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Abstract 

The southern Everglades mangrove ecotone is characterized by extensive dwarf Rhizophora 2 

mangle L. shrub forests with a seasonally variable water source (Everglades–NE Florida Bay) 

and residence times ranging from short to long.  We conducted a leaf leaching experiment to 4 

understand the influence that water source and its corresponding water quality have on 1) the 

early decay of R. mangle leaves and 2) the early exchange of total organic carbon (TOC) and 6 

total phosphorus (TP) between leaves and the water column.  Newly senesced leaves collected 

from lower Taylor River (FL) were incubated in bottles containing water from one of three 8 

sources (Everglades, ambient mangrove, and Florida Bay) that spanned a range of salinity from 

0‰ to 32‰, [TOC] from 710 to 1400 µM, and [TP] from 0.17 to 0.33 µM.  We poisoned half the 10 

bottles in order to quantify abiotic processes (i.e., leaching) and assumed that non-poisoned 

bottles represented both biotic (i.e., microbial) and abiotic processes.  We sacrificed bottles after 12 

1,2, 5, 10, and 21 days of incubation and quantified changes in leaf mass and changes in water 

column [TOC] and [TP].  We saw 10–20% loss of leaf mass after 24 hours—independent of 14 

water treatment—that leveled off by Day 21.  After 3 weeks, non-poisoned leaves lost more 

mass that poisoned leaves, and there was only an effect of salinity on mass loss in poisoned 16 

incubations—with greatest leaching-associated losses in Everglades freshwater.  Normalized 

concentrations of TOC in the water column increased by more than two orders of magnitude 18 

after 21 days with no effect of salinity and no difference between poisoned and non-poisoned 

treatments.  However, normalized [TP] was lower in non-poisoned incubations as a result of 20 

immobilization by epiphytic microbes.  This immobilization was greatest in Everglades 

freshwater and reflects the high P demand in this ecosystem.  Immobilization of leached P in 22 

mangrove water and Florida Bay water was delayed by several days and may indicate an initial 

microbial limitation by labile C during the dry season. 24 
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Introduction 

Leaf litter fall and decomposition is an important recycling pathway for nutrients and 2 

fixed carbon in forested aquatic ecosystems (Fisher & Likens 1973; Brinson 1977; Tam et al. 

1990).  Although biological processes are important in governing the ultimate fate of leaf litter, 4 

evidence from numerous field and lab studies indicates that physical leaching is largely 

responsible for initial losses of these materials (Brinson 1977; Rice & Tenore 1981; Middleton & 6 

McKee 2001 among others).  Rates of leaf litter leaching are sensitive to environmental factors 

such as temperature, sunlight, water availability, and salinity (Nykvist 1959; Nykvist 1961; 8 

Parsons et al. 1990; Chale 1993; Steinke et al. 1993). Some researchers have suggested that the 

biotic contributions in this early stage of decomposition are minimal and most often limited to 10 

microbial conditioning of the litter (Nykvist 1959; Cundell et al. 1979; France et al. 1997).  

Other studies, however, have shown a significant microbial response on fixed carbon and 12 

nutrients within the first 24 hours of exposure of leaf material (Lock & Hynes 1976; Benner et al. 

1986; Davis et al. 2006). 14 

In tropical mangrove ecosystems, leaf litter leaching rates decline after a few days of 

immersion in water, yet this process is responsible for substantial losses of elements to the water 16 

column and soil (Rice & Tenore 1981; Chale 1993; Steinke et al. 1993; Davis et al. 2003a).  On a 

regional scale, the coupled process of mangrove leaf litterfall and leaching contributes to intra-18 

annual patterns in water quality and materials flux unique to these coastal wetlands (Twilley 

1985, Davis et al. 2003b, Maie et al. 2005).  This may be particularly important in nutrient-poor, 20 

dwarf mangrove wetlands where hydraulic residence times are often high and herbivory rates are 

very low (Twilley 1995; Feller & Mathis 1997).  This combination of ecosystem properties leads 22 
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to more reliance on internal recycling (i.e., detrital pathways) as a means of controlling nutrient 

availability and productivity. 2 

The estuarine ecotone of the southern Everglades, FL USA, supports an oligotrophic, P-

limited wetland dominated by a dwarf red mangrove (Rhizophora mangle L.) forest (Koch and 4 

Snedaker 1997).  Unlike the Shark River estuary that drains much of the Everglades directly to 

the Gulf of Mexico, southern Everglades mangrove wetlands are subjected to very low tidal 6 

influence (< 5 cm), relatively long hydrologic residence times, and seasonally variable influences 

of the Everglades and Florida Bay (as described in Chen and Twilley 1999; Davis et al. 2001; 8 

