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On Functional Central Limit Theorems for
Dependent, Heterogenous Tail Arrays with

Applications to Tail Index and Tail Dependence
Estimators

Jonathan B. Hill∗

Dept. of Economics
Florida International University

November 27, 2006

Abstract

We establish functional central limit theorems for a broad class of de-
pendent, heterogeneous tail arrays encountered in the extreme value lit-
erature, including extremal exceedances, tail empirical processes and tail
empirical quantile processes. We trim dependence assumptions down to
a minimum by constructing extremal versions of mixing and Near-Epoch-
Dependence properties, covering mixing, ARFIMA, FIGARCH, bilinear,
random coefficient autoregressive, nonlinear distributed lag and Extremal
Threshold processes, and stochastic recurrence equations.

Of practical importance our theory can be used to characterize the
functional limit distributions of sample means and covariances of tail ar-
rays, including popular tail index estimators, the tail quantile function,
and multivariate extremal dependence measures under substantially gen-
eral conditions.

1. INTRODUCTION This paper presents functional central limit the-
orems of the formXn(ξ)

t=1
Xn,t(u)⇒ X(ξ, u), where ξ, u ∈ [0, 1],

for dependent, heterogenous tail arrays {Xn,t(u)} in D[0, 1], with X(ξ, u) a
Gaussian process. n(ξ) denotes a non-decreasing integer sequence, n(ξ) → ∞
∗Dept. of Economics, Florida International University, Miami, FL; www.fiu.edu/∼hilljona;

jonathan.hill@fiu.edu.
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Keywords : Functional central limit theorem; extremal processes; tail empirical process; cadlag
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as n → ∞. We require the functional array Xn,t(u) to be approximable by an
"extremal" martingale difference array, and to satisfy

(1) supt supu≥1(E|Xn,t(u)|r)1/r = O(n−a(r))

for some non-stochastic function a(r) ∈ (0, 1/2] and all r ≥ 1. For non-stochastic
sequences bn(ξ) → ∞ and kn(ξ) → ∞ property (1) covers for all r ≥ 1 extreme
threshold exceedancesmax{lnXt/bn(ξ), 0}, tail empirical processes 1/kn(ξ)1/2

Pn(ξ)
t=1 I(Xt

> bn(ξ)u), and tail empirical quantile processes X([kn(ξ)]) ≥ X([kn(ξ)]+1) ≥ ....
See Section 3.
Tail array sums are critical for risk management, damage and catastrophe

modeling in the engineering, financial, actuarial and meteorological sciences, and
the modeling of explosive economic events like asset market collapses, hyper-
inflation and cross-market contagion. See, e.g., Mittnik and Rachev (1993),
Embrechts, Kluppelberg, and Mikosch (1997) and Finkenstadt and Rootzén
(2003).
Moreover, exceedance and tail empirical processes provide a theoretical foun-

dation from which to analyze tail index and tail dependence estimators. See,
e.g., Hsing (1991).
Our research is motivated by the popular application of tail shape estimators

and tail dependence measures on highly dependent and heterogeneous data,
including equity, bond and exchange rate returns, prices, insurance claims, and
climate extremes. See Brown Katz (1993), Hsieh (1999), Kysely (2002), and
Galbraith and Zernov (2004), and Schmidt and Stadtmüller (2006) to name
a very few. In both cases existing theory can only handle limited forms of
dependence and heterogeneity.

1.1 Tail Index Estimation

Consider estimating the tail index parameter of a process {Xt} on [0,∞)
with a regularly varying tail:

(2) P (Xt > x) = x−αL(x), as x→∞, where L is slowly varying.

B. Hill (1975) proposed a simple estimator of α−1 which we generalize to a
functional sub-sample. If X(i) > 0 denotes the ith order statistic X(1) ≥ X(2)

≥ ..., and [z] the nearest integer, [z] ≥ z, the estimator is

α̂−1n (ξ) := 1/kn(ξ)
Xn(ξ)

t=1

¡
lnXt/X([kn(ξ)]+1)

¢
+
,

for some sequence kn(·) : [0, 1] → N, kn(ξ) → ∞ as n(ξ) → ∞, kn(ξ)/n(ξ)
→ 0. Fan, Quintos and Phillips (2001) deliver a functional distribution limit
for α̂−1m (ξ) under an iid assumption. In the non-functional case asymptotic
normality has been established for iid and strong mixing processes (Hall 1982,
Hall and Welsh 1985, Hsing 1991), and for processes with extremes that are
Near-Epoch-Dependent on the extremes of a mixing process (Hill 2005b).
The Extremal Near Epoch Dependence [E-NED] property of Hill (2005b) has

substantial practical advantages over mixing and conventional NED (Gallant
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and White 1988), and Lp-weak dependence (Wu 2006, Wu and Manli 2005)
properties because it imposes memory and heterogeneity restrictions only on
extremes: the Hill-estimator uses information strictly from the extreme sample
tail, hence all assumptions governing non-extremes are superfluous. The E-
NED property will be important for the analysis of many heavy-tailed time
series in finance, macroeconomics and meteorology in which extremes appear to
cluster, and for which the analyst does not want to specificy a model for the
non-extremes.
The E-NED property only requires computation of a conditional probability,

it is typically straightforward to verify, and it characterizes any mixing process,
non-mixing processes, essentially any Lp-NED process, p > 0, linear distrib-
uted lags and linear conditional volatility processes with short or long memory,
bilinear processes, random coefficient autoregressions, and many nonlinear dis-
tributed lags Xt = g(Xt−1, �t) where �t need only be Lp-bounded. In particular,
the Extremal-NED property can characterize processes with highly dependent
non-extremes (e.g. the non-extremes are a random walk) that are neither NED
nor Lp-weakly dependent. See Hill (2005b).

1.2 Tail Dependence Estimation

Consider two stochastic processes {X1,t,X2,t} with marginal distributions
described by (2) with indices α1 > 0 and α2 > 0. The tail dependence coefficient
for X1,t and X2,t is

ρα,n(h) = (n/kn)[P (X1,t > b1,n, X2,t−h > b2,n)(3)

− P (X1,t > b1,n)P (X2,t−h > b2,n)],

for some sequences of thresholds bi,n →∞, kn = o(n), and kn →∞ as n→∞.
Tail dependence has been modeled extensively in the case of bivariate regularly
varying processes that are marginally iid. See Ledford and Tawn (1996, 1997),
Coles, Hefferman and Tawn (1999), Breymann, Dias and Embrechts (2003), Em-
brechts, Lindskog and McNeil (2003) and Hefferman and Tawn (2004). Schmidt
and Stadtmüller (2006) analyze a non-parametric estimator of ρα,n(h) only for
iid pairs {X1,t,X2,t} with a parametric bivariate tail shape. The assumption
of independence for the marginal distributions substantially restricts the types
of bivariate environments in which tail dependence estimators may be applied,
entirely omits the possibility of serial extremal dependence (X1,t = X2,t), and
superfluously imposes structure on non-extremes.

1.3 Limit Theory for Tail Arrays

Rootzén, Leadbetter, and de Haan (1998) analyze general tail array sums un-
der a mixing condition, and Hsing (1991, 1993) develops limit theory for a subset
of such tail array sums in the strong mixing case. See also Rootzén, Leadbetter,
and de Haan (1990) and Leadbetter and Rootzén (1993). Rootzén (1995), Drees
(2002) and Eihnmal and Lin (2003) consider functional limit theory for iid and
mixing tail empirical processes in C[0, 1] and D[0,∞). Typically the imposed
restrictions are rather abstract (Rootzén 1995; Eihnmal and Lin 2003), and
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have only been exemplified for linear non-extremal processes (Eihnmal and Lin
2003: asymptotically independent extremes, AR(1)). See also Csörgö, Csörgö,
Horváth, and Mason (1986), Mason (1988), and Eihnmal (1990).
Moreover, the best extant central limit theory for dependent, heterogeneous

arrays (de Jong 1997, Wu and Manli 2005) does not apply to tail arrays (see
Hill 2006), and some processes with highly dependent non-extremes are neither
NED nor Lp-weakly dependent.
In this paper we characterize sufficient conditions for functional central

limit theorems for tail arrays under (reasonably) minimal assumptions regard-
ing memory and heterogeneity. We use an extremal mixing property, and we
exploit a functional version of the Extremal-Near-Epoch-Dependence property
in Hill (2005b).
In the main result of the paper, Theorem 1, we deliver a functional limit

theory for Extremal-NED arrays. In Section 3 we provide examples of limit
theory for specific tail arrays, and Section 4 contains examples of processes that
are Extremal-NED. The theory developed here essentially unifies and goes well
beyond the disparate theory and environments treated in Rootzén et al (1990),
Leadbetter and Rootzén (1993), Rootzén (1995), Drees (2002) and Eihnmal
and Lin (2003). Proofs of the main results are in Appendix 1 and Appendix 2
contains supporting lemmata.
Our theory can equally handle sample means and covariances of tail ar-

rays. Thus, we apply the theory to a complete asymptotic analysis of the
Hill-estimator α̂−1n (ξ) the tail empirical quantile estimator X([kn(ξ)]), and a tail
dependence coefficient estimator ρ̂α,n(ξ)(h) in Section 5. Both results are the
most general available in either literature, and we anticipate the applicability of
the theory developed here for other tail-array based estimators.
Throughout→ variously denotes convergence in probability or finite distrib-

utions;⇒ denotes weak convergence on some function space. (z)+ := max{z, 0}.
Gaussian elements of function spaces have zero means. K > 0 denotes a finite
constant that may change in value based on the context.

