Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-13-2008

Social Network Structure as a Critical Success
Condition for Open Source Software Project
Communities

David Hinds
Florida International University, dhh123@bellsouth.net

DOI: 10.25148/etd . F1I08081525
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Recommended Citation

Hinds, David, "Social Network Structure as a Critical Success Condition for Open Source Software Project Communities" (2008).
FIU Electronic Theses and Dissertations. 27.
https://digitalcommons.fiu.edu/etd/27

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/27?utm_source=digitalcommons.fiu.edu%2Fetd%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SOCIAL NETWORK STRUCTURE AS A CRITICAL SUCCESS CONDITION

FOR OPEN SOURCE SOFTWARE PROJECT COMMUNITIES

A dissertation submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY

in
BUSINESS ADMINISTRATION
by
David Hinds

2008

To: Dean Joyce Elam
College of Business Administration

This dissertation, written by David Hinds, and entitled Social Network Structure as a
Critical Success Condition for Open Source Software Project Communities, having been

approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Susan Clemmons

Kaushik Dutta

Kenneth Lipartito

Debra VanderMeer

Mary Ann Von Glinow

Ronald M. Lee, Major Professor
Date of Defense: March 13, 2008

The dissertation of David Hinds is approved.

Dean Joyce Elam
College of Business Administration

Dean George Walker
University Graduate School

Florida International University, 2008

i

© Copyright 2008 by David Hinds

All rights reserved.

il

DEDICATION
I dedicate this dissertation to my mother and to my father. There are no words to

express how important they have been in my life and how much I love them.

Lillian Marie Hinds

1916 - 2007

Richard Howard Hinds

1916 — 2007

v

ACKNOWLEDGMENTS

I wish to thank my Major Professor, Ronald Lee, who walked with me throughout
this entire process, and who was both invaluable guide and source of inspiration. I am
grateful for all of my other committee members, each of whom provided me with his or
her special perspective and contribution to my thinking. I especially wish to thank Susan
Clemmons for her help and guidance through the statistical work. I am also appreciative
of the reading and helpful comments provided by J.C. Wang, as well as all of the help
and support provided by the “Musketeers,” my PhD student associates.

The data collection efforts for this research were extensive and I wish to thank
Karel Alemany who spent endless hours in extracting and compiling data, and also
Joseph Imperato who provided critical advice and help with the database work. We
utilized the research databases of the University of Notre Dame and the Libresoft Project,
and my thanks go to Greg Madey and the others who prepared and made these databases
available. 1 also recognize that funding for this work was provided through the
Dissertation Year Fellowship of the University Graduate School.

Without the love and support of my family, none of this would have been
possible. 1 thank my children Matthew, Kimberly, and Christopher for being so
wonderful and for encouraging me to go on. Finally, I am so grateful for my wife

Brenda who has always been the love of my life and who is my partner in so many ways.

ABSTRACT OF THE DISSERTATION
SOCIAL NETWORK STRUCTURE AS A CRITICAL SUCCESS CONDITION
FOR OPEN SOURCE SOFTWARE PROJECT COMMUNITIES
by
David Hinds
Florida International University, 2008
Miami, Florida
Professor Ronald M. Lee, Major Professor

In recent years, a surprising new phenomenon has emerged in which globally-
distributed online communities collaborate to create useful and sophisticated computer
software. These open source software groups are comprised of generally unaffiliated
individuals and organizations who work in a seemingly chaotic fashion and who
participate on a voluntary basis without direct financial incentive.

The purpose of this research is to investigate the relationship between the social
network structure of these intriguing groups and their level of output and activity, where
social network structure is defined as 1) closure or connectedness within the group, 2)
bridging ties which extend outside of the group, and 3) leader centrality within the group.
Based on well-tested theories of social capital and centrality in teams, propositions were
formulated which suggest that social network structures associated with successful open
source software project communities will exhibit high levels of bridging and moderate
levels of closure and leader centrality.

The research setting was the SourceForge hosting organization and a study

population of 143 project communities was identified. Independent variables included

vi

measures of closure and leader centrality defined over conversational ties, along with
measures of bridging defined over membership ties. Dependent variables included
source code commits and software releases for community output, and software
downloads and project site page views for community activity. A cross-sectional study
design was used and archival data were extracted and aggregated for the two-year period
following the first release of project software. The resulting compiled variables were
analyzed using multiple linear and quadratic regressions, controlling for group size and
conversational volume.

Contrary to theory-based expectations, the surprising results showed that
successful project groups exhibited low levels of closure and that the levels of bridging
and leader centrality were not important factors of success. These findings suggest that
the creation and use of open source software may represent a fundamentally new socio-
technical development process which disrupts the team paradigm and which triggers the
need for building new theories of collaborative development. These new theories could
point towards the broader application of open source methods for the creation of

knowledge-based products other than software.

Vil

TABLE OF CONTENTS

CHAPTER PAGE
1. INTRODUCTION ...ooiiiiiiiiiiieiieteete ettt sttt ettt st 1
1.1. Research ApProachcccoocieeeoiiiiiiiecie et e 5
1.2. Research QUESLIONcccuuiiiiiiiiiiicciie et e e 7
1.3, DEfINItIONS. ..eeuiiiiiiieiie ettt ettt e st 7
1.4, DiSSertation STIUCTUIE........ccueriirierieeieniienieete sttt ettt ettt 9
2. LITERATURE REVIEWccooiiiiiiiiiieeeeeee ettt 13
2.1. Theoretical and Conceptual Foundations............cccceeeeenirenienieeniienieeieens 13
2.2, S0CIAl NEtWOTKS ..ottt 14
2.2.1. Social Network ANalysisccccceevieriieiiieniieiieeieeee e 15
2.2.2. Social Network Theory.......cccvieviiiiiiiieiieeeciee e 16
2.2.3. Social Capital ThEOTYcccueeiuieriiieiiieeieeiieeie ettt 18
2.3. Open SOUTCE SOTEWATEeeeeiieeiiieeiee ettt ree e e e e e e 20
2.3.1. DescCriptive StUAICScveevvieiiieiiieiieiee ettt 21
2.3.2. Mechanisms and Metaphorsccceeeeiieeiiieciieecie e 28
2.3.3. Developer MotiVation..........cceeeieeiiienieeiieeie et eieeiee e esieeeve e 32
2.3.4. SUCCESS STUAICSeeeueieiiiiiieiie et 33
2.3.5. Social Network Perspectivescceecverieeriienieiniienieeieeeee e 37
2.4, Teams and WOTK GTOUPScccvvieeieiieeiiieeiieeeiie e eeieeeeveeesvee e ereesearee e 40
2.4.1. Work Group EffectiVenesscccuerieeriienieeniienieeiieeieeee e 40
2.4.2. Emergent OrganiZationscccveeeeveeeeireeesiueeesiseeesiseeessseeesseessseeens 43
2.4.3. Social Network Perspectivescceecverieeriieiieeiienieeieeeee e 44
2.5, COMMUINIEIES ..uteiiiiieiieeitieiie ettt ettt e sttt et et te et esiee et e ssbeebeesabeebeeeas 46
2.5.1. Communities Of PractiCe..........cccvureeriiieiiieeiiee et 47
2.5.2. Online COMMUNIEIESeevuvieuieriieiriienieeniie ettt 50
2.5.3. Networks of PractiCe.......ccueievuiieeiiiieeiieeeiieeeie et 51
2.5.4. Social Network Perspectivesccveeveeiieriienieeiienieeiee e 52
2.6, INNOVALION ...eeiiiiiiiieeciiieeciiee ettt ettt et e e et e e s e e e s aveeesaveeesaseeeaseeennneas 54
2.6.1. Exploration versus EXploitationcccceeeveerieriiienieeiiienie e 55
2.6.2. Open and Distributed INnoOvation............cccceeevierienennenienecnicnienene 56
2.6.3. Social Network Perspectivesccceeveeeiieriienieeiieeieeieeeie e 57
3. RESEARCH MODELS AND PROPOSITIONSccoiiiieiesieeeeieee e 58
3.1. Conceptual Research Modelccccveiiieiiiniiniieieceeeece e 58
3.2, ReSearch CONSIIUCTS......ccuvieeiiiieeiieeeiieeeiee et eee ettt e e e e e eareeeaaee e 60
3.2.1. SUDZIOUPS ..eievvieiieeiieeiie ettt ettt ettt e sae et eeebeesseesveesaessseenseensnas 62
3.2.2. CIOSUIC....uiiiiiiiieeiiieeciteeeitee ettt e e rtte e et eeeta e e s taeesbeeeseseeeesseeesnseeesseeennns 64
3.2.3. BIIA@ING .oouviieiiieiiecieeeeee ettt 67
3.2.4. Leader Centralitycccccoeeviriiniiniinieneeieeeeeeee e 68
3.2.5. COMMUNILY SUCCESS...eeeeurrerrrreaireenrreenireenieeenseeesseeensneesssseessseennns 69

viil

3.3. Social Network Model and Propositionsccceeeereeerieenieeniienieeieeene. 70
3.3.1. Group CIOSUIE......cceiiiieeiieeiieecieeetteeeiteeeaaeesree s e e eebeeeseseeennseeenes 70
3.3.2. COT@ ClOSUIEoutenviiiiieeieniiesieete ettt 72
3.3.3. Peripheral Two-Mode ClOSUIEccevuvieeiiieiiieeciie e 73
3.3.4. Core Brid@INgceovveiiieiieeiiieiieeie ettt sttt 74
3.3.5. Administrator Bridging..........ccccccveeeiiieiiiieeiie e 75
3.3.6. Administrator Centrality..........cccoeveeviieriieeiieniieieece e 75

4. RESEARCH METHODOLOGY ...c.uooitiiiiiiiiieiesiieieeie sttt 77

4.1, StUAY DESIZN...uviiiiiiiieiiieieecie ettt ettt ettt et e et 77
4.1.1. Unit Of ANALYSIS...ueiiioiiiieiiieciieeciee ettt eeee e aee e evee e svee e 77
4.1.2. Study Population..........ceeviieiieiiieiieeieeitee et 77
4.1.3. Research Methodccociiiiiiiiiiiiiie e 79

4.2, Research Setting.........ccccuievuiiiiiiiieiiieiece ettt 81
4.2.1. DAt SOUICES ...ceovuiiiiiiiiiiiieiiite ettt 82
4.2.2. Data Element Selection...........cccceeeevierieniinienienienieeiesiesieeieeie e 82

4.3. Dependent and Control Variables..........ccceeeevieeiiieniieeeieeeie e 83
4.3.1. COMMUNILY SUCCESS...ccuvierreriiieiieeieeiieeieeiieereeseesreeseesreenseesnseenne 83
4.3.2. CONLIOIS...couiiiiiiiitie et 86

4.4. Social Network Variablesc.ccooeeviiiiniiiinieniiieeeecceeeeeee 87
441, NEIWOTKS ettt ettt e 87
A4.4.2. SUDZIOUPS ...oeiuvieiiieiieeiie ettt ettt et ste et e st e et eseaeebeessaeeseesese e 90
4.4.3. Formal NOtation........coiuiiiiiiiiiiiieieeeee e 90
4.4.4. Formal SpecifiCation...........ccceevuiiriiieiieiiieiieeieeee e 93

4.5. Sampling and Data ColleCtionccceeeeuiieriieeiiie e 98
4.5.1. Sample Frameccooovieiiieiiieiiecieeieee et 98
4.5.2. Data Compilation.........ccccveeeeiieiiiieniieeccieecee e 101
4.5.3. Sample Profileccooeiiiiiiiiieee e 103

5. DATA ANALYSIS AND RESULTS ..ottt 105

5.1, Preliminary ANAlYSEScccooieeiieiieiiieiieeie ettt 105
5.1.1. Transformation of Variables..........c.ccoccerviriininiiniinieiccieceeeen 106
5.1.2. Outlier ASSESSIMENLcccvvreerieeeiieeeiieesieeeereeesreeeeereeeseaeeeeareeenneeas 108
5.1.3. Reduction of Variablescccceveeiirieniiiinieneeccesceeeeeeee 108

5.2. Descriptive and Correlation StatiStiCs........coceevereevieriineerenieneeienieneeens 110

5.3. Hypothesis TeStING.......c.ccevuieiiiiriieiiieiiieiieete ettt ere e esaeenaens 113
5.3.1. Research Hypothesesccccoeriiiiieiiiiiiiiiicieeeeeee e 113
5.3.2. Regression Methods.........c.oocvieiiieiieiiieiiceiecieecee et 117

5.4. Testing RESUILS......cooiiiiiiiiieeee e 120
S5.4.1. Group Density....c.ceeecuiieeiiieiiiieeiieeeiee et eaee e e e s 120
5.4.2. C0re DENSILY ..eeuviiiiiiiiiieiieieeieeit ettt 121
5.4.3. Peripheral Two-Mode Densityccceeeeeriieriieeciieniienieeieesveeeeens 121
5.4.4. Core Membership Degree.........ccceevverieneriiiniineniinicnecieneeneeens 122
5.4.5. Administrator Membership Degreecccevveeviieniencieenieciieeens 122
5.4.6. Administrator Class Centralityccccceceereenervienieneencnieneeeenne. 122

X

6. DISCUSSIONooiiiiiiiiiici e 129

6.1. Summary of FINAINGS........coooiieiiiiiiieeeeeeeeeeeee e 129

0. 1.1, CLOSULC ...ttt ettt st 129

6.1.2. Brid@INg ...coeoiiieeiieeeieeee ettt e e 134

6.1.3. Leader Centralityccccceeriiiiiieiieeiieeieeeee et 137

6.2. Conjectures and Causality.........cccceeecuieeriieeriieeriee e 139

6.3. The Insignificance of StrucCture...........ceecvievieriiieiieeiiee e 147

6.3.1. Substitutes for the Social Networkcccceeieeiiiiiiiniiiiiiceee 149

6.3.2. Reduced Need for Knowledge Transfer.........c.cccceeveeeviiniiiiiennnne 151

7. CONCLUSIONS. ...ttt ettt ettt et be e saeenseeneeneas 154
7.1, IMPLICALIONS. ...etientieeiiieiie ettt ettt ettt e et eesbeesneesabeeaee e 155

7.1.1. Paradigm DiStuption..........ccccueeeiiiieeiiiieniieeeiie e eeiee e evee e 155

7.1.2. Requirements for a New Theory.......cccccceevvuienieniiieniieniienieeieeeeae 157

7.1.3. Research Implications..........cccceccvieriieeiiiieeciie e 159

7.1.4. Practical IMPliCationscceeevvieriieiiieniieieeree e 161

7.2, CONIIIDULIONS. ...contiieiiieiie ettt ettt et e st ebee e 162

72,1, TREOTY c.vieiiieiie ettt ettt ettt et eete e aae e e e saaeenseen 162

7.2.2. MethOdOLOZYccvviieiiieciiieciee ettt e e eas 163

7.2.3. PLACICE .euviiieiieieeiteteete ettt st 164

7.3, LIMITATIONS ..ottt et et e st e b eae 164

7.4. Future Research Dir€Ctions..........cccueevuieriieniieniiieniieeieesiee et esiee e 166

LIST OF REFERENCESoo ittt 168
APPENDICES ...ttt sttt sttt ettt et st 178
V2 1 17 TSRS 196

