
Florida International University
FIU Digital Commons

Economics Research Working Paper Series Department of Economics

3-17-2007

Kernel Methods for Small Sample and Asymptotic
Tail Inference for Dependent, Heterogeneous Data
Jonathan B. Hill
Department of Economics, Florida International University

Follow this and additional works at: https://digitalcommons.fiu.edu/economics_wps

This work is brought to you for free and open access by the Department of Economics at FIU Digital Commons. It has been accepted for inclusion in
Economics Research Working Paper Series by an authorized administrator of FIU Digital Commons. For more information, please contact
dcc@fiu.edu.

Recommended Citation
Hill, Jonathan B., "Kernel Methods for Small Sample and Asymptotic Tail Inference for Dependent, Heterogeneous Data" (2007).
Economics Research Working Paper Series. 59.
https://digitalcommons.fiu.edu/economics_wps/59

https://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics_wps?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics_wps?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/economics_wps/59?utm_source=digitalcommons.fiu.edu%2Feconomics_wps%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


Kernel Methods for Small Sample and
Asymptotic Tail Inference for Dependent,

Heterogeneous Data

[Running Title: Kernel Methods for Tail Inference]

Jonathan B. Hill¤

Dept. of Economics
Florida International University, Miami, FL

March 17, 2007

Abstract

This paper considers tail shape inference techniques robust to sub-
stantial degrees of serial dependence and heterogeneity. We detail a new
kernel estimator of the asymptotic variance and the exact small sample
mean-squared-error, and a simple representation of the bias of the B. Hill
(1975) tail index estimator for dependent, heterogeneous data.

Under mild assumptions regarding the tail fractile sequence, mem-
ory and heterogeneity, choosing the sample fractile by non-parametrically
minimizing the mean-squared-error leads to a consistent and asymptoti-
cally normal estimator.

A broad simulation study demonstrates the merits of the resulting
minimum MSE estimator for autoregressive and GARCH data. We ana-
lyze the distribution of a standardized Hill-estimator in order to asses the
accuracy of the kernel estimator of the asymptotic variance, and the distri-
bution of the minimum MSE estimator. Finally, we apply the estimators
to a small study of the tail shape of equity markets returns.

1. INTRODUCTION The use of extreme value theory has reached
into risk management in …nance, damage and catastrophe modeling in the en-
gineering, actuarial and meteorological sciences, and the analysis of asset mar-
ket contagion and hyper-in‡ation. See, e.g., Mandelbrot (1963), Fama (1965),
McCulloch (1996), Embrechts, Klüppelberg, and Mikosch (1997), Finkenstadt

¤Dept. of Econom ics, Florida Internat ional University, Miami, FL; www.…u.edu/»hill jona ;
jonathan.hil l@…u.edu.
AMS classi…cation: 62G32.
Keywords : Hill est imator; regular variation; extremal near epoch dependence; kernel est ima-
tor; mean-square-error.
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and Rootzén (2003), Bradley and Taqqu (2003), Rachev (2003), and Beirlant,
Goegebeur, Segers, Teugels, and De Waal (2004).

The general framework for analyzing extremes begins by assuming the dis-
tribution tail is regularly varying at 1: there exists some 0 such that for
all 

¹() := () =¡()0where is slowly varying. (1)

Distributions satisfying (1) include the domain of attraction of the stable laws
with  2, coincide with the maximum domain of attraction of the extreme
value distributions expf¡¡g, and characterize the tails of GARCH processes.
See deHaan (1970), Leadbetter, Lindgren and Rootzén (1983), Bingham, Goldie
and Teugels (1987), Resnick (1987), and Basrak, Davis, and Mikosch (2002).

Denote by () 0 the order statistic of the sample path f1g:
(1) ¸(2) ¸ , and let= fg2N denote a sequence of integers satisfying
 ! 1 as ! 1, and  = (). B. Hill (1975) proposed the following
estimator of ¡1:

̂¡1


:= 1
X

=1
ln()(+1)

The Hill-estimator has been widely used in the economics, …nance, and telecom-
munications literatures, in particular on data for which substantial evidence
suggests serial dependence and/or heterogeneity via volatility clustering. See
Akgiray and Boothe (1988), Cheng and Rachev (1995), Resnick and Rootzén
(2000) and Chan, Deng, Peng and Xia (2005) and Hill (2005b), to name a very
few.

The question of selecting the tail fractile  for dependent, heterogeneous
data, however, remains entirely ignored. Tail fractile selection is a long stand-
ing problem in the extreme value theory literature because tail shape and tail
dependence estimates may be highly sensitive to the chosen tail region. See Fig-
ure 1 for plots of ̂¡1

 and ̂¡1
[] for iid, AR(1) and IGARCH data with Stable

or Pareto innovations. Positive serial dependence increases the likelihood that
neighboring observations are close in value, diminishing observable tail thick-
ness and rendering the Hill-estimator positively biased (e.g. Stable AR(1));
volatility clustering augments the detectable degree of tail thickness, leading to
negatively biased estimates (e.g. Pareto IGARCH). Such plots are essentially
non-formative for dependent or heterogeneous data.

INSERT FIGURE 1 HERE

Graphical "Hill-plot" methods for tail fractile selection for iid data are con-
sidered at length in Renick and St¼aric¼a (1997) and Drees, de Haan, and Resnick
(2000). See, also, Beirlant, Vynckier and Teugels (1996) and Beirlant, Dierckx,
and Guillou (2005). Bootstrap and adaptive selection methods for selecting 
in the iid case are considered in Hall and Welsh (1985), Hall (1990), Drees and
Kaufman (1997), and Draisma, de Haan, Peng and Periera (1997).
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Mean-squared-error (MSE) and bias reduction methods for selecting 
are developed in the seminal contributions of Hall (1982) and Hall and Welsh
(1985), and recently in Beirlant,Vynckier and Teugels (1996), Resnick and
St¼aric¼a (1997), Danielsson, de Haan, Peng, and de Vries (1998), Hall (1990), and
Huisman Koedijk, Kool, and Palm (2001). An iid assumption is universally im-
posed in this literature, and several methods are suggested without theoretical
riguer. Consider Beirlant,Vynckier and Teugels (1996) and Huisman, Koedijk,
Kool, and Palm (2001).