2. ASSUMPTIONS and MAIN RESULTS We first state primitive
tail array characteristics. We then define the memory properties used through-
out this paper, and present the main results.
Let {Xt} = {Xt : −∞ < t <∞} be a stochastic process on some probability

measure space (Ω,=, µ), = = σ(∪t∈Z=t), =t−1 ⊂ =t ≡ σ(Xτ : τ ≤ t). We will
work with the two dimensional cadlag space

D2 := D([ξ, 1]× [0, 1]), ∀x ∈ D2 : x(1, u) = x(1−, u),

for some ξ ∈ (0, 1]. The theory of this paper is greatly expedited by bounding
ξ away from 0, and x(1, u) = x(1−, u) solves the right end-point problem with
cadlag functions. Neither restriction reduces the generality of the main results
by much.
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LetXn,t(u) be aD[0, 1]-valued stochastic array, and define the corresponding
D2-functional

Xn(ξ, u) :=
Xn(ξ)

t=1
Xn,t(u).

n(ξ) is right continuous, non-decreasing in ξ, n(ξ) → ∞ as n → ∞, n(ξ1) −
n(ξ2) → ∞ ∀ξ1 ≥ ξ2, n(0) = 0, and n(1−) = n(1) ≤ n.

DEFINITION [Tail Array] {Xn,t(u)} is an Lr-Functional Tail Array of {Xt}
if Xn,t(u) ∈ D[0, 1], supt supu∈[0,1] kXn,t(u)kr = O(n−a(r)) for some func-
tion a : [1,∞) → (0, 1/2]; and η(ξ, u) := limn→∞ ||Xn(ξ, u)||2 exists for
all ξ, where η(ξ, u) is a non-decreasing function on [0, 1]2, η(0, ·) = 0,
η(1, ·) = 1.

Remark 1: We refer to a(r) as the rth-moment index. See Section 4 for
examples of Lr-Tail Arrays.

Our main result uses a big block/little block argument, cf. Berstein (1927).
Define the sequences gn(ξ), ln(ξ) and rn(ξ), ξ ∈ [ξ, 1], as follows: gn(ξ)→∞ as
n → ∞ and

1 ≤ gn(ξ) = o(n(ξ)), 1 ≤ ln(ξ) ≤ gn(ξ)− 1 ≤ n(ξ)− 1 where ln(ξ)→∞;
ln(ξ)/gn(ξ)→ 0, rn(ξ) = [n(ξ)/gn(ξ)] where rn(ξ)→∞.

We omit the common argument ξ for clarity and write gn and ln. Notice rn(0)
= 0 and rn(ξ1) ≤ rn(ξ2) ∀ξ2 ≥ ξ1. Define the blocks

Zn,i = Zn,i(u) :=
Xign

t=(i−1)gn+ln+1
Xn,t(u).

Under mild assumptions concerning memory and heterogeneity we will prove

Xn(ξ, u) =
Xrn(ξ)

i=1

Xign

t=(i−1)gn+ln+1
Zn,i(u) + op(1)⇒ X(ξ, u).

Our main result relies on a new functional limit theorem for Tail Arrays that
are approximable by martingale difference array. See Lemma A.1 of Appendix
1. In order to ensure the approximation condition holds for a wide array of
processes we construct extremal versions of mixing and near-epoch-dependence
properties. Let {�t} be a stochastic process with σ-algebra

Gt := σ(�τ : τ ≤ t).

Write Ga
b := σ(�t : a ≤ t ≤ b). Let {πn,t} be a sequence of constant real

thresholds, πn,t→∞ as n→∞, and denote by {En,t} aGt-measurable extremal
process. Examples include the extreme event I(|�t| > πn,t), exceedance (|�t| −
πn,t)+, or value |�t| × I(|�t| > πn,t).

5



Denote by zt
n,s ∈ Gt

s the sigma sub-algebra induced by the extremal event

zt
n,s := σ(En,τ : 1 ≤ s ≤ τ ≤ t ≤ n),

and define the coefficients

εqn ≡ sup
An,t∈ztn,1,Bn,t+qn∈znn,t+qn :1≤t≤n−qn

|P (An,t ∩Bn,t+qn)− P (An,t)P (Bn,t+qn)|

'qn ≡ sup
An,t∈ztn,1,Bn,t+qn∈znn,t+qn :1≤t≤n−qn

|P (Bn,t+qn |An,t)− P (Bn,t+qn)| ,

where {qn} is a sequence of integers, 1 ≤ qn ≤ n, qn → ∞ as n → ∞..

DEFINITION [E-Mixing] If qλnεqn → 0 as n → ∞ for some all {qn} we
say {�n,t} is Extremal-Strong Mixing with size λ > 0. If h(qn)

λ'qn →
0 as n → ∞ for all {qn} we say {�t} is Extremal-Uniform mixing with
size λ > 0.

Remark 1: The E-mixing property is simply a canonical uniform or strong
mixing property assigned to the extremal process {En,t} as n → ∞, hence any
measurable function of a finite sequence {En,t, En,t−1, ..., En,t−h} is E-mixing,
h ≥ 1. Strong (uniform) mixing process implies E-strong (uniform) mixing, and
well known inequalities hold for E-mixing processes. Cf. Ibragimov (1962) and
Serfling (1968). See Hsing (1991: p.) for a similar construction.
Remark 2: The E-strong mixing property is related to Leadbetter’s (1974)

D-mixing property, cf. Leadbetter, Lindgren and Rootzén (1983). D-mixing
is not uniform and therefore does not carry over to measurable functions of
D-mixing random variables, a trait we explicitly exploit in the proof of the
supporting Lemma A.4.

Let {zn,t} be an arbitrary array of σ-fields.

DEFINITION [FE-NED]

1. {Xt} is Lp-Functional-Extremal-NED, p > 0,with size −1/2, on some
{zn,t} if some Lr-Functional-Tail Array {Xn,t(u)} based on {Xt} satis-
fies

(4)
°°Xn,t(u)−E[Xn,t(u)|zt+q

n,t−q
°°
p
≤ dn,t(u)ϕqn .

The Lebesgue measurable function array {dn,t(u)}, dn,t : [0, 1] → R+,
satisfies supu∈[0,1],t≥1 dn,t(u) = O(n−a(r)). The coefficients {ϕqn} satisfy
n1/2−a(r)q1/2n ϕqn → 0.

2. Define Yn,t(u1, u2) := Xn,t(u1) − Xn,t(u2). Then

(5)
°°Yn,t(u1, u2)− E[Yn,t(u1, u2)|zt+q

n,t−q]
°°
p
≤ (d̃n,t×|u2−u1|1/p)×ϕqn ,

∀u1, u1 ∈ [0, 1], where supt d̃n,t = O(n−a(r)).

6



Remark 1: The imposition of Lp-boundedness is irrelevant for popular
tail arrays that are inherently Lr-bounded ∀r ≥ 1. The second property (5) is
imposed to handle tightness of sequences of distributions of {Xn(u, ξ)}.
Remark 2: On the surface the FE-NED property (4) is identical to the

canonical NED property, cf. Gallant and White (1988) and Davidson (1994).
Thus, the "constants" dn,t(u) effectively allow the "coefficients" ϕqn to be scale-
free. That we only impose the NED property on a Tail Array Xn,t(u) of Xt is
a crucial distinction. The FE-NED property is uniquely suited to characterize
dependence in extremes simply by exploiting an appropriate Tail Array Xn,t(u)
of Xt, and will allow us to deliver invariance principles for processes with non-
extremes that are too dependent to be NED or Lp-weakly dependent.
Remark 3: We say {Xt} is FE-NED on {�t} if it is FE-NED on some

array of σ-fields {zn,t} induced by {�t}.

Assumption 1

(a) {Xt} is L2-FE-NED of size −1/2 on an E-strong mixing base {�n,t}
of size λ = r/(r − 2), r > 2, or E-uniform mixing base of size λ = r/[2(r
− 1)], r ≥ 2.
(b) For some finite function κ(ξ, δ) ≥ 1 and each ξ ∈ [ξ, 1− δ], δ ∈ [0, 1],

|rn(ξ + δ)/rn(ξ)− κ(ξ, δ)|→ 0.

Moreover 2a(4) + a(2) > 1, 2a(2r) > a(r). Furthermore

gn = o(nmin{[2a(4)+a(2)−1]/2, 2a(2r)−a(r)}).

THEOREM 1 Under Assumption 1, Xn(ξ, u)⇒ X(ξ, u) on D2 where X(ξ, u)
is Gaussian with independent increments and covariance function
E[X(ξi, ui)X(ξj , uj)].