LIST OF TABLES

TABLE PAGE
1. A Framework of Community TYPESccceevuieriieriiieiieiieeieeie ettt 47
2. A Framework of Communities and Teams............ccccoeverinininieieiieieneeneseeeeeene 49
3. ComMMUNILY SUDZIOUPS ..cvvieiiieiieiieeiieeiie ettt ettt ettt s te et e st e s eesabeeseesnseenes 63
4. Social Network CONSIIUCESccueiiriiriiriirinieieteteetestene ettt 66
5. Community SUCCESS Variablesccceoiieiiieiieiiieieeieee ettt 84
6. Control VariabIesccoeveiiiiniiniiiiiieeeeeeeee e 86
7. Social Network Variablesc..cocoiririiiiiiiiieiiiciceeseeeet e 94
8. Project Selection Criterialcccuiiiieeiieriieeiieeieeiteeiee et site et e sae et esareenbeessaeeseeeneeenne 100
9. Profile Statistics for Sampled Project Communities...........ccvevuervierieneerienieneeniennens 104
10. Normality Tests of Dependent Variables..........cccoecieriieiieniieiiiniecieeie e 107
11. Rotated Component Loadings for Accepted Dependent Variables...........ccceevenneee 110
12. Descriptive Statistics of Subgroups and Research Variablescccccoceeveniinennnens 111
13. Correlation Matrix of Research Variablesccccoeiiiiiiiiiiiiiiniieieeceieeieees 114
14. Summary of Regressions on Group Density..........ccoceevervierieneriicnienenienecnenienens 123
15. Summary of Regressions on Core Densitycecuevvereriinieneeiicnieneniesecsesieneens 124
16. Summary of Regressions on Peripheral Two-Mode Densityccccceveerieneniiennens 125
17. Summary of Regressions on Core Membership Degree...........cccceevveeieneniiinicnennens 126
18. Summary of Regressions on Administrator Membership Degree............cccccveveenee 127
19. Summary of Regressions on Administrator Class Centralitycccccoceeveevennennene 128
20. Summary of Test Results for Closure Hypothesescccocveveriiniiniincniicnccnennne. 130
21. Summary of Test Results for Bridging Hypothesescccceeeriniininiiniencnennen. 135

xi

22. Summary of Test Results for Leader Centrality Hypotheses...........cccceeeevieieiieennen. 138

D-1. Software Downloads Regressed on Group Density..........cccccuveevveenciieenieeenieeennenn. 189
D-2. Page Views Regressed on Group Densityccceeeevieeiiieeiieeeiieesiie e 190
D-3. Software Releases Regressed on Core Densitycccceecveeeciieeiiiieenieeeniie e 191
D-4. Page Views Regressed on Core Density.......cceeecvveeeiieeeiieeniee e e 192
D-5. Code Commits Regressed on Administrator Membership Degree................c........ 193
D-6. Software Releases Regressed on Administrator Class Centralityccccveeeneee. 194
D-7. Page Views Regressed on Administrator Class Centrality...........ccccceevevveercreeennenn. 195

xii

LIST OF FIGURES

FIGURE PAGE
1. Conceptual FramewWorK...........cccciiiiiiiiiiniiiiieieeeee ettt 10
2. A Theory of Social Capitalc.ccccieeiiiiiiiiiiieie et 19
3. Hackman’s Normative Model of Group Effectiveness...........cccecuvevieniienieiiiienieeienne, 41
4. Conceptual Research Modelc.ooociiiiiiiiiiiiiiciiee e 58
5. Development Framework for Social Network Constructs..........c.ceveeveerienersieneeniennne. 61
6. Social Network Model of Community SUCCESS.......cceevuireiieriieiiieiieeieeeie e eee e 71
7. Sample Frame Development Workflowcccceeviiiiiiiniiiiiiiicieeeeeeee e 99
8. Data Compilation WOrkfloW...........ccciiiiiiiiiiiiiiiieeceee e 102
A-1. SourceForge Project Home Page Summary Screen..........coccveeveerieenienieenieeneeeneen. 179
A-2. SourceForge Project Details and Public Areas...........ccoeeveeiienieniienieeieeeeeee e 180
A-3. SourceForge Project Member Pagecoecuieiiiiiieniieeiieieceeee e 181
A-4. SourceForge Project Forum Page Topic LiStingccccecevieniiiienieneencnienceieene. 182
A-5. SourceForge Project Forum Page Discussion TeXtcccecvevieveriieneeneniieneeniennne. 183
A-6. SourceForge Project Statistics Pageccceeviviiiiiiiniiiiiicecceeecee 184

xiil

1. INTRODUCTION

Communities of volunteer individuals and organizations are collaborating to
create and use public domain computer programs, commonly known as “open source
software.” In recent years, these communities have had a surprisingly powerful impact.
For example, 78 million web server sites now utilize the software products which were
created and freely distributed by the Apache open source community. Apache holds a
50% “market share” of this huge software base compared with a 35% share held by
Microsoft. What is even more surprising is that the Apache volunteers have maintained a
substantial market lead over Microsoft since 1995.

Industry players, such as IBM, HP, Computer Associates, Novell, Sun, and
Netscape, view the open source movement as a strategic opportunity, and are dedicating
significant resources to open source projects (Bessen 2005) and/or releasing their
previously closed source software, such as Eclipse, Open Office, and Mozilla, in an
attempt to create open source projects (West and O’Mahony 2005). Red Hat, a
distributor of Linux software, has a market capitalization value of $2 billion. Over a
recent eighteen-month period, 50 new ventures with an open source business model have
attracted some $400 million in venture capital (Lacey 2005). Governments and NGOs
around the world, including both industrial and developing countries, are mandating the
purchase of open source software by their agencies and are encouraging the development
of such software for public purposes (Evans and Reddy 2003, Weber 2003). In

particular, the Chinese government is supporting open source software by funding the

development of a Chinese version of Linux, and by promoting the use of open source as
part of an ongoing program to combat software piracy (Trombly 2005).

In summary, open source software project communities have created much of the
software infrastructure of the internet, they are changing the structure of the computer
industry, they have spawned new entrepreneurial opportunities, and their activities are
increasingly viewed by governments as an important policy issue. Most organizations
and individuals can now benefit directly from the computer programs being produced by
these communities. Yet, all of this has been accomplished by non-paid volunteers and/or
by the employees of corporations who do not directly profit from their employees’
activities. These open source developers operate from remote locations around the globe,
they choose their own tasks, and they work at their own pace. The result has been
described as a kind of “bazaar” of activity (Raymond 1999).

How can this be? Traditional economic theory would predict that open source
projects should not even survive, let alone thrive. Efforts to explain this intriguing
phenomenon have referred to open source as a new form of organization, a new model
for production, and a new kind of innovation. Benkler (2002, 2006) considers open
source to be part of a more generalized set of web-based collective activities which are
characterized by a governance structure that is neither hierarchical nor market-directed,
but rather is a “bottom-up” communal type in which participation is open and voluntary
and is not motivated by economic incentive. Benkler (2002) refers to this phenomenon
as “commons-based peer-production.” Benkler (2002) and Lessig (2001) argue that these
kinds of open and web-based forms of development, production, and innovation offer

certain advantages over market-based and hierarchical forms. They suggest that these

advantages include access to a broader pool of talent, more efficient matching of
contributors to tasks, improved motivation of contributors, and increasing returns
(network externalities) associated with contributor and user participation.

Prior to the introduction of the internet, these “web-based initiatives” were
constrained by high transaction costs associated with communication, coordination, and
transportation. The internet and worldwide web are now drastically lowering these costs,
thereby enabling new forms of collective action and collaboration. In essence, this
phenomenon is now possible because thousands of individuals throughout the world can
work together in developing a single product, as long as that product can be digitized and
made available on the web.

What exactly is open source software? In essence, it is computer software in
which the source code is revealed to the public. This is in contrast to proprietary
software, in which the source code is hidden from the public (e.g. as in the case of most
Microsoft products). The physical significance of revealing the source code is that it
enables anyone with the necessary skills to copy, modify, use, and/or distribute the
software. However, the application of this simple idea has broad and significant
implications with regards to collective production methods, innovation, property rights,
virtual communities, and even culture.

Similar to communities of practice (Wenger 1998, Brown and Duguid 2000),
open source software communities self-organize around a shared interest in the practice
of producing and using certain software applications. However, unlike communities of
practice in which members are often co-located and familiar with each other, these open

source communities are globally-distributed and comprised of largely unaffiliated

individuals. While these groups are referred to in this study as “communities,” they often
do not even resemble the common notion of a community. In effect, they are more like
“communities of strangers.”

While most of the public attention has been directed to large efforts such as Linux
and Apache, the future of open source software may lie in the more than 100,000 open
source projects that have already been registered on the host site SourceForge.net.
However, only a small fraction of these projects have achieved clear success. A study of
SourceForge projects by Capiluppi et. al. (2003) concluded that most of the projects
hosted at the site in 2003 were dead, with only a small fraction showing any activity over
a six-month period. A review of SourceForge by the author showed that 87 projects have
been registered in the domain of genealogy, and yet only 4 or 5 of these appear to have
achieved any significant level of success. Why did these particular projects succeed,
while the others did not?

Efforts to explain the workings of open source software projects have taken
various perspectives, including technological, psychological, ecological, and
organizational. For example, a modular software design is considered to be a critical
technological feature (MacCormack et. al. 2006). In terms of psychological factors,
much research has been conducted into understanding the motivation of contributors who
spend time and effort on open source projects even though many of them receive no
direct financial compensation (Raymond 1999; von Hippel and von Krogh 2003; Lerner
and Tirole 2002; Lakhani et. al. 2002). From an ecological perspective, a survival of the
fittest argument has been proposed based on a limited set of niche opportunities for

particular types of software. As organizational entities, open source software projects

have been studied in terms of the types of online groups or communities that form to
support and enact the projects.

While its roots reach back into the 1960’s, the current open source software
movement only began in the 1980’s, with the most rapid growth occurring within the last
10 years. As would be expected with a relatively new phenomenon, most of the open
source research has been exploratory, descriptive and/or anecdotal. Explanatory work
has been mostly limited to studies of developer motivational factors, with very little
quantitative research involving the correlates of project success. In fact, the very
definition of “success” of an open source software project has been problematic. Based
on the current state of research, we are still unable to adequately address the question:

“Why do some open source software projects succeed while others fail?"

1.1. Research Approach

Part of the difficulty in addressing the mystery of success is the novelty of the
open source phenomenon and the fact that research is still at an early stage. However,
another part of the difficulty is that open source projects are dynamic and complex
entities, with many influencing factors and emergent properties that are difficult to define
and measure. In some respects, a new open source software project is similar to a start-
up new venture, in terms of defining the goal/mission, acquiring human and physical
resources, coordinating work efforts, and competing with other projects and
organizations.

An appropriate research perspective is needed which can adequately represent

these complex and dynamic entities and which can then address their conditions of

success. A social network structural perspective is chosen in reference to that purpose.
Studies of social network structure have been conducted since the 1930’s in the social
sciences, and, more recently, are gaining prominence in many fields, ranging from
corporate strategy to network-based physics. A social network perspective focuses on
the nature and structure of the relationships between social entities, rather than the
attributes of the entities themselves.

The social structuralist perspective is useful because it provides a unifying
framework for a wide range of interdisciplinary concepts, and it also allows for the
precise definition of constructs and the quantitative investigation of success factors. In
addition, very little social network research has been conducted on open source software
project communities and the potential insight to be gained from such an approach is
expected to be significant. In this regard, Healy and Schussman (2003) suggest that:

. researchers should attend more closely to the social structure of the open
source software community. The process of open source software development
is embedded in particular structural and organizational contexts that theorists of
open source software have so far paid little attention to. Investigating them
offers a promising route for an original sociological perspective on this exciting
phenomenon.

A social network perspective is taken, based on the assertions of social capital
theory, which is one of the most prominent of the social network theories. Also
considered are other more domain-specific network studies of the impact of social

structure on the effectiveness of teams and work groups. The associated social network

concepts are used as a platform for synthesizing the results of theory and prior research in

a diverse set of related areas including open source software, teams, communities, and

innovation.

1.2. Research Question
The primary motivation for this research is to investigate the conditions which are
associated with success in open source software project communities. Specifically, the
research is designed to apply a social network perspective towards the study of social
network structures which may be related to success. In pursuit of this goal, the following
research question is defined:
What is the relationship, if any, between the social network structure of an open
source software project community and the success of the community?
This research question defines the phenomenon of interest as being open
source software project communities, with social network structure and community

success as the primary constructs for investigation. The research definitions for

these three concepts are presented in the following section.

1.3. Definitions

In this section, three key constructs are defined which are central to the
specification of the research question, and which also help to define the scope and

approach for the overall research effort.

Open source software project community. In defining the notion of an open

source software project community, it is first necessary to define an open source software

project. For the purposes of this research, an “open source software project” is defined as
a software development project which utilizes an open source license accepted by the
Open Source Initiative (OSI 2004), and which has a unique identity and repository of
source code.

The “community,” then, consists of the population of individuals that emerges to
carry out the open source project. Specifically, this includes individuals who spend a
non-trivial amount of their time and effort on project-related activities. These individuals
are considered to be “members” of the project community (also referred to in this
research as “actors” or “participants”). While it is possible to think of all open source
developers as comprising a kind of community, the study definition is limited to the

community of individuals who are associated with a particular project.

Social network structure. For the purposes of this research, the social network
structure of an open source software project community is defined as the pattern of
interactions and relationships among and between the members of the community
(ingroup ties), and between members of the community and other individuals outside of
the community (outgroup ties). The focus, then, is on the relationships between

individuals rather than the attributes of the individuals themselves.

Community success. The construct of open source software project community
success can be defined in various ways, depending upon the perspective of the relevant
stakeholder, as well as the type of community that is involved (Crowston et. al. 2004).

Perhaps the most fundamental definition for community success is “the general level of

activity associated with the community.“ Thus, successful communities are those which
attract many participants who collectively spend a significant amount of time and effort
on community activities. For certain communities which create a product such as
software, another construct of success can be defined as the “output” of the community
(e.g. the quantity of software produced). Finally, community success can also be
measured in terms of “impact” beyond the boundaries of the community (e.g. extent to
which software produced by a community has resulted in industry-wide changes.) For the
purposes of this research, however, the success of an open source software project
community will be conceptualized in terms of its member activity level and its output of

software.

1.4. Dissertation Structure

In the opening chapter, the intriguing nature of the open source software
phenomenon is described along with its surprising impacts on business and society.
Some of the efforts to explain the “economic mystery” of its very existence are discussed,
although it is noted that much of this mystery seems to remain. The “success mystery” is
then described along with the social network based research approach that is being used
to address this mystery. The primary research question was posed and key related
constructs were defined. = The remainder of this dissertation is organized into the
following six chapters and follows the conceptual framework which is presented on

Figure 1.

Figure 1

Conceptual Framework

Social Capital
Theory

Studies of Open
Source, Communities
and Innovation

Social Network
Studies of
Teams

\ 4

Constructs &
Propositions

A

Research
Variables <

h 4

Hypothesis
Testing & Results

A

Discussion of
Findings

h 4

R e T <

Implications of
Findings

Chapter 2: This chapter begins with an overview of theoretical and conceptual
foundations, involving a description of the various relevant knowledge
domains and how they relate to this particular research work. For each

domain, a review of the literature is presented with special emphasis on

B e R

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

aspects of the literature that relate to the research question.

