulted in evidence of normality based on the Kolmogorov-Smirnov

statistics and the normal Q-Q plots for all 6 variables.

The preliminary linear regression analyses for each dependent variable and each

independent variable were repeated and it was observed that the standardized residuals

passed the Kolmogorov-Smirnov test for normality for 4 of the 6 dependent variables.

For the other 2 variables (Software Releases and Trackers Closed), the Kolmogorov-

 107

Smirnov statistic was marginal but the normal Q-Q plots for these variables showed a

reasonable straight line appearance. Therefore, the log transformed versions of the

dependent variables were accepted for hypothesis testing. No further transformations of

the independent or control variables were considered because normality of the

standardized residuals was achieved with these variables in an untransformed state. In

conducting the regression runs for the actual hypothesis testing, the normality of the

standardized residuals was verified, as described in Section 5.3.

Table 10
Normality Tests of Dependent Variables

 Untransformed Variables Transformed Variables

Dependent Variable

Kolmogorov-
Smirnov

Z-Statistic

Sig.

Level

Shape of
Normal

Q-Q Plot

Kolmogorov-
Smirnov
Statistic

Sig.

Level

Shape of
Normal

Q-Q Plot
Code Commits 3.799 .000 Nonlinear 0.569 .902 Linear
Software Releases 3.538 .000 Nonlinear 1.065 .206 Linear
Trackers Closed 4.324 .000 Nonlinear 0.950 .328 Linear
Software Downloads 5.193 .000 Nonlinear 0.903 .389 Linear
Page Views 4.409 .000 Nonlinear 0.938 .343 Linear
Trackers Opened 4.145 .000 Nonlinear 0.691 .725 Linear

It was noted that in cases where the dependent variable (“y”) had a zero value, the

log transformed version of the variable - ln(y) - was undefined which resulted in a

missing value for ln(y). Because the limit of ln(y) is zero as “y” approaches zero, it is

reasonable to fill in the missing values for ln(y) with a “0”. Therefore, the missing values

were filled in accordance with this method.

 108

5.1.2. Outlier Assessment

Outliers are cases which involve extreme values for one or more research

variables. Generally, outliers are defined as values which are three or more standard

deviations away from the mean value for the variable. This criterion was used for

assessing univariate outliers in which the extreme values are tested for each variable

individually. Based on this assessment, a total of 13 cases were identified in which this

criterion was met for log transformations of the dependent and control variables.

Mahalanobis distance measures were then used to check for multivariate outliers in which

extreme values of the dependent variable are found for particular combinations of the

independent variables. Multivariate outliers are determined if a chi-square statistic for

the Mahalanobis distance is significant at p < .001 (Mertler and Vannatta 2005). An

additional 4 cases were identified which met this criterion. Considering both univariate

and multivariate situations, a total of 17 outlier cases were eliminated, resulting in an

adjusted total of 143 cases.

5.1.3. Reduction of Variables

A factor analysis method can be used to test for measurement overlap among the

dependent variables, and the results can be used for reducing the number of variables in

total and for grouping them into dimensions or components. As described in Section 3.1,

the research model defines success along the two dimensions of output and activity. As

described in Section 4.3.1, the logical assessment of the 6 dependent variables led to the

conclusion that Code Commits, Software Releases, and Trackers Closed are measures of

 109

the output dimension and that Software Downloads, Page Views, and Trackers Opened

are measures of the activity dimension.

A factor analysis method was applied to assess the plausibility of the two-

dimension model, as well as the logical assignments of the variables to the two

dimensions. In addition, the factor analysis method was used to assess if any dependent

variables can be removed in order to reduce the level of redundancy among these

variables. The factor analysis was applied to the log transformed versions of the

dependent variables because these were selected for inclusion in the linear regression

testing. In performing the factor analysis, an exploratory approach was initially taken

(Allison 1999). A principal component analysis was applied with a varimax rotation.

Four criteria are used in determining the appropriate number of components to be

retained, including eigenvalue, variance explained, screen plot, and residuals.

On the first factor analysis run, all 6 dependent variables were analyzed with

component extraction based on eigenvalues greater than “1”. This run produced two

components with 4 variables loaded onto component #1 (Code Commits, Software

Releases, Trackers Opened and Trackers Closed), and 2 variables onto component #2

(Software Downloads and Page Views) loaded. However, the variance explained was

marginal (69.9%) and the scree plot and residual criteria suggested the need for an

additional component.

A second run was then conducted in which a third component was forced. The

result of this run was that Trackers Opened and Trackers Closed loaded onto component

#1, Software Downloads and Page Views loaded onto component #2, and Code Commits

and Software Releases loaded onto component #3. With this run, the eigenvalue criterion

 110

was not met. In addition, the component groupings are inconsistent with the output and

activity dimensions. The Trackers Opened and Trackers Closed variables should

logically be split between the two dimensions. Apparently their excessively high

correlation (Pearson correlation = .86) which results from their logical connection (a

tracker cannot be closed unless it is first opened) causes this inconsistent result.

The Trackers Opened and Trackers Closed variables were eliminated and a third

run was performed which included the other 4 variables. An eigenvalue selection

criterion was used which resulted in two components in which Software Downloads and

Page Views loaded onto component #1 and Code Commits and Software Releases loaded

onto component #2 (Table 11). All four criteria were met suggesting that no additional

components were necessary. Also, the result is logical and intuitive. Therefore, Trackers

Opened and Trackers Closed were eliminated from further consideration.

Table 11

Rotated Component Loadings for Accepted Dependent Variables
(Log Transformed Dependent Variables)

Dependent Variable Component #1 Component #2
Code Commits .170 .839
Software Releases .074 .868
Software Downloads .918 .129
Page Views .923 .128

5.2. Descriptive and Correlation Statistics

Descriptive statistics were generated for each of the research variables. As noted

on Table 12, the total size of the project communities ranged from 7 to 326 members with

an average size of about 67 members. The total project community consisted of core

 111

Table 12
Descriptive Statistics of Subgroups and Research Variables

(n = 143)

 Unit Min. Max. Mean S.D.

Subgroups:
Peripheral developers # members 2 313 61.8 62.6
Core developers # members 2 21 5.4 3.9
Administrators # members 1 8 2.0 1.4

Controls:
GS Group Size # members 7 326 67.3 63.0
CS Core Size # members 2 21 5.4 3.9
CV Conversation Volume # 2yr posts 50 3,258 326 451

Community Success:
Code commits # 2yr commits 50 43,594 2,336 4,511
Software releases # 2yr releases 0 79 11.3 11.1
Software downloads # 2yr downloads 758 222,510 23,893 35,910
Page views # 2yr page views 4,825 1,243,073 165,180 227,992

Transformed Success Variables:
CC Code Commits Ln # 2yr commits 3.91 10.68 6.87 1.37
SR Software Releases Ln # 2yr releases 0.00 4.37 2.01 0.97
SD Software Downloads Ln # 2yr downloads 6.63 12.31 9.40 1.17
PV Page Views Ln # 2yr page views 8.48 14.03 11.35 1.16

Community Social Network Structure:
GD Group Density 0-to-1 index .006 .429 .078 .074
CD Core Density 0-to-1 index .000 1.000 .288 .357
PTD Periph. Two-Mode Density 0-to-1 index .000 .642 .210 .155
CMD Core Membership Degree # projects 1.00 7.20 2.03 0.99
AMD Admin. Membership Degree # projects 1.00 11.50 2.49 1.82
ACC Admin. Class Centrality 0-to-1 index .000 1.000 .554 .282

 112

developers and peripheral developers, where the core subgroup ranged from 2 to 21

members with an average size of 5.4 members, while the peripheral subgroup ranged

from 2 to 313 members with an average size of about 62 members. The average number

of administrators per project community was 2.0, and 49 percent of the communities had

only 1 administrator.

The average volume of public conversation in the two-year observation period

was 326 posts, with a range from 50 to 3,258 posts. The average values for the

community success variables (calculated over the two-year period) included 2,336 code

commits, 11.3 software releases, about 24,000 downloads and about 165,000 page views.

Of course, the mean values for the log transformed versions of these success variables

were much lower, ranging from an average of 2.01 for the log of software releases to an

average of 11.35 for the log of page views.

Four of the 6 social network structure variables are defined as “0-to-1 indexes.”

Of these, both Core Density and Administrator Class Centrality ranged from .000 to

1.000, with average values of .078 and .554 respectively. The Group Density variable

ranged from .006 to .429 with an average value of .078, while Peripheral Two-Mode

Density ranged from .000 to .642 with an average value of .210. For Core Membership

Degree, the core subgroup members were found to be registered with an average of 2.03

projects per member, while the administrator subgroup members were registered with a

slightly higher average of 2.49 projects per member. These values included the member

link with the focal project.

It is interesting to note that the average size and range for the core subgroups was

somewhat similar to the average size and range of the teams that were investigated in the

 113

37 studies reviewed by Balkundi and Harrison (2006). Across the reviewed team studies,

the average team size was 8, with a range of 3 to 15. This compares with the result for

open source software project core subgroups which had an average size of 5.4, and a

range of 2 to 21.

The matrix of Pearson correlation statistics for the research variables is presented

on Table 13. As might be expected, the highest correlation value was noted between

Core Membership Degree and Administrator Membership Degree (.828). High

correlations were noted between the log transforms of the two community activity

variables, Software Downloads and Page Views (.729), and between two of the density

measures, Core Density and Peripheral Two-Mode Density (.714).

5.3. Hypothesis Testing

In this section, a set of testable hypotheses is derived followed by a presentation

of the testing procedures that were performed.

5.3.1. Research Hypotheses

In this section, a set of four testable hypotheses is dervied for each proposition

suggested in Chapter 3. Each hypothesis represents the relevant social network structural

variable in combination with one of the four community success variables. The 24

resulting hypotheses are listed below:

 114

Table 13
Correlation Matrix of Research Variables

 GS CS CV GD CD PTD CMD AMD ACC Ln_CC Ln_SR Ln_SD Ln_PV
GS
CS .132
CV .775 .025

GD -.520 -.112 -.280
CD .039 -.395 .267 .170
PTD -.168 -.551 .148 .331 .714
CMD -.092 -.116 -.116 -.072 -.023 .085
AMD -.067 -.047 -.105 -.032 -.058 -.002 .828
ACC -.194 -.294 .122 .320 .431 .692 -.037 -.067

Ln_CC .002 .143 .102 -.099 -.134 -.026 .039 .007 .117
Ln_SR .082 -.108 .157 -.140 -.058 .066 -.021 -.052 .274 .486
Ln_SD .548 .101 .330 -.559 -.148 -.250 .052 .039 -.211 .215 .226
Ln_PV .506 .219 .313 -.505 -.137 -.233 -.010 -.004 -.226 .284 .161 .729

GS = Group Size
CS = Core Size
CV = Conversation Volume
GD = Group Density
CD = Core Density
PTD = Peripheral Two-Mode Density
CMD = Core Membership Degree
AMD = Administrator Membership Degree
ACC = Administrator Class Centrality
Ln_CC = Log Transform of Code Commits
Ln_SR = Log Transform of Software Releases
Ln_SD = Log Transform of Software Downloads
Ln_PV = Log Transform of Page Views

 115

Hypothesis 1a
The Group Density of an open source software project community has an
inverted-U relationship with Code Commits.

Hypothesis 1b
The Group Density of an open source software project community has an
inverted-U relationship with Software Releases.

Hypothesis 1c
The Group Density of an open source software project community has an
inverted-U relationship with Software Downloads.

Hypothesis 1d
The Group Density of an open source software project community has an
inverted-U relationship with Page Views.

Hypothesis 2a
The Core Density of an open source software project community has an inverted-
U relationship with Code Commits.

Hypothesis 2b
The Core Density of an open source software project community has an inverted-
U relationship with Software Releases.

Hypothesis 2c
The Core Density of an open source software project community has an inverted-
U relationship with Software Downloads.

Hypothesis 2d
The Core Density of an open source software project community has an inverted-
U relationship with Page Views.

Hypothesis 3a
The Peripheral Two-Mode Density of an open source software project community
has an inverted-U relationship with Code Commits.

Hypothesis 3b
The Peripheral Two-Mode Density of an open source software project community
has an inverted-U relationship with Software Releases.

Hypothesis 3c
The Peripheral Two-Mode Density of an open source software project community
has an inverted-U relationship with Software Downloads.

 116

Hypothesis 3d
The Peripheral Two-Mode Density of an open source software project community
has an inverted-U relationship with Page Views.

Hypothesis 4a
The Core Membership Degree of an open source software project community is
positively associated with Code Commits.

Hypothesis 4b
The Core Membership Degree of an open source software project community is
positively associated with Software Releases.

Hypothesis 4c
The Core Membership Degree of an open source software project community is
positively associated with Software Downloads.

Hypothesis 4d
The Core Membership Degree of an open source software project community is
positively associated with Page Views.

Hypothesis 5a
The Administrator Membership Degree extent of an open source software project
community is positively associated with Code Commits.

Hypothesis 5b
The Administrator Membership Degree extent of an open source software project
community is positively associated with Software Releases.

Hypothesis 5c
The Administrator Membership Degree of an open source software project
community is positively associated with Software Downloads.

Hypothesis 5d
The Administrator Membership Degree of an open source software project
community is positively associated with Page Views.

Hypothesis 6a
The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Code Commits.

Hypothesis 6b
The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Software Releases.

 117

Hypothesis 6c
The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Software Downloads.

Hypothesis 6d
The Administrator Class Centrality of an open source software project community
has an inverted-U relationship with Page Views.