Remark 1: The rate gn = o(nmin{[2a(4)+a(2)−1]/2, 2a(2r)−a(r)}) is always
possible, and merely expedites a proof that the Lindeberg condition holds. The
assumption 2a(4) + a(2) > 1 and 2a(2r) − a(r) > 0 guarantee gn → ∞ as n
→ ∞, and ensure a Lindeberg condition holds for Tail Arrays, cf. Lemma A.2.
The restrictions imply, for example, a(r) = 1/r for all r ≥ 1 is not covered here.
In Section 3 we demonstrate that at least three popular Tail Arrays satisfy all
restrictions on a(r).
Remark 2: The requirement |rn(ξ + δ)/rn(ξ) − κ(ξ, δ)| → 0 further re-

stricts gn in order to ensure uniform tightness on D2, cf. Lemma A.3. For
example, if n(ξ) = [nξ] and gn = [(nξ)

θ] for some θ ∈ (0, [2a(4) + a(2) − 1]/2)
then κ(ξ, δ) = (1 + δ/ξ)1−θ < ∞ ∀ξ ≥ ξ > 0.
Remark 3: For any fixed u ∈ [0, 1] if η(ξ, ·) = limn→∞ ||Xn(ξ, ·)||2 = ξ

then X(ξ, ·) is Brownian motion. Otherwise X(ξ, ·) is the so-called transformed
Brownian motion of Davidson (1994: p. 485) and de Jong and Davidson (2000).
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3. INVARIANCE PRINCIPLES We now characterize invariance prin-
ciples for specific extremal processes {Xn,t}. Assume Ft(x) := P (Xt ≤ x) has
support on [0,∞), and F̄t(x) := P (Xt > x) is regularly varying at ∞: for all t
there exists some α > 0 such that for all λ > 0,

(6) F̄t(λx)/F̄t(x)→ λ−α as x→∞ ⇔ F̄t(x) = x−αL(x), x > 0,

for some slowly varying function L(x). The class of distributions satisfying
(6) includes the domain of attraction of the stable laws, coincides with the
maximum domain of attraction of the extreme value distributions exp{−x−α},
and characterizes many stochastic recurrence equations (e.g. GARCH). See de
Haan (1970), Leadbetter et al (1983), Bingham, Goldie and Teugels (1987),
Resnick (1987) and Basrak et al (2002).
Let F̄t(x)/F̄t(x−) → 1 as x → ∞. Then there exists sequences kn = o(n)

and bn(kn) = o(n), bn(kn) → ∞, satisfying (see Leadbetter et al, 1983)

(7) limn→∞(n/kn)P (Xt > bn) = 1.

Consider the intermediate case: kn → ∞ as n → ∞, n/kn → 0, and define

Xn,t := k−1/2n ((lnXt/bn(kn))+ −E[(lnXt/bn(kn))+]) ,(8)

X∗n,t(u) := k−1/2n (I(xt < vn(kn)u)−E[I(xt < vn(kn)u)]) , u ∈ [0, 1]
where

xt := F̄ (Xt) and vn(kn) := F̄ (bn)→ 0 as n→∞.

Notice (6) and (7) imply

vn(kn) ∼ kn/n, and as n→∞ xt < vn(kn)u ⇔ Xt > bn(kn)u
−1/α.

The sum
Pn(ξ)

t=1 X
∗
n,t(u) denotes a centered tail empirical distribution func-

tion, and Xn,t simply represents a centered bn-exceedance process. See Davis
and Resnick (1984), Beirlant, Teugels and Vynckier (1994), Hsing (1991) and
Rootzén et al (1998). Both processes have been used in damage modeling in
the engineering, actuarial and meteorological sciences, and asset market risk and
volatility analysis. Moreover, both are key to deriving an asymptotic theory for
tail index estimators and tail quantile functions: see Theorem 6.

LEMMA 2 Each Yn,t(u) ∈ {Xn,t,X
∗
n,t(u)} is an Lr-Functional -Tail Array for

all r ≥ 1. In particular supt supu≥0 ||Yn,t(u)||r = O(k
−(1/2−1/r)
n n−1/r) =

O(n−a(r)) where a(1) > 1/2, a(2) = 1/2, a(r) > 1/r ∀r > 2, and 2a(2r)
> a(r). If kn ∼ nδ, δ ∈ (0, 1], then a(r) = 1/2 − (1 − δ)(1/2 − 1/r).

Remark : Both properties 2a(4) + a(2) > 1 and 2a(2r) > a(r) invoked
in Assumption 1.b are satisfied for each {Xn,t,X

∗
n,t(u)}.
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The Lp-FE-NED properties (4)-(5) are particularly insightful for charac-
terizing extremal dependence in {Xt} itself if the associated Tail Array is the
extremal event X∗n,t(u). Given =t+qnt−qn := σ(Xτ : t − qn ≤ τ ≤ t + qn), properties
(4)-(5) applied to X∗n,t(u) reduce to

k−1/2n

°°P ¡xt < vnu|=t+qnt−qn
¢− P

¡
xt < vnu|zt+qn

n,t−qn
¢°°

p
(9)

≤ dn,t(u)× ϕqn

k−1/2n

°°P ¡vnu1 < xt ≤ vnu2|=t+qnt−qn
¢− P

¡
vnu1 < xt ≤ vnu2|zt+qn

n,t−qn
¢°°

p
(10)

≤ (d̃n,t × |u2 − u1|1/p)× ϕqn .

for all u1 ≤ u2. The Lp-Extremal-NED property (9) was introduced in Hill
(2005b).

Remark 1: Property (9) implies the scaled event (n/kn)1/2I(Xt > bnu
−1/α)

can be almost surely perfectly approximated by (n/kn)1/2P (Xt > bnu
−1/α|zt+qn

n,t−qn)
as n → ∞, given √ndn,t(u)qλnϕqn → 0.
Remark 2: The above construction marks a fundamental distinction be-

tween canonical NED and FE-NED properties. The FE-NED properties restrict
extreme events Xt > bnu

−1/α to be Near-Epoch-Dependent on {zn,t}, and zn,t

need only be induced by the extremes of some �t. The FE-NED properties only
characterize memory and heterogeneity for extremes: (9) and (10) say nothing
about the event Xt ≤ bnu

−1/α → ∞.
Remark 3: In Hill (2005b, 2006) we present a simple class of extremal

processes that does not satisfy NED or Lp-weak dependence properties but does
satisfy (9)-(10). Moreover, in Hill (2006) we prove that Tail Arrays like X∗n,t(u)
do not satisfy key assumptions of the best extant central limit theory for NED
arrays, cf. de Jong (1997).

If {Xt} satisfies (9)-(10), then both tail arrays {Xn,t,X
∗
n,t(u)} are L2-NED,

a la Gallant and White (1988). In this sense (9)-(10) characterize a primitive
tail memory property.

LEMMA 3 (Hill 2006) Let {Xt} satisfy (6), (9) and (10) with coefficients
ϕqn = o(na(r)−1/2 × q−λn ), and Lebesgue measurable functions dn,t(u) :

[0, 1]→ R+, where supu∈[0,1],t≥1 dn,t(u) =O(n−a(r)), (∫10 u−1dn,t(u)pdu)1/p
= O(n−a(r)), and d̃n,t = O(n−a(r)). Then {Xn,t,X

∗
n,t(u)} are L2-NED on

{zn,t} with common coefficients ϕqn . {Xn,t} has constants

K ×
µ
−α−1

Z 1

0

u−1dn,t(u)pdu
¶1/p

.

Let

Tn,t(u) ∈ {Xn,t,X
∗
n,t(u)}.

9



The following result is a direct consequence of Theorem 1 and Lemmas 2 and 3.

Assumption 2
(a) {Xt} satisfies (6) and is Lp-FE-NED a la (9) and (10) with co-
efficients {ϕqn} of size −1/2, constants {dn,t(u), d̃n,t} = O(n−a(r)) and
(∫∞0 dn,t(u)

pdu)1/p = O(n−a(r)). The base {�t} is either E-uniform mix-
ing with size −r/2(r − 1), r ≥ 2, or E-strong mixing base with size −r/(r
− 2), r > 2.

(b) |rn(ξ+ δ)/rn(ξ) − κδ(ξ)| → 0 for some finite κδ(ξ) ≥ 1 and each ξ ∈
[ξ, 1 − δ] and {u, δ} ∈ [0, 1], and gn = o(nmin{[2a(4)+a(2)−1]/2, 2a(2r)−a(r)}).

COROLLARY 4 Under Assumption 2 with p = 2,
Pn(ξ)

t=1 Tn,t(u) ⇒ T (ξ, u)
on D2, where Y (ξ, u) is Gaussian with independent increments and co-
variance function E[T (ξi, ui)T (ξj , uj)].

If kn ∼ nδ for some δ ∈ (0, 1) then Lemma 2 can be used to verify min{[2a(4)
+ a(2) − 1]/2, 2a(2r) − a(r)} = δ/4. If additionally n(ξ) = [nξ] then Corollary
4 can be greatly simplified: all we ultimately need is Assumption 2.a.

COROLLARY 5 Let Assumption 2 .a hold with p = 2, and let n(ξ) = [nξ],
kn ∼ nδ, δ ∈ (0, 1) and gn = o(nδ/4). Then

P[nξ]
t=1 Tn,t(u) ⇒ T (ξ, u) on

D2, where T (ξ, ·) is Brownian motion.

4 FE-NED EXAMPLES Any Lp-NED process Xt with tails (6) and
limx→∞ L(x) = c has the L2-FE-NED property (9). This includes tails of the
form F̄ (x) = cx−α(1 + dx−β + O(x−θ)), (c, d) ≥ 0, (β, θ) > 0, and related
expansions (e.g. Hall 1982, Hall and Welsh 1985). Thus, linear, conditional
volatility (Davidson 2004), bilinear (Davidson 1994) and many nonlinear dis-
tributed lags (Gallant and White 1988) with iid innovations that satisfy (1)
and L(x)→ c are L2-E-NED. For any slowly varying L(x) in (6), (9) holds with
a complicated expression for dn,t(u). In general, ARFIMA, FIGARCH, simple
bilinear, random coefficient autoregression, and Extremal Threshold processes
are L2-FE-NED (9)-(10) if the underlying innovations are iid with tails (1). See
Hill (2005b, 2006).