10

Chapter 3:

Chapter 4:

Chapter 5:

Here, the overall research model is described. This model incorporates the
foundational theories and other research results into a conceptual model of
the relationship between social network structure and open source
software project community success. This is followed by a definition and
description of all research constructs and a description and justification of

the propositions to be considered.

In this chapter, the research method and study design are presented, along
with a description and formal specification of the research variables that
are used in defining the testable hypotheses in Chapter 5. Then, the
sampling strategy is presented and the procedures for extracting and
compiling archival data for the sampled projects are described, followed
by a description of the resulting project sample and the associated research

dataset.

Chapter 5 includes a discussion of the analytical procedures that were
performed on the research dataset to test the hypotheses. Key data
analysis procedures included principal component analysis, regression
assumption testing, and regression analysis, including both linear and

quadratic. This is followed by a presentation of the results.

11

Chapter 6:

Chapter 7:

In this chapter, the results presented in Chapter 5 are summarized in
reference to the hypotheses and prior literature. This is followed by the

presentation and analysis of a set of conjectures for explaining the results.

In the last chapter, the fundamental conclusions of the research are
summarized and discussed, along with their implications for theory,
research and practice. This includes a discussion of the contributions to
research and practice, research limitations, and the directions for future

research work.

12

2. LITERATURE REVIEW

This chapter contains a review of literature regarding theoretical work, empirical
studies and other publications which are relevant to the dissertation. In the first section,
each literature domain is noted and its relevance is described. In subsequent sections,
each of these domains is reviewed including social networks, open source software,
teams and work groups, communities, and innovation. Each section focuses on aspects of
the domain that are important for this work, ending with a subsection which describes the

social network perspectives and studies that have been conducted in the domain.

2.1. Theoretical and Conceptual Foundations

Social network analysis and theories involving social structure are fundamental to
the work. The structural dimension of social capital theory and social network studies of
centrality and prominence provide the primary theoretical foundations. Studies of social
structure that have been performed in various relevant domains including open source
software, teams, communities, and innovation are considered. Social network analytical
techniques are also applied in defining and calculating social structural measures for the
purpose of operationalizing and testing the hypotheses.

Of course, the target phenomenon for this work is open source software, and the
scope of the research includes the projects which are formed to create and update the
software as well as the communities of individuals that emerge to carry out the projects.
Beyond the social network studies, the other areas of interest regarding open source
software include explanatory mechanisms, community formation and participant roles,

developer motivation, work processes, and the measures and factors of success.

13

The concept of “team” has been selected as the primary reference phenomenon,
and open source software project communities are presumed to be a kind of software
development team, considering that both groups are task-driven and that the software
product created by an open source project community may be virtually indistinguishable
from the software created by a traditional team. Key aspects of the team literature
include social structural studies of team and work group effectiveness as well as virtual or
emergent organizations, in that open source project communities are sometimes described
as virtual organizations.

While the team is used as the primary reference concept, it is also recognized that
open source software project groups are a kind of community. Therefore, prior studies of
communities are considered, especially those involving online or virtual communities.
The connection of open source software projects with innovation is recognized and
therefore some of the key aspects of innovation research are also reviewed, especially the

literature regarding open and distributed innovation.

2.2. Social Networks

In fundamental terms, a social network is a network representation, in which the
nodes of the network are social entities (such as people or organizations), and the links of
the network are relations between the social entities (such as advice-giving or trade). The
term “‘social network analysis” refers to a broad set of methods and tools for coding and
analyzing social network representations. In contrast, the domain of social network
theory involves the application of network concepts and perspectives to various aspects

of social psychology, sociology, and organizational science. The basic concepts of social

14

network analysis are described in the next section, followed by a review of relevant social

network theories and a discussion of network-based theories of social capital.

2.2.1. Social Network Analysis

First noted in 1934 in the “sociograms” of Moreno (1934), social network
analysis has grown into a large collection of methodologies, measurements, and tools that
can be used for the description and analysis of social networks and social structure
(Wasserman and Faust 1994, Scott 2000, Carrington et. al. 2005). The primary
mathematical foundation for social network analysis is provided by graph theory, and the
methods draw heavily on matrix algebra for coding and manipulating network data.

The basic units of analysis are the dyads and triads which represent pairs and
triples of nodes. Features of dyads that are commonly studied include reflexivity,
symmetry, and transitivity (Wasserman and Faust 1994). At the network level, the
primary types of constructs that are defined include density, centrality and centralization,
cliques and components, and positions and structural equivalence (Scott 2000). The
social network analytical method is, by definition, a multi-level method, in that the nodes
reflect data at an individual unit of analysis, the links reflect data at the relational (dyadic)
level of analysis, and the resulting measures of network structure are produced at the
group or network level of analysis.

Centrality is one of the most ubiquitous of the social network measures. It is
typically described as a “location” of an individual actor within a network which is
associated with importance or prominence (Wasserman and Faust 1994). Many

alternative ways of defining centrality have been proposed, with the most popular being

15

degree (the number of ties of the focal actor with other actors), closeness (the extent to
which the focal actor can reach other actors through “short paths™), and betweenness (the
extent to which the focal actor is located on paths which connect other actors to each
other).

A fairly recent extension of the notion of centrality has been suggested by Everett
and Borgatti (1999), in which the centrality definitions are applied to subgroups (of a
larger group or network) rather than to individual actors within a network. Questions
which could be addressed with such methods include: ‘how central are the women within
an organization, as opposed to the men?’ or ‘to what extent are financially-oriented
individuals central to the advice-giving networks of the firm?’

Social network analysis has a number of positive features with respect to its use as
an analytical tool. Its use can reveal patterns that are not discernable with other methods.
These patterns may be reflected in quantitative social network measurements or they may
be observed qualitatively in two- or three-dimensional graphical network representations.
Further, the use of social network analysis provides a quantitative method for studying
complex social phenomena such as kinship, community structure, corporate interlocks,
and elite power, whose investigation would otherwise be limited to the use of qualitative

tools.

2.2.2. Social Network Theory

Social network theories utilize a social structural perspective in which the focus of
investigation is the pattern of interactions and relationships among and between the social

entities. These theories consider the relationships between members rather than the

16

attributes of the members themselves, and they involve the study of the social network
structures of groups and their impact on either individual outcomes or group outcomes.

There are two primary branches of theory development in social networks. The
oldest branch is based in the social sciences, primarily in sociology, social psychology,
and organizational theory. One of the primary theoretical domains of this branch is that
of social capital (which is described in the following section). The other main branch of
theory development is centered in the physics community. The physics studies began in
the late 1990’s based on the work of Watts (2003). In the process of studying the small-
world phenomenon, Watts discovered that a particular network structure, often identified
by a power-law distribution (also known as a Pareto or Zipf curve), is startlingly
common, and is found in a wide range of natural, social, and artificial phenomena
(Barabasi 2002, Watts 2003, Buchanan 2002). Such networks, which are often described
as “small world networks” or “scale-free networks,” are characterized by a set of
relatively large “hub nodes” which comprise 20 percent of all the nodes but which
account for 80 percent of all the links. This stream of research does not often connect
with the social science based structural research, even though many of the problems
addressed are essentially the same (Freeman 2004). Some of the structural research work
associated with open source software has been based on this physics genre.

In one respect, social network theory is a frame of reference which connects a
wide variety of organizational research including theories of resource allocation, power
differences, routine decision rules, complex cognitive constructions, sets of contractual
relationships, rational solutions to incentive problems, and complex adaptive systems

(Lomi and Pattison 2004). Lomi and Pattison (2004) argue that organizational

17

researchers in many of these areas have a common interest in understanding the role of
network ties in the evolution of various social forms and settings such as firms, markets,
industries, and states. Within these research communities, they state that network-based
models and methods are valued for their ability to address a wide variety of substantive

and analytical issues.

2.2.3. Social Capital Theory

One domain in which social network theory is perhaps the most prominent is the
area of social capital. Social capital theory provides a collective context in which
individual relationships are embedded within a network of relationships (Granovetter
1985). Social capital consists of both the network itself and the assets that may be
mobilized through the network (Bordieu 1986). Social capital can be applied at an
individual level (considering individual benefits) or at a group level (considering group
benefits). Groups can be defined as teams, communities, organizations, and even regions
(Putnam 2000) and nations (Fukuyama 1995).

Social capital theory uses an information processing paradigm (Simon 1976) to
explain how social network structure affects social outcomes at the individual level and at
the group level. Social ties are viewed as conduits for the flow of information,
knowledge or other resources. Lin (2001) argues that social networks are the foundation
of social capital. As noted on Figure 2, his theory of social capital begins with the
collective assets of the network as a whole and the structural and positional
embeddedness of particular actors. These constructs are related to accessibility (extent to

which resources can be accessed) and mobilization (extent to which these resources are

18

used). These constructs then result in returns to the individual or to the group, including

both instrumental returns and expressive returns.

Figure 2
A Theory of Social Capital
(Adapted from Lin 2001)
Collective
Assets Instrumental
Returns
- economy
- technology - wealth
- social/ political/ Accessibility - power
cultural participation - reputation
- network locations
- network resources
Structural &
Positional Expressive
Embeddedness Mobilization | Returns

- use of contacts - physical health
- user of contact - mental health
resources - life satisfaction

Nahapiet and Ghoshal (1998) identify three dimensions of social capital including
cognitive, relational, and structural. The cognitive dimension includes the shared
vocabulary and narratives of the social group. The relational dimension considers the
constructs of trust, norms, and identification. However, it is the structural dimension that
is most relevant to social structural research. This dimension considers constructs of
network ties, network configuration, and appropriable organization (whereby

organizations that create value in one context may have value in another context).

19

Burt (2001) addresses an apparent paradox regarding the value of an open
network (with links extending outside of a social group) versus a closed network (which
is internally cohesive). He argues that both types of networks are valuable, depending
upon the context. Open or brokerage networks, which are the basis of Burt’s structural
holes theory (Burt 1992), are considered to be valuable if there is a need for accessing
resources outside of the group, where such resources tend to be non-redundant. Closed
networks, which are studied by Coleman (1988) and others, seem to be most useful when
resources are already available and the focus is on their use.

However, Burt’s notion of “brokerage” has an alternative interpretation based on
the intention of the actor in the brokering position. This type of network position can be
used to keep the other actors isolated in order to appropriate value from them. This is
referred to as the “tertius gaudens” orientation (or “the one who benefits”). The
contrasting viewpoint is a “tertius iungens” orientation (or “the one who joins”), in which
the focal actor utilizes the brokering position to help connect the other actors to their
benefit. This alternative interpretation of the structural holes position is often referred to
as “bridging.”

2.3. Open Source Software

Most of the research regarding open source software has been conducted within
the last 10 years, and much of it has been descriptive and exploratory. The most
commonly used methods are qualitative except in the case of contributor motivation in
which surveys are primarily used. The main objectives of the work completed to date
have been to describe the phenomenon in general and to address the mystery regarding

how these projects can work at all.

20

The literature review of open source software is divided into five sections. The
first section covers general descriptive literature, some of which has been written by open
source practitioners who often take the perspective of an advocate. In the next section,
the various metaphors are covered which have been used to describe the mechanisms by
which open source software projects function. The third section includes a review of
fairly extensive studies that have been performed which attempt to explain the motivation
of volunteer non-paid contributors. In the fourth, the limited studies that directly address
open source software project success factors are reviewed. In the final section, social

network studies of the open source phenomena are presented.

2.3.1. Descriptive Studies

The open source movement is characterized by self-organization, a modular
structure of goods, and a culture containing certain identifiable norms and standards, such
as notions of freely-redistributable products, strict customs regarding the rights of the
founder-leader, and contributor attribution (Raymond 1999, O’Reilly 1999, lannacci
2003). Perhaps the most fundamental and enduring aspect of open source culture is the
notion of freely available software, as originally expressed in The GNU Manifesto
(Stallman 1985). As described by Raymond:

All members agree that open source (that is, software which is freely re-

distributable and can readily be evolved and modified to fit changing needs) is a

good thing and worthy of significant and collective effort. This agreement

effectively defines membership in the culture. (Raymond 1998)

However, it must be noted that the notion of “freely available software” refers to

its accessibility and not its price. As such, even though open source software is often

21

made available free of charge, the fundamental premise of the movement is that the
software must be accessible to anyone for their use and modification, and charging a fee
for open source software is not prohibited.
Weber (2004) notes three essential features of the culture that are reflected in the
Open Source Definition (OSI 2004):
1. Source code must be distributed with the software or otherwise made available
for no more than the cost of distribution.

2. Anyone may redistribute the software for free, without royalties or licensing fees
to the author.

3. Anyone may modify the software or derive other software from it, and then
distribute the modified software under the same terms.

Descriptions of open source software projects indicate that they are typically
initiated by an individual (or a small group) who assumes the role of founder and usually
provides (or provides access to) systems and development components, as well as
communication infrastructure. Once an initiative has been started, a maintainer
(administrator or leader) role typically emerges that continues to monitor the progress of
the project and provides certain ongoing services such as maintenance of the enablement
system (e.g., the web site) and enforcement of (or possibly adjustment to) the project
norms (Almarzouk et. al. 2005).

The development and communications infrastructure is often provided by a
hosting organization such as SourceForge (2005) or Savannah (2005), which in some
respects acts as an incubation center for new projects. SourceForge, for example,

provides a web-based host platform which includes a source code repository (version

22

control system), public forum facilities, project web pages and a search engine. This host
platform also includes the rules and policies which govern the behavior of community
members. The host organization will typically provide some general policies while
individual community leaders will often provide more specific policies geared to the
needs of their particular community.

As a project community grows, various developers may become aware of the
project and gain sufficient interest to join the community and to assist in expanding the
code. This process may progress as other individuals start to use the project software and
then sometimes choose to participate (e.g. by reporting bugs or requesting new features).
In large well-developed projects, third party organizations such as code distributors may
become involved to package, distribute and service the software. If the project is aligned
with their strategy, sponsoring corporations may provide contributions of cash or
facilities or in-kind contributions of employees who act as developers on the project.
Non-profit foundations may be formed to assist in promotional efforts, hold any physical
assets that may be needed, manage the intellectual property of the project (under open
source licenses), and protect the developers from law suits.

The individuals that participate in open source software projects are often
described as comprising a community. These communities have been described as
having an onion-like structure, with a central core of highly active individuals surrounded
by other layers of progressively less active individuals. One example of this is presented
by Ye et. al. (2005) in which the central core is composed of the project leaders and core
members, with five outer layers containing active developers, peripheral developers, bug

reporters, passive users, and stakeholders, respectively.

23

Most studies of open source software do not differentiate the various types of
projects that may have quite different characteristics. However, there appear to be
significantly different kinds of projects that warrant separate treatment and a few studies
have addressed this issue. For example, West and O’Mahony (2005) describe mature
projects that require a kind of transformation in order to achieve their mature status:

Mature community managed projects have developed a series of major releases.