Sutula et al. 2003).  This leads to different surface water quality signatures in the southern 

Everglades mangrove ecotone during the dry season (Childers et al. 2005)—when salinity is high 10 

and concentrations of dissolved organic carbon (DOC) and total nitrogen (TN) are low—versus 

the wet season—when salinity is low and [DOC] and [TN] are high (Davis et al. 2003b). 12 

We conducted an experiment to determine how intra-annual patterns of salinity and water 

source in this dwarf R. mangle wetland affect early leaf decomposition and the release and 14 

recycling of leached phosphorus and organic carbon.  A similar study looking at the effects of 

salinity on leaching showed that losses of mass and nutrients were greater in Avicennia leaves 16 

immersed in water with a salinity of 16‰ versus 32‰ (Steinke et al. 1993).  Based on these 

findings, we hypothesized that leaching losses from R. mangle leaf litter would be affected by 18 

surface water salinity.  However, we also expected that source-specific water quality and 

respective microbial composition would affect leaf-water column exchanges. 20 

Strong phosphorus-limitation across the southern Everglades mangrove ecotone results in 

low aboveground primary productivity and extremely low litter production (Koch & Snedaker 22 

1997; Coronado-Molina 2000; Ewe et al., 2006).  In spite of this, the initial leaching phase of R. 
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mangle leaves has been shown to result in a significant release of P and labile organic matter 

during the first few days of immersion in water (Benner et al. 1985; Davis et al. 2003a).  2 

Considering the high degree of P-limitation that exists across the Everglades and into NE Florida 

Bay (Fourqurean et al. 1992, Amador & Jones 1993, Noe et al. 2001), we expected a rapid 4 

microbial response to leached P regardless of the water source and quality experienced by this 

mangrove wetland. 6 

 

Materials and Methods 8 

In May 1998, we collected newly-senesced, yellow leaves from dwarf red mangrove trees 

along lower Taylor River, Everglades National Park, FL USA, for use in this experiment.  The 10 

exact location of the site (FCE LTER site TS/Ph 7b) is longitude -80.649 and latitude 25.214. 

We conducted the incubations in glass bottles under ambient temperature and sunlight 12 

conditions.  Following incubation, leaves were removed from the bottles, rinsed with de-ionized 

water to remove any superficial bacterial layer, and dried to a constant weight at 70°C.  The 14 

methods for leaf collection and for the leaching experiment are the same used in Davis et al. 

(2003a). 16 

Since we used fresh leaf material, an accurate means of estimating initial dry weight was 

needed in order to determine mass loss and to normalize the quantity of total phosphorus (TP) 18 

and total organic carbon (TOC) released from each leaf.  To accomplish this, we collected an 

additional batch of newly-senesced leaves (n = 75) from the same site and at the same time to 20 

develop a linear regression model that could be used to estimate initial dry mass for each leaf 

from its initial fresh mass.  This model showed that dry mass was consistently 34% of initial 22 

fresh mass (p < 0.0001; adjusted r2 = 0.99; see Davis et al. 2003a). 
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Following initial leaf measurements, 100 fresh experimental leaves were individually 

stored in sterile plastic bags at 4°C for no more than 24 hours. Ninety individual leaves were 2 

randomly assigned to treatment combinations according to the experimental design.  The three 

treatments included water treatment (2 levels: with and without poison), water salinity (3 levels: 4 

0‰, 16‰, and 32‰), and collection day (5 levels: 1, 2, 5, 10, and 21 Days).  All treatment 

combinations (water treatment X salinity X collection day) had three replicates. 6 

We added 2 ml of a 1% NaN3 (sodium azide) solution to half of the experimental units as 

a poison to inhibit biotic respiration.  The remaining bottles received 2 ml of de-ionized water.  8 

The effect of salinity on the early phase of leaf decomposition was determined by incubating 

leaves in waters of different salinity.  The fixed levels of this treatment were chosen to represent 10 

the annual range of salinity and water source common to this dwarf mangrove wetland, as 

described below.  All water was pre-filtered (Whatman GF/F) to reduce variability in large 12 

particles (> 0.7 µm) between different waters. 