5. APPLICATIONS In this section we develop a functional limit theory
for a tail dependence estimator, the B. Hill (1975) tail index estimator, and an
intermediate tail quantile function.

5.1 Functional Tail Index Estimation

Let {Xt} satisfy (6). We derive the functional distribution limit of the Hill-
estimator

α̂−1n (ξ) := 1/kn(ξ)
Xn(ξ)

t=1

¡
lnXt/X([kn(ξ)]+1)

¢
+
,

10



and tail quantile function X([kn(ξ)]) for L2-FE-NED processes. Without intro-
ducing more notation, it is understood that X([kn(ξ)]) is the [kn(ξ)]

th-largest
observation from the n(ξ)-sample {X1, ...,Xn(ξ)}.
The following limit theory is the most general available for the Hill-estimator,

and for any other tail estimator (that we are aware of), including those suggested
by Pickands (1975), Smith (1987), and Drees et al ( 2004) to name a very few.
For brevity we restrict attention to

n(ξ) = [nξ].

From (7) it is easily verified that

kn(ξ) = [knξ],

hence

(n(ξ)/kn(ξ))P
¡
Xt > bn(ξ)(kn(ξ))

¢ ∼ (n/kn)P ¡Xt > bn(ξ)(kn(ξ))
¢→ 1

logically implies bn(ξ)(kn(ξ)) ∼ bn(kn).
We must restrict the tail shape in order to expedite asymptotic normality.

Cf. Goldie and Smith (1987), Hsing (1991) and Hill (2005b).

Assumption 3 For some positive measurable function g : R+ → R+

(11) L(λx)/L(x)− 1 = O(g(x)) as x→∞.

We assume g has bounded increase: there exists 0 < D, z0, τ < ∞ such
that g(λz)/g(z) ≤ Dλτ some for λ ≥ 1, z ≥ z0. Assume τ ≤ 0.We require
{kn}and g(·) to satisfy

(12)
p
kng(bn(kn))→ 0.

Remark : Tails satisfying (6), (11) and (12) include the popularly as-
sumed forms F̄ (x) = cx−α(1 + O((lnx)−θ)) and F̄ (x) = cx−α(1 + O(x−θ)). In
the latter case (12) holds only if kn/n2θ/(2θ+α) → 0. See Haeusler and Teugels
(1985).

Define

σ̃2n(ξ) : = E

µX[nξ]

t=1
X∗n,t

³
u1/
√
kn
´¶2

σ2n(ξ) : = E
³
k1/2n

¡
α̂−1n (ξ)− α−1

¢´2
.

THEOREM 6 Let {Xt} satisfy Assumption 2 with p = 2 and Assumption 3.
Then

k1/2n (α̂−1n (ξ) − α−1) ⇒ X(ξ)

11



where X(ξ) is Brownian motion with variance limn→∞ σn(ξ) <∞. More-
over,

k1/2n

¡
lnX([knξ])/bn

¢ ⇒ Y (ξ)

where Y (ξ) is Brownian motion of D[ξ, 1] with variance limn→∞ σ̌2n(ξ)
< ∞.

Remark 1: Hill (2005b: Theorem 6) proves a kernel variance estimator of
σ2n(1) is consistent for Extremal-NED processes. Extending the proof to σ

2
n(ξ)

is trivial.
Remark 2: A non-functional limit for B. Hill’s estimator is immediate,

cf. Theorem 5 of Hill (2005b): k1/2n (α̂−1n (1) − α−1)/σn(1) ⇒ N(0, 1) provided
lim infn≥1 σ2n(1) > 0.

5.2 Tail Dependence

Consider two stochastic processes {X1,t,X2,t} with marginal distributions
Fi with support on [∞, 0). Assume each Fi has a regularly varying tails (6) with
index αi > 0.
Define

Zi,n,t(ui) := I(xi,t ≤ vi,nui)− E [I(xi,t ≤ vi,nui)] , i = 1, 2,

where xi,t = F̄i(Xi,t), vi,n = F̄i(bi,n(ki,n)), and bi,n(ki,n) and ki,n satisfy (7) for
each i. In most applications ui = 1. Let n(ξ) = [nξ]. We obtain from (6)-(7)
and some sequence ki,n

limn→∞(n/ki,n)E[Z2i,n,t(ui)]

= limn→∞(n/ki,n)
h
P (Xi,t > bi,n(ki,n)u

−1/αi
i )− P (Xi,t > bi,n(ki,n)u

−1/αi
i )2

i
= ui.

This suggests a simple functional tail dependence coefficient:

ρα,n(h, u) =
E [Z1,n,t(u1)× Z2,n,t−h(u2)]p

u1k1,n/n
p
u2k2,n/n

= (n/kn(u))× [P (X1,t > b1,n(k1,n)ũ1, X2,t−h > b2,n(k2,n)ũ2)

− P (X1,t > b1,n(k1,n)ũ1)P (X2,t−h > b2,n(k2,n)ũ2)],

where

kn(u) := (k1,nu1k1,nu2)
1/2 and ũi = u

−1/αi
i .

If limn→∞ supu∈[0,1] |ρα,n(h, u)|= 0 then {X1,t,X2,t} are asymptotically extremal-
independent at displacement h ≥ 0.
A natural non-parametric estimator of the tail dependence coefficient for an

arbitrary n(ξ)-subsample is

ρ̂α,n(h, ξ, u) := 1/kn(u)
Xn(ξ)

t=1
[Z1,n,t(u1)× Z2,n,t−h(u2)] .

12



In order to exploit Correlation 4 we must show the centered product

ZZn,t(u, h) :=
1p
kn(u)

{Z1,n,t(u1)Z2,n,t−h(u2)−E[Z1,n,t(u1)Z2,n,t−h(u2)]}

is L2-FE-NED. We do this by assuming each {Xi,t} is L4-FE-NED.
For arbitrary λ ∈ Rh, h ≥ 1 write

ZZn,t(λ, u, h) :=
Xh

i=1
λiZZn,t(u, i).

LEMMA 7 (Hill, 2006) Let {X1,t,X2,t} satisfy the Lp-FE-NED property (9)-
(10), with p = 4. Then {ZZn,t(λ, u, h)} is L2-NED on {zn,t} with
constants ddn,t(λ, u) = O(n−a(r)) and coefficients ϕϕqn = o(na(r)−1/2

× q
−1/2
n ). Moreover, {ZZn,t(λ, u, h),zn,t} forms an L2-mixingale se-

quence with size −1/2 and constants ccn,t(λ, u) = O(n−1/2). Finally,
E(
Pn

t=1 ZZn,t(λ, h, u))
2 = O(1).

Lemmas 2, 3 and 7 imply Theorem 1 holds for {ZZn,t(λ, u, h)} for any λ ∈
Rh. Along with a Cramér-Wold device this proves the following claim. Write
ρ
(h)
α (ξ, u) = [ρα(1, ξ, u), ..., ρα(h, ξ, u)]

0, etc.

THEOREM 8 Let {X1,t,X2,t} satisfy Assumption 2 with p = 4, coefficients
{ϕi,qn} and constants {di,n,t(u), d̃i,n,t}, i = 1, 2. Thenp

kn(u)
³
ρ̂(h)α,n(ξ, u)− ρ(h)α (ξ, u)

´
⇒ X(ξ, u)

where X(ξ, u) is a Gaussian h-vector with independent scalar increments,
covariance matrix function E[X(ξi, ui)X(ξj , uj)

0] ∈ Rh×h, and variances
E[Xi(ξ, u)

2] < ∞ .

Remark 1: The above result trivially applies to the serial extremal de-
pendence case for any h ≥ 1. Thus, Theorem 8 is the most general of its kind
in the tail dependence literature.
Remark 2: In order to make ρ̂(h)α,n(ξ, u) operational, the tail quantile es-

timator Xi,([ki,nξ]+1) will have to be used as an estimate of the approximate
ki,n/n

th-quantile bi,n(ki,n). Theorem 6 implies X([knξ]) = bn + Op(1/
√
kn). We

are currently investigating this issue in related work.

Appendix 1: Proofs of Main Results

Proof of Theorem 1. In Step 1 we prove Xn(ξ, u) ⇒ X(ξ, u) by showing
conditions (a)-(f) of Lemma A.1 in Appendix 2 hold under the maintained
assumptions. In Step 2 we prove the increments of the limiting process X(ξ, u)

13



are independent.

Step 1 (weak convergence) By Lemma A.4 {Xn,t(u),zn,t} forms an L2-

mixingale sequence with constants cn,t(u), supu∈[0,1],t≥1 cn,t(u) = O(n−1/2),

and coefficients ψqn = o(q
−1/2
n ).

Define

F̃n,i :=
[

τ≤ign
zn,τ , zt

n,s := σ(En,τ : 1 ≤ s ≤ τ ≤ t ≤ n).

Condition (a): Using a standard bound for L2-mixingales with size −1/2,
cf. McLeish (1975),

E

µXrn

i=1

X(i−1)gn+ln
t=(i−1)gn+1

Xn,t(u)

¶2
= O

µXrn

i=1

X(i−1)gn+ln
t=(i−1)gn+1

c2n,t(u)

¶
= O

¡
rnlnn

−1¢ = O
¡
lng
−1
n

¢
= o(1),

hence
Prn

i=1

P(i−1)gn+ln
t=(i−1)gn+1Xn,t(u) =

Prn
i=1 Zn,i(u)→ 0 by Chebyshev’s inequal-

ity.