They have defined membership criteria or boundaries: contributors know whether

they are in or out of the project. Mature projects have adopted governance

mechanisms that enable representation in commercial and legal settings. They
also have an ecology of institutions that support and/or extend their work. These
institutions may be non-profit organizations such as the Open Source

Development Lab, firms developing complementary products, or other

community projects with which they collaborate. (West and O’Mahony 2005)

Ye et. al. (2005) identify three types of projects that are suggested to have
different characteristics in terms of goals, styles of control, and patterns of evolution for
the software code and the project community. These types include:

1. Exploration-oriented projects - attempt to create leading edge solutions
which involve innovative approaches.

2. Utility-oriented projects - are directed towards filling a void in
functionality.
3. Services-oriented projects — are geared to maintaining stable code and

providing ongoing services to large groups of stakeholders

Another typology of projects is noted by West and O’Mahony (2005), who
distinguish between community-founded projects and spin-off projects, in which
organizations attempt to open up previously proprietary code. The authors note that spin-

off projects seem to have a different life cycle. In the start-up phase, for example, the

24

“seed” code base is usually large and well-established, and its introduction to a new open
source software project community often raises special technical, relational, and legal
issues. They hypothesize that mature spin-off projects require different kinds of project
leadership in order to address issues related to the intentions of the sponsor, assuming
that the sponsoring organization remains heavily involved. They further clarify that
spin-off projects are different from corporate-sponsored projects, in which corporations
supply various types of support but do not become directly involved in the governance of
the project.

Other types of projects may involve those which are dominated by paid
individuals working for sponsoring corporations, as opposed to those which are
dominated by non-paid volunteers. In terms of software type, Raymond (1999) has
suggested that open source software projects may have different characteristics
depending upon the type of software involved, where he identifies three types:
infrastructural software, application software, and middleware.

Somewhat related to the identification of different project types, developmental
taxonomies have been proposed to identify different project growth stages that are
associated with different project characteristics. For example, SourceForge recognizes
seven categories of “development status” (the first six of which are described by Rothfuss

2002), including:

1. Planning — No code has been written. The scope of the project is still in flux.

2. Pre-alpha — Very preliminary source code has been released. The code is not
expected to compile or even run.

25

3. Alpha — The released code works at least some of the time, and begins to take
shape. Preliminary development notes may show up. Active work to expand the
feature set of the application continues.

4. Beta — The code is feature-complete, but retains faults. These are gradually
weeded out, leading to software that is ever more reliable.

5. Production/Stable — The software is useful and reliable enough for daily use.
Changes are applied very carefully, and the intent of changes is to increase stability,

not new functionality.

6. Mature — There is little or no new development occurring, as the software fulfills
its purpose very reliably. Changes are applied with extreme caution, if at all.

7. Inactive — There is no project activity of any kind.

The above life cycle description is somewhat idealized, and there is evidence that

many projects never move beyond the early stages (Capiluppi et. al. 2003). These types

of projects appear to become inactive without ever achieving any useful level of

functionality. Capiluppi et. al. (2003) suggest that this may be due to the limited supply

of open source software developers in relation to the large demand for such developers

that is generated by the many new open source software project startups.

In some cases, descriptions of open source software projects have been presented

as normative or prescriptive, although the basis for most of these descriptions is limited

because they are typically based on a single case, a very small sample of projects, and/or

non-systematic studies. Some of the important social and technological features that

have been proposed (Raymond 1999, Weber 2004, Sturmer 2005) include:

e Large number of project participants
e A bias against forking a single project into multiple projects

¢ Evolution of cooperative norms

26

¢ The lack of specific deadlines or task assignments
¢ Version releases that begin early in the project and continue on a frequent basis
e Separate releases for stable versions versus cutting edge versions

e Toleration for many different ideas and allowing for code branches that remain
within the scope of the project

e A large and diverse group of developers and users with different skill sets

e Modular software design

o Sufficiently good seed code that must run and must have a compelling design
e Sufficient promotional activities designed to “get the word out”

¢ Application of an appropriate open source license

¢ Use of a well-known programming language

In terms of desirable features of the open source software project community,
Raymond (1999) has suggested that a strongly interconnected core combined with
loosely coupled collaborations in peripheral parts of the community is a necessary feature
to address the problem associated with Brooks’ Law, which states that the complexity
and communication cost of a software development project increases with the square of
the number of developers', while the amount of work accomplished increases linearly
(Brooks 1975). However, this “solution” to the problems associated with Brooks’ Law
does have its cost, in terms of redundant efforts that typically occur within the loose

collaborations at the periphery. This problem appears to be mediated, at least in some

" This geometric effect is noted if the software development team is conceptualized as a social network of
developers. In this case, if the team includes “g” developers, then the maximum number “L” of possible
links between the developers is calculated as L = g (g-1) / 2. (Raymond 1999)

27

cases, by a global supply of open source software developers who may be willing to
participate.

The role of the project leader(s) has also been suggested to be of critical
importance (Pavlicek 2000), and some of the important features of open source software

project leadership that have been proposed (Raymond 1999, Weber 2004) include:

e Leadership style which is not based on a power relationship

¢ Delegation of as much as possible

e Treating users as co-developers

¢ Keeping developers and users constantly stimulated and rewarded
e Listening to the beta-testers

e Having the ability to recognize good designs and incorporate them into the
project

e Having good design and coding skills as well as people and communication
skills

2.3.2. Mechanisms and Metaphors

Various metaphors have been proposed in an attempt to describe the mechanisms
involved in open source software projects and to explain how they can work at all.
These metaphors have included collective actions (Benkler 2002; von Hippel and von
Krogh 2003), forms of production (Benkler 2002; Kogut and Metiu 2001), forms of
innovation (von Hippel and von Krogh 2003; von Krogh et. al. 2005), organizational
ecologies (Chengalur-Smith and Sidorova 2003), interactive social systems (Lanzara and

Morner 2003), self-organizing processes (Morner 2003), complex adaptive systems

28

(Muffato and Faldani 2003), social networks (Gao et. al. 2003), virtual communities
(Crowston and Scozzi 2002), and political economies (Weber 2004).

The metaphors of community, innovation, and social network are discussed in
later sections. In this section, the metaphors of collective action, organizational
ecologies, and self-organizing agent-based systems are discussed. While these metaphors
can be useful in conceptualizing the kinds of mechanisms at work in open source
software, they do not, by themselves, represent an explanation of the antecedents for

SucCcCess.

Open source software as a collective action. Collective action theory addresses
the logic and problems associated with the production and use of public goods (Hardin
1982). Public goods are defined as goods which are sometimes nondepletable but are
always nonexcludable (Barry & Hardin 1982, Olson 1965).> Viewed from the
perspective of the consumer, public goods are nondepletable in that one individual’s
consumption does not impact another individual’s consumption — everybody can get a
copy. They are also nonexcludable in that consumption is open to every member of the
group, whether or not they have contributed to the provision of the good — everybody has
a right to a copy. Viewed from the perspective of a potential developer (contributor),
these properties describe a type of social dilemma (Dawes 1980, Hardin 1968), whereby

individuals may not be motivated to contribute but rather may choose to wait for others to

? For example, public television is both nondepletable and nonexcludable, while a public park is only
nonexcludable — because it is physical space, it is depletable.

29

make contributions, thereby leading to suboptimal results (involving quality, usefulness,
usability, stability, timeliness or even existence).

Open source software is clearly a public good, in that it is nondepletable (due to
its digital nature) and nonexcludable (due to the nature of open source licenses).
Therefore, open source software projects are viewed as collective actions, where the
projects must address the social dilemma and the fundamental supply problem. It is
addressing this collective action problem that has inspired the many studies of contributor

motivation.

Open source software as an organizational ecology. When viewed as an
organizational ecology, the persistence of certain open source software projects can be
explained by using a “survival of the fittest” argument, with respect to various niches that
exist for particular types of software. Also implied by an ecological view is the existence
of a first-mover advantage.

Lanzara and Morner (2003) view open source projects as knowledge creation
efforts which operate within an ecology of agents, artifacts, rules, resources, activities,
practices, and interactions. They examine the creation and use of knowledge artifacts,
and support the application of the metaphor by identifying ecological mechanisms of
variation, selection, and stabilization that are manifested in open source projects.

Chengalur-Smith and Sidorova (2003) use a population ecology perspective, and

propose (but do not test) four related hypotheses:

30

1. More reliable open source projects are more likely to survive.

2. Size of the open source project will be positively related to project
reliability and hence to project survival.

3. Age of the open source project will be positively related to project
reliability and hence to project survival.

4. Open source projects that occupy a broad niche are less likely to survive in

the short term.

Open source software as a self-organizing agent-based system. A number of
researchers have concluded that open source software project communities are self-
organizing systems. For example, Morner (2003) uses autopoietic organization theory
(Luhman 1984), which is based on the self-organizing concept of autopoiesis (‘“self-
maintenance”) to describe and analyze open source projects. She concludes that
communication connectivity and systemic memory are important stabilizing factors
because “they reduce the overall need for coordination and therefore make the self-
organization of developers easier.” Muffatto and Faldani (2003) view open source
software as a complex adaptive system in which mechanisms of self-organization result
in emergent behaviors. They identify particular features of open source projects which
correspond with the complexity-related concepts of variation, interaction, and selection.

Another group of researchers take an explicit agent-based view and create agent-
based simulation models in an attempt to understand the dynamic mechanisms involved.
Madey et. al. (2004) have created a Swarm-based simulation model with parameters
based on data collected from the SourceForge archives. In their model, they define a
project swarm (for a particular project), which is embedded in a cluster swarm (a group

of interconnected projects), which is embedded within an open source software

31

development swarm (representing, for example, the entire set of projects hosted by
SourceForge). Developers are represented as agents who, at each time point in the
simulation, can choose to start a new project, join an existing project, or quit an existing
project. The growth of an “artificial SourceForge” is then simulated and the results are
compared with empirical data from SourceForge. They conclude that preferential
attachment modified by a dynamic “fitness factor” provides the best fit (Barabasi 2002)
and they use this observation to conclude that open source software project communities
are self-organizing entities.

Wagstrom (2004) has created an agent-based model (Wagstrom et. al. 2005) with
parameters based on data collected from three sources: 1) the Advogato.org social
networking site, 2) web log aggregators which capture the blogs of open source
developers, and 3) mailing lists of selected open source projects. In the model,
developers are represented as agents who are seeking a particular kind of software. This
desire is represented using an NK model (Kauffman 1993) to represent a string of
features, and agents are able to change features at each time point in order to achieve a
better fitness value. Agents then make decisions regarding project participation based on
the extent to which the project features fit with their desires. The resulting simulated
growth and decline curves show patterns which resemble those observed in actual

projects.

2.3.3. Developer Motivation

Studies have shown that contributors are not normally motivated by traditional

economic incentives, but rather by instrumental factors associated with fulfilling a need,

32

and by intrinsic factors such as enhanced reputation, expertise development (learning),
self-fulfillment, and basic fun and enjoyment (Raymond 1998, 1999, von Hippel and von
Krogh 2003, Lerner and Tirole 2002, Lakhani et. al. 2002). Raymond (1998) explains
this by characterizing the open source movement as a “gift culture,” where benefits
accrue from the reputation for giving away one’s time, effort, and creativity. However,
he also notes that some contributors may be more motivated by the notion of pride of
craftsmanship, which also accrues benefits in terms of reputation, but based on a different
motivational concept.

A great deal of this research has been motivated by the collective action problem
and for finding factors which explain how this problem can be overcome in active open
source software projects. It should be noted, however, that a survey by Lakhani and Wolf
(2005) shows that approximately 40 percent of open source developers are not
volunteers, but rather are paid employees of organizations which encourage or even
direct their employees to work on particular open source projects. In this context, the
collective action problem does not seem to apply and, in fact, a new avenue of research
that is developing involves studying the motivational factors of organizations that provide

such support (Bessen 2005).

2.3.4. Success Studies

While many of the studies described in the previous sections have implications
regarding factors of success, none of these studies address the question of success factors
for specific projects in a systematic way. For example, the agent-based models of Madey

et. al. (2004) and Wagstrom et. al. (2005) attempt to suggest the general mechanisms by

33

which projects grow and decline. However, these results are not applicable to the success
or failure of particular projects. In terms of studies of contributor motivation, Weber
(2004) recognizes the limitation of these works: “The summary point is that individual
motivations do not make up anything like a full explanation for the success of open
source.” In this section, a few studies that directly address open source software project
success factors are described.

A statistical analysis in April and May of 2002 by Krishnamurthy (2002) was
conducted on SourceForge projects which were categorized as being in a “mature”
development status. Descriptive statistics for these projects show that “the vast majority
were developed by a relatively small number of individuals, few of these projects
generated much discussion, projects with more developers tended to be viewed and
downloaded more often, the number of developers working on the project was correlated
with the age of the project, and a smaller percentage of participants were assigned as

2

project administrators in larger groups.” In this study, the implied measure of success
was the project’s status as “mature.”

In a large sample study of SourceForge projects, Healy and Schussman (2003)
take an approach similar to Krishnamurthy (2002) by generating various descriptive
statistics for active open source software projects including developers, commits,
downloads, site views, unique message authors, and messages. They observe that many
of these measures exhibit a power law distribution and that only a few projects achieve

clear success. They recognize that the work to date does not address the success

question, and they offer the following hypotheses for future research regarding success:

34

1. The more successful an open source project, the more professional its core
contributors will be.

2. Successful open source projects will tend to have core participants

mobilized in a way similar to core participants in successful social movement

organizations. (Effective project leadership seems to us one of the most likely
candidates for differentiating successful projects from unsuccessful ones.)

3. Successful open source projects will tend to have a strong hierarchical

component, at least in the ways that they manage the relationships between lead

(and core) developers and other contributors.

4. The closer a successful project is to the core of the broader open source

software community, the more hierarchy will be found in its management style.

Thus, for instance, the social organization of kernel hackers will be more

hierarchical than that of developers of add-on applications for the GNOME or

KDE desktop environments, because the kernel is the essence of the operating

system, whereas additional text editors or desktop calculators are much less

important. (Healy and Schussman 2003)

Stewart and Ammeter (2002) conducted an analysis of 240 open source software
projects to investigate factors which lead to attracting user attention (“popularity’) and
developer activity (“vitality”’). They examined the effect of organizational sponsorship,
target audience (developer versus end-user), license choice, and development status.
Their preliminary results indicate that vitality significantly affects popularity, and that
sponsored projects are more popular than non-sponsored projects. The surprising
preliminary conclusion was that vitality was not affected by sponsorship, development
status, or target audience.

Crowston and Scozzi (2002) conducted a multiple regression analysis of
SourceForge data from 2001 to test success measures that might support Katzy and

Crowston’s (2000) theory of competency rallying which relates to the success of virtual

organizations. Four open source software project measures were defined which were

35

somewhat related to the four independent variables described by competency rallying
theory: 1) identification and development of individual competencies, 2) identification of
market opportunities, 3) marshalling of competencies, and 4) management of a short-term
cooperative effort. Three measures of success are defined: 1) interest shown by users, 2)
development status, and 3) intensity of work undertaken by developers. They find some
support for their hypotheses for two of the three success measures.
In a subsequent paper devoted to the subject of success measures, Crowston et. al.
(2004) present a range of measures that could be used to assess the success of open
source projects. They develop these measures based on a literature review, a
consideration of the nature of the open source development process, and the opinions of
open source project participants. They describe measures along the following
dimensions, based on the type of analysis that they conducted, and note that the use of a
particular set of measures is dependent upon the research purpose and the particular
stakeholder perspective of interest:
1. Review of literature
System and information quality
User satisfaction and use
Individual or organizational impacts
2. Consideration of the open source process
Project output and process
Outcomes for project members
3. Opinions from open source project participants
User - satisfaction and involvement
Product - meets requirement, code quality, portability, availability
Process - activity, adherence to process, bug fixing, time, age
Developers - involvement, varied developers, satisfaction, enjoyment

Use — competition, number of users, downloads
Recognition — referral, attention and recognition, spin-offs, influence

36

In a more recent effort to address open source project success, Crowston et. al.
(2005) outlined an approach for studying the work practices of open source project
groups and relating these practices to team effectiveness. In this paper, the authors utilize
the Hackman model of group effectiveness (Hackman 1986)°, and combine it with
theories of coordination and collective mind to suggest a set of propositions for relating

work practices to team performance in open source software projects.