To mimic typical wet season conditions in this dwarf R. mangle wetland, we used 14 

freshwater collected from a southern Everglades sawgrass (Cladium jamaicense) marsh.  To get 

16‰ water, we collected surface water from within the dwarf R. mangle wetland.  Water 16 

representing the high salinity end member (32‰) was collected from NE Florida Bay.  The latter 

two salinities were intended to reflect surface water conditions found in the dwarf mangrove 18 

zone during the dry season or associated with wind/storm events that would bring high salinity 

water into the dwarf mangrove ecotone from Florida Bay (see Figure 1).  We consider the 20 

different salinities (0‰, 16‰, and 32‰) of these different sources in our analyses, but also refer 

to these waters by their respective source (i.e., “Everglades”, “mangrove”, and “Florida Bay”). 22 
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Triplicate bottles of each treatment combination were randomly sacrificed after 1, 2, 5, 

10, and 21 days of incubation.  This sampling protocol allowed for the observation of rapid 2 

losses due to leaching (1-2 days) as well as longer term, microbially mediated exchanges (5 days 

to 3 weeks).  During each sampling, leaves were removed from the bottles, water samples were 4 

then collected and stored in HDPE bottles at 4°C until analyzed for nutrients.  Samples were 

analyzed for [TP] and [TOC] using methods described in Davis et al. (2003a). 6 

To ensure that changes in water nutrients were solely due to leaf decomposition, control 

bottles containing only water or water + NaN
3
 were incubated for the entire 21-day length of the 8 

experiment.  Nutrient concentrations from the control bottles were compared with initial 

concentrations to determine changes associated with water column or photochemical processes.  10 

Paired t-tests were used to determine significant differences between initial and final 

concentrations (p < 0.05). 12 

We present leaching data for each leaf as occurring under the influence of abiotic 

processes only (i.e., poisoned) or under the influence of both microbial and abiotic processes 14 

(i.e., non-poisoned).  We used ANOVA to determine the effect of water treatment, salinity, and 

collection day on the percentage of dry mass remaining (%DMR) in each leaf and on [TOC] and 16 

[TP] of water in each bottle.  These concentrations were normalized to the initial dry mass of 

each leaf.  For all analyses, Tukey-Kramer post-hoc tests were used to determine differences 18 

between treatment means of significant ANOVAs (p<0.05). 

 20 

Results 

Rapid losses of mass occurred in each water treatment level, as 10–20% of the initial dry 22 

mass of leaves was lost after 24 hours (Table 1).  After Day 1, changes in percent dry mass 

remaining (%DMR) from one sampling to the next were more gradual.  Overall, mean %DMR 24 
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was significantly higher in poisoned bottles (Table 1).  For the most part, early differences in 

%DMR between poisoned and non-poisoned incubations were negligible.  However, after five 2 

days of incubation, the differences in %DMR between bottles with and without NaN
3
 became 

more noticeable, especially at lower salinities (Table 1). 4 

The contribution of microbial processes to the loss of mass from individual leaves 

appeared to increase over time.  However, we observed a difference in mean %DMR between 6 

poisoned and non-poisoned incubations only in 0‰ and 16‰ water, with non-poisoned bottles 

showing greater losses of mass (Table 2).  Finally, we detected an effect of salinity on mean 8 

%DMR only in leaves immersed in water containing the poison (Table 1).  Percent dry mass 

remaining due to leaching (i.e., abiotic processes only) was significantly higher in 16‰ water 10 

than in freshwater, and %DMR in leaves leached in 32‰ water could not be statistically 

differentiated from either (Table 1).  12 

The use of water from different sources resulted in differing initial concentrations of 

TOC and TP for the different salinity levels, but the differences did not exceed a factor of two 14 

(Table 3).  These differences did not seem to affect the outcome of the experiment for either 

TOC or TP exchange, as concentrations of each constituent increased by more than an order of 16 

magnitude after 21 days of leaf decay.  Control bottles (i.e., those without leaves) showed no 

significant changes in [TOC] or [TP] from day 0 to day 21, either with or without poison. 18 

 Water nutrient content at each sampling time was normalized to the initial dry mass of 

the leaf in each bottle (moles gdw leaf-1).  There was no statistical difference in [TOC] between 20 

poisoned and non-poisoned incubations.  However, normalized concentrations of TOC after 21 

days were noticeably lower in non-poisoned bottles (mean = 181.2 mmoles TOC gdw-1) 22 

compared to poisoned bottles (mean = 224.1 mmoles TOC gdw-1).  We observed a significant 

time effect on normalized values for [TOC] regardless of the addition of poison (p < 0.0001; 24 
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Figure 2).  The trend for TOC was a rapid rate of release (moles gdw leaf-1 day-1) to the water 

column within the first two days followed by more gradual releases over the latter half of the 2 

study.  The cumulative effect was significantly higher normalized [TOC] in bottles after 21 days 