It is a possible misconception that selecting the sequence fg by minimiz-
ing the MSE for each leads to a inconsistent estimator ̂ . Hall (1982) and
Hall and Welsh (1985) use the tail shape

() =¡(1 +(¡))0 (2)

and focus on sequences » 2(2+) ,  0. The MSE is easy to char-
acterize for iid data, and is parametrically minimized with respect to . The
resulting estimator ̂ is inconsistent due simply to the chosen class of fractiles
2(2+). See Hall (1982: Theorem 2) and Hsing (1991: Theorems 2.4). See
also Huisman et al (2001).

In this paper we analyze non-parametric methods for selecting the tail frac-
tile  for the B. Hill (1975) estimator for processes with substantial degrees
of dependence and heterogeneity restricted only to extremes. We do not im-
pose any structure on non-extremes. For processes satisfying (1) we discuss
a consistent kernel estimator of the exact MSE and asymptotic variance. We
then characterize the small sample bias for tails satisfying (2), construct a bias-
corrected MSE, and select fg by minimizing the MSE.

We only consider a class of sequences fg for which the Hill-estimator is
known to be consistent and asymptotically normal under general conditions, cf.
Hill (2005a). The class (2) is not too restricted, and includes stochastic recur-
rence equations, including the marginal distributions of Multivariate GARCH
processes. See Basrak et al (2002).

We focus on the Hill-estimator because a broad asymptotic theory already
exists for dependent, heterogeneous data. The minimum MSE estimator is con-
sistent and asymptotically normal for processes fg with extremes that are
Near-Epoch-Dependent on themixing extremes of some shock process fg. This
covers at least nonlinear distributed lags, ARFIMA() and FIGARCH()
processes with fractional di¤erence 2 [01), bilinear processes, and random
coe¢cient and threshold autoregressions. Apparently this is the most general
theory available for this or any other tail estimator (e.g. Pickands 1975; Smith
1987; Drees, Ferreira, and de Haan 2004), and for this or any other fractile se-
lection method (e.g. Hall and Welsh 1985; Drees, de Haan, and Resnick 2000).

In a large scale simulation study we analyze the merits of the kernel MSE
estimator, say ̂2


, for sample fractile selection. We also analyze ̂2


as an

estimator of the asymptotic variance. We perform Cramer-von Mises tests of
standard normality on standardized ratios  ´ p(̂¡1


¡ ¡1)̂ and

…nd the range of over which  ¼ (01) at the 5%-10% levels nearly always
includes the optimally selected  by minimizing the MSE.
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Section 2 lays out extremal dependence de…nitions and properties of the
Hill-estimator. In Sections 3 and 4 we characterize the mean-squared-error and
bias of the Hill estimator for general data. Section 5 presents fractile selection
methods and key asymptotic theory. Sections 6 and 7 contain a simulation
study and an application to daily equity market returns. All …gures and tables
are placed at the end of the paper.

2. TAIL SHAPE AND TAIL MEMORY We assume has for each
a common marginal distribution tail (1) with support on [01), and -…eld
== ( : · ). In practice this setting applies to an absolute series =
jj, or tail preserving transforms = ¡£ (0) and = £ (
0).

Assume ¹()¹(¡) ! 1 such that there exists sequences fģ 1 and
fģ 1,  ! 1, satisfying

()() ! 1 (3)

See Leadbetter et al (1983: Theorem 1.7.13). We must restrict the tail shape in
order to expedite asymptotic normality. Cf. Goldie and Smith (1987: property
SR1), Hsing (1991) and Hill (2005a).

Assumption A fg satis…es (1) for some 0. For some positive measur-
able : R+ ! R+,

()() ¡ 1 = (()) as ! 1 (4)

The function has bounded increase: there exists 0 0 1 and 
0 such that ()() · some for ¸ 1 and ̧ 0Speci…cally,
fģ 1 , fģ 1, and (¢) satisfy

p
() ! 0where ! 1, = (). (5)

Remark 1: Tails satisfying Assumption A include ¹() = ¡(1 +
((ln)¡)) and ¹() =¡(1 + (¡)). See Haeusler and Teugels (1985).
Tails of the latter form have been widely exploited in the applied and theoretical
statistics and econometrics literatures, and characterizes the tails of GARCH
processes. See Hall (1982), Hall and Welsh (1985), Chan and Tran (1989), Caner
(1998), Basrak et al (12002) and Hill (2005b) to name a new.

Remark 2: Property (5) restricts the rate at which ! 1, and is key
to ensuring consistency and asymptotic normality for ̂ for general classes of
data. See Hsing (1991) and Hill (2005a). If, for example, the tail satis…es (2)
then (5) holds if

=(2(2+))

See Haeusler and Teugels (1985) for this and other examples. Property (5),
therefore, does not include the sequence  » 2(2+) exploited in Hall
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(1982), Hall and Welsh (1985) and Huisman et al (2001). Such sequences render
̂ an inconsistent estimator of . See Hall (1982) and Hsing (1991).

We require extremal versions of mixing and Near-Epoch-Dependence proper-
ties developed in Hill (2005a). Consult that source for complete details, and see
Hall and Heyde (1980) and Gallant and White (1988) for details on conventional
mixing and NED processes.

Denote by = fg a sequence of constant real thresholds, ! 1 as
! 1, and denote by ´ () a measurable extremal functional of 
for 2 f1g, and = 0 for any other 2 f1g. Examples include
the extreme event (jj ), exceedance (jj ¡)+, and value jj £(
). De…ne

z
:=(() : ··)

and de…ne the coe¢cients

 ´ sup
2z+2z+1

+:2Z
j(\ +) ¡()(+)j

 ´ sup
2z+2z+1

+:2Z
j(+j) ¡(+)j

where fg is a sequence of positive integers satisfying 1 · · , ! 1 as
! 1 and = ().