5.3.2. Regression Methods

A multiple linear regression with ordinary least squares (Tabachnick and Fidell

2007) was used as the primary statistical testing method. For each hypothesis, the

relevant DV is regressed on the relevant IV. Control variables are included and tests are

performed for both linear and quadratic (inverted-U or U-shaped) relationships. The

quadratic test involves a transformation of the IV in which the IV is mean-centered and

squared (Allison 1999).

Because it is plausible that group size, core size, and/or conversational volume

may be positively related to community success, associated variables were defined and

applied as controls in every regression (refer to Section 4.3.2 for definitions). The

purpose of this approach is to isolate the effects of the independent variable from the

effects of the control variables. In this way, the resulting explanation of variance in the

dependent variable is incremental and does not reflect effects associated with control

variables.

A single three-step hierarchical regression test is applied which incorporates the

control variables, the linear testing, and the quadratic testing. The first step is a

regression of DV on the three control variables (“model 1”). The second step is the

regression of the DV on the three control variables and the relevant IV (“model 2”). The

 118

third step is the regression of the DV on the three control variables, the relevant IV, and

the relevant transformed (mean-centered and squared) IV.

To support an inverted-U relationship, the coefficient estimates for the

untransformed IV (in model 2) should be positive and the coefficient estimates for the

transformed IV (in model 3) should be negative and have a significant p-value. In

addition, model 3 should result in a significant change in the level of explained variance,

as measured by a significant F statistic for the change in R-squared from model 2 to

model 3. This quadratic method may also support a U-shaped relationship based on the

same criteria as described above except that the coefficient signs are reversed (i.e. the

model 2 coefficient is negative and the model 3 coefficient is positive).

The appropriate application of multiple linear regression requires the satisfaction

of certain assumptions. The testable assumptions include normality, homoscedasticity,

and linearity. It is also appropriate to look for multicollinearity among the IVs. In the

following paragraphs, the procedures that were used to test for these situations are

described and the results of this application are reported.

Normality. The normality of all variables was tested and a necessary

transformation of the DVs was made as reported in Section 5.1.2. In addition, the

normality of the standardized residuals in each regression run was tested using a

Kolmogorov-Smirnov statistic with a Lilliefors significance level, based on the null

hypothesis that the standardized residuals are normally distributed. A significance level

of less than .05 is taken as a rejection of the null hypothesis and an indication that the

values have a non-normal distribution (Mertler and Vannatta 2005). No Lilliefors

 119

significance levels were less than .05, and therefore no indication of non-normality in the

standardized residuals was found for any of the 24 regression runs.

Homoscedasticity. The extent to which a DV exhibits equal levels of variance

across the entire range of variation of the IVs is referred to as homoscedasticity. To

check for homoscedasticity, a scatterplot of the predicted values of the DV (as the x-axis)

against the standardized residuals (as the y-axis) was inspected for the presence of an

uneven spread in the vertical scatter from left to right (Mertler and Vannatta 2005). No

visual evidence was found for an uneven spread in any of the 24 regression runs.

Linearity. Linearity is the extent to which the relationship between the DV and

the IVs follows a straight-line shape. To check for linearity, a scatterplot of the predicted

values of the DV (as the x-axis) against the standardized residuals (as the y-axis) was

inspected for the presence of a non-linear pattern which deviated from a straight left to

right pattern (Mertler and Vannatta 2005). No visual evidence was found for a

significant deviation from linearity in any of the 24 regression runs.

Multicollinearity. For each regression run, multicollinearity among the control

variables and the IV was tested with a Tolerance statistic, which is a measure of the

collinearity among the tested variables. A Tolerance value of .10 or less is considered to

be a serious problem (Mertler and Vannatta 2005). No Tolerance values were found

below the 0.10 threshold, and therefore the multicollinearity test was satisfied for all 24

regression runs.

 120

5.4. Testing Results

In each of the following sub-sections, the results of each hypothesis test are

contained in a table which shows both the linear test results and the quadratic test results.

For the linear regressions and the quadratic regressions, the tables include the

unstandardized coefficient, the standard error, the standardized beta, the adjusted R-

squared and the change in R-squared from the first step to the second step for the linear

regressions and from the second step to the third step for the quadratic regressions. For

each regression which produced a significant result for the IV or transformed IV

coefficient (p < .05), the detailed results of all three models are shown in Appendix D.

In general, the predictive values of the models were relatively consistent across

the 24 regressions. Including the effect of the control variables, the explanation of

variance was highest for the regressions of Software Downloads with adjusted R-squared

values ranging from .306 to .393 for the linear regressions and from .302 to .400 for the

quadratic regressions. The predictive values for the regressions of Page Views were

nearly as high. The least predictive regressions were for Software Releases, where

adjusted R-squared values range from .011 to .070 for the linear versions and from .006

to .065 for the quadratic versions. The predictive values for the regressions Code

Commits were only slightly higher than these values.

5.4.1. Group Density

The four Group Density hypotheses (H1a through H1d) were tested and a

summary of the results are shown on Table 14. For the linear regressions on Group

Density, a significant negative relationship was found for both Software Downloads and

 121

Page Views (both at p < .001). For both of these regressions, the effect of an increase in

Group Density from the average value of .078 to a value of .178 would be to reduce

Software Downloads and Page Views by about 40 percent. Details for these two

regressions are contained in Tables D-1 and D-2 in Appendix D. Negative relationships

were also found for Code Commits and Software Releases, although at less significant p-

values of .066 and .063 respectively. For the quadratic testing, a near-significant result

was noted for the Software Downloads model and the Page Views model in support of a

U-shaped relationship.

5.4.2. Core Density

The four Core Density hypotheses (H2a through H2d) were tested and a summary

of the results are shown on Table 15. For the linear regressions on Core Density, a

significant negative relationship was found for Software Releases (at p < .05). Further

details of this regression are contained on Table D-3 in Appendix D. Near-significant

negative relationships were also found for Code Commits (p = .057) and Software

Downloads (p = .067). For the quadratic testing, a significant result was noted for the

Page Views model (p < .05) in support of a U-shaped relationship. Further details of this

regression are contained on Table D-4 in Appendix D.

5.4.3. Peripheral Two-Mode Density

The four Peripheral Two-Mode Density hypotheses (H3a through H3d) were

tested and a summary of the results are shown on Table 16. For the linear regressions on

Peripheral Two-Mode Density, a weak negative relationship was noted for only one of

 122

the IVs: Software Downloads (at p = .092). For the quadratic testing, no significant or

near-significant relationships were found.

5.4.4. Core Membership Degree

The four Core Membership Degree hypotheses (H4a through H4d) were tested

and a summary of the results are shown on Table 17. No significant or near-significant

relationships were found for the linear regressions on Core Membership Degree.

However, for the quadratic regressions, one very weak result was found for Software

Downloads (p = .099) in support of an inverted-U shaped relationship.

5.4.5. Administrator Membership Degree

The four Administrator Membership Degree hypotheses (H5a through H5d) were

tested and a summary of the results are shown on Table 18. For the linear regressions on

Administrator Membership Degree, no significant or near-significant relationships were

found. However, for the quadratic regressions, significant support (at p < .05) was noted

for an inverted-U shaped relationship with Code Commits. Details of this regression are

contained on Table D-5 in Appendix D.

5.4.6. Administrator Class Centrality

The four Administrator Class Centrality hypotheses (H6a through H6d) were

tested and a summary of the results are shown on Table 19. For the linear regressions on

Administrator Class Centrality, a significant positive relationship was found for Software

Releases (p < .01). Details of this regression are contained on Table D-6 in Appendix D.

For the quadratic regressions, significant support was also found for a U-shaped

 123

relationship with Page Views (p < .05). Details of this regression are shown on Table D-

7 in Appendix D.

Table 14
Summary of Regressions on Group Density,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H1a: Code Commits -3.374† 1.822 -.182 .049 .023

H1b: Software Releases -2.427† 1.295 -.186 .036 .024

H1c: Software Downloads -5.547*** 1.237 -.353 .393 .086

H1d: Page Views -4.871*** 1.285 -.311 .339 .067

Quadratic‡ regressions:
H1a: Code Commits 16.026 14.560 .175 .050 .008

H1b: Software Releases 9.643 10.359 .149 .035 .006

H1c: Software Downloads 16.375† 9.827 .210 .400 .012

H1d: Page Views 17.097† 10.203 .221 .348 .013

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .066 (Code Commits Linear), .063 (Software Releases Linear)

† p = .098 (Software Downloads Quadratic), .096 (Page Views Quadratic)

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 124

Table 15
Summary of Regressions on Core Density,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H2a: Code Commits -.707† .368 -.184 .050 .025

H2b: Software Releases -.570* .261 -.210 .044 .032

H2c: Software Downloads -.489† .265 -.150 .321 .016

H2d: Page Views -.267 .272 -.082 .276 .005

Quadratic‡ regressions:
H2a: Code Commits 1.552 1.201 .185 .055 .011

H2b: Software Releases .121 .855 .020 .037 .000

H2c: Software Downloads .596 .866 .084 .318 .002

H2d: Page Views 1.910* .877 .269 .295 .024

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .057 (Code Commits Linear), .067 (Software Downloads Linear)

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 125

Table 16
Summary of Regressions on Peripheral Two-Mode Density,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H3a: Code Commits -.249 .996 -.028 .025 .000

H3b: Software Releases -.399 .707 -.064 .013 .002

H3c: Software Downloads -1.200† .708 -.159 .318 .014

H3d: Page Views -.350 .728 -.047 .272 .001

Quadratic‡ regressions:
H3a: Code Commits .108 4.714 .002 .018 .000

H3b: Software Releases -2.829 3.339 -.091 .011 .005

H3c: Software Downloads 1.941 3.345 .052 .315 .002

H3d: Page Views 4.522 3.425 .121 .276 .009

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .092

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 126

Table 17
Summary of Regressions on Core Membership Degree,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H4a: Code Commits .099 .116 .071 .030 .005

H4b: Software Releases -.015 .083 -.015 .011 .000

H4c: Software Downloads .113 .083 .096 .313 .009

H4d: Page Views .052 .085 .045 .272 .002

Quadratic‡ regressions:
H4a: Code Commits -.068 .061 -.132 .032 .008

H4b: Software Releases .023 .044 .064 .006 .002

H4c: Software Downloads -.073† .044 -.167 .322 .013

H4d: Page Views -.022 .045 -.051 .268 .001

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .099

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 127

Table 18
Summary of Regressions on Administrator Membership Degree,
Controlling for Group Size, Core Size and Conversation Volume

(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H5a: Code Commits .022 .063 .029 .026 .001

H5b: Software Releases -.021 .045 -.040 .013 .002

H5c: Software Downloads .041 .045 .065 .308 .004

H5d: Page Views .017 .046 .027 .271 .001

Quadratic‡ regressions:
H5a: Code Commits -.040* .019 -.303 .049 .029

H5b: Software Releases .012 .014 .129 .011 .005

H5c: Software Downloads -.016 .014 -.138 .310 .006

H5d: Page Views -.007 .014 -.065 .267 .001

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 128

Table 19
Summary of Regressions on Administrator Class Centrality,

Controlling for Group Size, Core Size and Conversation Volume
(Log-Transformed Dependent Variables)

 Unstandardized Standard Standardized Adj.
 Coefficient Error Beta R2 ∆R2

Linear regressions:
H6a: Code Commits .573 .471 .118 .035 .010

H6b: Software Releases .963** .326 .280 .070 .057

H6c: Software Downloads -.211 .339 -.051 .306 .002

H6d: Page Views -.247 .346 -.060 .273 .003

Quadratic‡ regressions:
H6a: Code Commits 1.709 1.474 .105 .038 .009

H6b: Software Releases -.515 1.026 -.045 .065 .002

H6c: Software Downloads .488 1.066 .035 .302 .001

H6d: Page Views 2.347* 1.069 .170 .293 .024

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

‡ First regressed on independent variable and then regressed on mean-centered and squared independent
variable

 129

6. DISCUSSION

This chapter begins with a summary and discussion of the results in relation to the

hypotheses and in comparison with the limited empirical findings that have been reported

in the open source software literature. This is followed by a set of conjectures which

suggest plausible explanations for the alternative relationships that were implied by the

hypothesis testing results. In order to further interpret the meaning of the results, these

conjectures are then assessed with respect to their implications regarding the likely

direction of causality between social network structure and community success. Finally,

the unexpected lack of effect of structure on success is discussed and possible

explanations are offered.

6.1. Summary of Findings

This section presents a summary and discussion of the results of hypothesis

testing which were presented in Chapter 5. Each of the following sub-sections contains a

review of the results for the closure, bridging, and leader centrality hypotheses along with

an associated results summary table.