(Figure 2).  Normalized TOC concentrations after 1, 2, 5, and 10 days could not be differentiated 4 

from one another.  We saw no effect of salinity on the release of TOC from dwarf R. mangle 

leaves in either poisoned or non-poisoned incubations. 6 

Overall, total phosphorus concentrations in poisoned incubations were not different from 

[TP] in non-poisoned incubations (Figure 3).  There was a significant water source effect on [TP] 8 

in non-poisoned bottles (p < 0.0001).  Mean TP concentrations were highest in 16‰, followed 

by 32‰, and were lowest in 0‰ despite relatively high initial [TP] concentrations in this 10 

treatment (Figure 4; Table 3).  This water source effect was especially noticeable during the Day 

5 and Day 10 samplings, when normalized TP concentrations were highest in 16‰ and lowest in 12 

0‰.  After Day 10, the TP content of these bottles decreased by nearly half—from a mean of 7.1 

to 2.9 µmoles TP gdw-1 (Figure 3). 14 

In the non-poisoned incubations, we saw no significant change in TP concentrations 

through time in 0‰ water (Figure 3).  In the 16‰ and 32‰ salinity levels, [TP] was highest 16 

after 5 days and then leveled off or declined by Day 21. 

We saw no evidence of a water source effect in bottles containing poison.  In addition, 18 

total phosphorus in poisoned incubations followed an increasing trend over three weeks with 

values leveling off at a mean of 5.1 µmoles TP gdw-1 after 10 days (Figure 3).   20 

 

Discussion 22 

Our findings reflect those shown in numerous other studies regarding the importance of 

leaching in the early loss of materials from leaf litter (Brinson 1977; Rice & Tenore 1981; 24 
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Ibrahima et al. 1995; among others).  By isolating the contribution of abiotic processes in the 

poisoned incubations, our data also reveal the role that biological processes play during this stage 2 

of R. mangle leaf decay.  This study also sheds light on the importance of water source in 

affecting the early decay of leaf litter in this seasonally dynamic oligohaline ecotone of 4 

Everglades National Park. 

 6 

Leaching vs. Microbial Contributions to Mass Loss 

Leaching (i.e. abiotic processes) resulted in mean losses of 18% of leaf mass after 2 days 8 

and up to 30% after 3 weeks.  These losses were comparable to other studies on temperate 

deciduous and tropical mangrove leaf litter (Tam et al. 1990; Steinke et al. 1993; Chale 1993; 10 

Ibrahima et al. 1995; France et al. 1997).  Some of those studies showed that leaching-associated 

mass loss, although rapid at first, tended to level off within a few weeks (Steinke et al. 1993; 12 

Ibrahima et al. 1995; France et al. 1997).  However, others have suggested that leaching may be 

an important part of the decomposition of mangrove leaf litter for up to a month (Cundell et al. 14 

1979; Tam et al. 1990). 

We found that microbial contributions to mass loss were minimal at first, but gradually 16 

increased over the three-week study period.  After 21 days, biotic processes (i.e., non-poisoned 

%DMR minus poisoned %DMR) accounted for approximately 4–14 % of dry mass loss from R. 18 

mangle leaves.  These microbially mediated losses were greatest in Everglades freshwater and 

lowest in Florida Bay water (salinity = 32‰).  We believe that this may have been a result of the 20 

differences in the quantity and quality of dissolved organic material and corresponding microbial 

biomass of the different sources of water used in the experiment.  Everglades water that had the 22 

highest initial [TOC] may have also had relatively high bacterial densities that may have 

influenced decay rates and leaf-water column exchanges.  FCE-LTER data on bacterial 24 
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abundance across this region of the southern Everglades and into Florida Bay suggest that 1) 

bacterial abundances are highest in the mangrove ecotone and during wet season months when 2 

runoff from the Everglades is high, and 2) bacterial abundance is lowest in Eastern Florida Bay 

relative to these Everglades marsh and mangrove sites as well as central and western Florida 4 

Bay, where seagrass productivity is considerably higher (Fourqurean, et al. 1992; J. Boyer, 

unpublished data). 6 

We did not attempt to quantify the difference in bacterial densities among our source 

waters.  However, a study conducted on red mangrove leaves immersed only in eastern Florida 8 

Bay (salinity = 33.5‰) found that bacterial colonization of the leaves was not detected until after 

28 days of submergence (Cundell et al. 1979).  The slow colonization was likely attributed to the 10 

relatively low TOC content and subsequently low initial bacterial biomass of this water. 