E-Mixing If  ! 0 as ! 1 we say fg is Extremal-Strong Mixing with
size  0. If  ! 0 as ! 1 we say fg is Extremal-uniform
mixing with size 0.

2-E-NED fg is -Extremal-NED on some array of -…elds fz
1g with

size 0 , 0, if for any 2 R
°°(

j=+
¡) ¡(

jz+
¡)

°°


·()

where : R ! R+ is Lebesgue measurable on R+, sup() = (()1)
for each 2 R, and ()1¡1 ! 0 for some ̧ .

Remark 1: fg is E-NED on fg if extremal information induced by
extremes of can be used to forecast the extreme event with an
almost surely zero prediction error as ! 1. Memory restrictions are not
imposed on the non-extremal support: · ! 1.

Remark 2: The E-NED property allows for a large degree of extremal
and non-extremal memory and heterogeneity, including ARFIMA() and
FIGARCH() processes with 2 [01)bilinear processes, nonlinear dis-
tributed lags, random coe¢cient autoregressions, and extremal threshold au-
toregressions. See Hill (2005a: Section 5). Thus, random walk and IGARCH
processes have not been shown to have near epoch dependent extremes.
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Assumption B fg is 2-E-NED with size 12 on an E-Mixing process fg.
The base fg is E-Uniform Mixing with size [2(¡ 1)] for some ¸
2, or E-Strong Mixing with size (¡ 2) for some 2.

Under Assumptions A and B, Theorem 5 of Hill (2005a) delivers
p


¡
̂¡1


¡¡1¢
 ) (01) and

p
(̂ ¡)~ )(01)

where
2


:= (
p
(̂¡1


¡¡1))2 and ~2


=42




3. MEAN-SQUARED-ERROR KERNEL ESTIMATOR Note 2


is identically the asymptotic variance and exact small sample MSE of ̂¡1


. If
the data are iid then Hall (1982) shows2


!¡2. In general when an analytic

expression for 2


is not available Hill (2005a) proposes a kernel estimator

̂2
 =¡1



X

=1

X

=1
((¡))̂̂

where ̂ := [
¡
ln(+1)

¢
+ ¡ ()̂¡1


], and ((¡ )) denotes a

standard kernel function with bandwidth 1 · ! 1 as !
1.

Assumption C Let 12 ! 1, ! 1 as ! 1, = (¡12),
and 1

P
=1 j((¡ ))j = (12). Moreover, (¢) satis…es

Assumption 1 of de Jong and Davidson (2000).

Under Assumptions A-C, Theorem 6 of Hill (2005a) delivers

ĵ2
 ¡2

j ! 0

This includes Bartlett, Parzen, Quadratic Spectral and Tukey-Hanning kernels.
The estimator ̂2


alone, provides an enormous improvement in theory

over existing MSE representations in which an iid assumption is universally
imposed, leading to a potentially massive underestimate of the true MSE of
̂¡1
 for highly dependent and heterogeneous data. See Section 6 for evidence.

Nevertheless, notice that ̂2
 incorporates the possibly biased ̂¡1

 in f̂g.
In the next section we exploit a new characterization of the small sample bias
to improve both ̂¡1

 and the MSE for small samples.

4. SMALL SAMPLE BIAS The small sample bias is exactly

 := (
p
(̂¡1


¡¡1))

If 
» (2) such that () = ¡(1 + ¡+ (¡)), and  »

2(2+)then Hall (1982: Theorem 2) proves  ! ¡+12(
+ ). Under Assumptions A and B, however, the Hill-estimator is asymptoti-
cally unbiased.
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THEOREM 1 Under Assumptions A and B

 =
p
£¡1 [(1 +(()))

2 ¡ 1] +(1) =(1) (6)

Inspecting (6), a simple estimate of the bias can be achieved if the non-
parametric term (()) can be expressed analytically. For example, if the
tail probability satis…es (2) then Haeusler and Teugels (1985) show

() = ¡


and
p
() ! 0 if  = (2(2+)) = 0. The -quantile 

can be easily estimated by the
p
-consistent (+1), where consistency is

established for processes E-NED on an E-Mixing base in Hill (2005a: Theorem
5).

Hall and Welsh (1985) argue that tails (2) typically arise () as powers of
smooth distributions; () from Type II extreme value distributions expf¡¡g;
or () from stable distributions. They argue that case () typically involves 
= or = 2; case () renders = ; and case () implies = if 1
and 2 · if 1 2.

In most cases, therefore, = = 2, or lies in a known range and in
most cases, they argue, ¸ . Hall (1990) and Huisman et al (2001) therefore
simply assume = .

COROLLARY 2 Suppose

¹() =¡(1 +¡)0 (7)

and = (23)Under Assumptions A and B

 =
p
¡1 £5 £¡

 +(1)

Remark 1: Under Assumption B tail shape (2) require =(2(2+))
= (23) when = .

Remark 2: For small samples and any process satisfying (2), or more
generally (1), ̂ is at best a rough approximation of the true bias. Pareto
random variables, for example, have (¡) = 0, hence ̂ over-estimates the
bias.

The bias estimator ̂ and bias-correct Hill-estimator ̂¡1
(̂) simultane-

ously solve

̂ =
p
̂¡1


(̂) £5 £¡̂(̂)

(+1) (8)

=
p
̂¡1


£5 £¡1(̂¡1

¡̂
p
)

(+1)

¡ ̂ £5 £¡1(̂¡1
¡̂

p
)

(+1)

̂¡1


(̂) = ̂¡1


¡ ̂
p
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The solution f̂¡1


(̂)̂g can be computed numerically for each . How-
ever, for large samples the mean-value-theorem implies the following result.