6.1.1. Closure

The results for the 12 regressions associated with closure are presented in Table

20. The table summarizes the results of regressions on Group Density, Core Density, and

Peripheral Two-Mode Density (as previously referenced on Tables 14, 15 and 16) and

shows each hypothesized relation in comparison with an alternative relation suggested by

the regression result, if applicable. All of the closure hypotheses posited an inverted-U

relationship, reflecting the expectation of a positive slope for lower levels of closure,

 130

Table 20
Summary of Test Results for Closure Hypotheses

Hyp# Independent Variable Dependent Variable Success
Dimension

Hypothesized
Relation

Suggested Alternative
Relation

Detail Results
Table

H1a Group Density Code Commits Output Inverted-U Negative (p=.066)
H1b Group Density Software Releases Output Inverted-U Negative (p=.063)
H1c Group Density Software Downloads Activity Inverted-U Negative *** Table D-1
H1d Group Density Page Views Activity Inverted-U Negative *** Table D-2

H2a Core Density Code Commits Output Inverted-U Negative (p=.057)
H2b Core Density Software Releases Output Inverted-U Negative * Table D-3
H2c Core Density Software Downloads Activity Inverted-U Negative (p=.067)
H2d Core Density Page Views Activity Inverted-U U-Shaped * Table D-4

H3a Peripheral TM Density Code Commits Output Inverted-U None
H3b Peripheral TM Density Software Releases Output Inverted-U None
H3c Peripheral TM Density Software Downloads Activity Inverted-U Negative (p=.092)
H3d Peripheral TM Density Page Views Activity Inverted-U None

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

 131

a negative slope for higher levels of closure, and a maximal point occurring at a moderate

level of closure. In effect, the positive segment of the hypothesized relationship reflects

the expected benefits associated with at least some level of density among the

conversations, while the negative segment reflects the prediction that additional

connections would be counterproductive and that the “cost of ties” would become

dominant, as discussed in Chapter 3.

For Group Density, the results did not support an inverted-U shape for any of the

hypotheses. Rather, a negative relationship was found. The strongest negative

relationship was found between Group Density and the two community activity variables,

Software Downloads and Page Views (at p-values < .001). There is also evidence of a

negative relationship between Group Density and the community output variables,

although the relationship is not as strong (with p-values of .066 and .063). With

reference to the results for the H1c and H1d hypotheses, it is noted that these regressions

showed both linear relationships and U-shaped relationships. Because the linear

relationships had a more significant p-value (< .001) than the U-shaped relationships

(.098 and .096), they were considered to be dominant and only the linear results are

shown in Table 20.

For Core Density, an inverted-U relationship was also expected but with a less

extensive negatively sloped segment, considering the additional positive benefits

associated with the needs of the core subgroup to be more interactive in creating the

software. For these hypotheses, a mostly negative relationship with community success

was observed, with three of four regressions showing a negative result. The negative

relationship was stronger and more consistent for the output variables than for the activity

 132

variables. The strongest result was between Core Density and Software Releases (p <

.05). In the case of the activity variables, one of the two relationships (with Page Views)

was found to be a U-shape (at p < .05). A U-shaped relationship involves a negative

slope for lower levels of the independent variable and then a positive slope for higher

levels of the independent variable, with a minimum occurring at a moderate level of the

independent variable.

For Peripheral Two-Mode Density, an inverted-U relationship was expected but

with less emphasis on the negative side because of the additional benefits associated with

the positive psychological effects of including the peripheral developers in core

discussions. The results of these regressions did not support the hypotheses, but rather

contained only one weak negative relationship (p = .092) on just one of the four success

variables – Software Downloads - with no effect seen on the other three variables.

While it was generally expected that the closure-success relationship would be an

inverted-U in which a segment of the curve is negatively sloped, it was surprising to find

a negative slope for the entire length of the curve in 8 of the 12 closure hypotheses. In

effect, these results suggest that there is essentially no benefit to closure within an open

source software project community.

The strongest negative relationships for Group Density were noted for the activity

variables, while the strongest negative relationships for Core Density were observed for

the output variables. Comparing the Group Density results with the results for Core

Density, it is noted that the negative relationships were less pronounced for the core

subgroup than for the group as a whole. This may be an indication that the expected

benefits associated with the needs of the core subgroup are influencing the result.

 133

However, it is still surprising to consider that density among the core subgroup seems to

produce no benefit with respect to community output. It is interesting to note that no

significant negative relationship was seen for the Peripheral Two-Mode Density

hypotheses which may indicate that the expected benefits of the peripheral-core

connectivity are acting to offset the otherwise negative aspects of closure as noted above.

It is difficult to compare these findings with reports in the open source software

literature because most of the prior social network studies of open source have been

descriptive and have not attempted to relate social network structure to success at the

level of the project community. Healy and Schussman (2003) study the statistical

characteristics of the entire set of projects on SourceForge but they do not address social

network structures at the project level. Krishnamurthy (2002) notes the surprisingly low

volume of conversations in open source projects but the author does not calculate

conversational density. Volume and density are distinct concepts and a finding of low

volume does not necessarily imply a finding of low density, although the two are not

inconsistent.

One recent paper by Crowston and Howison (2006) reported the results of an

empirical study of bug report forums. Their method of collecting data and defining the

conversational network was similar to the method used in this dissertation, except that

they focused their data collection efforts on bug report forums rather than general forums.

The authors calculated and reported density of the conversation networks and found a

negative relationship between conversational density and group size. This result

corresponds with the findings of the dissertation that group density and group size are

negatively correlated (Pearson correlation value of -.52, see Table 13). However, the

 134

Crowston and Howison (2006) study did not consider a success variable in their

regression. They regressed density on group size, while the dissertation study regressed

success on density while controlling for group size. Thus, the dissertation study

controlled for the relationship between density and group size, and still found a negative

relationship between density and success. Crowston and Howison did not perform such

an analysis.

6.1.2. Bridging

The results for the 8 hypotheses associated with bridging are presented on Table

21. A positive relationship was expected for these hypotheses, which includes Core

Membership Degree and Administrator Membership Degree. As discussed in Chapter 3,

there were a number of expected benefits associated with bridging ties such as providing

access to new ideas, obtaining help to solve problems, and increasing the likelihood of

recruiting new members to the focal project. While some cost-of-ties effect was

recognized, it was noted that this cost was not compounded as with intragroup ties and

therefore an overall positive relationship was expected.

The results for the bridging regressions did not support a positive relationship for

any of the hypotheses. For Core Membership Degree, only one of the four runs showed

an inverted-U result – Software Downloads - and that result was very weak (p=.099).

The other three runs showed no significant effect. Considering that a positive

relationship was expected, it was surprising to find that the extensiveness of bridging ties

did not have an effect on success, implying that such bridging ties are not an important

 135

Table 21
Summary of Test Results for Bridging Hypotheses

Hyp# Independent Variable Dependent Variable Success
Dimension

Hypothesized
Relation

Suggested Alternative
Relation

Detail Results
Table

H4a Core Member. Degree Code Commits Output Positive None
H4b Core Member. Degree Software Releases Output Positive None
H4c Core Member. Degree Software Downloads Activity Positive Inverted-U (p=.099)
H4d Core Member. Degree Page Views Activity Positive None

H5a Admin. Member. Degree Code Commits Output Positive Inverted-U * Table D-5
H5b Admin. Member. Degree Software Releases Output Positive None
H5c Admin. Member. Degree Software Downloads Activity Positive None
H5d Admin. Member. Degree Page Views Activity Positive None

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

 136

factor in open source software project communities. For Administrator Membership

Degree, again only one of the four runs showed an inverted-U result – Code Commits -

although in this case, the result was significant at p < .05. Again, the lack of an effect of

administrator bridging on three of the four success variables was surprising.

In a recent study by Grewal et. al. (2006), the authors collected data from 108

open source software project communities on SourceForge and related various measures

of bridging (which they refer to as “network embeddedness”) with the number of code

commits and the number of downloads (used as measures of project success). Overall,

the authors obtained a mixed set of positive, negative, and “no-effect” relationships

between bridging and success. Their conclusion that the impact of bridging was greater

on code commits than on downloads is consistent with the dissertation results. Their

suggestion that bridging has “powerful but subtle effects on project success” is generally

inconsistent with the dissertation finding that bridging had only a minor effect on success.

However, due to methodological differences, the comparability of the two studies is

questionable. For example, Grewal et. al. (2006) used many different bridging measures

which were not comparable to the measures used in the dissertation. In addition, their

study utilized a nominalist sampling approach in which 10 projects were selected based

on their common platform technology and then other projects were selected based on

known bridging ties with these original 10 projects. This is in contrast with the

dissertation study in which a random sampling strategy was used. It is possible that the

bridging results for a sample of projects with known bridging connections may be

different than the results for a randomly selected sample of projects.

 137

6.1.3. Leader Centrality

The results for the 4 hypotheses associated with leader centrality are presented on

Table 22. As discussed in Chapter 3, some positive relation was expected between

leader centrality and success in that a certain level of connectedness between the leaders

and the rest of the group would seem to be necessary to integrate the code contributions

of the members and to coordinate some activities as needed. However, at higher levels of

leader centrality, a cost-of-ties effect was expected in which too much centrality becomes

burdensome on the administrators, resulting in a negative curve at higher levels of

centrality. Therefore, the hypotheses linking Administrator Class Centrality with

community success posited an inverted-U relationship.

The results presented in Table 22 did not support an inverted-U shaped

relationship for any of the four leader centrality hypotheses. However, the suggestion of

an alternative relationship shape was inconclusive. In the case of Software Releases, an

alternative positive relationship is suggested (p < .01). Yet, in the case of Page Views, an

alternative U-shaped relationship is suggested (p < .05). For the other two hypotheses, no

significant effect was noted.

With regard to open source software literature, no studies were identified in which

leader centrality measures are investigated. However, the literature does suggest that

open source administrators tend to operate in low key roles, avoiding power relationships

and delegating as much as possible. These observations are not inconsistent with the

finding that leader centrality had a mixed relationship with success.

 138

Table 22
Summary of Test Results for Leader Centrality Hypotheses

Hyp# Independent Variable Dependent Variable Success
Dimension

Hypothesized
Relation

Suggested Alternative
Relation

Detail Results
Table

H6a Admin. Class Centrality Code Commits Output Inverted-U None
H6b Admin. Class Centrality Software Releases Output Inverted-U Positive ** Table D-6
H6c Admin. Class Centrality Software Downloads Activity Inverted-U None
H6d Admin. Class Centrality Page Views Activity Inverted-U U-Shaped * Table D-7

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

 139

In summary, of the 24 hypotheses that were tested, a total of 7 produced results

which were significant at p < .05 (see Tables D-1 through D-7), 6 produced results which

were significant at p < .10, and the remaining 11 hypothesis tests showed no significant

effects. While none of the hypothesized relationships were supported, the alternative

relationships that were suggested are summarized below:

1. In general, a negative relationship was observed between the closure
variables and the success variables (mainly considering the activity variables
regressed on Group Density, and the output variables regressed on Core Density).

2. U-shaped relationships were observed for Page Views (considering the
regressions on Core Density and Administrator Class Centrality).

3. An inverted-U relationship was observed between Administrator
Membership Degree and Code Commits.

4. A positive relationship was observed between Administrator Class
Centrality and Software Releases.

6.2. Conjectures and Causality

As discussed in the previous section, the results broadly deviated from

expectations. Considering that this was one of the first large-scale empirical studies of the

relationship between social network structure and success in open source software project

communities, it seemed likely that some surprising results would be found. However, the

extent of the deviation that was observed was dramatic considering that the hypotheses

were formulated based on well-established social network theories of team effectiveness

with plausible adjustments made to reflect expected differences between teams and open

source software project communities. In addition, even though the expected relationships

were not found, a number of other relational shapes were implied.

 140

In this section, conjectures are offered which attempt to explain each of the four

significant findings noted at the end of the previous section. These conjectures consist of

explanatory arguments which are plausible but which are not empirically tested in the

current study. Considering the extent of deviation from expectations, it is also

appropriate to reassess the causality assumptions which were inherent in the study’s

conceptual research model (Figure 4). Therefore, each conjecture is further reviewed

with respect to its implications for the most likely direction of the causal arrow between

social network structure and community success. In the remainder of this section, each

finding is stated, followed by one or more conjectures which are related to that finding.

Finding #1: in general, a negative relationship was observed between the closure

variables and the success variables. The closure of a network is essentially the

proportion of the total possible links in a network that are actually connected. Therefore,

a higher closure value indicates more connected links while a lower closure value

indicates fewer connected links. If the causal arrow is assumed to point from structure to

outcome, then the observed negative relationship between closure and success would

imply that a lack of network links can somehow cause or logically lead to success. No

plausible conjectures were identified which could explain such a relationship. Therefore,

the possibility of a spurious relationship was considered whereby a third factor is

identified which affects both closure and success.

Three conjectures were formulated which, if valid, imply that the negative

relationship between closure and success is spurious. All of these conjectures involve a

third factor which is associated with the attributes of certain project artifacts. One of

 141

these factors is the modularity of the software architecture, which is a technological

artifact. The other two factors include the quality of the software documentation and the

appropriateness of the project rules, both of which are informational artifacts of the

project. These three factors and their suggested impact on closure and success are

discussed below.

Software architecture. The modularity of the software architecture is recognized

as an important success factor for open source software projects (MacCormack et. al.

2006). Modular software architecture permits changes to source code within one module

without significant effects on code contained in other modules. An ineffective modular

design will tend to increase coding interdependencies in which the coding work of one

developer is more likely to affect the work of other developers.

As a result, ineffective modularity will tend to increase the closure level as multi-

person conversations are needed to discuss the impact of code changes and to investigate

complex bugs which are more likely to arise. At the same time, this may lead to a

reduction in developer productivity as efforts are shifted from coding to conversation,

and may also demotivate the developers who are focused on writing code and view

conversation as a distraction. The need for dense discussions may frustrate these

developers which may cause them to reduce their effort level and in some cases they may

even choose to abandon the project. The combined impact of reduced productivity and

reduced effort is to decrease the output dimension of success.

With regard to the activity dimension of success, ineffective modularity can

directly reduce the quality of the software that is produced, because of the increased

 142

likelihood of complex bugs and their negative impact on software usability. In addition,

the reduction in productivity and coding effort that was mentioned above will have an

indirect negative effect on software quality. A lower level of software quality will tend to

reduce the interest level of the community which will translate into a decrease in the

number of downloads and the number of page views, both of which are measures of the

activity dimension of success.