Condition (b): Define the index sets

Ai(t) := {t : (i− 1)gn + ln + 1 ≤ t ≤ ign}
An,t = ∪rni=1Ai(t)

Analogous to de Jong’s (1997: A.7-A.12) argument, because {Xn,t(u),zn,t}
forms an L2-mixingale sequence, for t ∈An,t it can be shown {E[Xn,t(u)|F̃n,i−1],zn,t}
forms an L2-mixingale sequence with constants cn,t(u)ψ

η
ln
and coefficients ψ1−ηln

= o(l
−1/2
n ) for some sufficiently tiny η > 0. McLeish’s (1975) bound now gives

E
³Xrn

i=1
E
h
Zn,i(u)|F̃n,i−1

i´2
= O

µXrn

i=1

Xign

t=(i−1)gn+ln+1
c2n,t(u)ψ

2η
ln

¶
= O(rngnn

−1l−ηn ) = O(l−ηn ) = o(1).

Condition (c): The proof mimics (b).

Condition (d): Recall Wn,i := E[Zn,i|F̃n,i] −E[Zn,i|F̃n,i−1], write

Zn,i(j) = Zn,i(ξj , uj), Wn,i(j) =Wn,i(ξj , uj),

and noteXrn(ξk)

i=1
W̃ 2

n,i(π) =
Xk

l=1

Xrn(ξl)

i=rn(ξl−1)+1

µXk

j=l
πjWn,i(j)

¶2
, π0π = 1.

14



Analogous to de Jong (1997: A.13-A.17) we obtain

sup
π0π=1

°°°°°°°
kX
l=1

rn(ξl)X
i=rn(ξl−1)+1

 kX
j=l

πjZn,i(uj)

2

−
rn(ξk)X
i=1

W̃ 2
n,i(π)

°°°°°°°
1

= sup
π0π=1

°°°°°°°
kX
l=1

rn(ξl)X
i=rn(ξl−1)+1


 kX

j=l

πjZn,i(uj)

2

−
 kX

j=l

πjWn,i(uj)

2

°°°°°°°
1

≤ K
kX
l=1

kX
j1,j2=l

rn(ξl)X
i=rn(ξl−1)+1

k(Zn,i(uj1)−Wn,i(uj1))k2 × kZn,i(uj2)k2

= O

 kX
l=1

rn(ξl)X
i=rn(ξl−1)+1

 X
t∈Ai(t)

c2n,tψ
2η
ln

1/2 X
t∈Ai(t)

c2n,t

1/2


= O

µXk

l=1
rn(ξl)× [gnn−1l−ηn ]1/2 × £gnn−1¤1/2¶

= O(l−η/2n ) = o(1).

Along with Lemma A.4 supπ0π=1 |
Prn(ξk)

i=1 W̃ 2
n,i(π) − 1| → 0.

Condition (e): For any {ξ, (u, δ)} ∈ [ξ, 1] × [0, 1]2 and some integer sequence
{r∗n(ξ)} satisfying ∀n ≥ 1

0 ≤ [r∗n(ξ)δ] ≤ rn(ξ + δ)− rn(ξ)

we have°°°°X[r∗n(ξ)δ]

i=1
Wn,i(u)

°°°°
2

(13)

≤
°°°°X[r∗n(ξ)δ]

i=1

Xign

t=(i−1)gn+ln+1
Xn,t(u)

°°°°
2

+

°°°°X[r∗n(ξ)δ]

i=1

Xign

t=(i−1)gn+ln+1

³
Xn,t(u)−E[Xn,t(u)|F̃n,i]

´°°°°
2

+

°°°°X[r∗n(ξ)δ]

i=1

Xign

t=(i−1)gn+ln+1
E[Xn,t(u)|F̃n,i−1]

°°°°
2

.

Under the maintained assumptions {Xn,t(u),zn,t} forms an L2-mixingale se-
quence with size −1/2 and constants cn,t(u) = O(n−1/2). Similarly, for each
t ∈ An,t, {E[Xn,t(u)|F̃n,i−1],zn,t} and {Xn,t(u) − E[Xn,t(u)|F̃n,i],zn,t} form
L2-mixingale sequences with size −1/2 and constants {cn,t(u)ψηn,ln} for some
tiny η > 0: see de Jong (1997: p. 360-361). Applying McLeish’s (1975) bound
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to each right-hand-side term of (13), and noting ψηn,ln = O(l
−η/2
n ) = o(1),

E

µX[r∗n(ξ)δ]

i=1
Wn,i(u)

¶2
= O

µX[r∗n(ξ)δ]

i=1

Xign

t=(i−1)gn+ln+1
c2n,t(u)

¶
= δ ×O (r∗n(ξ)gn/n) .

By Assumption 1.b there exists for each {ξ, δ} ∈ [ξ, 1] × [0, 1] a finite κ(ξ, δ) ≥
1 satisfying

[r∗n(ξ)δ]gn/n ≤ [r∗n(ξ)δ]gn/n(ξ) ≤ (rn(ξ + δ)/rn(ξ)− 1)× (1 + o(1))

→ κ(ξ, δ)− 1 <∞.

But if [r∗n(ξ)δ]gn/n is bounded then so is r
∗
n(ξ)gn/n. Hence, for sufficiently large

n and some κ ≥ 1X[r∗n(ξ)δ]

i=1
E (Wn,i(u))

2 ≤ δ × κ.

Condition (f): Define Yn,t(u1, u2) := Xn,t(u1) − Xn,t(u2). Mimicking (13)
and the subsequent logic and, exploiting the fact that linear functions of mixin-
gales are mixingales, we deduce

(14)

kWn(ξ, u1)−Wn(ξ, u2)k2
≤
°°°°Xrn(ξ)

i=1

Xign

t=(i−1)gn+ln+1
Yn,t(u1, u2)

°°°°
2

+

°°°°Xrn(ξ)

i=1

Xign

t=(i−1)gn+ln+1

³
Yn,t(u1, u2)−E[Yn,t(u1, u2)|F̃n,i]

´°°°°
2

+

°°°°Xrn(ξ)

i=1

Xign

t=(i−1)gn+ln+1
E[Yn,t(u1, u2)|F̃n,i−1]

°°°°
2

= O

µXrn(ξ)

i=1

Xign

t=(i−1)gn+ln+1
c̃2n,t × |u1 − u2|1/2

¶
= |u1 − u2|1/2 ×O (rn(ξ)gn/n) ≤ K × |u1 − u2|1/2.

Step 2 (increments)
For any points 0 < ξk < ξl < 1 and 0 < {uk, ul} < 1 we need only show

E
¡
Xn(ξk, uk)−Xn(ξk−1, uk−1)

¢ ¡
Xn(ξl, ul)−Xn(ξl−1, ul−1)

¢
= op(1).

Write

Xn(ξk, uk)−Xn(ξk−1, uk−1)
=
£
Xn(ξk, uk)−Xn(ξk−1, uk)

¤
+
£
Xn(ξk−1, uk)−Xn(ξk−1, uk−1)

¤
= An,k +Bn,k.
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Analogous to de Jong and Davidson (2000: pp. 635-636), by exploiting MCleish’s
(1975) bound for L2-mixingales of size−1/2 and the assumption supu∈[0,1],t≥1 cn,t(u)
= O(n−1/2), for arbitrary δ ∈ [0, 1] we obtain

|E [An,kAn,l]| ≤
°°°°°°

n(ξk)X
t=n(ξk−1)+1

Xn,s(uk)

°°°°°°
2

°°°°°°
n(ξl−1+δ)X

t=n(ξl−1)+1

Xn,t(ul)

°°°°°°
2

+

n(1)X
t,s=1

E |Xn,t(uk)Xn,s(ul)| I
¡|s− t| ≥ n(ξl−1 + δ)− n(ξk)

¢
= O

Ã
sup

0<ξi<1

£¡
n(ξi)− n(ξi−1)

¢
/n
¤!
+ op(1) = op(1).

The last line follows from Lemma A.3 of de Jong and Davidson (2000), and the
assumptions n(ξ) − n(ξ0) → ∞ ∀ξ > ξ0 and n(1) ≤ n.
Next, for arbitrary δ > 0

|E [An,kBn,l]|

≤
°°°°°°
n(ξk−1+2δ)X
t=n(ξk−1)+1

Xn,t(uk)

°°°°°°
2

°°°°°°
n(ξl−1)X
t=1

(Xn,t(ul)−Xn,t(ul−1))

°°°°°°
2

+

°°°°°°
n(ξk)X

t=n(ξk−1+2δ)+1

Xn,t(uk)

°°°°°°
2

°°°°°°
n(ξl−1)X

t=n(ξk−1+δ)+1

(Xn,t(ul)−Xn,t(ul−1))

°°°°°°
2

+

n(1)X
s,t=1

E[|Xn,t(uk) (Xn,s(ul)−Xn,s(ul−1))|

× I
¡|s− t| ≥ n(ξk−1 + 2δ)− n(ξk−1 + δ)

¢
]

= O


 n(ξk−1+2δ)X
t=n(ξk−1)+1

c2n,t(uk)

1/2n(ξl−1)X
t=1

c̃2n,t

1/2


+O


 n(ξk)X
t=n(ξk−1+2δ)+1

c2n,t(uk)

1/2 n(ξl−1)X
t=n(ξk−1+δ)+1

c̃2n,t

1/2
+ op(1)

= op(1),

because supu∈[0,1],t≥1 cn,t(u) and supt≥1 c̃n,t are O(n−1/2), 0 < ξk < ξl < 1 and
n(1) ≤ n.
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Finally, because 0 < ξk < ξl < 1 and n(ξk) < n(ξl) < n,

|E [Bn,kBn,l]| ≤
°°°°°°
n(ξk−1)X
t=1

(Xn,s(uk)−Xn,s(uk−1))

°°°°°°
2

×
°°°°°°
n(ξl−1)X
s=1

(Xn,s(ul)−Xn,s(ul−1))

°°°°°°
2

= O

ÃµXn(ξk−1)

t=1
c̃2n,t

¶1/2µXn(ξl−1)

t=1
c̃2n,t

¶1/2!
= O

³¡
n(ξk−1)/n

¢1/2 ¡
n(ξl−1)/n

¢1/2´
= o(1).