LEMMA 3 Under the conditions of Corollary 2 and » , 0 23,
if ̂ = (

p
) then ̂ ! 0 and

¯̄
¯̄
¯̄̂ ¡

p̂¡1
 £¡̂

(+1)

2 + ̂ £¡̂
(+1) £

¡
ln(+1)

¢
+¡̂ 

(+1)

¯̄
¯̄
¯̄ ! 0 (9)

The argument used to prove Lemma 3 shows if ̂
p
 degenerates to

zero, then it must be the case that ̂ ! 0. In the sequel, therefore, we simply
assert the following.

ASSUMPTION D Any solution f̂¡1
(̂)̂g to (8) satis…es ̂ = (

p
)

and ̂¡1
(̂) = ̂¡1

 + (1) under Assumptions A-B.

Finally, a small sample bias-corrected MSE estimator ̂2
(̂) uses ̂¡1

(̂):

̂2


(̂) :=¡1


X

=1

X

=1
((¡ )) £ ̂(̂) £ ̂(̂)

̂(̂) :=
¡
ln (+1)

¢
+ ¡ ()̂¡1

(̂)

5. Fractile Selection The simplest criteria for selecting the sample frac-
tile is the minimization of the MSE over some set of appropriate sequences
fg. The trick for ensuring both asymptotic normality and consistency is to
restrict attention to the set of proportional sequences under Assumption A:

 = f= fg2N : ! 1 as ! 1, (4)-(5) hold,
= 1 +(1), 8g

The next result shows that f̂̂
2
g is asymptotically equivalent to f̂~̂

2
~g

for any pair ~2 .

THEOREM 4 Let ~ 2 Under Assumptions A and B, ̂ = ̂~

+ (1
p

~)If additionally Assumption C holds, then ̂2


= ̂2
~

+
(1).

Now select that fractile ¤
 that minimizes the mean-squared-error ̂2

 or
the bias-corrected the mean-squared-error ̂2


(̂) for each over some set of

feasible integers  µ f1g. Each integer  in  must belong to a
sequence fg in .

Under (2) consider

 = f= fg, »0 2(2+g

8



For each a candidate set of tail fractile integers  is

 = fg=1

= f[] ¡1[¡]+g=1, where  = 2[¡] + 1

and each 2 N does not depend on above a …xed threshold, set to ensure 1
· · for the minimal encountered.

For example, if = 5000 and a rolling-window tail analysis involves windows
of minimum width = 1000, the subset

= f[66 ] ¡ 1 £ [65] +g=1,  = 5 £ [65 ] + 1

is valid, where 1000 = f6547g and 5000 = f221544g.
The optimal fractile ¤

 can be written as

¤
= [] ¡ [1¡] +¤, ¤2 f1 g¤= ()

The resulting sequence f¤
ģ 1 is itself an element of  . By construction

each

¤
= [] ¡ [1¡] +¤2 f [] ¡ [1¡][] + (2 ¡1)[¡]g 

hence for any 2 

1 Ã¡ [] ¡ [1¡] +¤
[] + (2 ¡1)[¡]

· ¤



· [] ¡ [1¡] +¤

[] ¡ [1¡]
! 1

THEOREM 5 Under Assumptions A-C for any subset µ  and

¤
 2

©
arg min2 ̂

2


argmin2 ̂
2


()
ª

we have p¤
(̂¡1

¤


¡¡1)̂¤


)(01) and p¤
(̂

¡1
¤

(̂) ¡¡1)̂¤


(̂)

) (01).

Remark : Theorem 5 has far more applications than a minimum MSE.
Any criterion that selects the fractile sequence from a set of proportional se-
quences that satis…es Assumption B will not a¤ect consistency and asymptotic
normality of ̂¤


, nor consistency of ̂2

¤

.

6. MONTE CARLO STUDY We draw random samples of iid mean-
zero innovations fg from either a symmetric Stable distribution with unit
scales, or a symmetric Paretian tail

(¡) = () =¡¡1 + 2¡¡1, ̧ 2
=1492704, 2 [02]

By construction
R 1

¡1()= 1In both cases = 17. Simulation results for
other values of are qualitatively similar. We choose = 17 because it is near
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2 and we want to access the accuracy of tests of …nite variance. The sample size
is = 1000.

6.1 Step Up

We simulate AR(1) and Power-GARCH(1,1) processes using fg. In the
AR(1) case

=¡1 +2 f0269g
In the Power-GARCH(1,1) case

= ¡1, = 0 +1 j¡1j+2¡1= 15

We randomly select 2 [015] from a uniform distribution, retaining only
those 1 + 2 99.

We simulate 3observations and retain the last . We generate 10000 series
of each process and compute ̂ for the absolute series jj. All reported values
are averages over all simulated series.

6.2 Estimation

We estimate ̂ with accompanying asymptotic 95% con…dence bands us-
ing the kernel estimators b~2

 = ̂4
̂

2
 with a Bartlett kernel and bandwidth

= [15]. Parzen and Tukey-Hanning kernels produce qualitatively similar
results. We compute the bias ̂ according to formula (9), and estimate tail
parameters for all 2 

= f10550g

See Figure 1, and see Tables 1 and 2 for con…dence band for selected 2 .
All reported values are averages over all repetitions.

6.3 Tail Index Estimates

We now return to the issues raised in the introduction. As the degree of
positive serial dependence increases observations cluster withgreater probability
hence the observable tail thickness is large. More observations from the tail are
required to obtain a sharp estimate of  for persistent data. Consider Tables
1.1 and 2.1. For Stable or Paretian AR(1) processes with = 9 we require at
least = 420 tail observations in order not to incur a Type II error for one-
sided tests of ¸ 2 at the 5%-level, and as many as= 510 tail observations
will render a 95% con…dence band that contains = 17. Using = 420 (not
shown) the con…dence band for Stable random variables is 168 §24, and using
= 510 (not shown) the band is 151 § 19.

In general, for GARCH(1,1) data we require fewer tail observations to obtain
a sharp index estimate that autoregressive data with positive serial dependence.
This is fairly intuitive: positive serial dependence increases the likelihood of
clustering such that more observations are required to discern the true tail
shape (the Hill-estimator is positively biased for small ). On the other hand,
volatility clustering augments tail thickness. The use of fewer tail observations

10



in this case improves the likelihood that they will not be neighbors and hence
not strongly heteroscedastically related (the Hill-estimator is negatively biased
for large ).