In summary, ineffective software modularity will tend to increase closure as a

result of the increase in coding interdependencies, and at the same time, it will tend to

decrease output due to losses in productivity and effort, and will decrease activity due to

negative impacts on software quality. The suggested positive relationship between

modularity ineffectiveness and closure and the suggested negative relationship between

modularity ineffectiveness and success will result in a negative correlation between

closure and success. However, because this negative correlation arises from the effects

of a third variable (software modularity ineffectiveness), the closure-success relationship

would be viewed as spurious and no causal relationship would be suggested between

closure and success.

Software documentation. In a software development project, the software

documentation contains a description of the overall architecture and modular structure of

the software, specific descriptions of the functionality of various procedures, data

definitions, and other important information about the software. High quality

documentation is clear and complete and it makes the overall software architecture

explicit. Poor or incomplete documentation can increase the level of closure as questions

 143

and discussions are necessary in order to clarify features of the software that are useful

and/or necessary to know as a developer writes source code. As with ineffective software

modularity, a low quality of software documentation will decrease output success as

effort is shifted from coding to conversation and as frustrated developers reduce their

overall level of effort.

Poor quality software documentation can directly reduce the quality of the

software that is produced, because of the increased likelihood that coding efforts will be

based on incorrect assumptions and missing information. In addition, the reduction in

productivity and coding effort will have an indirect negative effect on software quality,

which as was the case with ineffective software modularity, will translate into a decrease

in the activity levels of the project community.

Thus, poor quality software documentation will tend to increase closure as

questions and discussions are necessary to clarify knowledge needed for coding tasks. At

the same time, it will decrease output and activity as described above. As with the

software modularity conjecture, this suggests that the negative relationship between

closure and success is spurious and arises as a result of the positive relationship between

poor software documentation and closure and the negative relationship between poor

software documentation and success.

Project rules. Open source software projects are less reliant on hierarchy and

supervision than software development teams, and therefore the project rules play an

important role in guiding the behavior of the independent contributors. These rules may

be formally stated in a document or they may be informally stated in various public

 144

forum postings. The open source license that is chosen is also part of the project rules.

In effect, these rules provide guidelines regarding the rights and responsibilities of the

community members, and they specify certain types of behaviors that are either

encouraged or discouraged. Rules which are inappropriate or understated will tend to

lead to complaints, disputes and controversies that require multi-person discussions, thus

resulting in an increase in closure. As with the software architecture and software

documentation artifacts, this increase in closure will tend to reduce the output levels, and

the resulting indirect negative impact on software quality will tend to reduce the activity

levels. Therefore, this conjecture also implies that the closure-success relationship is

spurious, based on arguments that are similar to the two previous conjectures.

Finding #2: U-shaped relationships were observed for Page Views. As

previously noted, U-shaped relationships were observed between Core Density and Page

Views and between Administrator Class Centrality and Page Views. This suggests that a

negative relationship exists for lower levels of the independent variable and that a

positive relationship exists for higher levels of the independent variable. No conjecture

which assumes a homogeneous study population could be identified to explain this result.

However, if it is assumed that a subset of the study population has different

characteristics that would lead to a positive relationship with Page Views, then the

combination of this situation with a negative relationship for the remainder of the

population (as was seen in other regression tests) would result in a U-shaped relationship.

In particular, it is possible that certain project communities consist of individuals

who know each other in an off-line context and who choose to utilize the resources of

 145

SourceForge to collaboratively develop software. These groups may utilize planning and

control approaches that are associated with teams and that are not commonly used in

open source software project communities. In effect, these may be de facto software

development teams that use the SourceForge facilities to conduct their work. If this were

true, then these de facto teams would likely exhibit positive relationships between closure

and success and leader centrality and success, similar to the relationships that have been

observed for other kinds of teams.

If this conjecture is true, then the study population actually consisted of two

different regimes which would tend to dilute the results and reduce the significance of all

of the regression results. However, it is noted that only 2 of the 24 regressions resulted in

a significant U-shape and that various other regressions did show significant linear and

inverted-U results. In addition, a significant regime split can often be detected by an

obvious bimodal or multimodal distribution of the research variables, and no such

distribution pattern was noted. Therefore, it is suggested that the impact of the U-shaped

finding is secondary and that there are no important implications regarding the direction

of causality.

Finding #3: an inverted-U relationship was observed between Administrator

Membership Degree and Code Commits. This relationship involves a positive slope for

the lower values of bridging and a negative slope for the higher values of bridging. The

most plausible conjecture for this result is that the expected positive effects of bridging

are in fact being observed for the lower values of the bridging variable. However, at the

higher values of the variable, it is possible that a “cost-of-ties” effect is being seen, in

 146

which too many bridging ties become burdensome on the administrators and the effect on

community success is negative. This cost-of-ties effect was expected for closure and

leader centrality but was not expected for bridging because the tie only affected one

member of the community (the administrator) and the level of expected benefits was

extensive. However, because of the importance of the administrator, the cost-of-ties

effect may in fact be important. If this conjecture is true, then the implication is that the

causal arrow does point from social network structure (bridging) to output (Code

Commits) in reference to this finding.

Finding #4: a positive relationship was observed between Administrator Class

Centrality and Software Releases. The decision to make a software release is typically

made by the administrator. While a high level of coding activity (Code Commits) is

logically associated with frequent releases (Software Releases), it is possible for an

administrator to make frequent releases even if there is a relatively low volume of code

commits. In effect, the decision to release is somewhat arbitrary and it is possible that

certain administrators are biased towards frequent releases and therefore they have a

higher “propensity to release” than others. If this were the case, then those administrators

with high propensity to release would make frequent releases resulting in a high level of

Software Releases. In this situation, the frequent releases would tend to generate

questions and comments from developers who download the releases and these

conversations would tend to dominate the forums and would be directed to the releasing

administrator, resulting in high levels of Administrator Class Centrality. In effect, these

administrators would be generating their own centrality. If this conjecture were true, then

 147

the implication would be that the causal arrow points in a reverse direction from the

assumption of the research model – that is, it would point from outcome (Software

Releases) to social network structure (Administrator Class Centrality).

Summary. Of all the conjectures offered in this section, only the one for finding

#3 implies that the causal arrow points from social network structure to success.

Otherwise, all of the other conjectures imply spurious results, reverse causality, or the

presence of a qualitatively different subset of communities. Taken together with the

various other “no effect” results that were observed, the general implication is as follows:

The social network structure of an open source software project community
has no important effect on community success.

In addition, the three conjectures associated with the negative relationship

between closure and success (finding #1) imply that:

The closure of an open source software project community is a condition or
indicator of community success, but is not a driver or cause of such success.

6.3. The Insignificance of Structure

In the previous section, it was concluded that the social network structure of the

open source software project communities that were studied had no important effect on

community success. In this section, this insignificance of structure with respect to

success is further discussed. In particular, explanations are offered regarding how it

could be that social network structure has no important effect on community success,

even though social network theory, supported by numerous empirical studies, suggests

that structure should be important with respect to group performance.

 148

As previously discussed, social network theory is based on the notion that a social

network acts as a conduit for the flow of resources such as knowledge and the tangible

resources that can be accessed based on that knowledge. Social capital theory suggests

that a structure with high closure within a group will improve the performance of tasks

which require the utilization of the knowledge of the group, while a structure with many

bridging ties between group actors and non-group actors will improve the performance of

tasks which require access to knowledge which is beyond the boundaries of the group. In

effect, social network structure is predicted to be important to success in work groups

because it can enable or impede the transfers of knowledge, where such transfers are

needed to support activities such as learning, problem-solving, coordination and task

completion, all of which are necessary for successful group outcomes.

Considering this knowledge transfer view as a frame of reference, there are two

general reasons that can be offered to explain the insignificance of social network

structure with respect to community success. One possibility is that knowledge transfers

are somehow being mediated without the involvement of the social network. In effect,

other mechanisms may substitute for the social network as a mode of knowledge transfer.

The other possibility is that there may simply be less need for knowledge transfers in

successfully completing the work associated with open source software projects.

Ultimately, both of these reasons may contribute to the explanation of the

counterintuitive findings that were previously described. In the remainder of this section,

various conjectures are offered which expand upon these two possibilities.

 149

6.3.1. Substitutes for the Social Network

While it may be possible to imagine knowledge transfers that are mediated

through shared cognition and/or strong culture, the most tangible possibility seems to be

that knowledge could be transferred indirectly through artifacts rather than directly

through the social network. Open source software developers operate in a network-

mediated computing environment involving many types of tools and other technical

artifacts such as source code repositories, programming languages, project web pages,

and others (Scacchi 2002). The scenario in which artifacts can successfully mediate

knowledge transfer is feasible to the extent that the artifacts can be inscribed with

knowledge and that the task can be structured to allow for workflows from person to

artifact to person, rather than from person to person. In this case, the artifacts become the

mediators of knowledge transfer and they act as a substitute for the social network in this

regard. This is somewhat similar to the “knowledge ecology” view offered by Lanzara

and Morner (2003).

For example, the source code is an artifact of the project. The statement

sequence, algorithmic logic, and general organization of the code can be viewed as a kind

of inscription of knowledge. When a developer checks out a batch of code from the

source code repository, the knowledge that was inscribed by all of the previous

contributors to that code becomes available to that developer. In a sense, these prior

developers are “speaking” to the new developer through the code. As this developer

makes changes to the code, he or she is inscribing their own knowledge into the code, and

this new knowledge becomes available to other developers as soon as the new code is

committed into the repository.

 150

An example of artifact mediation as a substitute for social network structure may

be found in the use of outside project records by teams versus open source software

project communities. In the case of teams, the detail and accessibility of these outside

records is relatively limited compared with the transparency and accessibility of open

source software project records. Team members commonly use their bridging ties in

order to obtain this outside information and therefore the bridging structure of their social

network is important for successful outcomes. In the case of open source software

developers, however, it is possible to obtain a great deal of information about outside

projects from the publicly accessible work records in the form of source code

repositories, public forums, and other informational artifacts which are posted on the

project web site, all of which can be located with the use of an efficient search engine.

These records can be used by developers to learn about other projects and to obtain useful

artifacts such as source code fragments and even problem solutions which are noted in

public forums. Therefore, the importance of the bridging ties is reduced and the public

record artifacts act to substitute for the social network structure with regard to mediating

these knowledge flows. The use of open source software project records in this manner

was noted by von Krogh et. al. (2005) who found that developers often reported reading

the mailing lists of other projects:

The barriers between open source projects seem to be less distinct as one might
assume. Since developers stated that they tend to read several projects’ mailing
lists, it is difficult if not impossible to track ‘silent’ and uncredited knowledge
transfer in the form of ideas between projects as there is no formal system for
recording these kind of transfers.

 151

In the case of social network mediated knowledge transfers, an ineffective social

network structure can act to impede the knowledge flow (for example, as where low

closure limits the interpersonal flow of knowledge). In a similar way, an ineffective

design for a knowledge-mediating artifact may act to impede the flows of knowledge.

For example, if the software documentation artifact is of high quality, then it can be

relied upon to facilitate knowledge transfers. If however it is of low quality, then it can

impede such transfers and require that the social network be used in its place. If the

overall task structure is designed for artifact mediated transfers, as may be the case in

open source software projects which must operate in a geographically dispersed and

asynchronous environment (Yamauchi et. al. 2000), then this can represent an

inefficiency which is reflected in a lower level of success.

6.3.2. Reduced Need for Knowledge Transfer

Various possible explanations can be offered regarding why there may be less

need for knowledge transfer in open source software project communities, when

compared with the needs of traditional teams. These explanations are listed and

described below.

Modular software architecture. Modular software architecture permits changes to

source code within one module without significant effects on code contained in other

modules. This reduces the need for knowledge transfer between developers who are

working on different modules.

 152

Accepted standards and tools. The use of well-known coding standards, design

approaches, and programming languages may act to reduce the need for knowledge

transfer because developers will already be familiar with these tools and will not require

additional knowledge in order to use them.

Highly skilled developers. Project community members may be so highly skilled

and experienced that knowledge transfer is not very important for learning and problem

solving. These experienced individuals may not need direction from a central leader but

rather are self-directed such that their choice of task and work method productively

contributes to the overall software development task. They may also not need or want

help from other members of the project community or from individuals outside of the

project community.

Familiarity. It has been observed that familiarity among the members of teams

can act to weaken the relationship between social network structure and team

performance, implying a reduced need for knowledge transfers (Balkundi and Harrison

2006). This may also be observed in open source software projects. However, the study

population involved the two-year period following the first release of software, and

therefore the familiarity effect may not be so important in this study as compared with the

familiarity that develops in teams over the span of many years. In open source projects, it

is also possible that the core developers become familiar with the source code itself to the

extent that they have contributed to its growth from an early seed stage. This kind of

familiarity may also reduce the need for knowledge transfer.

 153

Developer as user. In developer-targeted software projects, the developer is also

the user and therefore the communication that would normally occur between user and

developer is not necessary. This would result in a reduction in the need for knowledge

transfer, based on a comparison with a traditional team-based approach in which external

users are usually consulted in developing software requirements and in evaluating the

project output.

Open source culture. The culture of the broader open source software

community is characterized as a kind of meritocracy in which a rational approach is

favored over other approaches which resort to hierarchical position or relationships of

power and influence (Raymond 1999). Such a culture may result in limited exchanges of

knowledge compared with hierarchical cultures which require more protracted and

extensive knowledge transfers as may be seen within a bureaucratic structure (Yamauchi

2000).