2.3.5. Social Network Perspectives

A limited number of studies of open source software projects and communities
have been conducted with the use of social network analysis, and of these, even fewer
have taken a social network theoretical perspective. Most of these studies have used
social network analytical methods to describe and characterize the projects and associated
project groups, while only a very small number have used a social network perspective as
a framework for theory building.

With the objective of determining what a “typical” open source software project
looks like, Hunt and Johnson (2002) studied the activity distribution of approximately
4,000 projects on the “most active list” of SourceForge in October and November of
2001, using number of downloads per week as the measure of activity. They found that
the distribution generally followed a Pareto curve. They suggest that this may result from
the winner-take-all nature of the projects.

Madey et. al. (2002) studied the social networks of 39,000 SourceForge projects

from January 2001 to March 2002. They defined a link to exist between two developers

* The Hackman model is illustrated on Figure 3 and discussed in section 2.4.1.

37

if those developers were both registered for the same open source project. They observed
that the number of developers on a project, number of projects served by a developer, and
cluster size (excluding the largest cluster) all followed power law distributions. Further,
they noted that networks associated with individual projects are connected together into
clusters by a small number of “linchpin developers.” They interpret the power law
results as evidence that open source projects are self-organizing entities.

In a subsequent study of 50,000 SourceForge projects by Gao et. al. (2003), they
define two types of nodes (bipartite graph): developer nodes and project nodes, and they
define a link to exist between a developer and a project if that developer is registered on
that project. The study was conducted over a two year period between 2001 and 2003 in
an attempt to identify dynamic patterns that exist within the overall SourceForge network
of practice. They also observed the power law in the degree distribution and the cluster
distribution, and they observed a clustering coefficient of 0.7 (compared with 0.2 for a
random network of similar size). In terms of the dynamics over the two year period of
study, they observed that the network diameter decreased from 8 to 6 and that the average
degree increased (indicating greater connectivity).

This line of research was continued by Xu, et. al. (2005). Using a 2003 data
dump from SourceForge, they again found the power law distributions in various
measures that are indicative of small-worlds networks. Based on an analysis of
diameters, they conclude that both core developers and non-core developers are important
in connecting the overall open source community, primarily due to their facilitation of

communication flow between projects.

38

Wagstrom et. al. (2005) studied the structure of the overall open source
community by using a variety of data sources, including: 1) the Advogato.org social
networking site, 2) web log aggregators which capture the blogs of open source
developers, and 3) mailing lists of selected open source projects. Comparing his results
with the studies of Madey and others, Wagstrom concludes that there are more links
between projects than was originally thought, which indicates that the overall open
source community is cohesive. He further notes that the prior assumption that cliques
exist within this overall community may not be valid, in that such cliques were not found.

Crowston and Howison (2004) examined 120 project teams (communities) from
SourceForge and analyzed interactions associated with the bug reporting archives. In
particular, they measured and compared the “communication centralization”* measures of
the different projects. They found a wide variation of centralization among the projects,
and further found that this variation was negatively correlated with the number of
developers and active users associated with the bug reporting system — i.e., the larger
projects were less centralized. They conclude that it is wrong to assume that all open
source projects are associated with a particular social structure and that the examination
of social structure offers an interesting avenue for future research. In a practice sense,
they suggest that open source project teams should spend more effort on creating social
structures which are considered to be favorable.

In summary, the works of Madey and Wagstrom are focused on the overall open

source community (across many projects), and do not address the networks associated

* The authors differentiate “communication centralization” from “code development centralization”, and
suggest that the “onion models” of community structure depict the development-based measure, but not the
communication-based measure.

39

with particular projects. Crowston and Howison do address the social networks of
individual projects. However, none of these works are explicitly informed by theories of
social structure, but rather they are based on research associated with software
development and team effectiveness (Crowston), or they are motivated by the desire to

parameterize agent-based models (Madey and Wagstrom).

2.4. Teams and Work Groups

This section begins with a review of relevant studies of teams and work groups
especially with regard to their effectiveness. Open source project communities are often
described as “emergent,” and the next section includes a discussion of emergent and
virtual organizations. This is followed by a discussion of social network perspectives that

have been applied to teams and work groups within an organizational context.

2.4.1. Work Group Effectiveness

Literally hundreds of studies of teams and work groups and the factors which
contribute to their effectiveness have been conducted over the past 50 years (Kozlowski
and Bell 2003). Some of the factors which have been suggested as antecedents of team
effectiveness include “collective efficacy, group cohesion, team-level goals, and
interpersonal conflict” (Balkundi and Harrison 2006).

One prominent example of a model for group effectiveness is the Hackman

framework (Hackman 1986). As shown on Figure 3, this model relates organizational

40

Organizational context

A context that supports and
reinforces competent task
work, via:

* Reward system

* Education system

* Information system

Figure 3

Hackman’s Normative Model of Group Effectiveness

(from Hackman 1986)

Group design

A design that prompts and
reinforces competent work
on the task, via:

* Structure of the task

* Composition of the group
* Group norms about
performance processes

A 4

Process criteria of
effectiveness

* Level of effort brought to
bear on the team task

* Amount of knowledge and
skill applied to task work
 Appropriateness of the task
performance strategies used
by the team

Group synergy

Assistance to the group by

interacting in ways that:
* Reduce process losses

* Create synergistic process

gains

A 4

Group effectiveness

* Task output acceptable to
those who receive or review it
* Capability of members to
work together in the future is
maintained or strengthened

* Members’ needs are more
satisfied than frustrated by the
group experience

Material resources

Sufficiency of material
resources required to

accomplish the task well and
on time

41

context and group design to process factors which then drive the group effectiveness
result. Mediating factors consist of group synergy effects and the material resources
required to perform the group tasks. In Hackman’s model, three dimensions of group
effectiveness are suggested: 1) task output acceptable to those who receive or review it,
2) capability of members to work together in the future is maintained or strengthened,
and 3) members’ needs are more satisfied than frustrated by the group experience.

A recent review of team effectiveness studies recognizes two dimensions of team
or group effectiveness (Kozlowski and Bell, 2003). These are team performance and
team viability. Team performance is mostly aligned with instrumental functions and is
the extent to which the team achieves its objectives and produces suitable output. Team
viability is more of a social or expressive concept, which relates to the team’s cohesion
and its ability to retain its members and to continue functioning. While these two
dimensions are conceptually distinct, a recent meta-analysis has established that there is a
close connection and cross-correlation between team performance and team viability
(Balkundi and Harrison 2006).

A virtual team is a particular type of team which has been defined by Luri and
Raisinghani (2001) as a “group of people who work together although they are often
dispersed across space, time, and/or organizational boundaries.” (Luri and Raisinghani
2001) In their study of the effectiveness of virtual teams, the authors identified team
processes and the relations among team members as having the strongest impact on team
performance and member satisfaction, while the leadership style was only moderately

associated with team effectiveness.

42

2.4.2. Emergent Organizations

With respect to formal organizations versus emergent social structures, Brown
and Duguid (2000) comment that:

... self organization and formal organization are not simple alternatives. Nor are

they simply complementary. They live in tension with one another. Innovation is

often developed in the productive management of related tension between

emergent practice and formal process. (Brown and Duguid 2000)

Virtual organizations are sometimes viewed as emergent, and they are defined by
Malone and Davidow (1992) as being “a cooperation of independent partners who
combine their knowledge and skills to fulfill a certain goal, in the form of research or a
product.” Strader et. al. (1998) define a virtual organization as “a temporary network of
companies that comes together quickly to exploit fast-changing opportunities.”
Mowshowitz (2002) considers virtual organizations to be a type of organizational
approach, rather than a particular organizational form. In his view, the key characteristics
of virtual organizations are:

the separation of conceptualization from execution of tasks, and the use of

objective criteria for the allocation of resources... one that allows for crafting

structures that enable management to switch at will between different options for

implementing an organization’s requirements. (Mowshowitz 2002)

Crowston and Scozzi (2002) argue that open source software project communities
are actually virtual organizations and they support this argument by showing the

relevance of the competency rallying theory (Katzy and Crowston 2000) which relates to

the success of virtual organizations. Markus et. al. (2000) describe the concept of a

43

virtual organization and then use the open source project community as their canonical
example of such an organization.

Strader et. al. (1998) define the life cycle of an electronic virtual organization for
the purpose of discussing the requirements for a supportive information technology

infrastructure. The four phases of life cycle include:

1. Identification — opportunity identification and selection.

2. Formation — partner identification and selection, and partnership formation.

3. Operation — design, marketing, financial management, manufacturing, and
distribution.
4. Termination — Operational termination and asset dispersal.

2.4.3. Social Network Perspectives

Ahuja and Carley (1999) suggest a network model for virtual organizations in
which the fit between task characteristics and network structure is an important
determinant of network performance, where “network™ refers to a virtual organization.
They use this model as a framework to study a research-based virtual organization
involving the design and development of an artificial intelligence architecture.

In a review of computational and mathematical organization theory, Carley
(1995) compares hierarchical-centralized structures (often associated with traditional
organizations) with democratic-decentralized structures (which are associated with virtual
organizations). She notes that hierarchical or centralized structures tend to exhibit lower
performance than democratic or decentralized structures. However, under certain

circumstances, hierarchical structures are more reliable. For simple tasks, decentralized

44

structures perform better, while for complex tasks, hierarchies, network-forms, and
matrix-forms are superior. More democratic structures tend to learn faster and therefore
perform better in the short run, while hierarchical and centralized structures tend to
respond more slowly but more accurately to environmental changes.

In a meta-analysis of studies of the effect of social structure on team
effectiveness, Balkundi and Harrison (2006) conclude that teams with a high density of
ties within the team are more effective, and that teams that are more central within a
network of other teams are also more effective. Finally, team performance is positively
associated with the centrality of the team leader within the team network. These results
were applicable for both instrumental ties (associated with task-oriented activities) and
for expressive ties (associated with socially-oriented activities). The authors further
assess mediating factors, and found that the structural effects on team effectiveness are
weakened as a team matures and members become more familiar with each other.

Two particular types of teams that are especially relevant to open source software
project communities include software development teams and virtual teams. In the case
of software development teams, a social network study by Yang and Tang (2004)
concluded that group cohesion was positively related with performance and that the
group structures were critical to the overall team effectiveness. While no social network
studies of virtual teams were found, a study of effectiveness of virtual teams by Luri and
Raisinghani (2001) suggests that team cohesiveness is positively related with
effectiveness, a result which is consistent with the conclusion of Balkundi and Harrison

(2006) that teams with high density are the most effective.

45

2.5. Communities

The individuals who participate in open source software projects have been
frequently described as communities. In one context, the individuals who work on a
particular project are viewed as comprising a project community. In another context, all
individuals who work on any open source project are viewed as members of the overall
open source community. Weber (2004), expands on this metaphor of community:

The open source community ... is indeed marking out a set of organizing

principles. These include criteria for entering (and leaving), leadership roles,

power relations, distributional issues, education and socialization paths, and all
the other characteristics that describe a nascent culture and community structure.

(Weber 2004)

In this section, a variety of organizational forms are discussed including
communities of practice, online communities, and networks of practice. While the
community of practice form has been fairly well defined (Wenger 1998, Brown and
Duguid 2000), the other forms are somewhat overlapping and conflicting definitions have
been offered (Brown and Duguid 2000, Teigland 2003). In order to better understand
the connections between these various kinds of “communities,” a framework is developed
as shown on Table 1.

The framework involves two dimensions: 1) the primary motivation for the
community (social-driven, practice/knowledge-driven, or task-driven), and 2) the primary
communication mode for member participation (face-to-face or electronic / virtual /

online). The framework is consistent with the descriptions of communities of practice

offered by Wenger (1998), and with the classification of network of practice proposed by

46

Brown and Duguid (2000). The definition proposed by Teigland (2003) maps to multiple

cells within the framework.

Table 1

A Framework of Community Types

Motivation of the community

Face- to-face interaction

Electronic (virtual, online)
interaction

Social-driven

Social clubs

Online (social) communities

Practice/knowledge-driven

Communities of practice

Networks of practice

Task-driven

Community action organizations
(e.g. Habitat for Humanity)

Open source software project
communities

Content production communities
(e.g. Wikipedians)

2.5.1. Communities of Practice

Huysman et. al. (2003) define communities as: “social entities whose actors share
common needs, interests, or practices: they constitute the basic unit of social experience.”
A community of practice, then, is a particular type of community in which practices are
shared. Communities can exist to develop the expertise of their members, to take action
(solve problems), and/or to satisfy member needs for group interaction.

Wenger views a community of practice as being both an organizational form and
a theory or mechanism of learning. The term “community of practice” was coined in
1991 by Lave and Wenger (1991) as an outgrowth of their research into “situated
learning.”

The social theory of learning which is represented by Lave and Wenger

within the context of communities of practice conflicts with traditional theories of

47

learning which typically assume that learning results from teaching. In the context of
communities of practice, the authors suggest that learning results from “doing.”

Wenger defines the boundary of a community of practice as a layered construct:

. a community of practice is a node of mutual engagement that becomes
progressively looser at the periphery, with layers going from core membership to
extreme peripherality.” (Wenger 1998)

Multiple communities of practice can intersect in various ways, resulting in
“constellations” of communities. These intersections provide important links to the rest
of the world through boundary objects (artifacts) and/or brokers.

In a related stream of work, Brown and Duguid also define and analyze the
features of communities of practice (Brown and Duguid 1991). Brown (1998) observes
that members of the community:

... pick up valuable ‘know-how’ ... from being on the periphery of competent

practitioners going about their business and from being able to move from the

periphery to the center to participate in aspects of the practice and then move back
to the periphery to observe some more.

Wenger identifies two kinds of communities — communities of practice and
communities of interest — and compares them with two kinds of teams (Table 2). In
general, the communities are viewed as “emergent” forms of organization in that they
tend to evolve or end organically and are not the result of a planned action or any specific
hierarchical governance mechanism. The boundaries of these emergent forms tend to be
fuzzy or undefined, and their purpose is based on the needs and interests of the

community. In contrast, the formal operational teams and project teams are all “planned”

forms, in that they are typically organized and planned by management. The boundaries

48

of these planned forms are normally quite clear, and their purpose is based on the needs

of the hierarchical organization in which they are embedded.