Proof of Lemma 2. From (6) and (7), ∀u ∈ [0, 1]

(15) F̄ (bn)u = F̄ (u−1/αbn)× L(bn)/L(u
−1/αbn)

where u−1/α ≥ 1 and L(bn)/L(u
−1/αbn) → 1 by the slow variation property.

Hence, for any r ≥ 1 and u ∈ [0, 1]
lim
n→∞(n/kn)

1/rk1/2n ||X∗n,t(u)||r
≤ 2 lim

n→∞
£
(n/kn)P

¡
F̄ (Xt) < F̄ (bn)u

¢¤1/r
= 2 lim

n→∞

h
(n/kn)P

³
F̄ (Xt) < F̄ (bnu

−1/α)
´i1/r

= 2 lim
n→∞

h
(n/kn)P

³
Xt > bnu

−1/α
´i1/r

= 2 lim
n→∞

"
(n/kn)P (Xt > bn)

P
¡
Xt > bnu

−1/α¢
P (Xt > bn)

#1/r
= 2u1/r <∞.

Similarly, arguments in Hsing (1991: p. 1554) imply

limn→∞(n/kn)1/rk1/2n ||Xn,t||r

≤ 2 limn→∞(n/m)1/r||(lnXt/bn)+||r = 2
µZ ∞

0

e−αy
1/r

dy

¶1/r
<∞.

Therefore Xn,t and X∗n,t(u) satisfy

(16)
n
kXn,tkr ,

°°X∗n,t(u)°°ro = O(k−(1/2−1/r)n n−1/r).

As long as kn → ∞ as n → ∞, then trivially k
−(1/2−1)
n n−1/2 > n−1/2,

k
−(1/2−1/2)
n n−1/2 = n−1/2, and k

−(1/2−1/r)
n n−1/r < n−1/r ∀r > 2. Hence for
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some a(r)where a(1)> 1/2, a(2) = 1/2, and a(r)> 1/r ∀r > 2, each {||Xn,t||r, ||X∗n,t(u)||r}
= O(n−a(r)). Similarly,

O(n−2a(2r)) = O
³
k−(1/2−1/2r)n n−1/2r

´2
= O

³
k−(1−1/r)n n−1/r

´
= O

³
k−(1/2−1/r)n n−1/r

´
k−1/2n = O(k−1/2n n−a(r)) ≤ O(n−a(r))

and O(n−2a(4)) = k
−1/2
n n−1/2. Hence 2a(2r) > a(r) and 2a(4) + a(2) > 1/2.

If kn ∼ nδ, δ ∈ (0, 1], then (16) implies a(r) = 1/2 − (1 − δ)(1/2 − 1/r).

Proof of Theorem 6.

Step 1 (α̂−1n (ξ)): By Lemma A.7 for arbitrary u ∈ [0, 1]

k1/2n

¡
α̂−1n (ξ)− α−1

¢
=
X[nξ]

t=1

³
Xn,t − α−1X∗n,t(u

k−1/2n )
´
+ op(1),

where {Xn,t,X
∗
n,t(·)} are defined in (8). Define

σ̌2n(ξ) := E

µX[nξ]

t=1

³
Xn,t − α−1X∗n,t(u

k−1/2n )
´¶2

.

By Lemma 4 {Xn,t,X
∗
n,t(u)} are L2-FE-NED with constantsK(−α−1 ∫10 u−1dn,t(u)2du)1/2

= O(n−a(r)) and dn,t(u) = O(n−a(r)) respectively, and common coefficients
ϕqn = o(na(r)−1/2 × q−λn ). An argument identical to Lemma 3 of Hill (2005b)
shows {Xn,t,X

∗
n,t(u)} are L2-mixingales with size −1/2 and constants of order

O(n−1/2), hence σ̌2n(ξ) = O(1) follows from McLeish’s (1975a) bounds.
The continuous mapping theorem and Corollary 4 now implyX[nξ]

t=1

³
Xn,t − α−1X∗n,t(u

k−1/2n )
´
⇒ X(ξ)

for some Gaussian element X(ξ) of D[ξ, 1] with variance limn→∞ σ̌n(ξ) < ∞.
Therefore, |σ2n(ξ) − σ̌2n(ξ)| → 0 implying σ2n(ξ) = O(1).

Step 2 (X([ξkn])): By Lemma A.8
P[nξ]

t=1X
∗
n,t(u/

√
kn) ⇒ Y (ξ) for some

Gaussian element Y (ξ) of D[ξ, 1] with variance

lim
n→∞ σ̃2n(ξ) = lim

n→∞E

µX[nξ]

t=1
X∗n,t(u

k−1/2n )

¶2
<∞.

The limit limn→∞ σ̃2n(ξ) < ∞ follows from Step 1. An argument identical to
Theorem 2.2 of Hsing (1991) now completes the proof:

P[nξ]
t=1X

∗
n,t(u

k−1/2n ) ⇒
Y (ξ) implies k1/2n lnX([knξ])/bn ⇒ Y (ξ).

Appendix 2: Supporting Lemmata
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We require the following notation. Let {zn,t} be an arbitrary array of σ-
fields and define

F̃n,i :=
[

τ≤ign
zn,τ .

For any point {ξ, u} and π ∈ Rk, π0π = 1, write

Wn(ξ, u) :=
Xrn(ξ)

i=1
Wn,i(u) =

Xrn(ξ)

i=1

³
E[Zn,i|F̃n,i]−E[Zn,i|F̃n,i−1]

´
W̃n,i(π) :=

Xk

j=l
πjWn,i(uj), i = rn(ξl−1) + 1...rn(ξl), l = 1...k.

LEMMA A.1 Let {Xn,t(u)} be an Lr-Functional Tail Array with rth-moment
index a(r), 2a(4) + a(2) > 1. Let gn = o(n[2a(4)+a(2)−1]/2). If

(a)
Xrn(ξ)

i=1
Zn,i(u)→ 0, ∀j = 1...k

(b)
Xrn(ξ)

i=1
E[Zn,i(u)|F̃n,i−1(ξ)]→ 0,

(c)
Xrn(ξ)

i=1

³
Zn,i(u)− E[Zn,i(u)|F̃n,i]

´
→ 0,

(d) sup
π0π=1

¯̄̄̄Xrn(ξk)

i=1
W̃ 2

n,i(π)− 1
¯̄̄̄
→ 0,

(e)
X[r∗n(ξ)δ]

i=1
E (Wn,i(u))

2 ≤ δ × κ, ∀δ ∈ [0, 1],

for some some κ ≥ 1 and sequence {r∗n(ξ)} satisfying 0 ≤ [δr∗n(ξ)] ≤ rn(ξ
+ δ) − rn(ξ), and ∀u1, u2 ∈ [0, 1]

(f) sup
ξ∈[ξ,1]

kWn(ξ, u1)−Wn(ξ, u2)k2 ≤ K|u2−u1|1/2,

then Xn(ξ, u)⇒X(ξ, u) on D2 where X(ξ, u) is Gaussian with covariance
function E[X(ξi, ui)X(ξj , uj)].

Remark : Conditions (a)-(c) imply Xn(ξ, u) is approximable by a partial
sum of martingale differences E[Zn,i|F̃n,i] − E[Zn,i|F̃n,i−1]. Condition (d) en-
sures convergence of finite dimensional distributions of {Wn(ξ, u)}. Conditions
(e) and (f) ensure the sequence {Wn(ξ, u)} is uniformly tight with respect to ξ
and u, respectively.

LEMMA A.2 Under conditions (a)-(d) of Lemma A.1, Wn(ξ, u) → W (ξ, u)
with respect to finite dimensional distributions, where W (ξ, u) is Gaussian
with covariance function E[W (ξi, ui)W (ξj , uj)].

LEMMA A.3 Under conditions (e) and (f) of Lemma A.1 the sequence {Wn(ξ, u)}
is uniformly tight in D2.
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LEMMA A.4

1. Under Assumption 1.a {Xn,t(u),zn,t} forms an L2-mixingale sequence
(cf. McLeish 1975) with size −1/2 and constants supu∈[0,1],t≥1 cn,t(u) =
O(n−1/2). If particular,

kXn,t(u)−E[Xn,t(u)|zn,t+q]k2 ≤ cn,t(u)ψqn+1
kE [Xn,t(u)|zn,t−q]k2 ≤ cn,t(u)ψqn ,

and if Yn,t(u1, u2) := Xn,t(u1) − Xn,t(u2) then

kYn,t(u1, u2)−E[Yn,t(u1, u2)|zn,t+q]k2 ≤ (c̃n,t × |u2 − u1|)× ψqn+1

kE [Yn,t(u1, u2)|zn,t−q]k2 ≤ (c̃n,t × |u2 − u1|1/2)× ψqn ,

∀u1, u1 ∈ [0, 1], where supt c̃n,t = O(n−1/2).