Shared mental models. To the extent that participants have shared mental models,

it is possible that these shared models may reduce the need for knowledge flows

associated with coordination and other development activities (Scozzi et. al. 2008). In

some respects, this may be related to the notion of familiarity as described above. In

addition, shared mental models can also be viewed as an aspect of the open source

culture.

 154

7. CONCLUSIONS

The objective of this dissertation research was to investigate the social network

structural conditions that are associated with success in open source software project

communities. In pursuing this goal, a set of propositions were developed based on social

network theories of teams and other relevant theoretical and empirical literature. These

propositions were operationalized in the form of 24 hypotheses which were then tested

using data obtained from open source software project archives. The results deviated

broadly from the expectations and an alternative set of relationships was observed.

Plausible explanations for the alternative relationships were suggested and

analyzed and the two primary implications were that 1) the social network structure of an

open source software project community has no important effect on community success,

and 2) the closure of an open source software project community is a condition or

indicator of community success, but is not a driver or cause of such success. This

“insignificance of structure” was examined and a series of explanations were offered

which suggested that artifacts may be substituting for the social network as a knowledge

transfer medium, and that the overall need for knowledge transfer within an open source

software project may be lower than in a traditional team-based project.

In this final chapter, the implications of these surprising results are further

explored. This begins with the suggestion that the observed anomalies may represent a

paradigm disruption which triggers the need for theory building. Some requirements for

such a theory building effort are offered along with two propositions which are suggested

as extensions of explanations offered in Section 6.3. This is followed by a discussion of

 155

the implications for research and practice, the contributions of the work, a discussion of

research limitations, and a presentation of future research directions.

7.1. Implications

The arguments presented in Chapter 6 suggest that the findings of this work

represent an anomaly with respect to currently accepted theories of team effectiveness

and social capital. More broadly, this work suggests that what is referred to as an “open

source software project community” is actually neither “team” nor “community” but is a

new kind of social entity which is built upon a socio-technical development process

involving extensive interactions between humans and technical artifacts. In this section,

these suggestions are further explored regarding the possibility that open source software

may represent a disruption to the team development paradigm. This is followed by a

discussion of requirements for building this new theory. Finally, the implications of

these conclusions with respect to research and practice are considered.

7.1.1. Paradigm Disruption

A paradigm is characterized by well-accepted theories and ways of thinking

(Kuhn 1996). The disruption to an existing paradigm is often identified by observations

which are counterintuitive and by the failure of existing theories and paradigmatic

thinking to account for these observations (Kuhn 1996). In addition, Kuhn notes that

technology changes will often lead to paradigm disruptions: “… technology has often

played a vital role in the emergence of new sciences.” (Kuhn 1996)

It is argued that the concept of teams and the social network theory of team

effectiveness are aspects of a team development paradigm. In particular, the notion that

 156

teams are the fundamental means for developing knowledge products is certainly well

accepted in research and practice. In addition, the assertions of social capital theory

regarding the importance of closure and bridging structures for work group outcomes are

well-tested and broadly applied throughout the social network theoretical literature.

In the case of open source software project communities, it is noted that open

source is a relatively new phenomenon which has emerged along a track which is

generally parallel to the developmental track of the internet. Further, open source

projects are highly dependent on the internet and advanced information technology tools

which have only recently become available. Therefore, it is certainly possible that a

technology as pervasive and disruptive as the internet could be leading to the emergence

of a new form of collaborative development which might represent a disruption to the

team paradigm.

The findings of this research that the social network structures of an open source

software project community have no important effect on its success are certainly

counterintuitive. How could social networks not be important for developing software in

these communities when they are so important in teams? In particular, it is difficult to

fathom how a knowledge-based product as complex as computer software could be

developed without the need for dense interactions to facilitate knowledge flows between

and among the participating developers.

In Chapter 6, the results of this work were analyzed in depth with reference to the

current social network theories and it was apparent that these theories offer little or no

predictive value regarding the success of open source software project communities.

Taken together with the presence of counterintuitive findings and the possibility that the

 157

internet has spawned a new kind of collaborative development process, these arguments

suggest that:

The open source software project community may represent a disruption to the
team development paradigm.

A paradigm disruption triggers the need for theory building. If open source is in

fact a paradigm disruption, then the need for new theories is apparent. However, even if

open source does not qualify as a “full blown” paradigm disruption as defined by Kuhn

(1996), the results of this study, if confirmed by future studies, would certainly suggest

that a significant anomaly has been found and a confirmed anomaly is a reason for theory

building (Weick 1989).

7.1.2. Requirements for a New Theory

Kuhn (1996) describes the typical theory building process that is associated with a

paradigm disruption:

Discovery commences with the awareness of anomaly, i.e., with the recognition
that nature has somehow violated the paradigm-induced expectations that govern
normal science. It then continues with a more or less extended exploration of the
area of anomaly. And it closes only when the paradigm theory has been adjusted
so that the anomalous has become the expected. (Kuhn 1996)

The scope of a new theory which addresses the disruption of the team paradigm

could possibly encompass all forms of collaborative development involving the structures

and behaviors of teams, virtual development communities such as open source software

project communities, and similar forms of organization and activity. However, in the

short-run, an important starting point would be to build and test theories which are

focused on explaining the anomalies of open source software development.

 158

The overall problem to be addressed by the new theory is explaining how open

source software project communities can successfully develop complex artifacts such as

software without being impacted by the social network structures of closure, bridging or

leader centrality. In particular, the theory should explain why social network structure is

not important for learning, problem-solving, coordination and task completion in open

source software project communities, even though it is important for the successful

performance of these activities in teams.

Based on the discussions and possible explanations that were offered in Section

6.3, the following two propositions are suggested as a foundation for future theory

building:

Proposition A
Compared with software development teams and teams in general, open source
software project communities substitute artifact mediation for social networks as a
mechanism for knowledge transfer.

Proposition B
Compared with software development teams and teams in general, open source
software project communities have less need for knowledge transfer in achieving
successful outcomes.

The conjectures and explanations offered in Chapter 6 may provide a starting

point for further elaborating these propositions and developing testable hypotheses. For

example, in expanding on Proposition A, it may be useful to consider the source code

repository, software documentation and project rules as artifacts which may be

substituting for social networks. In this case, the theory would need to specify how these

types of artifacts are mediating knowledge flows and also how the overall task structure

and workflow patterns could be organized to permit such flows to lead towards

 159

successful task completion. Such a theory might incorporate the notions of self-

organization and evolutionary mechanisms. In expanding on Proposition B, the various

explanations offered in Section 6.3.2 may provide the basis for defining various

hypotheses. Again, the theory would need to specify the manner in which successful task

completion can occur without the related knowledge flows taking place.

7.1.3. Research Implications

In many respects, the new theory building process has already begun as evidenced

by the significant level of research interest in developing new frameworks and

mechanisms for describing and explaining the unique aspects of open source software

projects. In a recent article by von Krogh and von Hippel (2006), the authors organize

their review of the current status of open source software research into three categories:

1) motivations of open source software contributors, 2) governance, organization, and the

process of innovation in open source software projects, and 3) competitive dynamics

enforced by open source software. The propositions suggested in Section 7.1.2 involve

aspects which are part of von Krogh and von Hippel’s second category of research.

With regard to other open source software research efforts, the works of Lanzara and

Morner (2003) and Lee and Cole (2003) may be especially relevant to the suggested new

theory in that these authors discuss the importance of evolutionary mechanisms in the

open source development process, and these mechanisms may help to explain how

artifact-mediation can substitute for social network structure and still provide adequate

support for successful group outcomes.

 160

With respect to organizational theories, even though it is suggested that open

source software project communities are not teams, they are still collective forms of work

production and therefore organizational theories should be relevant. In particular, some

of the earlier organizational research works in the areas of substitutes for leadership

(Howell, et. al. 1986), self-regulating teams and socio-technical systems (Cummings

1978), and centralization versus decentralization (Carley 1995) may be productive areas

for further investigation. As an example, Kerr and others (Kerr and Jermier 1978) have

proposed a substitutes for leadership theory which suggests that highly structured tasks

may require lower levels of leadership. In effect, the greater the task structure, the less

the requirement for direction. This implies a certain reduction in the required knowledge

transfers between the leader and the other team members. As a result, this theory may

help to explain the reduced need for knowledge transfer in open source software project

communities based upon the structure of the open source tasks. This may be especially

applicable for explaining the lack of effect of leader centrality on community success.

In a broader sense, the possible presence of a paradigm disruption should alert

researchers in the fields of open source software, team effectiveness and social capital

theory to reconsider and more explicitly state their assumptions. In general, the presence

of a paradigm can cause a kind of “blindness” to other possibilities and the resistance to

paradigm changes is well-established (Kuhn 1996). As a result, researchers in these

domains should recognize the possibility that their paradigmatic perspective may be

limiting their choice of research phenomena to be studied. In particular, it is possible that

existing open source software researchers have been unduly influenced by the team

paradigm and it may be appropriate to step back and consider the possibility that open

 161

source software communities may be a fundamentally new form of collaborative

development. This might involve taking a more grounded approach which explicitly

identifies and isolates the team-oriented concepts. In the domain of social network

theory, researchers should reconsider their basic assumptions about the social network as

a conduit for knowledge flow and consider alternative perspectives in which artifacts may

play a key role in knowledge transfer. This may be especially relevant in the study of

socio-technical systems.

7.1.4. Practical Implications

One practical implication of the study relates to the finding that administrator

bridging has an inverted-U relationship with code commits. This implies that a project

community can benefit from the membership ties of the administrator and therefore

connections with other projects should be pursued. However, too many ties can be

counterproductive and administrators should be aware of how their other memberships

and commitments may be having a negative impact on the success of their projects.

In terms of artifact design, the study results imply that certain project artifacts

including software architecture, software documentation, and project rules may be

important factors of success. Administrators and host platform designers should be

aware of the importance of these artifacts and should take actions to ensure that they are

properly designed. If problems arise, these artifacts should be carefully evaluated to see

if there are any deficiencies that can be corrected.

In more general terms, perhaps the most important implication for practice is the

recognition that open source may represent a fundamentally new form of collaborative

 162

development. Practitioners should expand their perspectives and reconsider their

assumptions that a team is the only organizational form which can be used for

collaboratively developing a knowledge product. Open source methods have been shown

to be a useful and interesting alternative to team-based software development methods.

However, practitioners should be aware that other possible applications of open source

methods may be feasible in areas such as the development of innovative product designs,

knowledge repositories, and other kinds of knowledge-based products.

7.2. Contributions

Overall, this was one of the first large-scale empirical studies of the relationship

between social network structure and success in open source software project

communities. In particular, it is the first known study to relate closure and leader

centrality to success, and the second known study (after Grewal, et. al. 2006) to relate

bridging to success in open source project communities. In the remainder of this section,

the specific contributions to theory, methodology, and practice are described.

7.2.1. Theory

This work contributes a social network perspective to the emerging theories of

open source software with respect to governance, organization, and development

processes. In particular, the anomalous results point towards the consideration of artifact-

mediation and knowledge transfer reductions as possible elements which may ultimately

be synthesized with these new open source theories. Further, the work has connected

open source software research with team effectiveness research in terms of social capital

theory and leader centrality.

 163

For team effectiveness researchers and social network theorists, this work

provides an interesting counterpoint to well-tested concepts and theories. The results

suggest the presence of a paradigm disruption which may require the re-evaluation of

assumptions and new theory building efforts with regard to theories of workgroups and

the roles and effects of social network structures. In the domain of social network

research, the dissertation has extended the application of social network theory to a new

form of socio-technical activity and has applied the concept of core and peripheral

subgroups within the context of social capital theory.

Ultimately, though, the most significant theoretical contribution of this research

may not be in adding to any existing theory but rather in tracing the outlines for a new

theory - one which suggests that artifacts may substitute for social networks as mediators

of knowledge transfer. As noted by Weick (1989):

… the contribution of social science does not lie in validated knowledge, but
rather in the suggestion of relationships and connections that had previously not
been suspected, relationships that change actions and perspectives.

7.2.2. Methodology

The use of a two-year observation window following first software release date is

a methodological contribution which provides for a more controlled study population

with respect to project maturity. The study has also demonstrated the use of archival

statistics for defining and measuring social network structural variables, and has made a

connection between two important research databases which were not previously used in

tandem.

 164

Further contributions to social network analytical methodology include the

definition of two-mode density in the context of a priori subgroups. Even though two-

mode density is a basic social network concept that is often used in practice, it is not

commonly used in research and there appears to be potential for further similar

applications. Also, the study applies the relatively new concept of class centrality in a

unique way, by using it to measure the centrality of a subgroup (administrators) as an

independent variable.

7.2.3. Practice

With regard to practice, the study will be useful to individuals and firms who

sponsor, manage, and/or participate in open source software projects. In a pragmatic

sense, the results of this work may provide practical measurement tools which can be

efficiently applied to pre-existing digital archives such as email, instant messaging and

online forums (Hinds and Lee Forthcoming). Even though social network structures

were not established as likely causes of success, the closure structure was noted to be an

important indicator of success, which makes it a useful evaluation metric. Open source

software project administrators can use such measures to assess their own communities

and to determine if they have the right kinds of structures or if changes might be

necessary.

7.3. Limitations

It is recognized that the study population was limited to early-stage projects which

were targeted to developers and not sponsored by corporations. The results may not be

 165

generalizable to more mature projects and/or projects which are user-targeted or

corporate-sponsored.