Table 2
A Framework of Communities and Teams

(Adapted from Wenger et. al 2002)

What’s the Who belongs? How clear What holds How long do
purpose? are the them together? they last?
boundaries?
Communities | To create, Self-selection Fuzzy Passion, Evolve and end
of Practice expand, and based on commitment organically
exchange expertise or and group
knowledge passion for topic identification
Communities | To be Whoever is Fuzzy Access to Evolve and end
of Interest informed interested information organically
Operational To take care Membership Clear Shared Last as long as
Teams of an ongoing | assigned by responsibility the operation
operation or management for the operation | exists
process
Project Teams | To accomplish | People with a Clear The project’s Begin and end
a specified role in goals and per project
task accomplishing milestones schedule
the task

Wenger et. al. (2002) provide some guidance regarding the facilitation of

communities of practice. In general, they suggest that communities are not planned
organizational forms, and therefore are not managed in the traditional sense. Rather, they
are emergent organizational forms, and the most effective “management style” is one of
stimulation and facilitation, rather than command and control.

Based on experiences with 60 communities of practice, Gongla and Rizzuto

(2001) have defined five evolutionary stages for these types of communities:

49

1. Potential stage — the fundamental function is connection as individuals find one
another and link up.

2. Building stage — the fundamental function is the promotion of memory and
context as core members learn about each other, share experiences, create roles
and norms, and share a repertoire of stories.

3. Engaged stage — the fundamental function is access and learning as members
build trust and commitment to the community and begin to reach out to new
members.

4. Active stage — the fundamental function is collaboration as individuals engage
with other community members and rely on the community’s knowledge in their

work.

5. Adaptive stage — the fundamental function is innovation and generation as the
community develops new capabilities and adapts to new environments.

2.5.2. Online Communities

There has been considerable discussion of online (or virtual) communities, and
yet there is little work which defines what an online community is and how it relates to a
community of practice. The generally accepted concept of an online community is as
shown on Table 1. When compared with a community of practice, an online community
mostly uses an electronic form of communication, while a community of practice is
primarily face-to-face. Another distinction shown on the table is that online communities
tend to be more socially driven, while communities of practice are more practice- or
knowledge-driven (although this observation is not relevant if open source software
project communities are viewed as being an online community). Little research was
found which focuses on the implications of these differences.

Brown and Duguid (2000) refer to the notion of “net communities” and view

them as being formed around textual documents:

50

Net communities extend a long tradition of communities forming around
documents ... Textual communities may be as old as texts themselves. Shared
and circulating documents, it seems, have long provided interesting social glue.
By extending this concept to include both source code repositories as well as
textual artifacts, it could be argued that open source software project communities are
online or “net” communities. However, the task-orientation of open source project

communities would seem to differentiate them from other forms of electronically-

mediated communities.

2.5.3. Networks of Practice

Brown and Duguid (2000) define the notion of “networks of practice” as:
“networks that link people to others whom they may never get to know but who work on
similar practices.” They state that networks of practice are known for their reach, and
that this reach has been significantly enhanced by information and communication
technology. They recognize Wenger’s definition of community of practice, and view
such communities as “subsections” of networks of practice.

Interpreted in terms of an open source software project community, then, the
overall network of developers who work on various projects (e.g. all developers
registered on at least one SourceForge project) can be viewed as a network of practice,
while the specific group of developers who work on a particular project can be viewed as

a task-driven (online) community.

51

2.5.4. Social Network Perspectives

Structural studies of communities, in the sense of communities of practice and
related forms, are limited. Schenkel et. al. (2000) define five structural properties which
can be used to characterize communities of practice. These include:

1. Connectedness — In a community of practice, every member is connected,

directly or indirectly, to every other member.

2. Graph-theoretic distance — Relative to organizational networks in general,

communities of practice have shorter graph-theoretic distances between all pairs

of members.

3. Density — Relative to organizational networks in general, communities of
practice have a greater density of ties.

4. Core/periphery structure — Communities of practice have core/periphery
structures rather than clique structures.

5. Coreness — The greater an individual’s participation in a community of

practice, the greater his or her coreness score.

Further, Schenkel et. al. (2000) propose (but do not test) a set of relationships
between social structure of communities of practice and knowledge sharing and
performance. These are:

e Proposition 1A: For smaller communities of practice (less than or equal to 40

members), knowledge transfer increases linearly with density.

e Proposition 1B: For larger communities of practice (more than 40 members),
knowledge transfer increases curvilinearly with density.

e Proposition 2A: For communities of practice solving more complex problems,

performance will increase as the variance among members’ coreness values
decreases.

52

e Proposition 2B: For communities of practice solving more routine problems,
perfonnance will increase as the variance among members’ coreness values
increases.

e Proposition 3: Community participants with higher coreness scores will have

more community-specific knowledge and thus a higher level of individual

performance.

Using collective action theory as their conceptual framework, Wasko and
Teigland (2002) studied the social structure of a network of practice — a professional legal
association in the United States. They found that the pattern of contributions of
information was that of a generalized exchange network, in which direct reciprocity was
rare. They also found that a few contributors tended to provide a large portion of the
contributions, and these core contributors are viewed by the authors as forming a “critical
mass.” They further note that membership in this critical mass group is significantly
related to occupation, expertise, the availability of local resources, and the desire to
enhance one’s reputation.

In comparing and synthesizing her prior studies, Teigland (2003) notes that there
are significant differences in the social structures of different community forms. She
notes that communities of practice are characterized by strong ties based on personal
relationship, with a high degree of connectedness and “critical mass individuals™ tied to
one another. This compares with electronic networks of practice in which individuals are
connected by weak ties based on online interaction, a high degree of connectedness is
noted, and critical mass individuals are not tied to one another.

In the physics genre, Adamic and Huberman (2000) studied the social structure of

visitors to web sites on the world wide web. (Such visitors might be viewed as online

53

communities.) They found that site popularity fit a power-law distribution, which they
note is characteristic of winner-take-all markets. Further, they developed a dynamic
theory of site popularity which attempts to explain the distribution based on the age of the

site, its mean growth rate, and the variance of its usage fluctuations.

2.6. Innovation

Open source projects have been viewed as a form of innovation. For example,

von Krogh (2003) states that
The open-source movement’s unique development practices are challenging the
traditional views of how innovation should work. ... The open-source
movement also provides important management lessons regarding the most
effective ways to structure and implement innovation.

Von Hippel and von Krogh (2003) propose that open source projects reflect a
compound “private-collective” model of innovation, in which aspects of the private
model of innovation (incentives to innovate are provided through the protection of
intellectual property rights) are combined with the collective action model (innovators
freely collaborate to produce innovation in the context of market failure).

However, the level of innovation associated with particular open source projects
may vary considerably. Taking the project typology offered by Ye et. al. (2005), it would
seem that exploration-oriented projects might involve radical or disruptive innovation,
utility-oriented projects might involve incremental or sustaining innovation, and that
service-oriented projects might involve little innovation at all. Raymond (1999) notes
that Linus Torvalds, the founder of the Linux project, was not seeking innovation as a

major objective: "Suppose Linus Torvalds had been trying to pull off fundamental

54

innovations in operating system design during the development; does it seem at all likely
that the resulting kernel would be as stable and successful as what we have?"

Further, the concept of innovation generally involves both the creation of new
ideas and the diffusion of those ideas. In the context of open source software projects,
the emphasis seems to be on the creation of the new idea, while the diffusion process
occurs at least partly within a broader environment than the project itself.

In the following sections, the notion of exploration versus exploitation is
discussed, followed by a review of research in open and distributed innovation. The final
section presents social network perspectives that have been applied to innovation,
particularly as they relate to the “development” side of innovation (development of

innovations in groups) as opposed to the diffusion side (adoption of the innovation).

2.6.1. Exploration versus Exploitation

In the context of organizational learning, March (1991) describes the tension
between the exploration of new possibilities and the exploitation of old certainties, and he
discusses issues regarding the allocation of resources between the two approaches. He
considers innovation to be part of the exploration activity and production to be part of the
exploitation activity. The application of this argument to open source projects seem
relevant, given that projects tend to have an innovation component and a production
component. March (1991) discusses the tradeoffs between exploration and exploitation
in terms of organizational communication and coordination. He suggests that
organizations with effective instruments of communication and coordination (tightly

coupled) are more reliable in terms of performance variance, while more loosely coupled

55

organizations are less reliable in terms of performance, but have a greater chance of
achieving an advantage over their competitors, due to their superior ability to execute

multiple independent projects.

2.6.2. Open and Distributed Innovation

The notion of open innovation has been described by Chesbrough (2003) as a new
and more effective model of innovation, in which individuals and organizations beyond
the boundary of the firm play a greater role in the process of innovation. New ideas may
originate from these outside entities or from internal sources. Then, the deployment of
the resulting innovations may be executed through in-house pathways to the market or by
utilizing outside firms for this purpose. This open model of innovation contrasts with the
traditional closed model, which focuses on internally generated ideas and in-house
pathways to the market.

Von Hippel and von Krogh (2003) argue that open source software is a
manifestation of a new “private-collective” model of innovation, and they describe this

b

model as a kind of “distributed innovation.” Based on their observation that the leaders
of open source project communities often designate who can be a member of a particular
social category (e.g. who is authorized to commit source code), the authors suggest that:
“... leadership in distributed innovation might in fact be analogous to that performed by a
playing coach.”

Kogut and Metiu (2001) also describe open source software as a form of

distributed innovation:

56

Open source software development is a production model that exploits the
distributed intelligence of participants in internet communities. This model is
efficient because of two related reasons: it avoids the inefficiencies of a strong
intellectual property regime and it implements concurrently design and testing
of software modules.

2.6.3. Social Network Perspectives

In a study of the social networks of individuals involved in organizational
innovation, and their behavioral orientation, Obstfeld (2005) compares the tertius iungens
(“the third who joins”) orientation associated with the notion of introducing connected
individuals and facilitating their collaboration, with the tertius gaudens (“the third who
benefits”) orientation associated with the structural holes notion of acting as a broker
between individuals in order to extract personal benefits. He finds that participation in
innovation (development) is positively related to the tertius iungens orientation, and that

other antecedents include dense social networks and diverse social knowledge.

57

3. RESEARCH MODELS AND PROPOSITIONS

In this chapter, the research question is addressed by first presenting a conceptual
research model and then defining a set of research constructs which expand upon the
model. The constructs are then incorporated into a social network model of success for

open source software project communities and a set of six propositions is proposed and

justified.

3.1. Conceptual Research Model

In consideration of the research question and the review of theoretical and
empirical literature, a conceptual research model was formulated and is presented on

Figure 4. The model shows the relationship between social network structure and success

for open source software project communities.

Conceptual Research Model

Figure 4

Scope of Research

Community
Social Network
Structure

Closure
Bridging
Leader Centrality

Community Success

Output

v

Activity

T

Mediating
Factors

58

A 4

Community
Impact

Market
Factors

Three kinds of social network structures are included in the model: closure,
bridging, and leader centrality. The closure and bridging structures are suggested based
on the assertions of social capital theory which have been made in various social
contexts, but especially with regard to team and work group outcomes. The leader
centrality structure refers to prior social network studies regarding team leaders and the
effect of their network position on the group effectiveness of the team.

In the model, community success is conceptualized as consisting of two
dimensions: output and activity. The output dimension consists of the quantity of
software that is produced by the project community while the activity dimension reflects
the quantity of participation by community members. As noted on Figure 4, these two
dimensions are modeled as having a reciprocal relationship. This is based on the
suggestion that the production of more software will generally lead to greater community
participation, and that increased participation will tend to attract and motivate even more
developers to produce more software. To the extent that higher quality software will tend
to generate a greater level of community activity than lower quality software, it is
suggested that community activity can also be viewed as a proxy for software product
quality.

As shown on Figure 4, it is recognized that various factors may mediate the
relationship between social network structure and success. These factors include group
size, project type, project maturity, process/task structure, community norms, and
organizational environment, among others. Even though the research propositions are
limited to constructs of social network structure and success, steps are taken to control for

the effect of these mediating factors, as further discussed in Sections 4.1.2 and 4.3.2.

59

This model suggests that community success in terms of output and activity will
be related to the impact of the community beyond its boundaries, and that such
community impact will be affected by market factors such as user demand or
competition. Examples of community impact might include the incorporation of the
produced software into the broader internet infrastructure (e.g. Linux) or the widespread
acceptance of the software by the public (e.g. Mozilla). As discussed in Chapter 1, it is
recognized that community impact can also be considered as a dimension of success.
However, for the purposes of this research, success is defined as consisting of the output
and activity dimensions and the consideration of community impact is beyond the scope

of the research.

3.2. Research Constructs

Expanding on the social structural concepts of closure, bridging, and leader
centrality, a set of social network constructs are proposed including Group Closure, Core
Closure, Peripheral Two-Mode Closure, Core Bridging, Administrator Bridging, and
Administrator Centrality. The theories and concepts which influenced the development
of these constructs are illustrated on Figure 5. Using the area of teams and work groups
as a primary reference domain, social network theories associated with closure, bridging,
and centrality are considered in defining the six corresponding constructs. Five of these
constructs consider the role of the three key community subgroups of core developers,
peripheral developers, and project administrators. Aspects of these subgroup roles and

positions which might be relevant to community success are considered, based on the

60

wi--Nal”Nolale!

Figure 5

Development Framework for Social Network Constructs

A 4

Group
Closure

Core
Closure

Qz—"Qou— AW

Peripheral
Two-Mode
Closure

Core
Bridging

<HHTCepRI3ZO0

Administrator
Bridging

Core
Subgroup

Peripheral
Subgroup

Administrator
Subgroup

61

Administrator
Centrality

review of the open source software literature, as well as other literatures in the areas of
communities and innovation. In addition to the social network constructs, this section

also includes a discussion of the construct of Community Success.

3.2.1. Subgroups

In adapting the theories of team effectiveness to open source communities, it is
recognized that communities typically have cores and peripheries while teams generally
do not. Therefore, three key community subgroups are identified for the purpose of
devising social network constructs: core developers®, peripheral developers, and
administrators. The core and peripheral subgroups are relevant because they connect
with prior research regarding core and peripheral developers in open source software
literature (Almarzouk et. al. 2005), as well as the core-periphery concepts reflected in
general studies of communities (Wenger 1998). The administrator subgroup is relevant
because it connects with team research regarding team leaders and leader centrality
(Balkundi and Harrison 2006) while reflecting the fact that many open source software
project have more than one administrator/leader.

As noted on Table 3, the three subgroups are defined based on their different
functional roles and/or levels of participation on the project. Core developers are
developers who are actively involved with the project and who contribute the majority of
design concepts and source code for the project software. Peripheral developers are

developers who are somewhat involved with the project and who have either contributed

> For the purposes of this research, all members of the open source software project community are referred
to as “developers” because they all contribute in some way towards the development of the software
product. However, we recognize that many of these members are software users who have little or no
technical expertise in the methods of software development.

62

source code or have posted requests or comments to the public project communication

records. By definition, a developer cannot be both a core developer and a peripheral

developer at the same time, although individuals will sometimes move from one

subgroup to another during the course of a project, as their role and activity level

changes.
Table 3
Community Subgroups
Subgroup Defining criteria Possible indicators

Core developers
(or “Core™)

Individuals who are actively involved
with the project and who contribute the
majority of design concepts and source
code for the project software

Official designation in project records
Writes and submits source code
Makes design or coding suggestions

Peripheral developers
(or “Periphery”)

Individuals who are somewhat involved
with the project and who have either
contributed source code or have posted
requests or comments to the public
project communication records

Submits bug reports and feature requests
Participates in project forum discussions
May write and submit source code

Administrators

Leaders of the project who take
responsibility for monitoring and
guiding the progress of the project, and
who are recognized as such by most
group members

Official designation in project records
Founded the project
Designated by the project founder or
by existing administrators
Exerts access control over project source
code repositories (is a “committer”)

Administrators are developers who lead the project. They take responsibility for

monitoring and guiding the progress of the project, and their special role is recognized by

most group members. By definition, an administrator is also a core developer. Many

projects have only one administrator, although it is not uncommon for a project to have

multiple administrators who share in the leadership and administrative tasks (Almarzouk

et. al. 2005, Sturmer 2005, and Ye et. al. 2005). For communities which have only one

63

administrator, the subgroup notion is not meaningful and the “administrator subgroup”

collapses to a single individual community member.