2. Let {(ξi, ui)}k,i=1 be arbitrary, k ≥ 1, (ξi, ui) ∈ [ξ, 1] × [0, 1]. If addi-
tionally Assumption 1.b holds, then

sup
π0π=1

¯̄̄̄
¯Xk

l=1

Xrn(ξl)

i=rn(ξl−1)+1

µXk

j=l
πjZn,i(uj)

¶2
− 1
¯̄̄̄
¯→ 0, ∀{(ξi, ui)}k,i=1.

LEMMA A.5 (de Jong, Lemma 4) If {Xn,t,zn,t} is an L2-mixingale with
size −1/2 and constants supt cn,t = O(n−1/2) then

lim
n→∞

¯̄̄̄Xrn

i=1

Xrn

k=i+1

Xign

t=(i−1)gn+ln+1

Xkgn

s=(k−1)gn+ln+1
E [Xn,sXn,t]

¯̄̄̄
= 0.

LEMMA A.6 Under Assumption 1,
Prn(ξ)

i=1 (Z
2
n,i(u) − E[Z2n,i(u) ]) → 0 ∀ξ, u

∈ [ξ, 1] × [0, 1].
LEMMA A.7 Let the conditions of Theorem 6 hold. For any u ∈ [0, 1]

k1/2n

¡
α̂−1m (ξ)− α−1

¢
=
Xn(ξ)

t=1

³
Xn,t − α−1X∗n,t(u

1/
√
kn)
´
+ op(1).

LEMMA A.8 Let the conditions of Theorem 6 hold. For any ũ ∈ R½Xn(ξ)

t=1
Xn,t,

Xn(ξ)

t=1
X∗n,t(u

1/
√
kn)

¾
⇒ {X1(ξ),X2(ξ)}

jointly on D[ξ, 1], where each Xi(ξ) is Gaussian.
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Proof of Lemma A.1. Write Xn,i(u) = Xn,i, Xn(ξ, u) = Xn, etc., and
decompose

Xn =
Xrn(ξ)

i=1
Wn,i(17)

+
Xrn(ξ)

i=1
E[Zn,i|F̃n,i−1] +

Xrn(ξ)

i=1

³
Zn,i −E[Zn,i|F̃n,i−1]

´
+
Xrn(ξ)

i=1

X(i−1)gn+ln
t=(i−1)gn+1

Xn,t +
Xn(ξ)

t=rn(ξ)gn+1
Xn,t.

By the definition of an Lr-Tail Array and rn(ξ) = [n(ξ)/gn]°°°°Xn(ξ)

t=rn(ξ)gn+1
Xn,t

°°°°
1

= O
³
(n(ξ)− rn(ξ)gn)n

−a(1)
´
= o(1).

The second-through-fourth terms in (17) are op(1) by conditions (a)-(c). Hence

(18) Xn(ξ, u) =
Xrn(ξ)

i=1
Wn,i(u) + op(1) =Wn(ξ, u) + op(1).

By Lemma A.2Wn(ξ, u)→W (ξ, u) with respect to finite dimensional distri-
butions, whereW (ξ, u) is Gaussian with covariance function E[W (ξi, ui)W (ξj , uj)].
By Lemma A.3 the sequence {Wn(ξ, u)} is uniformly tight on D2. Therefore

Wn(ξ, u)⇒W (ξ, u) on D2 by Corollary 13.4 of Billingsley (1999). We conclude
Xn(ξ, u) ⇒ X(ξ, u) = W (ξ, u) given (18).

Proof of Lemma A.2. Pick any π ∈ Rk, π0π = 1. For any finite collection
{(ξj , uj)}kj=1, ξ1 ≤ ... ≤ ξk, writeXk

j=1
πjWn(ξj , uj) =

Xrn(ξk)

i=1
W̃n,i(u, π),

where

W̃n,i(u, π) :=
Xk

j=l
πjWn,i(uj), i = rn(ξl−1) + 1...rn(ξl), l = 1...k.

Wn,i(u) =
³
E[Zn,i(u)|F̃n,i]−E[Zn,i(u)|F̃n,i−1]

´
F̃n,i :=

[
τ≤ign

zn,τ and zn,t = σ(En,τ : 1 ≤ s ≤ τ ≤ t ≤ n)

By construction {W̃n,i(u, π), F̃n,i} forms a martingale difference sequence.
The limitXrn(ξk)

i=1
W̃n,i(u, π)→ N

µ
0, limn→∞E(

Xrn(ξk)

i=1
W̃n,i(u, π))

2

¶
,

follows from Theorem 2.3 of McLeish (1974), where limn→∞ ||
Prn(ξk)

i=1 W̃n,i(u, π)||2
≤ k follows from (18) and ||Xn(ξ, u)||2 = 1.
McLeish’s condition (c) is our condition (d). Moreover, McLeish’s condi-

tions (a) and (b) hold if the Lindeberg condition holds,
Prn(ξk)

i=1 E[W̃ 2
n,i(u, π) ×
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I(|W̃n,i(u, π)| > ε)] → 0 for any ε > 0. Note |π| ≤ |π|2 = 1, rn(ξk) ≤ rn(1),
and rn(1)gn ∼ n(1) ≤ n. Therefore, for any ε > 0

rn(ξk)maxiE
h
W̃ 2

n,i(u, π)I(|W̃n,i(u, π)| > ε)
i

≤ rn(1)maxi ||W̃n,i(u, π)||24||W̃n,i(u, π)||2ε−1
≤ rn(1)maxi |π| × | × supu∈[0,1] ||Wn,i(u)||24 supu∈[0,1] ||Wn,i(u)||2ε−1

≤ K × rn(1)g
2
n supt supu∈[0,1] kXn,t(u)k24 gn supt supu∈[0,1] kXn,t(u)k2 ε−1

= O
³
rng

2
nn
−2a(4)gnn−a(2)

´
= O

³
g2nn

1−2a(4)−a(2)
´
= o(1),

given gn = o(n[2a(4)+a(2)−1]/2). The first inequality is Hölder’s and Markov’s;
the second inequality is Jensen’s; the third inequality and first equality follow
from the definition of a Functional Tail Array and Minkowski’s inequality.
A Crámer-Wold device completes the proof.

Proof of Lemma A.3. Let δ ∈ [0, 1]. Define the metrics w(·) and w00(·), cf.
Billingsley (1999):

w(Wn, ξ, u, δ) = sup
|ξ−ξ0|≤δ, |u−u0|≤δ

¯̄
Wn(ξ, u)−Wn(ξ

0, u0)
¯̄

w00(Wn, ξ, u, δ) = sup
ξ1≤ξ≤ξ2 u1≤u≤u2
ξ2−ξ1≤δ u2−u1≤δ

{|Wn(ξ, u)−Wn(ξ1, u1)| ∧ |Wn(ξ, u)−Wn(ξ2, u2)|} .

If ξ is fixed at some ξ̃ we write

w(Wn, ξ̃, u, δ) = sup
|u−u0|≤δ

¯̄̄
Wn(ξ̃, u)−Wn(ξ̃, u

0)
¯̄̄

For any triplet {ξ, u, δ} clearly we can find some ξ̃ ∈ [ξ, 1] and ũ ∈ [0, 1] such
that

(19) w00(Wn, ξ, u, δ) ≤ w00(Wn, ξ̃, u, δ) + w00(Wn, ξ, ũ, δ).

Moreover, by construction (see Billingsley, 1999),

(20) w00(Wn, ξ, u, δ) ≤ w(Wn, ξ, u, 2δ) ∀δ ∈ [0, 1/2].
From (19)-(20), and equation (13.10) in Billingsley (1999), it suffices to show

for every ε > 0 and η > 0 there exists some δ ∈ [0, 1/2] and N ∈ N such that
∀n ≥ N

P (w00(Wn, ξ̃, u, δ) > ε/2) + P (w(Wn, ξ, ũ, δ) > ε/2) ≤ η.

The proof now follows from Lemmas A.3.1-A.3.3, below, and Corollary 5.4 and
Theorem 13.3 of Billingsley (1999).
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LEMMA A.3.1 Let u ∈ [0, 1]. Then, ∀ε,η > 0 there exists some δ ∈ [0, 1/2]
and N0 ∈ N such that ∀n ≥ N0

P

Ã
sup

ξ≤ξ0≤ξ+δ

¯̄
Wn(ξ

0, u)−Wn(ξ, u)
¯̄
> ε/2

!
≤ ηδ/2.

Proof of Lemma A.3.1. Drop the common argument u for clarity. Let Z ∼
N(0, 1) be chosen below. Choose any

λ > max{ε/
√
2, 8×E|Z|3 × κ/ηε2}

and fix

δ = ε2/κ4λ2 ≤ 1/2
for some finite κ ≥ 1 to be chosen below.
We can always find a sequence of positive integers {r∗n(ξ)}n≥1 satisfying 0

≤ [r∗n(ξ)δ] ≤ rn(ξ + δ) − rn(ξ) and 0 ≤ r∗n(ξ) ≤ n(ξ) such that

P

Ã
sup

ξ≤ξ0≤ξ+δ

¯̄
Wn(ξ

0)−Wn(ξ)
¯̄
> λvn

!