With regard to the variable selection, it is noted that the choice of bridging

variables was limited by the availability of data, and that more appropriate variables may

produce different results. In addition, the conversational networks are built from online

public forum records, and it is possible that there were other offline conversations among

project members which were not captured in the data. However, the norms of open

source software promote a high level of openness and transparency which may limit the

extent to which these offline conversations actually take place.

The choice of SourceForge as the sole research setting is a limitation in that it is

possible that the projects hosted by SourceForge are not representative of the broader

population of projects which may be found on other hosting sites and/or which may have

their own hosting platform. Also, the extensive transparency associated with

SourceForge may not be representative of other hosting sites. However, SourceForge is,

by far, the largest of the available hosting platforms and SourceForge projects include a

wide variety of software types, application domains, and open source licenses.

With regard to the choice of research method, it is recognized that the use of

historical statistics may result in reliability issues (Babbie 2005). Existing statistical

records are usually kept for purposes other than research, and various changes can occur

in record-keeping methods, information processing systems, definition of fields, and so

forth. These matters are addressed by taking proactive steps to identify changes in

recording method and other changes which might affect data reliability. Fortunately, the

SourceForge foundation is well aware that they are the source of considerable research

 166

efforts and, along with their open policy, they appear to be conscientious about

publishing their record-keeping methods and announcing any changes. These

announcements are carefully reviewed to determine the impact on data reliability and

other steps are taken to check the integrity of the data.

Finally, a cross-sectional study design normally results in ambiguity with respect

to the direction of the causal arrow between independent and dependent variables, since

time precedence cannot be established. Various conjectures were offered and their

implications regarding causal direction were discussed. However, as noted in that

section, these conjectures are not tested in this study and would require longitudinal

studies to more strongly support an argument of causality.

7.4. Future Research Directions

A number of future research directions can be envisioned. In the short-term,

attempts to generalize the results of this work to other types of open source software

projects would be worthwhile. This would involve relaxing some of the restrictions

imposed by the study population definition and re-testing the hypotheses for projects of

different maturity levels, projects involving user-targeted software, and projects which

are corporate-sponsored rather than community-based. Projects from host organizations

other than SourceForge should also be considered.

Because of the anomalous nature of the results, it is important that alternative

research methods be used to either confirm or refute the observed deviation from theories

of teams and social capital theories. This might involve more intensive field studies in

which a small number of project communities are investigated in order to evaluate some

 167

of the conjectures that have been offered but have not been empirically tested. These

studies can search for the presence of alternative forms of communication among project

developers. Also important is to further investigate the possible existence of two

different types of project communities, which may be the basis for the U-shaped

relationships that were observed.

With regard to theory building, the propositions suggested in Section 7.1.2 should

be further developed and elaborated into testable hypotheses. Various kinds of research

methods might be applied depending upon the nature of the hypotheses that are

suggested. In the short-term, these efforts would be focused on explaining the anomalous

results that were seen in open source software project communities. In the longer term, it

is possible that these efforts could be expanded to consider other types of virtual

development communities that may utilize open source methods and principles in

building a more general theory of collaborative development.

Finally, there appears to be significant potential in considering the role and impact

of technical artifacts with regard to the open source development process. Ongoing work

in socio-technical design research is associated with this type of study. Initially, this

work might involve comparative studies of artifacts and their roles in the development

process, for example as in comparing a prominent open source software project with the

development of a non-software product such as the Wikipedia. More generally, there is

the potential to conduct design research studies which use laboratory and field

experimental methods to test the impact of different design strategies on the nature and

success of the development community that emerges.

 168

LIST OF REFERENCES

Adamic, L. A. and B. A. Huberman (2000). "The nature of markets in the world wide
web." Quarterly Journal of Electronic Commerce 1: 5-12.

Ahuja, M. K. and K. M. Carley (1999). "Network structure in virtual organizations."

Organization Science 10(6): 741-757.

Allison, P. D. (1999). Multiple regression: a primer. Thousand Oaks, CA, Pine Forge

Press.

Almarzouk, M., L. Zheng, et al. (2005). "Open source: concepts, benefits and

challenges." Communications of the AIS 16: 756-784.

Axelsson, B. and G. Easton, Eds. (1992). Industrial networks: a new view of reality.

London, Routledge.

Babbie, E. (2005). The basics of social research. Belmont, CA, Thomson Wadsworth.

Balkundi, P. and D. A. Harrison (2006). "Ties, leaders, and time in teams: Strong

inference about network structure's effects on team viability and performance."
Academy of Management Journal 49(1): 49-68.

Barabasi, A.-L. (2002). Linked: the new science of networks. Cambridge, MA, Perseus

Publishing.

Barry, B. and R. Hardin, Eds. (1982). Rational man and irrational society. Beverly Hills,

CA, Sage.

Beal, D. J., R. R. Cohen, et al. (2003). "Cohesion and performance in groups: A meta-

analytic clarification of construct relations." Journal of Applied Psychology 88:
989-1004.

Benkler, Y. (2002). "Coase's penguin, or, Linux and the nature of the firm." The Yale

Law Journal 112(3): 369-446.

Benkler, Y. (2006). The wealth of networks: How social production transforms markets

and freedom. New Haven, Yale University Press.

Bessen, J. (2005). Open source software: free provision of complex public goods. MIT

open source working papers.

Bordieu, R. (1986). The forms of capital. Handbook of theory and research for the

sociology of education. J. G. Richardson. New York, Greenwood Press: 241-258.

 169

Borgatti, S. P., C. Jones, et al. (1998). "Network measures of social capital." Connections
21(2): 25-36.

Brooks, F. P. (1975). The mythical man-month: essays on software engineering. Reading,

MA, Addison-Wesley.

Brown, J. S. (1998). "Internet technology in support of the concept of "communities of

practice." Accounting, Management, and Information Technologies 8: 227-236.

Brown, J. S. and P. Duguid (1991). "Organizational learning and communities of

practice." Organization Science 2(1): 40-57.

Brown, J. S. and P. Duguid (2000). The social life of information. Boston, MA, Harvard

Business School Press.

Buchanan, M. (2002). Nexus: small worlds and the groundbreaking science of networks.

New York, W. W. Norton & Company.

Burt, R. S. (1992). Structural holes: The social structure of competition. Cambridge,

Mass., Harvard University Press.

Burt, R. S. (2001). Structural holes versus network closure as social capital. Social

capital: theory and research. N. Lin, K. Cook and R. S. Burt. New York, Aldine
De Gruyter: 31-56.

Capiluppi, A., P. Lago, et al. (2003). Evidences in the evolution of OS projects through

changelog analysis.

Carley, K. M. (1995). Computational and mathematical organization theory: perspective

and directions. 1995 Informs meetings in Los Angeles, CA.

Carrington, P. J., J. Scott, et al., Eds. (2005). Models and methods in social network

analysis. Cambridge, Mass., Cambridge University Press.

Chengalur-Smith, S. and A. Sidorova (2003). Survival of open-source projects: a

population ecology perspective. Twenty-Fourth International Conference on
Information Systems.

Chesbrough, H. W. (2003). Open innovation: the new imperative for creating and

profiting from technology. Boston, Mass., Harvard Business School Press.

Christensen, C. M. (1997). The innovator's dilemma: when new technologies cause great

firms to fail. Boston, Mass., Harvard Business School Press.

 170

Coleman, J. S. (1988). "Social capital in the creation of human capital." American
Journal of Sociology 94: S95-S120.

Conklin, M., J. Howison, et al. (2005). Collaboration using OSSmole: A repository of

FLOSS data and analyses. International Conference on Software Engineering
Workshop on Mining Software Repositories, St. Louis, MO.

Crowston, K., H. Annabi, et al. (2004). Towards a portfolio of FLOSS project success

measures. The 4th Workshop on Open Source Software Engineering, Edinburgh,
Scotland.

Crowston, K., H. Annabi, et al. (2005). Effective work practices for FLOSS

development: A model and propositions. 38th Hawaii International Conference on
System Sciences - 2005, Hawaii.

Crowston, K. and J. Howison (2004). The social structure of free and open source

software development. Syracuse FLOSS Working Paper.

Crowston, K. and J. Howison (2006). “Hierarchy and centralization in free and open

source software team communications.” Knowledge, Technology, & Policy 18(4):
65-85.

Crowston, K. and B. Scozzi (2002). "Open source software projects as virtual

organizations: competency rallying for software development." IEE Proceedings
Software 149(1): 3-17.

Cummings, T. G. (1978). Self-regulating work groups: A socio-technical synthesis.” The

Academy of Management Review 3(3): 625-634.

Davila, T., M. J. Epstein, et al. (2006). Making innovation work: how to manage it,

measure it, and profit from it. Upper Saddle River, NJ, Wharton School
Publishing.

Dawes, R. (1980). "Social dilemmas." Annual Review of Psychology 31: 169-193.

Evans, D. S. and B. J. Reddy (2003). "Government preferences for promoting open

source software: a solution in search of a problem." Michigan
Telecommunications and Technology Law Review 9: 313-394.

Everett, M. G. and S. P. Borgatti (1999). "The centrality of groups and classes." Journal

of Mathematical Sociology 23(3): 181-201.

Freeman, L. C. (2004). The development of social network analysis: a study in the

sociology of science. Vancouver, BC, Empirical Press.

 171

Fukuyama, F. (1995). The social virtues and the creation of prosperity. London, Hamish
Hamilton.

Gao, Y., V. Freeh, et al. (2003). Analysis and modeling of open source software

community. North American Association for Computational Social and
Organizational Science (NAACSOS) Conference 2003.

German, D. and A. Mockus (2003). Automating the measurement of open source

projects. The 3rd Workshop on Open Source Software Engineering, Portland, OR.

Gongla, P. and C. R. Rizzuto (2001). "Evolving communities of practice: IBM global

services experience." IBM Systems Journal 40(4): 842-862.

Granovetter, M. (1973). "The strength of weak ties." American Journal of Sociology 78:

1360-1380.

Granovetter, M. (1985). "Economic action and social structure: the problem of

embeddedness." American Journal of Sociology 91(3): 481-510.

Grewal, R, G.L. Lilien, et. al. (2006). “Location, location, location: How network

embeddedness affects project success in open source systems.” Management
Science 52(7): 1043-1056.

Hackman, J. R. (1986). The design of work teams. The handbook of organizational

behavior. J. W. Lorsch. Englewood Cliffs, NJ, Prentice-Hall: 315-342.

Hahsler, M. and S. Koch (2005). Discussion of a large-scale open source data collection

methodology. 38th Hawaii International Conference on System Sciences - 2005,
Hawaii.

Hardin, G. (1968). "The tragedy of the commons." Science 162: 1243-1248.

Hardin, R. (1982). Collective action. Baltimore, The John Hopkins University Press.

Healy, K. and A. Schussman (2003). The ecology of open-source software development.

Working Paper: Department of Sociology, University of Arizona. URL:
http://www.opensource.mit.edu/papers/healyschussman.pdf.

Hinds, D. and Lee, R.M. (Forthcoming). Assessing the social network health of virtual

communities. Handbook of Research on Socio-Technical Design and Social
Networking Systems . B. Whitworth and A. de Moor, to appear.

Howell, J.P., Dorfman, P.W., S. Kerr (1986). “Moderator variables in leadership

research.” The Academy of Management Review 11(1): 88-102.

 172

Howison, J. and K. Crowston (2004). The perils and pitfalls of mining SourceForge.
Mining Software Repositories Workshop, International Conference on Software
Engineering - 2004, Edinburgh, Scotland.

Hunt, F. and P. Johnson (2002). On the Pareto distribution of SourceForge projects. Open

Source Software Development Workshop, Newcastle.

Huysman, M., E. Wenger, et al. (2003). Communities and technologies: proceedings of

the first international conference on communities and technologies; C&T 2003.
First international conference on communities and technologies; C&T 2003,
Kluwer Academic Publishers.

Iannacci, F. (2003). "The Linux managing model." First Monday 8(12).

Katzy, B. R. and K. Crowston (2000). "A process theory of competency rallying in

engineering projects." Submitted to IEEE Transactions on Engineering
Management.

Kauffman, S. (1993). The origins of order. Oxford, UK, Oxford University Press.

Kerr, S. and J. Jermier (1978). “Substitutes for leadership: Their meaning and

measurement.” Organizational Behavior and Human Performance 22: 375-403.

Kogut, B. and A. Metiu (2001). "Open-source software development and distributed

innovation." Oxford Review of Economic Policy 17(2): 248-264.

Kozlowski, S. W. J. and B. S. Bell (2003). Work groups and teams in organizations.

Handbook of psychology: Industrial and organizational psychology. W. C.
Borman, D. R. Ilgen and r. Klimoski. New York, Wiley: 333-375.

Krackhardt, D. (1999). "The ties that torture: Simmelian tie analysis in organizations."

Research in the Sociology of Organizations 16: 183-210.

Krishnamurthy, S. (2002). "Cave or community? An empirical examination of 100

mature open source projects." First Monday 7(6).

Kuhn, T. S. (1996). The structure of scientific revolutions (third edition). Chicago, IL.

The University of Chicago Press.

Lacy, S. (2005). Open source - now it's an ecosystem. BusinessWeek Online.

Lakhani, K. R., B. Wolf, et al. (2002). Hacker Survey (release 0.3), Boston Consulting

Group.

 173

Lakhani, K. R. and R. G. Wolf (2005). Why hackers do what they do: understanding
motivation and effort in free/open source software projects. Perspectives on free
and open source software. J. Feller, B. Fitzgerald, S. Hissam and K. R. Lakhani.
Cambridge, MA, MIT Press.

Lanzara, G. F. and M. Morner (2003). The knowledge ecology of open-source software

projects. 19th EGOS Colloquium (European Group of Organizational Studies),
Copenhagen.