 12 

Leaching vs. Microbial Contributions to TOC and TP Dynamics 

We found that leaching was considerably more important than microbial processes (such 14 

as bacterial mineralization) in governing TOC exchange over three weeks of leaf immersion.  At 

the conclusion of our experiment, we found that water column [TOC] increased by as much as 16 

two orders of magnitude in poisoned and non-poisoned incubations.  However, significant 

microbial activity was apparent, as leaf surfaces in the non-poisoned bottles had a well-18 

developed, mucous layer after 10 days.  Non-poisoned bottles also showed indications of 

anaerobic activity, as we detected a strong sulfidic odor in both 16‰ and 32‰ bottles after 10 20 

days.  Lastly, there was also a noticeable difference in 21-day [TOC] means between poisoned 

bottles and non-poisoned bottles, indicating that a sizable portion of leached TOC had been 22 

respired (Figure 2). 
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From a mass balance standpoint, carbon accounted for a small percent of leaf mass losses 

after one day (< 5%) across all treatments.  This was the period of time in which the greatest 2 

single loss of mass occurred.  Considering that the contribution of carbon to mass loss was 

delayed and the mass loss attributed to phosphorus was trivial, some other elements must have 4 

accounted for the large initial losses.  Evidence from other studies has suggested that ions such 

as K, Ca, Mg, and Mn contribute to the large, initial losses of mass from leaves (Steinke et al. 6 

1983; Tam et al. 1990; Chale 1993; Steinke et al. 1993).  At the conclusion of our experiment, 

carbon loss accounted for as much as 30% of the mass loss associated with leaching after three 8 

weeks of decomposition.  By comparison, Ibrahima et al. (1995) found that carbon accounted for 

50-80% of mass loss from deciduous leaves after 10 days of decomposition. 10 

Although phosphorus was a minor component in terms of mass loss, the process of 

leaching appears to be a significant source of phosphorus to this P-limited ecosystem.  In all 12 

incubations, normalized [TP] increased more than three-fold after just five days.  When 

microbial processes were absent, leachable TP seemed to be exhausted after 10 days, regardless 14 

of salinity, indicating that leachable P was depleted rather quickly.  Evidence of this rapid 

depletion of leachable P exists for other tree and wetland macrophyte species as well (Meyer 16 

1980; Twilley et al. 1986; Rubio & Childers 2006).  This release of TP during the first few days 

of leaf immersion is likely critical in sustaining levels of primary and secondary productivity in 18 

oligotrophic mangrove wetlands such as those found along lower Taylor River. 

We observed water source/salinity effects in bottles with an active microbial community 20 

that were likely the result of P-limitation and pre-existing microbial densities in the source 

waters.  At one extreme, TP release in non-poisoned mangrove and Florida Bay water peaked at 22 

about 5 days, then leveled off or declined to a mean of about 3.4 µmoles gdw-1.  Whereas mean 
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[TP] in non-poisoned Everglades water showed no significant change over the duration of the 

experiment, fluctuating between daily means of 1.1 and 2.3 µmoles gdw-1.  When this pattern 2 

was compared with poisoned bottles containing the same source water, it suggested a rapid 

response (< 24 hours) to leached P and sustained interception of leached P by epiphytic microbes 4 

contained in Everglades freshwater.  Meyer (1980) observed a similarly rapid uptake of leached 

P after 48 hours in Bear Brook (NH), also a likely result of microbial immobilization. 6 

In our study, there was a similar microbial response to leached P in mangrove and Florida 

Bay water, but this response took as long as 5–10 days to develop.  This could mean that the low 8 

organic content of these source waters and correspondingly low microbial densities were limited 

more by labile carbon at the outset of the experiment.  As leached TOC met these requirements, 10 

TP then became limiting, resulting in the significant drop in normalized TP in mangrove and 

Florida Bay water.  A similar leaf incubation or in situ chamber study using glucose additions 12 

would help address the question of C versus P limitation at different stages of decay and during 

different seasons (wet vs. dry) of the year in this system. 14 

Based on the water source effects we observed in this study, the early decomposition of 

dwarf R. mangle likely leaves varies seasonally.  This seasonal variability is due, in part, to 16 

seasonal driven factors such as light intensity and temperature.  However, given the variability in 

residence time and the different sources of water to the dwarf mangrove zone of the southern 18 

Everglades, our data suggest that seasonal differences in water quality (i.e. salinity, DOM 

quantity and quality, bacterial densities, etc.) may account for intra-annual variations in decay 20 

rates.  Nutrient release rates from these leaves might also vary seasonally, affecting the amount 

of leached P and labile C available to benthic and water column organisms.  Given the variations 22 

in hydraulic residence time in this region, this could lead to variations in surface water quality 
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(i.e., [P] and [OC]) as well as the quality of standing detritus pools, both of which would directly 

affect water column and benthic metabolism within these oligotrophic wetlands. 2 

 