6.4 Kernel Asymptotic Variance Estimation

The asymptotic variance of ̂ is 2 for benchmark iid random variables.
In this case the kernel variance estimator satis…es b~ ¼ ̂ for large¸ 350
for Stable processes, and even larger ¸ 400 for Paretian tailed processes. See
column one of Tables 1 and 2. As the degree of dependence and heterogeneity
increases, however, the kernel variance increases well beyond 2 . For Stable
AR(1) processes with iid errors, = 9, and = 400, the kernel estimate is
b~ = 408 17.

For exact Pareto tails, ( ) = ¡the performance of the Hill-
estimator signi…cantly improves, in particular for iid data. This is well known
in the literature. In simulations not shown here the estimated kernel variance
is between 16 and 18 for any ¸ 50.

Of course this may simply point out the inability of ̂2
 to approximate the

variance of ̂2


for dependent data. We perform a unique simulation study to
assess the merits of ̂2

 by testing how well the standard normal distribution
approximates the true distribution of

 =
p


¡
̂¡1


¡¡1¢ ̂

In this case ̂¡1


represents the tail index estimate of the  series, say
fg1000

=1 , and each series is generated independently of any other series. We
perform Cramer-von Mises tests of standard normality on sequence fg1000

=1
for each simulated process.

In Figure 2 we plot Cramer-von Mises test statistics over  2  for
iid, AR(1) with = 9 and GARCH(1,1). In general a large number of tail
observations is required to ensure approximate standard normality at the 1%
and 5% levels for dependent data, in particular for Stable random variables. A
broad spectrum of fractile values can generate  ¼ (01) at the 10%-level
for GARCH(1,1) data.

6.5 Minimum MSE Estimates

We select the optimal fractile ¤
by minimizing the MSE ̂2

 and the bias-
corrected MSE ̂2

(̂). In general each criterion generates sharp estimates, in
particular for serially dependent data. The optimally selected fractile is nearly
always within the fractile range over which the Hill-estimator is approximately
normally distributed at the 5-10% level. See the last two rows of Tables 1 and
2.

The only challenging cases involve the minimum bias-corrected MSE esti-
mator. The estimator tends to be positively biased for iid and low memory AR
data. Nevertheless, the resulting estimator is exceptional for strongly dependent
data (AR(1) with = 9).

11



7. EMPIRICAL APPLICATION Wenow study daily log-returns fg
to the NASDAQ and S&P500 composite indices over the period Jan. 1, 2001
to Dec. 31, 2005. Market closures are treated as missing values, and each series
is …ltered through a standard 5 day dummy regression to remove daily e¤ects.
After di¤erencing and removing missing values the sample size is 1422.

See Figure 2 for plots of , and ̂ based on the absolute series ´ jj
The only distribution characteristics that matter regarding asymptotics for ̂

(assuming the tails are regularly varying) is dependence and heterogeneity in
the extremes. In order to assess the degree of dependence in the extremes we
estimate the …rst order tail dependence coe¢cient (1) de…ned as

(1) := ()((¡1 ) ¡()(¡1 ))

A nonparametric estimator is simply

̂(1) =
1


X

=1

¡
((+1)) ¡ ()

¢ ¡
((+1)) ¡ ()

¢
.

See Hill (2006) for a literature review, asymptotic theory and a robust kernel
variance estimator associated with ̂(1) under Assumptions A-C. Speci…cally,
under Assumptions A-C

p
(̂(1) ¡(1)) )(01)

where 2


:= (p(̂(1) ¡ (1))2 , and a kernel estimator, a la ̂2


,
satis…es ̂2


¡ 2


! 0.

Both equity returns series display signi…cant levels of positive …rst order
extremal dependence. Unless we impose a parametric model and explicitly work
out a parametric expression for the asymptotic variance of the Hill-estimator (if
one exists analytically), the evidence supports the use of the kernel estimators.

Minimum MSE [MMSE] estimates for either series are close to 2. Non-bias
corrected MMSE estimates ̂ § 196b~

p are 171 § 204 and 202 §
257 for the NASDAQ and SP500, respectively. The "bias-corrected" MMSE
estimates are identical to the uncorrected MMSE estimates (up to four decimal
places) because the estimated bias for each equity market is tiny (between ¡01
and ¡12) relative to the magnitude of the MSE itself (between 5 and 80). See
Figure 3 for plots of ̂¡1

̂
¡1
(̂) and ̂.

Appendix 1: Proofs of Main Results

Proof of Theorem 1. De…ne for any 2 R

fg :=
©
(ln)+ ¡[(ln )+]

ª
(10)

©
¤
(

p
)

ª
:=

n

³



p


´
¡

h


³



p


´io


12



From Lemma A.1 in Appendix 2, Assumptions A and D imply

p


¡
̂¡1
 ¡¡1¢ = ¡12



X

=1

¡
¡¡1¤

(
p
)

¢

+
p


³
1

X

=1
(ln)+ ¡¡1

´
+

where [¡12


P
=1(¡ ¡1¤

(
p
))] = 0 by construction,  =

(1) and [] = (1). Analogous to arguments in Hsing (1991), by properties
(1) and (3), dominated convergence and arguments in Smith (1982: eq. 2.2)


£p


¡
̂¡1
 ¡¡1¢¤

= p

³
1

X

=1
(ln)+ ¡¡1

´
+[]

=
p


µ



(ln)+ ¡¡1
¶

+(1)

=
p


µ



Z 1

0
(

)¡¡1
¶

+(1)

=
p


µ



()
Z 1

1
¡1()

()
¡¡1

¶
+(1)

=
p


µ
(1 +(())) £

Z 1

1
¡1¡(1 +(())) ¡¡1

¶
+(1)

=
p
¡1

³
(1 +(()))2 ¡ 1

´
+(1)

Proof of Corollary 2. Similar to the above argument, suppose ¹() =
¡(1 + ¡£) for some 0Then


£p


¡
̂¡1
 ¡¡1¢¤

=
p


µ



Z 1

1
¡1()¡¡1

¶
+(1)

=
p


µ



Z 1

1
¡1¡

¡(1 +¡
¡)¡¡1

¶
+(1)

=
p


µ




¡


·Z 1

1
¡1¡+¡



Z 1

1
¡1¡(1+)

¸
¡¡1

¶
+(1)

=
p


µ




¡


£
¡1 + (11 +))¡1¡



¤
¡¡1

¶
+(1)

=
p
¡1 ¡

(1 +(1
p
)) £

£
1 + (1 +)¡1¡



¤
¡ 1

¢
+(1)

=
p
¡1(1 +)¡1¡


+(1)

where = ()
(1 + (1p)) by Lemma A.2. Simply put  = 1 to

complete the proof.
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Proof of Lemma 3.