Lave, J. and E. Wenger (1991). Situated learning: legitimate peripheral participation.

Cambridge, MA, Cambridge University Press.

Lee, G.K. and R.E. Cole (2003). “From a firm-based to a community-based model of

knowledge creation: The case of the Linux kernel development.” Organization
Science 14(6): 633-649.

Lerner, J. and J. Tirole (2002). "The simple economics of open source." Journal of

Industrial Economics 52: 197-234.

Lessig, L. (2001). The future of ideas. New York, Random House, Inc.

Lin, N. (2001). Building a network theory of social capital. Social capital: theory and

research. N. Lin, K. Cook and R. S. Burt. New York, Aldine De Gruyter: 3-29.

Lomi, A. and P. Pattison (2004). "Introduction to the CMOT special issue on

mathematical representations and models for the analysis of social networks
within and between organizations." Computational and Mathematical
Organization Theory 10: 5-15.

Luhmann, N. (1984 (translated 1995)). Social Systems. Stanford, CA, Stanford

University Press.

Luri, J.S. and M.S. Raisinghani (2001). “An empirical study of best practices in virtual

teams.” Information & Management 38: 523-544.

MacCormack, A., J. Rusnak, et. al. (2006). “Exploring the structure of complex software

designs: An empirical study of open source and proprietary code.” Management
Science 52(7): 1015-1030.

Madey, G., V. Freeh, et al. (2002). The open source software development phenomenon:

an analysis based on social network theory. Eighth Americas Conference on
Information Systems, Dallas, Texas.

 174

Madey, G., V. Freeh, et al. (2004). Modeling the free/open source software community: a
quantitative investigation. Free/open source software development. S. Koch.
Hershey, PA, Idea Group: 203-220.

Malone, M. and W. Davidow (1992). Virtual corporation. Forbes 150: 102-107.

March, J. G. (1991). "Exploration and exploitation in organizational learning."

Organization Science 2(1): 71-87.

Markus, M. L., B. Manville, et al. (2000). "What makes a virtual organization work?"

Sloan Management Review 42: 13-26.

Mertler, C. A. and R. A. Vannatta (2005). Advanced and multivariate statistical methods.

Los Angeles, CA, Pyrczak Publishing.

Moreno, J. (1934). Who shall survive? New York, Beacon Press.

Morner, M. (2003). The emergence of open-source software projects: how to stabilize

self-organizing processes in emergent systems. Autopoietic organization theory:
drawing on Niklas Luhmann's social system perspective. T. Bakken and T.
Hernes. Oslo, Copenhagen Business School Press: 259-271.

Mowshowitz, A. (2002). Virtual organization: toward a theory of societal transformation

stimulated by information technology, Quorum Books.

Muffatto, M. and M. Faldani (2003). "Open source as a complex adaptive system."

Emergence 5(3): 83-100.

Nahapiet, J. and S. Ghoshal (1998). "Social capital, intellectual capital, and

organizational advantage." Academy of Management Review 23(2): 242-266.

Obstfeld, D. (2005). "Social networks, the tertius iungens orientation, and involvement in

innovation." Administrative Science Quarterly 50: 100-130.

Oh, H., M.-H. Chung, et al. (2004). "Group social capital and group effectiveness: The

role of informal socializing ties." Academy of Management Journal 47: 860-875.

Olson, M. J. (1965). The logic of collective action. Cambridge, MA, Harvard University

Press.

O'Reilly, T. (1999). "Lessons from open-source software development." Communications

of the ACM 42(4): 32-37.

OSI (2004). The open source definition, Open Source Initiative; URL:

http://www.opensource.org/docs/definition.html.

 175

Pavlicek, R. C. (2000). Embracing insanity: open source software development.
Indianapolis, IN, Sams.

Putnam, R. D. (2000). Bowling alone: the collapse and revival of American community.

New York, Simon and Schuster.

Raymond, E. S. (1998). "Homesteading the noosphere." First Monday 3(10).

Raymond, E. S. (1999). The cathedral and the bazaar: musings on Linux and open source

by an accidental revolutionary. Sebastopol, CA, O'Reilly & Associates, Inc.

Rothfuss, G. J. (2002). A framework for open source projects. Department of Information

Technology. Zurich, Switzerland, University of Zurich: 157.

Savannah (2005). URL: http://savannah.gnu.org/.

Scacchi, W. (2002). “Understanding the requirements for developing open source

software systems.” IEE Software Proc. 149(1): 24-39.

Schenkel, A., R. Teigland, et al. (2000). Theorizing communities of practice: a social

network approach. Academy of Management: Organization and Management
Theory Division.

Scott, J. (2000). Social network analysis: a handbook (second edition). London, Sage

Publications.

Scozzi, B., K. Crowston, et. al. (2008). Shared mental models among open source

software developers. 41st Hawaii International Conference on System Sciences -
2008, Hawaii.

Simon, H. A. (1976). Administrative behavior (3rd edition). New York, Free Press.

SourceForge (2005). URL: http://www.sourceforge.net.

Stallman, R. (1985). The GNU Manifesto. URL: http://www.gnu.org/gnu/manifesto.html.

Stewart, K. J. and T. Ammeter (2002). An exploratory study of factors influencing the

level of vitality and popularity of open source projects. Twenty-Third
International Conference on Information Systems.

Strader, T. J., F.-R. Lin, et al. (1998). "Information infrastructure for electronic virtual

organization management." Decision Support Systems 23: 75-94.

Sturmer, M. (2005). Open source community building. MIT Open Source collection.

 176

Tabachnick, B.G. and Fidell, L.S. (2007). Using multivariate statistics. Boston, MA,
Pearson.

Teigland, R. (2003). Knowledge networking: structure and performance in networks of

practice. Institute of International Business. Stockholm, Stockholm School of
Economics.

Trombly, M. (2005). Open source may help China curb software piracy. CIO Insight.

UCINET (2005). URL: http://www.analytictech.com/ucinet.htm.

von Hippel, E. (2001). "Innovation by user communities: learning from open-source

software." MIT Sloan Management Review 42(4): 82-86.

von Hippel, E. and G. von Krogh (2003). "Open source software and the "private-

collective" innovation model: issues for organization science." Organization
Science 14(2): 209-223.

von Krogh, G. (2003). "Open-source software development." Sloan Management

Review: 14-18.

von Krogh, G., S. Spaeth, et. al. (2005). Knowledge reuse in open source software: An

exploratory study of 15 open source projects. 38th Hawaii International
Conference on System Sciences - 2005, Hawaii.

von Krogh, G and E. von Hippel (2006). “The promise of research on open source

software.” Management Science 52(7): 975-983.

Wagstrom, P. A. (2004). Toward a simulation model of open source software

development. NAACSOS, Pittsburgh, PA.

Wagstrom, P. A., J. D. Herbsleb, et al. (2005). A social network approach to free/open

source software simulation. First International Conference on Open Source
Systems, Genova.

Wasko, M. M. and R. Teigland (2002). The provision of online public goods: examining

social structure in a network of practice. Twenty-Third International Conference
on Information Systems - 2002.

Wasserman, S. and K. Faust (1994). Social network analysis: methods and applications.

Cambridge, UK, Cambridge University Press.

Watts, D. J. (2003). Six degrees: the science of a connected age. New York, W. W.

Norton & Company.

 177

Webb, E. J., D. T. Campbell, et al. (2000). Unobtrusive measures. Thousand Oaks, CA,
Sage.

Weber, S. (2003). Open source software in developing economies. Social Science

Research Council Working Paper.

Weber, S. (2004). The success of open source. Cambridge, Mass., Harvard University

Press.

Weick, K. E. (1989). “Theory construction as disciplined imagination.” Academy of

Management Review 14(4): 516-531.

Wenger, E. (1998). Communities of practice: learning, meaning, and identity.

Cambridge, UK, Cambridge University Press.

Wenger, E., R. McDermott, et al. (2002). Cultivating communities of practice: a guide to

managing knowledge. Boston, Mass, Harvard Business School Press.

West, J. and S. O'Mahony (2005). Contrasting community building in sponsored and

community founded open source projects. 38th Hawaii International Conference
on System Sciences - 2005, Hawaii.

Xu, J., Y. Gao, et al. (2005). A topological analysis of the open source software

development community. 38th Hawaii International Conference on System
Sciences - 2005, Hawaii.

Yamauchi, Y., M. Yokozawa, et. al. (2000). Collaboration with lead media: How open

source software succeeds. ACM 2000 Conf. Comput. Supported Cooperative
Work, Philadelphia.

Yang, H. and J. Tang (2004). “Team structure and team performance in IS development:

A social network perspective.” Information & Management 41: 335-349.

Ye, Y., K. Nakakoji, et al. (2005). The co-evolution of systems and communities in free

and open source software development. Free/open source software development.
S. Koch. Hershey, PA, Idea Group Inc (IGI): 59-82.

 178

APPENDICES

Appendix A

Sourceforge.net screen images

This appendix contains screen images obtained from the SourceForge.net web site.

 179

Sourceforge.net screen images

Figure A-1
SourceForge Project Home Page Summary Screen

Source URL: https://sourceforge.net/projects/easysoap

https://sourceforge.net/projects/easysoap�

 180

Sourceforge.net screen images

Figure A-2
SourceForge Project Home Page Project Details and Public Areas

Source URL: https://sourceforge.net/projects/easysoap

https://sourceforge.net/projects/easysoap�

 181

 Sourceforge.net screen images

Figure A-3
SourceForge Project Member Page

Source URL: https://sourceforge.net/project/memberlist.php?group_id=19009

https://sourceforge.net/project/memberlist.php?group_id=19009�

 182

Sourceforge.net screen images

Figure A-4
SourceForge Project Forum Page Topic Listing

Source URL: https://sourceforge.net/forum/forum.php?forum_id=60193

https://sourceforge.net/forum/forum.php?forum_id=60193�

 183

Sourceforge.net screen images

Figure A-5
SourceForge Project Forum Page Discussion Text

Source URL:
https://sourceforge.net/forum/forum.php?thread_id=1254140&forum_id=60193

https://sourceforge.net/forum/forum.php?thread_id=1254140&forum_id=60193�

 184

Sourceforge.net screen images

Figure A-6
SourceForge Project Statistics Page

Source URL:
https://sourceforge.net/project/stats/?group_id=19009&ugn=easysoap&type=&mode=allt
ime

https://sourceforge.net/project/stats/?group_id=19009&ugn=easysoap&type=&mode=alltime�
https://sourceforge.net/project/stats/?group_id=19009&ugn=easysoap&type=&mode=alltime�

 185

Appendix B

University of Notre Dame Research Database

SourceForge.net Research Data

SourceForge.net is the world's largest Open Source software development web site, with
the largest repository of Open Source code and applications available on the Internet.
Owned and operated by OSTG, Inc. ("OSTG"), SourceForge.net provides free services to
Open Source developers. The SourceForge.net web site is database driven and the
supporting database includes historic and status statistics on over 140,000 projects and
over 1.5 million registered users' activities at the project management web site. OSTG
has shared certain SourceForge.net data with the University of Notre Dame for the sole
purpose of supporting academic and scholarly research on the Free/Open Source
Software phenomenon. OSTG has given Notre Dame permission to in turn share this data
with other academic researchers studying the Free/Open Source Software phenomenon.

Source URL: http://www.nd.edu/~oss/Data/data.html

Release of the SourceForge.net Research Data

To advance the understanding of, and research on, the Free/Open Source Software
phenomenon, portions of the data that may support such research, will be made available
to academic or scholarly researchers. All requests for data must be submitted in writing
(e-mail) to the Notre Dame PI, (Greg Madey). Only academic and scholarly researchers
are eligible to receive the data. To receive the data, a short questionnaire and agreement
must be completed, signed and returned. A wiki for users of the research data is available
here.

Source URL: http://www.nd.edu/~oss/Data/data.html

http://sourceforge.net/�
http://www.nd.edu/~oss/Data/data.html�
mailto:oss@nd.edu�
mailto:oss@nd.edu�
http://www.nd.edu/%7Eoss/Data/Sublicense5.pdf�
http://zerlot.cse.nd.edu/�
http://zerlot.cse.nd.edu/�
http://www.nd.edu/~oss/Data/data.html�

 186

University of Notre Dame Research Database

Description of Data Available

SourceForge.net uses relational databases to store project management activity and
statistics. There are over 100 relations (tables) in the data dumps provided to Notre
Dame. Some of the data have been removed for security and privacy reasons.
SourceForge.net cleanses the data of personal information and strips out all OSTG
specific and site functionality specific information. On a monthly basis, a complete dump
of the databases (minus the data dropped for privacy and security reasons) is shared with
Notre Dame. The Notre Dame researchers have built a data warehouse comprised of
these monthly dumps, with each stored in a separate schema. Thus, each monthly dump is
a snapshot of the status of all the SourceForge.net projects at that point in time. As of
March 2007, the data warehouse was almost 500 GBytes in size, and is growing at about
25 GBytes per month. Much of the data is duplicated among the monthly dumps, but
trends or changes in project activity and structure can be discovered by comparing data
from the monthly dumps. Queries across the monthly schema may be used to discover
when changes took place, to estimate trends in project activity and participation, or even
that no activity, events or changes have taken place. To help researchers determine what
data is available, an ER-diagram and the definitions of tables and views in the data
warehouse are provided.

Source URL: http://www.nd.edu/~oss/Data/data.html

http://www.nd.edu/~oss/Data/data.html�

 187

Appendix C

Libresoft Project Research Database

Libre Software Engineering
Welcome to the Libre Software[1] Engineering web site at the Grupo de Sistemas y
Comunicaciones (System and Communication Group, GSyC) at the Universidad Rey
Juan Carlos located in Móstoles, near Madrid (Spain).