3.2.2. Closure

In social capital theory, closure is viewed as the extent to which the members of a
group are connected through informal ties. This is typically represented by the social
network measure of “density,” which is defined as the total number of observed ties
divided by the total number of possible ties. In this respect, closure can be viewed as the
proportion of all possible ties that are actually connected, and a group’s social network
structure can be described as either “dense” if the proportion is high or “sparse” if the
proportion is low.

Considering the information flow paradigm of social capital theory, closure
reflects the pattern of information flows among and between the community members. In
social capital theory, closure is generally portrayed as leading to positive social outcomes
involving utilization of resources and group health and viability. However, some
negative effects are sometimes noted, regarding groupthink and a reduced tendency to
associate with outsiders. In work group effectiveness studies, closure has been generally
associated with a positive impact on effectiveness, although at least one study suggested
that the relationship is an inverted-U shape (Oh et. al. 2004).

The closure concept can be applied to the group as a whole, or it can be applied to
any particular subgroup, in which case only the ties within the subgroup are considered.
For the purposes of this research, the closure concept is extended to also consider the

connections between one subgroup and the rest of the community. For this reason, the

64

concept of “two-mode closure” is defined to consider only the ties between members of
one subgroup (mode #1) and the other members of the community (mode #2). With two-
mode closure, ties which are internal to either the subgroup or internal to the group of

other community members are excluded.

Group Closure. As documented on Table 4, Group Closure is defined as the
closure of the social network of informal ties within the total project community.
Referring to social network studies of team performance, the Group Closure construct is
analogous to the construct of team closure, and with this construct the “team” is viewed
as consisting of all community members, regardless of whether they are core developers
or peripheral developers. This is justified because it is recognized that peripheral
developers contribute to the project in important ways, even though their total

contribution is normally not as great as that of the core developers.

Core Closure. Applying the notion of closure to the core subgroup, the construct
of Core Closure is defined as the closure of the social network of informal ties within the
core subgroup of the project community. This construct views the “team” as consisting
primarily of the core developers. This is an alternative view to considering the whole
project community as a team. However, it is also a reasonable proposition considering
that the core developers in an open source project are the most active and make the
greatest total contribution to the production effort. A positive impact on the core

subgroup should result in a positive impact on the entire project community.

65

Table 4
Social Network Constructs

Construct

Definition

Relevant subgroup

Group Closure

Extent (density) of informal ties considering all
possible connections between members of the
project community

None

Core Closure

Extent (density) of informal ties considering only
the possible connections between members of the
core developer subgroup, excluding all other
possible ties

Core subgroup

Peripheral Two-Mode
Closure

Extent (density) of informal ties considering only
the possible connections between peripheral
subgroup members and the rest of the project
community, and excluding all other ties

Peripheral subgroup
Core subgroup

Core Bridging

Extent of bridging ties, considering connections
between members of the core subgroup and
members of other project communities

Core subgroup

Administrator
Bridging

Extent of bridging ties, considering connections
between members of the administrator subgroup
and members of other project communities

Administrator subgroup

Administrator
Centrality

Central network position of the administrator or
administrator subgroup in relation to the remainder
of the project community

Administrator subgroup

Peripheral Two-Mode Closure. The two-mode closure concept is used to define
the Peripheral Two-Mode Closure construct, which is the closure of the social network of
informal ties, considering only the possible ties between the peripheral subgroup and the
rest of the community®. This construct is defined based on the social capital notion of
closure, as well as the assertions of open source literature which suggest that the
involvement of peripheral members in core processes will help to fulfill their need for

challenge and skills development, which will lead to an increase in their identification

® Considering that the “rest of the community” is equivalent to the core subgroup, this construct could just
as easily be described as “Core Two-Mode Closure”.

66

with the project community. It is expected that this will result in an increase in their

participation level, thereby having a positive impact on community output and activity.

3.2.3. Bridging

Bridging is the extent to which project community members or subgroup
members are connected to members of other open source software project communities.
This is consistent with Burt’s (1992) notion of brokerage, in the case where the brokers
have a “tertius iungens” philosophy (Obstfeld 2005) which compels them to apply their
positional advantage towards the benefit of the whole group, rather than using it primarily
for their own personal gain. In the social capital literature, bridging is generally
associated with improved access to resources and an associated increase in performance.
This result has been observed in the team performance literature as well (Balkundi and
Harrison 2006).

The bridging constructs are defined in relation to the bridging ties of core
subgroup members and administrator subgroup members (Table 4). No bridging
constructs are defined for the peripheral subgroup or the group as a whole, based on the
premise that the group will not benefit from bridging ties that are held by peripheral

developers who have a limited role in the project.

Core Bridging. The Core Bridging construct is the extensiveness of ties between

members of the core subgroup and members of other project communities (excluding

members of the focal project community). Comparing with the teams literature, this is

67

analogous to the notion of team bridging or team centrality, where the core subgroup is

considered to be “the team.”

Administrator Bridging. The Administrator Bridging construct is also defined
based on a more restrictive view of “team,” in that it considers only the bridging ties of

the administrator subgroup members to be important.

3.2.4. Leader Centrality

Leader centrality is the extent to which a team leader occupies a pivotal position
within the network of information flows that are internal to the team. This central
position is often associated with a perceived level of importance or prominence for an
individual within the group (Wasserman and Faust 1994). In this context, a central
structural position is typically represented by social network concepts such as degree
centrality or betweenness centrality. Most applications of centrality involve individual
nodes, although Everett and Borgatti (1999) have defined the concept of “class
centrality,” in which the centrality concept is extended from an individual within a

network to a subgroup within a network.

Administrator Centrality. As shown on Table 4, the construct of Administrator
Centrality is defined as the centrality of the administrator or administrator subgroup with
respect to the total project community. In team literature, leader centrality is considered
to have a positive relationship with team performance. In studies of open source

projects, no works were identified which relate administrator centrality to community

68

success. However, it is noted that the open source literature suggests that project
community members are motivated by a sense of ownership in the project, and that
heavy-handed control by administrators can reduce the motivation of both core
developers and peripheral developers. The Administrator Centrality construct is an
attempt to represent the team-related positive aspects of leader centrality with the implied

negative aspects suggested by the open source literature.

3.2.5. Community Success

Community Success for an open source software project community is defined
along the two dimensions of output and activity. The output level of a project community
is the quantity of software that is produced by the community while the activity level is
the quantity of participation by community members. These two dimensions of success
include the elements of effort (reflected in the quantity of software produced) and
performance (reflected in the acceptance of the community-market as evidenced by
activity levels such as software downloads and page views). This is consistent with the
work of Grewal, et. al. (2006) in which the authors measure “technical success” with the
number of code commits and “commercial success” with the number of software
downloads associated with the project.

This Community Success construct can be compared with the performance
dimension of the group effectiveness construct commonly used in the team literture.
Team performance is often aligned with the extent to which a team achieves its objectives
and produces suitable output. An open source software project community which

produces software that is widely downloaded and viewed can be said to have achieved its

69

objectives. Therefore, the Community Success construct as defined above is generally
equivalent to group performance in teams with regard to the accomplishment of task and

group objectives.

3.3. Social Network Model and Propositions

A social network model of success for open source software project communities
is proposed as shown on Figure 6. The six social network constructs are shown on the
left side of the figure, and the community success construct is shown on the right. A total
of six propositions are derived. In the following sections, each of these propositions is
described and the associated claims are justified based on the theoretical and conceptual

foundations discussed in Chapter 2.

3.3.1. Group Closure

With respect to task performance, the design and production of software requires
a certain level of interaction among the project community. Solving problems,
integrating code contributions, and coordinating work require a certain extensiveness of
discussion. However, the tools typically used by open source software project
community members (e.g. version control systems, bug-trackers, etc.) act to reduce the
level of direct interaction that is required. Further, the typical modular architecture of
open source software projects is associated with a task design containing loosely coupled
tasks and a limited need for interacting across modules. Therefore, a certain level of

interaction is required, but only to a point.

70

Figure 6
Social Network Model of Community Success

Group
Closure
Proposition 1
Core
Closure N
Proposition 2
Peripheral
Two-Mode —
Closure Proposition 3
Community Success
Core Proposition 4

Bridging —

Proposition 5

Administrator
Bridging L

Proposition 6

Administrator
Centrality

The capacity of the project community to continue working together and to
sustain itself depends upon the creation of a certain amount of trust among community
members. One of the key positive effects that has been associated with closure is the
facilitation of trust building (Coleman 1988). However, the open source software
environment provides a relatively strong communal culture (Raymond 1999) and
therefore a high level of closure may not be necessary because the members tend to share

the strong values of the open source culture.

71

It is “costly” to develop and maintain ties. While the effort required to post a
comment to a discussion forum seems to be trivial, consideration should be given to the
time necessary to read and understand the content of previous forum posts and to start
and maintain a dialogue with other members. Further, open source software projects, as
defined in this research, involve volunteers who typically have a limited amount of time
to contribute to the project. Thus, each additional tie that is established represents a cost
to the actors involved and the group as a whole.

For the group as a whole, it is anticipated that a certain level of closure is required
as described above. However, after a certain point, additional closure becomes a burden,
it is distracting, and therefore it reduces the smooth functioning of the community.
Closure above the required level will not incur further net benefits and so, the effect of
the increasing cost of ties will be to reduce community success. Therefore, the
relationship between Group Closure and Community Success is posited to be an inverted-
U shape:

Proposition 1
The Group Closure of an open source software project community has an

inverted-U relationship with Community Success. Community Success is
maximized at a moderate level of Group Closure.

3.3.2. Core Closure

The subgroup of core developers is characterized by a higher level of activity than
the peripheral developers. Most of the code for the project is created by these core
developers. As a result, their need for interaction should be considerably greater than the

needs of the group as a whole (which includes both the core and the periphery).

72

However, the cost-of-ties effect is still important and therefore, as with Proposition 1, an
inverted-U shaped relationship is suggested:

Proposition 2

The Core Closure of an open source software project community has an

inverted-U relationship with Community Success. Community Success is
maximized at a moderate level of Core Closure.

3.3.3. Peripheral Two-Mode Closure

For peripheral developers, a greater level of two-mode closure between the
peripheral subgroup and the rest of the group should lead to a greater sense of
identification with the project, as well as feelings of satisfaction and challenge. As

2

Raymond (1999) notes, it is important to “listen to the beta testers.” Greater two-mode
closure should translate into increased feelings of obligation and commitment to make
contributions and to remain with the project. More connected peripheral developers are
more likely to contribute code, bug reports, and assist with the production of the project
software. These peripheral developers may be the source of new ideas and methods of
development that could improve the group processes. Further, one or more may decide,
at some point, to become core developers.

On the negative side, the cost-of-ties may become a significant factor as
peripheral two-mode closure increases. Higher levels of connectedness with the core
developers may become a distraction for these more active individuals, which may offset
the benefits of having more motivated peripheral developers. Therefore, the relation

between Peripheral Two-Mode Closure and Community Success is expected to have an

inverted-U shaped relationship:

73

Proposition 3

The Peripheral Two-Mode Closure of an open source software project
community has an inverted-U relationship with Community Success.
Community Success is maximized at a moderate level of Peripheral Two-Mode
Closure.

3.3.4. Core Bridging

There are various positive effects associated with bridging ties. The bridged
members will have access to new ideas regarding production and design methods. In
addition, these members may be able to bring in members from other projects on a one-
time basis to solve particular problems and/or provide other special kinds of support.
Bridging ties may also increase the likelihood of recruiting new project community
members from other projects, as the focal actor utilizes his or her bridging ties to
communicate the features of the focal project to potential members from other project
communities. These effects result in additional resources which should help to improve
task performance.

Bridging ties may also allow the focal actor to become aware of certain
opportunities or threats to the focal project. For example, the bridged actor might
identify a niche of related open source software projects which provides new
opportunities for expanding the scope of the project to include interoperability with these
other projects. Alternatively, the bridged actor might become aware of new or increased
“competition” from other projects. In either event, the bridged actor may then be able to
help guide the focal project through and around these environmental issues, which should

lead to sustainable project community success.

74

In the case of bridging ties, the cost-of-ties effect is only a burden on the
individual actor, because the ties are between that actor and the members of other project
communities (not the focal community). However it is possible that too many bridging
ties would result in a lack of time and attention given to the focal project by the bridging
actor. Again, this is only one actor and the net negative effect of this on the overall
project is expected to be minor. Therefore, the relationship between Core Bridging and
Community Success is expected to be positive:

Proposition 4

The Core Bridging extent of an open source software project community is
positively associated with Community Success.

3.3.5. Administrator Bridging

Considering the special influential position of administrators, it is possible that the
bridging ties of administrators are the most important with regard to community success.
In effect, the special position of administrators allows them to leverage the positive
impact of their bridging ties. So, although the effect of administrator bridging may be
stronger than for core bridging, a positive relationship is expected:

Proposition 5

The Administrator Bridging extent of an open source software project
community is positively associated with Community Success.

3.3.6. Administrator Centrality

For administrators, a certain level of centrality is necessary in order for them to
coordinate and integrate the work of the other developers. However, as the level of
centrality increases, the administrators face the possibility of becoming overburdened and

subject to “burn-out,” which would have significant negative effects on both task

75

performance and group viability. This is essentially the cost-of-ties effect observed at the
individual level of the administrator. Pavlicek (2000) suggests that administrators should
delegate as much as possible.

With regard to effects on the other (non-administrator) community members,
again, a certain level of contact with administrators is valuable in that these members
need to feel welcomed and accepted into the group. At a point, however, too much
contact with the administrator subgroup can lead to a loss in the “feeling of ownership”
that is apparently so important for open source software contributors. As noted by von
Krogh (2003):

Recent work by Karim Lakhani and Eric von Hippel and by Jae Yun Moon and

Lee Sproull shows that contributors to open source software projects value a sense

of ownership and control over the work product, something they do not

experience in programming work carried out for hire. (von Krogh 2003)

Considering that an increase in administrator centrality will have a positive effect
on success up to a certain point based on the involvement of administrators in task
performance, and that further increases in centrality may have negative impacts with
regard to excessive demands on the administrator and reduced motivation for the other
members, the relationship between Administrator Centrality and Community Success is
expected to be an inverted-U shape:

Proposition 6
The Administrator Centrality of an open source software project community has

an inverted-U relationship with Community Success. Community Success is
maximized at a moderate level of Administrator Centrality.

76

4. RESEARCH METHODOLOGY

This chapter includes a presentation of the study design and a description of the
research setting. This is followed by a description and formal definition of the variables
which operationalize the research constructs presented in Chapter 3. Finally, the
sampling and data collection procedures are described and the resulting sample and

research dataset is presented.