Step 1 (̂ = (
p
)): Suppose ̂ = (

p
). In order to prove

̂ = (1) from (8) we need only show

p


¡1(̂¡1
¡̂

p
)

(+1) =(1)

De…ne
̂ := ()̂

(+1)

and write

(11)

ln
µ

()¡1(̂¡1
¡̂

p
)

(+1)

¶

= ¡ ln̂

1 ¡ ̂ £ ̂
p

¡ ln()p


£
"

̂ £ ̂

1 ¡ ̂ £ ̂
p

#


Under Assumptions A and B, Theorem 1 of Hill (2005b) states

̂ ! 

and » with 23 implies

(ln)
p
= 

³
¡12

 ln
´

= (1)

Thus, ̂
p! 0, ̂ ! and (11) imply

()¡1(̂¡1
¡̂

p
)

(+1) ! ¡1

Use 23 ! 0 to conclude

p


¡1(̂¡1
¡̂

p
)

(+1) = (
p
()) =(1)

Step 2: By the mean-value-theorem there exists for each  a random
variable ¤

 2 [0̂] that satis…es

̂ =
p
̂¡1

 £5 £¡̂
(+1)

¡5 £ p
̂¡1


£

¡
ln(+1)

¢
£

¡1(̂¡1
¡¤


p
)

(+1)p(̂¡1


¡¤


p)2
£ ̂

¡5 £¡1(̂¡1
¡¤


p
)

(+1) £ ̂

+5 £
¤


¡
ln (+1)

¢


¡1(̂¡1
 ¡¤


p)

(+1)p
(̂¡1

 ¡¤


p
)2

£ ̂
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Let ̂ = (
p) such that ¤


! 0 by Step 1: ¤


2 [0̂ ] ! 0.

Notice (ln(+1)) £ ¡1̂¡1


(+1) ! 0. Therefore
¯̄
¯̄
¯̄̂ ¡

p̂¡1


£¡̂
(+1)

2 + ̂ £¡̂
(+1) £

¡
ln (+1)

¢
+¡̂

(+1)

¯̄
¯̄
¯̄ ! 0

Proof of Theorem 4.

Claim 1: Consider
©


¤
(

p)
ª

de…ned in (10). Lemma A.1
implies for any (,~) 2 

¡12


X

=1

¡
¡¡1¤

(
p
)

¢

¡ (~)12 £ ~¡12


X

=1

³
~¡¡1¤

~(
p

~)
´

= (1)

where (~)12 = 1 + (1) by assumption, hence

¡12


X

=1

¡
¡¡1¤

(
p
)

¢

¡ ~¡12


X

=1

³
~¡¡1¤

~(
p

~)
´

= (1)

Lemma A.3 implies
p


¡
̂¡1
 ¡¡1¢ ¡ p


¡
̂¡1
 ¡¡1¢

= ¡12


X

=1

¡
¡¡1¤

(
p
)

¢

¡ ~¡12


X

=1

³
~¡¡1¤

~(
p

~)
´

= (1)

Therefore
p


¡
̂¡1
 ¡¡1¢

¡
p

~
¡
̂¡1

~ ¡¡1¢

=
p


¡
̂¡1
 ¡¡1¢³

1 ¡
p

~
p


´
+

p
~

¡
̂¡1
 ¡ ̂¡1

~

¢
=(1)

By Theorem 5 of Hill (2005a) ̂¡1
 ¡ ¡1 = (1

p
), and by assumption

1 ¡
p

~
p = (1p). We deduce p(̂¡1

 ¡ ̂¡1
) = (1), hence

̂¡1


= ̂¡1
~

= (1
p

~) as claimed.

Claim 2: Clearly
¯̄
̂2
 ¡ ̂2

~

¯̄
·

¯̄
̂2
 ¡2



¯̄
+

¯̄
̂2

~ ¡2
~

¯̄
+

¯̄
2
 ¡2

~

¯̄


By Theorem 6 of Hill (2005a) ̂2
 ¡ 2

 = (1) for all  2  . Hence, it
su¢ces to prove 2

 = 2
~

+ (1). This follows from Claim 1: ̂¡1
 = ̂¡1

~

+ (1
p

~) and ~= 1 + (1) 8f, ~g 2  imply
p

~
¡
̂¡1

~
¡¡1¢ ¡ p


¡
̂¡1


¡¡1¢ ) 0
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in distribution, hence (e.g. Theorem 2.1 of Billingsley, 1999)

2
 ¡2

~ =(
p
(̂¡1

 ¡¡1))2 ¡(
p

~(̂¡1
~ ¡¡1))2 ! 0

Proof of Theorem 5. The claim follows from Theorem 4, asymptotic nor-
mality p(̂¡1


¡ ¡1) ) (01) and consistency ̂2


¡2


! 0, cf.

Theorems 5 and 6 of Hill (2005a).

Appendix 2: Supporting Lemmeta

LEMMA A.1 Under Assumptions A and B,

p


¡
̂¡1
 ¡¡1¢ = ¡12



X

=1

¡
¡¡1¤

(
p
)

¢

+
p


h


³
¡1



X

=1
(ln)+

´
¡¡1

i
+

= ¡12


X

=1

¡
¡¡1¤

(
p
)

¢
+(1)

where = (1) and [] = (1), and  is independent of scale.