Conclusions 4 

Our findings suggest that leaching losses were not affected by salinity alone.  However, 

site-specific water quality characteristics were important in determining P dynamics associated 6 

with the early decay of dwarf R. mangle leaves.  Further, these findings shed light on other 

ecosystem properties—such as the availability of labile organic carbon and hydrologic residence 8 

time—that may govern the availability and cycling of phosphorus in the surface water of this 

oligotrophic P-limited wetland. 10 

From this, we hypothesize that labile organic carbon may be depleted in the water 

column of this dwarf mangrove wetland when residence times are long, resulting in low 12 

microbial densities.  During these periods, we believe that P addition to the water column via the 

leaching of leaf litter may not elicit a significant, immediate microbial response due to a 14 

limitation by C.  As a result, water column [P] may increase well above normal levels in periods 

of low flushing.  When sufficient amounts of labile C are added to the system, via leaf litter 16 

leaching or from Everglades runoff, the water column would then shift back to a P-limited 

environment, resulting in low water column [P].  Evidence of this phenomenon (i.e., high [P] in 18 

periods of high salinity and long residence time and low [P] in periods of low salinity and shorter 

residence time) exists in long-term surface water monitoring data from this dwarf mangrove 20 

system (Davis et al. 2001a; Davis et al. 2001b; Childers et al., 2005).  However, continued 

monitoring and long-term research projects addressing these ideas are needed. 22 

 



 16 

Acknowledgements 

We thank Damon Rondeau (FIU) and the Southeast Environmental Research Center for 2 

analytical support and Clinton Hittle (USGS) for hydrological data from Taylor River.  This 

work was funded by the South Florida Water Management District and is based upon continued 4 

work supported by the National Science Foundation to the Florida Coastal Everglades LTER 

Program (Grant No. 9910514). 6 

 



 17 

References 

Amador, J. A. and R. D. Jones. 1993. Nutrient limitations on microbial respiration in peat soils 2 
with different total phosphorus content. Soil Biology and Biochemistry. 25(6):793-801. 
 4 
Benner, R., E. R. Peele, and R. E. Hodson. 1986. Microbial utilization of dissolved 
organic matter from leaves of the red mangrove, Rhizophora mangle, in the Fresh Creek Estuary, 6 
Bahamas. Estuarine, Coastal and Shelf Science. 23:607-619. 
 8 
Brinson, M.M. 1977.  Decomposition and nutrient exchange of litter in an alluvial swamp forest.  
Ecology.  58:601-609. 10 
 
Chale, F. M. M. 1993. Degradation of mangrove leaf litter under aerobic conditions. 12 
Hydrobiologia. 257:177-183. 
 14 
Chen, R. and R. R. Twilley. 1999.  Patterns of mangrove forest structure and soil nutrient 
dynamics along the Shark River Estuary, Florida.  Estuaries.  22(4):955-970. 16 
 
Childers, D.L., J.N. Boyer, S.E. Davis, C. Madden, D. Rudnick, and F. Sklar. 2006. Nutrient 18 
concentration patterns in the oligotrophic “upside-down” estuaries of the Florida Everglades. 
Limnology and Oceanography.  51:602-616. 20 
 
Corronado-Molina, C., 2000. Litterfall dynamics and nutrient cycling in mangrove forests of 22 
Southern Everglades, Florida and Terminos Lagoon, Mexico. Louisiana State University, 
Department of Oceanography and Coastal Sciences, Ph.D. Dissertation. 24 
 
Cundell, A. M., M. S. Brown, and R. Stanford. 1979. Microbial degradation of Rhizophora 26 
mangle leaves immersed in the sea. Estuarine and Coastal Marine Science. 9:281-286. 
 28 
Davis, S.E., D.L. Childers, and G.B. Noe, 2006. The Contribution of Leaching to the Rapid 
Release of Nutrients and Carbon in the Early Decay of Wetland Vegetation.  Hydrobiologia. IN 30 
PRESS. 
 32 
Davis, S.E., C. Coronado-Molina, D.L. Childers, and J.W. Day, Jr.  2003a.  Temporally 
dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in 34 
oligotrophic mangrove wetlands of the southern Everglades.  Aquatic Botany.  75:199-215. 
 36 
Davis, S.E., D.L. Childers, J.W. Day, D.T. Rudnick, & F.H. Sklar.  2003b.  Factors affecting the 
concentration and flux of materials in two southern Everglades mangrove wetlands.  Marine 38 
Ecology Progress Series.  253:85-96. 
 40 
Davis, S.E., D.L. Childers, J.W. Day, D.T. Rudnick, and F.H. Sklar.  2001.  Wetland-water 
column exchanges of carbon, nitrogen, and phosphorus in a southern Everglades dwarf 42 
mangrove.  Estuaries.  24(4):610-622. 
 44 