4.1. Study Design

A cross-sectional study design is chosen in which data are collected from a
sample of open source software project communities. In the following sub-sections, the

unit of analysis and study population are defined and the research method is discussed.

4.1.1. Unit of Analysis

The primary unit of analysis is the open source software project community.
While it is possible to think of all open source developers as comprising a kind of
community, the study definition of “project community” is limited to individuals
associated with a particular project. Some data are collected at the lower level of
community subgroup and even at the individual member level. However, social network
analytical methods are then used to aggregate these results to the project community

level.

4.1.2. Study Population

Considering the complex nature of open source software project communities and

the various possible influencing factors (refer to section 3.1), a particular study

77

population is defined in an attempt to control for some of these factors. In particular, the
study population is limited to early-stage projects in order to control for project maturity,
developer-targeted projects to control for project type and task structure, and corporate-
sponsored projects are excluded to control for community norms and organizational
environment.

Early-stage projects are identified by selecting those which have only two years of
history following their first release of executable software. This study population
definition results in a sample of projects that have similar age and developmental
characteristics. In effect, these are all “start-up” or “early-stage” projects, which are
viewed from a commonly defined starting point, regardless of the actual start date or
current age of the project. The expected result is that the sample will be more
homogeneous and represent a more focused group of projects, which will increase the
likelihood of uncovering significant explanations of variance in the dependent variables.

With regard to developer-targeted projects, most prior studies of open source
software projects have assumed the notion that “the user is also a developer,” and have
used the concept of “user-developer.” However, many projects, such as Open Office, are
targeted to end-users. While it is recognized that such projects exist, the developer-
targeted project is accepted as the project type of focus in order to be consistent with
prior studies and also to control for differences in project type. Therefore, end-user
targeted projects are excluded from the study population.

Regarding community-founded projects, the salient view in most open source
software research is the volunteer nature of the projects, and most of the motivational

research has assumed this. However, it is increasingly recognized that many open source

78

software contributors are paid by their companies to do the work (West and O’Mahoney
2005). It seems possible that this distinction would change the motivational factors and
the underlying dynamics of the project. Therefore, the study definition of “open source
software project” is limited to the traditional notion of a community-founded project.
Corporate-sponsored projects and spin-off projects are excluded from the study

population.

4.1.3. Research Method

The research method used is “analysis of existing statistics” (Babbie 2005). With
this unobtrusive method, existing statistics and other types of historical records are the
primary source of data. One advantage of this method is that there is no impact of the
researcher on what is being studied. Another advantage is that data are not based on the
perceptions of the research subjects, but the residuals of actual activity. A disadvantage
is that certain reliability and validity problems are associated with this method (Webb et.
al. 2000), as discussed further in section 7.3.

The other research method that could have been chosen to test the hypotheses is
survey analysis. The analysis of existing statistics method was chosen for this study
primarily because of the advantages of building social network variables from existing
online discussion archives and project records. Such a method allows for a large number
of networks to be sampled. This compares with laborious survey-based methods for
creating social networks in which entire studies are typically devoted to studying one or a
small number of networks. In addition, prior research has shown that subjects’

perception of their social network is often quite different from their actual social network

79

(Krackhardt 1999). Calculation of social networks from archival data provides a
representation of actual communications, and not merely perceived communications.
Thus, having the ability to capture a large sample of objectively-created social networks
is a relatively rare opportunity with respect to the study of groups.

In collecting existing statistics, a two-year observation window is utilized. The
observation period begins with the date of first project release of executable software and
ends at a point 24 months later. Even though data are collected over a period of time, a
cross-sectional design is still utilized in that the entire two-year period is viewed as a
single observational point. The two-year length of the window was chosen to provide a
sufficiently long period for observing the formation of the relevant social networks and
their effects on community success, without being so long as to be confounded by
fundamental changes in the conditions in which the project operates. Open source
software project life cycles on SourceForge are observed to range upwards of 7 or more
years, and other projects, such as Linux, continue to mature after 15 years. During the
project life cycle, various changes may occur in leadership or other conditions which
change the nature of the social network structures. Also, the nature of the project
undergoes a qualitative change as it grows substantially. Studies of the effect of social
network structure on work group effectiveness have concluded that the intensity of the
effect is reduced as the project matures and the group gains familiarity (Balkundi and
Harrison 2006). Thus, this familiarity factor can mediate the relationship. Similar effects

may occur in open source software project communities.

80

4.2. Research Setting

The research setting chosen for this study is the SourceForge hosting organization
for open source software projects. On the SourceForge hosting site, individual projects
are maintained and recognized based on a unique project name and a unique set of project
web pages. Each project has at least one registered administrator who organizes and sets
access privileges for the dedicated source code repository and public forum facilities
which are made available by SourceForge. The project community members can be
identified based on their registration with the project and/or by their participation in
project forums.’

SourceForge is the largest and most diverse of the hosting platforms, with over
129,984 registered projects and 1,395,827 individual registered users®. Of these, 81,753
projects were registered with a valid “topic,” and of these, a total of 35,231 were in a
planning or pre-alpha stage, 39.145 were in an alpha or beta stage, 20,105 were in a
production/stable or mature stage, and 1,968 were recorded as inactive, based on self-
reported development status codes’.

Other hosting platforms such as Savannah, Freshmeat, and others could have been
selected. However, SourceForge was chosen in order to provide a uniform basis for
sample selection and data collection, which has advantages both in terms of controlling

for variations associated with the nature of the hosting platform and also in terms of

"It is recognized that individuals, sometimes referred to as “lurkers,” may view the project pages and
forum without posting to the forum or registering with the project. These individuals are not considered to
be members of the project community for the purposes of this study.

¥ As of September 21, 2006

? Amounts do not total to 81,753 due to multiple codes being recorded for individual projects

81

logistical considerations. In effect, the choice of a single hosting organization may help

to control for differences in community norms and organizational environment.

4.2.1. Data Sources

The SourceForge organization is the source of archival data. An intensive review
of the SourceForge platform was performed to identify the availability of various data
elements and to determine appropriate data extraction methods. Part of this review
included the reading of SourceForge procedural documents and announcements to
identify any situations or changes that might influence the integrity of the data on the site.

Data were acquired from SourceForge through two kinds of channels. One
channel involves the direct capture of data (using cut-and-paste) from existing or archival
project web sites'’. The other channel involves acquiring access to and querying research
databases which have been previously created by third parties based on data dumps from
the SourceForge archives. The two research databases which were used in this study

include the University of Notre Dame (UND) database and the Libresoft (LS) database.''

4.2.2. Data Element Selection

Based on a review of the various SourceForge data sources, various data elements
were selected based on their availability and the extent to which they could be used in
creating research variables to operationalize the previously defined research constructs.
These variables, which are described in the following sections, were defined so as to

logically and directly correspond with the associated constructs. Because an existing

1 Selected web page screen images are contained in Appendix A.

" Descriptions of these research databases are contained in Appendices B and C.

82

statistics research method was selected, it was also necessary to consider both the
availability and the integrity of the SourceForge data elements as these research variables

were defined.

4.3. Dependent and Control Variables

In this section, the variables which operationalize the success construct
dimensions of community output and community activity are defined and specified, along

with the control variables that are used in the regression analyses.

4.3.1. Community Success

Six variables are defined for the community success dimensions of output and
activity, all of which are calculated as the sum of the 24 monthly statistics which span the
two-year observation window (Table 5). Three of these variables correspond with the
output dimension and three correspond with the activity dimension. Each of these
variables is described in the following paragraphs. Most of the community success
variables are extracted from the UND research database, with the exception of the “code

commits” variables which is extracted from the LS research database.

Community output variables. The community output variables consist of “code

29 ¢

commits,” “software releases” and “trackers closed.” In producing software, developers
normally work with a human-readable form known as “source code.” Along with the
first release of software, a production repository of the related source code is established

and maintained on the host platform. As batches of new and/or improved source code are

written and validated, these batches are entered (or “committed”) into the source code

83

repository.

In creating the LS research database, the project source code repository

records are examined and each commit is recorded along with its date. The variable

“code commits” is a count of the number of these “commits” that are made over the two-

year observation window.

Table 5

Community Success Variables

Variable Variable Success Data Source Reference
Name Description Dimension
Code Number of source code | Ouput SourceForge CVS Healy and
Commits commits records (LibreSoft Schussman 2003
database)
Software Number of software Ouput Project monthly Stewart and Ammeter
Releases releases statistical records 2002
(UND database) Crowston, et. al.
2003
Trackers Number of closed Ouput Project monthly Healy and
Opened trackers statistical records Schussman 2003,
(UND database) Crowston, et. al.
2003
Software Number of software Activity Project monthly Healy and
Downloads downloads statistical records Schussman 2003
Page Views Number of page views | Activity Project monthly Healy and
statistical records Schussman 2003
Trackers Number of opened Activity Project monthly Healy and
Closed trackers statistical records Schussman 2003,
(UND database) Crowston, et. al.
2003

At various points in time, based on the discretion of the administrators, the current

production source code repository is “compiled” and a new release of executable

software is made. This is essentially a working version of the software which can be

used by developers or by non-technical users. Each release of this software is recorded in

the project archives, and the variable “software releases” is a count of the number of such

releases during the two-year window.

84

As community members identify the need for various kinds of changes to the
software, the administrators may open a “tracker.” These trackers are essentially work
orders which specify requests from the community for development work, such as fixing
a software bug or adding a functional feature. As the development work needed for a
particular tracker is finished, the tracker is “closed.” Each closed tracker is recorded in
the project archives, and the variable “trackers closed” is a count of the number of

trackers which are closed during the two-year window.

Community activity variables. The community activity variables consist of

2 6

“software downloads,” “page views,” and “trackers opened.” As software releases are
made by the project administrators, new software versions are made available to the
public. An individual who wishes to acquire and use this software is required to
download the executable version from the project web site. Each such download is
recorded in the project archives, and the variable “software downloads” is a count of the
number of such download actions which occur during the two-year window.

The “page views” variable is measured by the number of times that any one of the
project web pages are viewed. The project web pages include a home page, developer’s
page, and various other pages of interest to project developers and software users. The
number of views which are made to these pages are recorded in the project archives, and
the variable “page views” is a count of the number of such viewing actions which occur
during the two-year window.

Finally, the variable “trackers opened” is defined as the count of the number of

trackers which are opened during the two-year window (note “trackers closed” above).

85

The trackers opened variable is considered to be a measure of community activity
because it reflects requests made by the entire project community and a greater level of
downloading and page viewing should be associated with a greater level of tracker
opening. As previously described, “trackers closed” is considered to be a measure of
community output because the closing action occurs as the result of developmental work

which is completed.

4.3.2. Controls

Previous studies have identified group size as having an effect on team
effectiveness and this effect might also be expected in open source project communities.
In addition, some social network variables, such as those involving density
measurements, are sensitive to the total size of the group. Therefore, both group size and
core size are used as controls. As noted on Table 6, “group size” and “core size” are
defined as the number of project community members and the number of core subgroup
members as of the midpoint in the two-year observation window.

Table 6
Control Variables

Variable Name | Variable Description | Data Source Calculation
Group Size Number of project Project Counted at mid-point
community members | membership of two-year
records (UND | observation window
database)
Core Size Number of core Project Counted at mid-point
developer subgroup membership of two-year
members records (UND | observation window
database)
Conversation Number of forum Project Aggregated over two-
Volume posts monthly year observation
statistical window
records

86

In addition, it is plausible that the success of the community could be related to
the total volume of conversation, rather than the structure of the conversational network
itself. Therefore, an additional control variable is defined to be “conversation volume,”
which is measured as the sum of the number of forum posts over the two-year

observation window.

4.4. Social Network Variables

In this section, the networks and subgroups are defined and specified within the
SourceForge research setting. A formal system of notation is defined and specified to
include graph theoretic and sociometric notations. This notational system is used to
define and formally specify the networks, subgroups, and the six social network variables

which operationalize the six social network constructs described in Chapter 3.

4.4.1. Networks

The social network structural constructs defined in Chapter 3 are based on the
information flow paradigm which is a fundamental premise of social capital theory.
Therefore, an appropriate network definition for use in operationalizing these constructs
would include links which are logically connected with information flow, as in a

conversational connection or other form of communication.

Conversational network. Considering the availability of data from the

SourceForge archives, a conversational network was defined based on data obtained from

87

the project public forum records. Each project may have one or more public forums'* on
their SourceForge project site. Any SourceForge member can post an initial message to
the forum. Individuals who view the forum can then respond with their own posts,
resulting in a thread of discussion. While other forms of communication are recognized
and certainly exist (direct emails, instant messaging, etc.), the norms of open source
encourage the use of these transparent public forums and therefore the forum
conversations were selected as a representative source of communicative connections
between project members.

In defining the conversational network from public forum data, each node in the
network is associated with a particular member of the project community, where a project
community member is defined as an individual who has registered with the project or
who has posted a comment to a project public forum. A link is then said to exist between
two member-nodes if those two members participate in a single discussion thread on a
project public forum during the two-year observation window. Crowston and Howison
(2004) used a similar type of conversational network to study the social structural
patterns of open source software projects by extracting textual data from bug report

trackers.

Project membership network. The conversational network is adequate for
calculating social network measures associated with the closure and leader centrality

constructs because these constructs relate to conversations that occur within the project

12 Public forums may be for general purposes (e.g. for “open discussion™) or they may be designated for
specific purposes (e.g. “user help”).

88

community. However, the bridging constructs involve information flows that occur from
inside the project community to individuals who are not part of the focal project
community. Unfortunately, the SourceForge archives contained no public forums or
other systematic data sources which could be used to calculate appropriate conversational
measures for these external information flows. Therefore, cross-membership status was
chosen as a proxy for such information flow and an appropriate project membership
network was defined.

The defined project membership network consists of two types of nodes. One
node type is specified to be a registered member of the focal project community. The
other node type is defined to be a SourceForge project. A link between a member-node
and a project-node is recognized if that particular individual is a member of that
particular project. Therefore, the members of a focal project community will, by
definition, have a link between their member-node and the focal project. However, if an
individual is also a member of another SourceForge project, then a link is recognized
between that individual and the other project. Gao, et. al. (2003) defined a similar type of
project membership network in studying the connections between various open source
software projects hosted by SourceForge. The key assumption in using this network for
the calculation of bridging constructs is that membership in another project implies

communication with members of that other project.

89

4.4.2. Subgroups

All of the social network structural constructs defined in Chapter 3, except for
Group Closure, make reference to a particular subgroup' of the project community.
Therefore, it is necessary to specify how subgroup membership is determined within the
SourceForge research setting. The three subgroups of interest include core developers,
peripheral developers, and administrators.

An individual is considered to be a core developer if that individual was formally
registered with the focal project during the two-year observation window. An individual
is recognized to be a peripheral developer if that individual posted a message to a project
public forum during the two-year window (but was not formally registered with the
project). Therefore, the core developer subgroup and the peripheral developer subgroup
are mutually exclusive and exhaustive subsets of the set of members comprising the
project community. An individual is considered to be an administrator if that individual
is formally registered as an administrator with the focal project on the SourceForge
records. Because registered administrators are also registered members, the administrator

subgroup is a subset of the set of members comprising the core developer subgroup.

4.4.3. Formal Notation

In this subsection, the application of graph theory and sociometric notation to
social network analysis is briefly reviewed, followed by a discussion of the basic

concepts and notational systems that are relevant to the work. In general, the notatio