LEMMA A.2 Under the conditions of Corollary 2, = ()
(1 +(1p)).

LEMMA A.3 Under Assumptions A and B, 8fg 2 

1
p


X

=1
¡ 1

p
~

X

=1
~=(1)

1
p


X

=1
¤
(

p
) ¡ 1

p
~

X

=1
¤

~(
p

~) =(1)

Proof of Lemma A.1. We can always write
p


¡
̂¡1
 ¡¡1¢

=
p


³
1

X

=1
ln()(+1) ¡¡1

´

=
p


³
1

X

=1
ln() ¡¡1

´
¡ p

ln(+1)

=
p


³
1

X

=1
ln() ¡

³
1

X

=1
(ln)+

´´

¡ p


¡
ln(+1)

¢
+

p


h


³
1

X

=1
(ln)+

´
¡¡1

i


Using AssumptionA and arguments in Hsing (1991: p. 1554), p[(¡1


P
=1 (ln )+)¡

¡1] = (1).
Moreover, Lemma 4 of Hill (2005a) and a Cramér-Wold device give

p


³
1

X

=1
¡11

X

=1
¤
(

p
)

´
) (12)
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where each » (02
), 2

1.
Furthermore, Lemma 1 of Hill (2005a) states j ln([]) ¡ ln() j ! 0 for

all in an arbitrary neighborhood of 1. Therefore Theorem 2.2 of Hsing (1991:
eq. 2.4-2.7) can be used to show

p


³
1

X

=1
ln() ¡

³
1

X

=1
(ln )+

´´
) 1

p


¡
ln (+1)

¢
)2

hence
p


¡
̂¡1
 ¡¡1¢ = 1

p


X

=1

¡
¡¡1¤

(
p
)

¢

+
p


h


³
1

X

=1
(ln)+

´
¡¡1

i
+

= 1
p


X

=1

¡
¡¡1¤

(
p
)

¢
+(1)

where

=
³
1p

X

=1
ln() ¡

³
1

X

=1
(ln)+

´´
¡ 1

X

=1


+
p


¡
ln(+1)

¢
¡¡11

p


X

=1
¤
(

p
)

=(1)

Finally [] ! 0 in probability by Fatou’s Lemma: limsup̧ 1[jj] ·
[limsup̧ 1 jj] = 0, hence j[]j · [jj] ! 0.

Proof of Lemma A.2. By the construction of the sequence fģ 1 and
the distribution tail ¹() = ¡(1 + ¡

) we can write

() » (1 +¡
) ) »()

Use = (23) to conclude ()
» (1 + ¡1()) = + ()

= + (¡12
 ).

Proof of Lemma A.3. For simplicity let ~·  8. Write

112


X

=1
¡ 1~12



X

=1
 (12)

= 112


X

=1

³
¡ (~)12~

´


where

¡ (~)12~

= (ln)+ ¡ (~)12 (ln~)+
+ (~)12(ln~)+ ¡(ln)+
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Using Assumption A and (ln )+ ¸ 0, the expectations di¤erence is
(12

 ) because

(~)12(ln~)+ ¡(ln)+ (13)

= (~)12
Z 1

0
¹(~

)¡
Z 1

0
¹(

)

= (~)12 ¹(~)
Z 1

0

¹(~)
¹(~)

¡ ¹()
Z 1

0

¹()
¹()



» (~)12 ¹(~)
Z 1

0
¡¡ ¹()

Z 1

0
¡

= ¡1 £ ¹()

"µ


~

¶12 ¹(~)
¹()

¡ 1

#

= ¡1 £() £(112
 ) =(12

 )

where the last line follows from ¹() = () by the construction of ,
and Lemma A.3.1 below.

It is easy to show  · ~ as ! 1 follows from ~· . Assume 
is su¢ciently large such that  · ~. De…ne

1 = f: ~ ¸g, ~2 = f: ¸~g.

Then (12) and (13) imply
(14)

¯̄
¯¡12



X

=1

³
¡ (~)12~

´¯̄
¯

·
¯̄
¯¡12



X

=1

³
(ln)+ ¡ (~)12 (ln~)+

´¯̄
¯+(1)

· ¡12


X
21

ln

+
¯̄
¯̄¡12



X
2~2

³
ln ¡ (~)12 ln~

´¯̄
¯̄ +(1)

· ¡12


X
21

ln + (ln~) £ 1~12


X

=1
(¸~) +(1)

If we show each term on the right-hand-side of (14) is (1) then the claim
is proven by Chebyshev’s inequality. First, as ! 1

°°°°1
12


X
21

ln

°°°°
1

· 

12


() £
Z ln~

0

()
()
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=
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³
1 +(¡12
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´

£
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0
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³
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´

£¡1 £
¡
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³
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´

£¡1 £(¡12
 ) =(1)

The …rst equality follows from dominated convergence and Assumption A:

(  ) » ¡()
= () £ (1 +(()))
= () £ (1 +(1

p
))

The third equality follows from Lemma A.3.1.
For the second term in (14), arguments similar to the above and Lemma

A.3.1 give

(ln~) £
°°°~¡12



X
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(̧ ~)

°°°
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· (~¡12
 ) £ (~12
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LEMMA A.3.1 Under the conditions of Lemma A.3, 82 

µ


~

¶12 ¹(~)
¹()

= 1 + (¡12
 ) and ~


= 1 + (¡12

 )

Proof. Properties (1)-(5) imply

() ¹() = ()¡
()

= 1 +(()) = 1 +(¡12
 )

hence
µ


~

¶ ¹(~)
¹()

=
(~)¡~

()¡

(~)
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=
1 +( ~¡12
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1 +(¡12
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 )(15)

given ~= (1). But this implies ~ ! 1, hence ()(~) !
1. Moreover, for some , every ¸ , and any 1