 18 

Ewe, S.M.L., E.E. Gaiser, D.L. Childers, D. Iwaniec, V. Rivera-Monroy, R.R. Twilley, 2006. 
Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two 2 
freshwater-estuarine transects in the Florida Coastal Everglades.  Hydrobiologia. IN PRESS. 
 4 
Feller, I.C. & W.N. Mathis.  1997. Primary Herbivory by wood-boring insects along an 
architectural gradient of Rhizophora mangle.  Biotroica.  29(4):440-451. 6 
 
Fisher, S.G, & G.E. Likens.  1973.  Energy flow in Bear Brook, New Hampshire: an integrative 8 
approach to stream ecosystem metabolism.  Ecological Monographs.  43:421-439. 
 10 
Fourqurean, J. W., J. C. Zieman, and G. V. N. Powell. 1992. Phosphorus limitation of primary 
production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrass Thalassia 12 
testudinum. Limnology and Oceanography. 37(1):162-171. 
 14 
France, R., H. Culbert, C. Freeborough, and R. Peters. 1997. Leaching and early mass loss of 
boreal leaves and wood in oligotrophic water. Hydrobiologia. 345:209-214. 16 
 
Ibrahima, A., R. Joffre, and D. Gillon. 1995. Changes in leaf litter during the initial leaching 18 
phase: An experiment on the leaf litter of Mediterranean species. Soil Biology and Biochemistry. 
27(7):931-939. 20 
 
Lock, M.A. and H.B. Hynes.  1976.  The fate of “dissolved” organic carbon derived from 22 
autumn-shed maples leaves (Acer saccharum) in a temperate hard-water stream.  Limnology & 
Oceanography.  21(3):436-443. 24 
 
Koch, M. S. and S. C. Snedaker. 1997. Factors influencing Rhizophora mangle L. seedling 26 
development in Everglades carbonate soils. Aquatic Botany. 59:87-98. 
 28 
Maie, N., C. Yang, T. Miyoshi, K. Parish, and R. Jaffe.  2005.  Chemical characteristics of 
dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem.  Limnology 30 
and Oceanography.  50:23-35. 
 32 
Meyer, J. L. 1980. Dynamics of phosphorus and organic matter during leaf decomposition in a 
forest stream. Oikos. 34:44-53. 34 
 
Middleton, B.A. & K.L. McKee.  2001.  Degradation of mangrove tissues and implications for 36 
peat formation in Belizean island forests.  Journal of Ecology.  89:818-828. 
 38 
Noe, G.B., D.L. Childers, & R.D. Jones.  2001.  Phosphorus biogeochemistry and the impact of 
phosphorus enrichment: Why is the Everglades so unique?  Ecosystems.  4:603-624. 40 
 
Nykvist, N. 1959. Leaching and decomposition of litter I. Experiments on leaf litter of Fraxinus 42 
excelsior. Oikos. 10:190-211. 
 44 
Nykvist, N. 1961. Leaching and decomposition of litter III. Experiments on the leaf litter of 
Betula verrucosa. Oikos. 12:249-263. 46 
 



 19 

Parsons, W. F. J., B. R. Taylor, and D. Parkinson. 1990. Decomposition of aspen (Populus 

tremuloides) leaf litter modified by leaching. Canadian Journal of Forest Research. 20:943-951. 2 
 
Rice, D. L. and K. R. Tenore. 1981. Dynamics of carbon and nitrogen during the decomposition 4 
of detritus derived from estuarine macrophytes. Estuarine, Coastal, and Shelf Science. 13:681-
690. 6 
 
Rubio, G.A. and D.L. Childers.  2006.  Decomposition of Cladium jamaicense, Eleocharis sp., 8 
and Juncus roemerianus in the estuarine ecotones of the Florida Everglades.  Estuaries.  
29(2):257-268. 10 
 
Steinke, T. D., G. Naidoo, and L. M. Charles. 1983. Degradation of mangrove leaf and stem 12 
tissues in situ in Mgeni Estuary, South Africa. pp 141-149. In H. J. Teas (Ed.), Biology and 
Ecology of Mangroves. W. Junk Publishers, The Hague. 14 
 