Libre Software offers Software Engineering scientists the possibility not only of having a
closer look at the product that is being created, but also of studying in detail the whole
development process and its technical, social and economic consequences.

The main research topic at the Universidad Rey Juan Carlos is the quantitative
measurement of libre software development patterns and characteristics in order to gain
knowledge on the process, mainly by studying the different agents that participate in it,
the use of the different development and development-supporting tools as well as the
methods that have been followed. The main focus is technically oriented having
principally an engineering perspective of the research area in contrast to other research
groups which are primarily centered on social and economic aspects.

NEWS: We also drive the FLOSS Research Planet which syndicates other research
blogs from researchers who investigate libre software.

Source URL: http://libresoft.es/description

http://libresoft.es/description#libre�
http://libresoft.urjc.es/planet/�
http://libresoft.es/description�

 188

Appendix D

Detailed Regression Results

This appendix contains tables with detailed results of regressions which produced

a significant result (p < .05). These regressions are referred to in Tables 20, 21, and 22,

and in the corresponding subsections of Section 5.4.

 189

Detailed Regression Results

Table D-1
Log-Transformed Software Downloads Regressed on Group Density,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size .014*** (.002) .009*** (.002) .007** (.003)

Core Size .003 (.021) .001 (.020) -.001 (.020)

Conversation Volume -.001* (.000) .000 (.000) .000 (.000)

Group Density -5.547*** (1.237) -8.881*** (2.349)

Group Density 16.375† (9.827)
mean-centered and squared

R2 .324 .410 .421
F-Statistic 22.184*** 23.952*** 19.963***

Adjusted R2 .309 .393 .400

∆R2 .086 .012
∆F-Statistic 20.106 2.777

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .098

 190

Detailed Regression Results

Table D-2
Log-Transformed Page Views Regressed on Group Density,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size .011*** (.002) .007** (.002) .005† (.003)

Core Size .042† (.021) .040† (.020) .038† (.020)

Conversation Volume .000 (.000) .000 (.000) .000 (.000)

Group Density -4.871*** (1.285) -8.353** (2.439)

Group Density 17.097† (10.203)
mean-centered and squared

R2 .291 .358 .371
F-Statistic 19.019*** 19.233*** 16.150***

Adjusted R2 .276 .339 .348

∆R2 .067 .013
∆F-Statistic 14.382 2.808

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .053 (Model 1 Core Size), .053 (Model 2 Core Size), .057 (Model 3 Group Size)

† p = .064 (Model 3 Core Size), .096 (Model 3 Group Density mean-centered and squared)

 191

Detailed Regression Results

Table D-3
Log-Transformed Software Releases Regressed on Core Density,
Controlling for Group Size, Core Size and Conversation Volume

(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size -.001 (.002) -.002 (.002) -.002 (.002)

Core Size -.026 (.021) -.044* (.022) -.044† (.022)

Conversation Volume .000 (.000) .001* (.000) .001* (.000)

Core Density -.570* (.261) -.615 (.412)

Core Density .121 (.855)
mean-centered and squared

R2 .039 .071 .071
F-Statistic 1.876 2.641* 2.102†

Adjusted R2 .018 .044 .037

∆R2 .032 .000
∆F-Statistic 4.781 .020

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .050 (Model 3 Core Size), .069 (Model 3 F-Statistic)

 192

Detailed Regression Results

Table D-4
Log-Transformed Page Views Regressed on Core Density,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size .011*** (.002) .011*** (.002) .011*** (.002)

Core Size .042† (.021) .033 (.023) .036 (.023)

Conversation Volume .000 (.000) .000 (.000) .000 (.000)

Core Density -.267 (.272) -.977* (.422)

Core Density 1.910* (.877)
mean-centered and squared

R2 .291 .296 .319
F-Statistic 19.019*** 14.502*** 12.864***

Adjusted R2 .276 .276 .295

∆R2 .005 .024
∆F-Statistic .964 4.741

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .053

 193

Detailed Regression Results

Table D-5
Log-Transformed Code Commits Regressed on Administrator Membership Degree,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size -.005† (.003) -.005† (.003) -.006* (.003)

Core Size .059* (.029) .059* (.029) .060* (.029)

Conversation Volume .001* (.000) .001* (.000) .001* (.000)

Administrator
Membership Degree .022 (.063) .212† (.110)

Administrator
Membership Degree -.040* (.019)
mean-centered and squared

R2 .052 .053 .082
F-Statistic 2.564† 1.941 2.455*

Adjusted R2 .032 .026 .049

∆R2 .001 .029
∆F-Statistic .120 4.324

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .073 (Model 1 Group Size), .073 (Model 2 Group Size)

† p = .057 (Model 3 Administrator Membership Degree), .057 (Model 1 F-Statistic)

 194

Detailed Regression Results

Table D-6
Log-Transformed Software Releases Regressed on Administrator Class Centrality,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size -.001 (.002) .002 (.002) .002 (.002)

Core Size -.026 (.021) -.010 (.021) -.011 (.021)

Conversation Volume .000 (.000) .000 (.000) .000 (.000)

Administrator
Class Centrality .963** (.326) .890* (.358)

Administrator
Class Centrality -.515 (1.026)
mean-centered and squared

R2 .039 .096 .098
F-Statistic 1.876 3.660** 2.963*

Adjusted R2 .018 .070 .065

∆R2 .057 .002
∆F-Statistic 8.701 .252

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

 195

Detailed Regression Results

Table D-7
Log-Transformed Page Views Regressed on Administrator Class Centrality,

Controlling for Group Size, Core Size and Conversation Volume
(Unstandardized Coefficients)

Variables Model 1 Model 2 Model 3

Group Size .011*** (.002) .011*** (.002) .011*** (.002)

Core Size .042† (.021) .038† (.022) .042† (.022)

Conversation Volume .000 (.000) .000 (.000) .000 (.000)

Administrator
Class Centrality -.247 (.346) .084 (.373)

Administrator
Class Centrality 2.347* (1.069)
mean-centered and squared

R2 .291 .294 .318
F-Statistic 19.019*** 14.342*** 12.756***

Adjusted R2 .276 .273 .293

∆R2 .003 .024
∆F-Statistic .511 4.822

Standard errors are in parentheses

* p < .05 ; ** p < .01 ; *** p < .001; n = 143 groups

† p = .053 (Model 1 Core Size), .090 (Model 2 Core Size), .059 (Model 3 Core Size)

 196

VITA

DAVID HINDS

1972 B.S., Engineering Science
 University of Miami

Miami, Florida

1973 M.S., Management Science
 University of Miami
 Miami, Florida

1974 – 1980 Metro Dade County Transportation

1980 – 1983 Cordis Corporation

1983 M.B.A.
 Florida International University
 Miami, Florida

1983 – 1985 Cordis Bio-Synthetics, Inc.

1985 – 1988 Deloitte Haskins and Sells

1988 – 1998 Trend Distributors

1998 – 2002 The Wurth Group

2003 – 2008 Doctoral Candidate
 Business Administration
 Florida International University
 Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Franceschi, K., Lee, R. M. and Hinds, D. (January 2008). “Engaging e-learning in virtual
worlds: supporting group collaboration.” Presented at the 41st Hawaii International
Conference on System Sciences.

Hinds, D., Roark, A., Schimpeler, C., and Corradino, J. (1978). “Transportation modeling
in a changing world: a Miami case study.” Transportation Planning and Technology 4:
125-135.

 197

Hinds, D. (1979). “RUCUS scheduling software: A comprehensive status report and
assessment.” Transit Journal 5(1): 17-34.

Hinds, D. (2004). "Micropayments: a technology with a promising but uncertain future.”
(short note included in "Mobile banking services" by Niina Mallat, Matti Rossi and Virpi
Tuunainen). Communications of the ACM 47(5): 44.

Hinds, D. (2004). “Critical mass behavior and transaction costs in open source and open
content projects.” North American Association for Computational Social and
Organizational Science (NAACSOS) Conference 2004, Pittsburgh, PA (CMU).

Hinds, D. (2005). “Open web learning - achieving creative synergy in the open
development and use of e-learning resources.” 7th International Conference on
Enterprise Information Systems - Doctoral Consortium, Miami, Florida.

Hinds, D. and Lee, R. M. (2006). “Why do some open source software projects succeed
while others fail? Group centrality constructs as predictors of project outcome.”
International Sunbelt Social Network Conference XXVI, Vancouver, British Columbia.

Hinds, D. and Lee, R. M. (January 2008). “Social network structure as a critical success
condition for virtual communities.” Presented at the 41st Hawaii International
Conference on System Sciences.

Hinds, D. and Pasztor, A. (August 2008). “What’s wrong with our concept of
knowledge? A case of semantic pathology.” To be presented at the 2008 Academy of
Management Annual Meeting, Anaheim, California.

Hinds, D. and Lee, R.M. (Forthcoming). Assessing the social network health of virtual
communities. Handbook of Research on Socio-Technical Design and Social Networking
Systems, Edited by Whitworth, B. and de Moor, A., to appear.

Lee, R. M., Dominguez, C. E., Franceschi, K. and Hinds, D. (2006). “Mitigating culture
shock: e-learning cultural affordances.” 2nd Workshop on Tourism and ICT: Dynamic
and Intelligent Configuration of Tourism Services, University of Twente, Enschede, The
Netherlands.

O'Neil, B. F., Catanese, A. J. and Hinds, D. (1978). Transportation systems. Handbook of
Operations Research: Models and Applications. J. J. Moder and S. E. Elmaghraby. New
York, Van Nostrand Reinhold Company. 2: 477-502.

	Florida International University
	FIU Digital Commons
	3-13-2008

	Social Network Structure as a Critical Success Condition for Open Source Software Project Communities
	David Hinds
	Recommended Citation

	1. INTRODUCTION
	1.1. Research Approach
	1.2. Research Question
	1.3. Definitions
	1.4. Dissertation Structure

	2. LITERATURE REVIEW
	2.1. Theoretical and Conceptual Foundations
	2.2. Social Networks
	2.2.1. Social Network Analysis
	2.2.2. Social Network Theory
	2.2.3. Social Capital Theory

	2.3. Open Source Software
	2.3.1. Descriptive Studies
	2.3.2. Mechanisms and Metaphors
	2.3.3. Developer Motivation
	2.3.4. Success Studies
	2.3.5. Social Network Perspectives

	2.4. Teams and Work Groups
	2.4.1. Work Group Effectiveness
	2.4.2. Emergent Organizations
	2.4.3. Social Network Perspectives

	2.5. Communities
	2.5.1. Communities of Practice
	2.5.2. Online Communities
	2.5.3. Networks of Practice
	2.5.4. Social Network Perspectives

	2.6. Innovation
	2.6.1. Exploration versus Exploitation
	2.6.2. Open and Distributed Innovation
	2.6.3. Social Network Perspectives

	3. RESEARCH MODELS AND PROPOSITIONS
	3.1. Conceptual Research Model
	3.2. Research Constructs
	3.2.1. Subgroups
	3.2.2. Closure
	3.2.3. Bridging
	3.2.4. Leader Centrality
	3.2.5. Community Success

	3.3. Social Network Model and Propositions
	3.3.1. Group Closure
	3.3.2. Core Closure
	3.3.3. Peripheral Two-Mode Closure
	3.3.4. Core Bridging
	3.3.5. Administrator Bridging
	3.3.6. Administrator Centrality

	4. RESEARCH METHODOLOGY
	4.1. Study Design
	4.1.1. Unit of Analysis
	4.1.2. Study Population
	4.1.3. Research Method

	4.2. Research Setting
	4.2.1. Data Sources
	4.2.2. Data Element Selection

	4.3. Dependent and Control Variables
	4.3.1. Community Success
	4.3.2. Controls

	4.4. Social Network Variables
	4.4.1. Networks
	4.4.2. Subgroups
	4.4.3. Formal Notation
	4.4.4. Formal Specification

	4.5. Sampling and Data Collection
	4.5.1. Sample Frame
	4.5.2. Data Compilation
	4.5.3. Sample Profile

	5. DATA ANALYSIS AND RESULTS
	5.1. Preliminary Analyses
	5.1.1. Transformation of Variables
	5.1.2. Outlier Assessment
	5.1.3. Reduction of Variables

	5.2. Descriptive and Correlation Statistics
	5.3. Hypothesis Testing
	5.3.1. Research Hypotheses
	5.3.2. Regression Methods

	5.4. Testing Results
	5.4.1. Group Density
	5.4.2. Core Density
	5.4.3. Peripheral Two-Mode Density
	5.4.4. Core Membership Degree
	5.4.5. Administrator Membership Degree
	5.4.6. Administrator Class Centrality

	6. DISCUSSION
	6.1. Summary of Findings
	6.1.1. Closure
	6.1.2. Bridging
	6.1.3. Leader Centrality

	6.2. Conjectures and Causality
	6.3. The Insignificance of Structure
	6.3.1. Substitutes for the Social Network
	6.3.2. Reduced Need for Knowledge Transfer

	7. CONCLUSIONS
	7.1. Implications
	7.1.1. Paradigm Disruption
	7.1.2. Requirements for a New Theory
	7.1.3. Research Implications
	7.1.4. Practical Implications

	7.2. Contributions
	7.2.1. Theory
	7.2.2. Methodology
	7.2.3. Practice

	7.3. Limitations
	7.4. Future Research Directions

	LIST OF REFERENCES
	APPENDICES
	VITA