¯̄
¯̄(~)
() ¡ 1

¯̄
¯̄ ·

¯̄
¯̄()
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¡1
¯̄
¯̄ =(()) = (¡12

 ) (16)
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From (15) we now deduce
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~

³
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´

= 1 +(¡12
 )

hence
~


= 1 +(¡12
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Together (15)-(17) imply ¹()¹() = 1 + (¡12
 ), hence
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~
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Figure 1
Hill-Plots and Alt-Hill Plots for iid, AR(1) and IGARCH
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Hill Plot: Pareto, = 1.7
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AltHill P lot : Stable, = 1.7
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Notes: The data are based on randomly generated symmetric Stable or Pareto
innovations {} with unit scale and index = 17. In the AR(1) case
X=9X¡1+. In the IGARCH case X=¡1, =0+(1¡1)¡1+1¡1,
where {01} » [19].
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Figure 2
Cramér-von Mises Tests of Standard Normality on ̂
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CvM statistic 1%, 5% and 10% critical values = .34, .22, .173.
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Figure 3
NASDAQ and S&P500 Daily Log-Returns
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Notes: The median two-tailed tail dependence coe¢cients ̂(1) over all m are
NASDAQ: .10 § .07, and SP500: .17 § .09. As long as each fractile m
belongs to a sequence in S , the set of all proportional sequences,
the median dependence coe¢cient is consistent and asymptotically
normal under Assumptions A-C. See Hill (2006) for related theory and
computation of the above plotted consistent kernel con…dence bands.
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Figure 4
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Table 1.1: Stable, = 17= 1000
AR(1) G(1,1)

 0 .2 .6 .9
m ̂§ ̂§ ̂§ ̂§ ̂§
20 2.36§2.3 2.32§2.5 1.38§1.3 5.14§4.4 2.17§2.4
50 2.73§2.1 2.38§1.4 1.42§.98 2.41§2.0 2.02§1.8

100 2.05§.73 2.41§1.3 1.55§.84 3.60§1.8 1.95§.83
150 2.32§.64 2.42§1.3 1.91§.80 3.21§1.3 2.03§.71
200 2.15§.39 2.19§.45 2.11§.66 2.88§.79 1.97§.42
300 1.89§.26 1.92§.31 1.89§.43 2.26§.48 1.81§.32
400 1.69§.16 1.71§.24 1.79§.30 1.72§.40 1.62§.23
500 1.47§.13 1.61§.15 1.48§.22 1.54§.20 1.41§.16

m
¯ 2 369 381 411 422 347

m̄ 460 477 518 510 454
b~400 1.80 2.41 3.09 4.04 2.35400

KS05 415-430 420-435 422-445 390-440 310-380
KS10 390-460 400-445 405-470 350-470 260-410

Notes: a. GARCH(1,1)
b. Bandwidth  = 1.96£b~/12



c. Minimum  at which 2 does not occur in the 90% interval.
d. Maximum  at which = 1.7 occurs in the 95% interval.
e. KS: Fractile range over which the Kolmogov-Smirnov test of normality

on 12
 (̂-)/b~ is not rejected at the -level.

f. Excluding Paretian iid and GARCH data, in all cases the Cramér-von Mises
statistic is bi-modal over the fractile range. We only display the upper range
of fractile values at which we fail to reject normality. See Figure 2.

Table 1.2: Minimum MSE Estimates
AR(1) G(1,1)

 0 .2 .6 .9

̂¤
 § ¤

 1.66§.165 1.67§.202 1.63§.222 1.62§.274 1.77§.301
¤

f̂2
g 443 462 517 444 318 (.83)

̂¤
 § ¤

 1.87§.319 2.34§.117 1.84§.183 1.69§.202 1.76§.386
¤

f̂2


(̂)g 331 565 540 496 297 (.82)

Notes: a. Non-"bias corrected" ¤
f̂2


g = arg min2f̂2


g.

b. "Bias corrected" ¤
f̂2


(̂)g = arg min2f̂2


(̂)g.
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Table 2.1: Paretian, = 17, = 1000
AR(1) G(1,1)

 0 .2 .6 .9
m ̂§ ̂§ ̂§ ̂§ ̂§
20 1.83§1.15 1.85§1.20 2.14§1.53 3.18§2.62 2.09§2.1
50 1.79§.703 1.87§.783 2.04§.962 2.81§.146 1.88§1.7

100 1.85§.509 1.90§.584 2.12§.799 2.59§1.11 1.61§.72
150 1.89§.421 1.95§.485 2.15§.662 2.46§.842 1.59§.57
200 1.94§.372 1.99§.428 2.17§.573 2.32§.670 1.58§.39
300 2.00§.308 2.08§.360 2.08§.427 2.05§.453 1.61§.32
400 2.06§.268 2.13§.311 1.87§.302 1.78§.317 1.64§.28
500 2.11§.239 2.14§.270 1.61§.208 1.52§.221 1.65§.25
550 2.13§.228 2.13§.254 1.47§.180 1.39§.206 1.69§.31

m
¯ 2 - - 448 423 180

m̄ - - 536 510 575
b~400 2.73 3.17 3.08 3.23 2.5950

KS05 15-48 15-50 430-485 400-450 15-85
KS10 15-110 15-95 430-500 360-480 15-575

Notes: The "Paretian Tail" is P(Xz) = z¡(1 + z¡).

Table 2.2: Minimum MSE Estimates
AR(1) G(1,1)

 0 .2 .6 .9

̂¤
 § ¤

 1.78§.684 1.74§.796 1.63§.254 1.62§.264 1.59§.743
¤

f̂2
g 51 46 452 446 48 (.56)

̂¤
 § ¤

 1.81§.674 1.66§.810 1.67§.245 1.63§.208 1.60§.327
¤
f̂2


(̂)g 56 46 496 484 355 (.85)

Table 4. Equity Mininimum MSE Estimates
NASDAQ SP500

̂¤
 § ¤

 1.71§.204 2.02§.257
¤

(̂
2
) =¤

(̂2
(̂)) 466 473

Notes: Sample size = 1422.
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