≤ P

 sup
1≤j≤[r∗n(ξ)δ]

¯̄̄̄
¯̄rn(ξ)+jX

i=1

Wn,i −
rn(ξ)X
i=1

Wn,i

¯̄̄̄
¯̄ > λvn


≤ E

¯̄̄̄Xrn(ξ)+[r
∗
n(ξ)δ]

i=rn(ξ)+1
Wn,i/vn

¯̄̄̄3
λ−3

where the second inequality is Kolmogorov’s, and vn := ||Prn(ξ)+[r
∗
nδ]

i=rn(ξ)+1
Wn,i||2.

By construction

E |Z|3 /λ3 < ηε2/κ8λ2 = ηδ/2,

and from Lemma A.2Xrn(ξ)+[r
∗
n(ξ)δ]

i=rn(ξ)+1
Wn,i/vn → Z.

Thus, there exists a sufficiently large N0 such that ∀n ≥ N0

E

¯̄̄̄Xrn(ξ)+[r
∗
n(ξ)δ]

i=rn(ξ)+1
Wn,i/vn

¯̄̄̄3
λ−3 ≤ ηε2/8λ2 = ηδ/2.

Furthermore, by condition (e) of Lemma A.1 and the martingale difference
property we have for some finite κ ≥ 1

v2n = E

µXrn(ξ)+[r
∗
n(ξ)δ]

i=rn(ξ)+1
Wn,i

¶2
=
Xrn(ξ)+[r

∗
n(ξ)δ]

i=rn(ξ)+1
E (Wn,i)

2 ≤ δ × κ.
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Hence, for sufficiently large N0, ∀n ≥ N0, and δ = ε2/κ4λ2,

λvn ≤ λδ1/2κ1/2 = ε/2.

We deduce for some δ ∈ [0, 1/2] and ∀n ≥ N0

P

Ã
sup

ξ≤ξ0≤ξ+δ

¯̄
Wn(ξ

0)−Wn(ξ)
¯̄
> ε/3

!
≤ E

¯̄̄̄Xrn(ξ)+[r
∗
n(ξ)δ]

i=rn(ξ)+1
Wn,i/vn

¯̄̄̄3
λ−3 ≤ ηδ/2.

LEMMA A.3.2 Let ξ̃ ∈ [ξ, 1] be arbitrary. Then ∀ε, η > 0 there exists some
δ ∈ [0, 1/2] and N0 ∈ N such that ∀n ≥ N0

P
³
w00(Wn, ξ̃, u, δ) > ε/2

´
≤ η/2

Proof of Lemma A.3.2. Drop the common argument ξ. Let 0 ≤ u1 ≤ u2 ≤
u3 ≤ 1 be arbitrary. By condition (f) of Lemma A.1 and rn(ξ̃) := [n(ξ̃)/gn]

E [|Wn(u1)−Wn(u2)| |Wn(u2)−Wn(u3)|]
≤ kWn(u1)−Wn(u2)k2 kWn(u2)−Wn(u3)k2
=

°°°°Xrn(ξ̃)

i=1
(Wn,i(u1)−Wn,i(u2))

°°°°
2

×
°°°°Xrn(ξ̃)

i=1
(Wn,i(u2)−Wn,i(u3))

°°°°
2

= |u2 − u1|1/2 × |u3 − u2|1/2 ×O
³
rn(ξ̃)gn/n

´
≤ K × |u3 − u1|,

for some finite K > 0. Now apply (13.13)-(13.14) of Billingsley (1999).

LEMMA A.3.3 For every ε > 0, limδ→0 P (|Wn(1, 1) − Wn(1 − δ, 1 − δ)| >
ε) = 0.

Proof of Lemma A.3.3. Using conditions (e) and (f) of Lemma A.1, clearly
there exists some {ξ̃, ũ} ∈ [ξ, 1] × [0, 1] such that

P (|Wn(1, 1)−Wn(1− δ, 1− δ)| > ε)

≤ P (|Wn(ξ̃, 1)−Wn(ξ̃, 1− δ)| > ε/2) + P (|Wn(1, ũ)−Wn(1− δ, ũ)| > ε/2)

≤ 4ε−2
·°°°Wn(ξ̃, 1)−Wn(ξ̃, 1− δ)

°°°2
2
+ (rn(1)− rn(1− δ))

2
supi≥1 kWn,i(ũ)k22

¸
≤ 4ε−2

h
K × δ2 + (rn(1)− rn(1− δ))2 supi≥1 kWn,i(ũ)k22

i
.

As δ → 0 the right-hand-side vanishes due to rn(1−) = rn(1) given n(1−) =
n(1).
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Proof of Lemma A.4.

Step 1: If the base {�n,t} is E-strong mixing then Theorem 17.5 of Davidson
(1994) implies

kXn,t(u)−E [Xn,t(u)|zn,t−q]k2
≤ max©kXn,t(u)kr , dn,t(u)

ª×max³6ε1/2−1/rqn , ϕqn

´
.

By assumption na(r)−1/2qr/(r−2)n εqn = o(1), supt supu≥0 kXn,t(u)kr =O(n−a(r)),
supt supu≥0 dn,t(u) = O(n−a(r)), and ϕqn = o(na(r)−1/2 × q

−1/2
n ). We may

therefore write for sufficiently large K > 0,

kXn,t(u)− E [Xn,t(u)|zn,t−q]k2
≤ K × n−1/2max

½³
n[1/2−a(r)]2r/[r−2]εqn

´1/2−1/r
, n1/2−a(r)ϕqn

¾
= cn,t(u)× ψqn ,

say, where supt supu≥0 cn,t(u) = O(n−1/2) is trivial and ψqn = o(q
−1/2
n ) follows

from the properties of E-Mixing and FE-NED coefficients. A similar argument
holds for the remaining mixingale bound, ||Xn,t(u) − E [Xn,t(u)|zn,t+q] ||2 ≤
cn,t(u) × ψqn+1, and in the E-uniform mixing case. Consult Davidson (1994).
An identical argument can be applied to Yn,t(u1, u2) = Xn,t(u1) − Xn,t(u2).

Step 2: The limit

sup
π0π=1

¯̄̄̄
¯Xk

l=1

Xrn(ξl)

i=rn(ξl−1)+1

µXk

j=l
πjZn,i(ξj , uj)

¶2
− 1
¯̄̄̄
¯→ 0

∀l = 1...k and each {(ξi, ui)}k,i=1 now follows from Lemmas A.5 and A.6 and an
argument identical to de Jong’s (1997: A.39-A.41).

Proof of Lemma A.6. Because u and ξ are arbitrary, the claim follows from
Lemma A.4 of Hill (2005b).

Proof of Lemma A.7. Write b[nξ] = b[nξ]([knξ]) and

(21)

k1/2n

¡
α̂−1m (ξ)− α−1

¢
= k1/2n

µ
1/[knξ]

X[knξ]

i=1
lnX(i)/X([knξ]+1) − α−1

¶
= k1/2n

µ
1/[knξ]

X[knξ]

i=1
lnX(i)/b[nξ] −E

µ
1/[knξ]

X[nξ]

t=1

¡
lnXt/b[nξ]

¢
+

¶¶
− k1/2n lnX([knξ]+1)/b[nξ] + k1/2n

·
E

µ
1/[knξ]

X[nξ]

t=1

¡
lnXt/b[nξ]

¢
+

¶
− α−1

¸
.
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From (12) and arguments in Hsing (1991: p. 1554)

(22) E

µ
1/[knξ]

X[nξ]

t=1

¡
lnXt/b[nξ]

¢
+
− α−1

¶
= o(1/

p
[knξ]).

Moreover, from Lemma A.8½X[nξ]

t=1
Xn,t,

X[nξ]

t=1
X∗n,t(u

1/
√
kn)

¾
⇒ {X1(ξ),X2(ξ)}

jointly on D[ξ, 1], where each Xi(ξ) is Gaussian. Furthermore, under the main-
tained assumptions | lnX([ρ[knξ]]) − ln bn(ρ[knξ])| → 0 for all ρ in an arbitrary
neighborhood of 1 by Lemma 1 of Hill (2005b). Therefore an argument identical
to Theorem 2.2 of Hsing (1991: eq. 2.4-2.7) applies:

(23)

k1/2n

µ
1

[knξ]

X[knξ]

i=1
lnX(i)/b[nξ] −E

µ
1

[knξ]

X[nξ]

t=1

¡
lnXt/b[nξ]

¢
+

¶¶
⇒ X1(ξ)

α×
X[nξ]

t=1
X∗n,t

³
u1/
√
kn
´
= α×

X[nξ]

t=1
X∗n,t

³
ũ/
p
kn

´
⇒ X2(ξ),

where

X∗n,t(ũ) := k−1/2n

¡
I(Xt > bn(kn)e

ũ)−E[I(Xt > bn(kn)e
ũ)]
¢

ũ = −(1/α) lnu.
Together, (21)-(23) imply

k1/2n

¡
α̂−1m (ξ)− α−1

¢
=
X[nξ]

t=1

³
Xn,t − α−1X∗n,t(u

k−1/2n )
´
+ op(1).

Proof of Lemma A.8. If {Xn,t,X
∗
n,t(u)} are Lr-Tail Arrays with moment

index a(r) then by Minkowski’s inequality so is {π1Xn,t + π2X
∗
n,t(u)} ∀π ∈ R2,

π0π = 1. Moreover, under the maintained assumptions Lemma 4 and Theo-
rem 17.8 of Davidson (199) imply {π1Xn,t + π2X

∗
n,t(u)} is L2-NED on {zn,t}

with size −1/2 .The claim now follows by applying Corollary 4 to {π1Xn,t +

π2X
∗
n,t(u

k−1/2n )} and invoking a Cramér-Wold device.
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