Steinke, T. D., A. J. Holland, and Y. Singh. 1993. Leaching losses during decomposition of 16 
mangrove leaf litter. South African Journal of Botany. 59(1):21-25. 
 18 

Sutula, M.A., B.C. Perez, E. Reyes, D.L. Childers, S. Davis, J.W. Day, D. Rudnick, & F. Sklar.  
2003.  Factors affecting spatial and temporal variability in material exchange between the 20 
southern Everglades wetlands and Florida Bay (USA).  Estuarine, Coastal and Shelf Science.  
57:757-781. 22 

 

Tam, N. F. Y., L. L. P. Vrijmoed, and Y. S. Wong. 1990. Nutrient dynamics associated with leaf 24 
decomposition in a small subtropical mangrove community in Hong Kong. Bulletin of Marine 
Science. 47(1):68-78. 26 

 
Twilley, R. R. 1985. The exchange of organic carbon in basin mangrove forests in a southwest 28 
Florida estuary. Estuarine, Coastal and Shelf Science. 20:543-557. 
 30 
Twilley, R.R., G. Ejdung, P. Romare, & W.M. Kemp.  1986. A comparitive study of 
decomposition, oxygen consumption and nutrient release for selected aquatic plants occurring in 32 
an estuarine environment. 47:190-198. 
 34 
Twilley, R. R. 1995. Properties of mangrove ecosystems related to the energy signature of 
coastal environments. in C. A. S. Hall, ed.  Maximum Power: The ideas and applications of H. T. 36 
Odum. University Press of Colorado. Niwot, Colorado. p. 43-62. 
 38 

Sources of Unpublished Materials 
Boyer, J.N. Southeast Environmental Research Center, Florida International University. 40 
University Park, Miami, FL 33199. 



 20 

Table 1:  Treatment means (± stdev) for % dry mass remaining.  Different letters represent significant differences between treatment 

means (ANOVA, Tukey-Kramer post-hoc test; p<0.05). 2 

 

 Poisoned 
a
 Non-Poisoned 

b 4 

 0.792 ± 0.065 0.740 ± 0.102 

 6 

 0‰
a
 16‰

b
 32‰

ab
 0‰

a
 16‰

a
 32‰

a
 

 0.767 ± 0.043 0.814 ± 0.060 0.791±0.082 0.708 ± 0.107 0.749 ± 0.063 0.763 ± 0.124 8 

 

day 1
a
          day 2

ab
          day 5

bc
          day 10

cd
          day 21

d
                day 1

a
          day 2

ab
          day 5

b
          day 10

c
        day 21

d 10 

 0.838 0.829 0.793 0.767 0.727 0.827 0.796 0.761 0.692 0.625 

± 0.052 ± 0.044 ± 0.055 ± 0.059 ± 0.053 ± 0.031 ± 0.076 ± 0.066 ± 0.083 ± 0.095 12 
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Table 2:  Treatment means (± stdev) at each salinity level showing the effect of 

poison on % dry mass remaining in R. mangle leaves.  Different letters represent 2 

significant differences between treatment means (ANOVA, Tukey-Kramer post 

hoc analyses; p < 0.05). 4 

 

Salinity Poisoned Non-poisoned
 6 

0‰ 0.767a ± 0.043 0.708b ± 0.107 

16‰ 0.814a ± 0.060 0.749b ± 0.063 8 

32‰ 0.791a ± 0.082 0.763a ± 0.124 
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Table 3:  Mean (± stdev) initial [TOC] and [TP] in different 

source waters used for mangrove leaf leaching experiment. 2 

 

 Salinity [TOC] (µM)  [TP] (µM) 

0 ‰ 1400 ± 19 0.23 ± 0.04 

16‰ 897 ± 23 0.33 ± 0.07 

32‰ 710 ± 14 0.17 ± 0.06 

 4 
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List of Figures 

Figure 1: 1998 hydrograph of lower Taylor River, Everglades National Park (FL), showing daily 2 

discharge and mean daily salinity.  Data are from USGS gage # 251127080382100. 

 4 

Figure 2: Time-series plots of normalized [TOC] by salinity in poisoned (bottom) and non-

poisoned (top) incubations. 6 

 

Figure 3:  Time-series plots of normalized [TP] by salinity in poisoned (bottom) and non-8 

poisoned (top) incubations.  Asterisks indicate sampling days where we observed a significant 

salinity/water source effect. 10 

 

Figure 4:  Box plots of normalized [TP] distributions in each salinity/water source category over 12 

the duration of the non-poisoned incubations.  Different letters indicate significant differences. 
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