
Florida International University Florida International University 

FIU Digital Commons FIU Digital Commons 

Department of Chemistry and Biochemistry College of Arts, Sciences & Education 

4-3-2019 

Gas phase synthesis of [4]-helicene Gas phase synthesis of [4]-helicene 

Long Zhao 

Ralf I. Kaiser 

Bo Xu 

Utuq Ablikim 

Wenchao Lu 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.fiu.edu/chemistry_fac 

 Part of the Chemistry Commons 

This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital 
Commons. It has been accepted for inclusion in Department of Chemistry and Biochemistry by an authorized 
administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu. 

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/chemistry_fac
https://digitalcommons.fiu.edu/CAS
https://digitalcommons.fiu.edu/chemistry_fac?utm_source=digitalcommons.fiu.edu%2Fchemistry_fac%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.fiu.edu%2Fchemistry_fac%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


Authors Authors 
Long Zhao, Ralf I. Kaiser, Bo Xu, Utuq Ablikim, Wenchao Lu, Musahid Ahmed, Mikhail M. Evseev, Eugene K. 
Bashkirov, Valeriy N. Azyazov, Marsel V. Zagidullin, Alexander N. Morozov, A. Hasan Howlader, Stanislaw F. 
Wnuk, Alexander M. Mebel, Dharati Joshi, Gregory Veber, and Felix R. Fischer 



ARTICLE

Gas phase synthesis of [4]-helicene
Long Zhao1, Ralf I. Kaiser 1, Bo Xu2, Utuq Ablikim2, Wenchao Lu2, Musahid Ahmed 2, Mikhail M. Evseev3,

Eugene K. Bashkirov3, Valeriy N. Azyazov3, Marsel V. Zagidullin3, Alexander N. Morozov4, A. Hasan Howlader4,

Stanislaw F. Wnuk 4, Alexander M. Mebel3,4, Dharati Joshi5, Gregory Veber5 & Felix R. Fischer5,6,7

A synthetic route to racemic helicenes via a vinylacetylene mediated gas phase chemistry

involving elementary reactions with aryl radicals is presented. In contrast to traditional

synthetic routes involving solution chemistry and ionic reaction intermediates, the gas phase

synthesis involves a targeted ring annulation involving free radical intermediates. Exploiting

the simplest helicene as a benchmark, we show that the gas phase reaction of the 4-

phenanthrenyl radical ([C14H9]•) with vinylacetylene (C4H4) yields [4]-helicene (C18H12)

along with atomic hydrogen via a low-barrier mechanism through a resonance-stabilized free

radical intermediate (C18H13). This pathway may represent a versatile mechanism to build up

even more complex polycyclic aromatic hydrocarbons such as [5]- and [6]-helicene via

stepwise ring annulation through bimolecular gas phase reactions in circumstellar envelopes

of carbon-rich stars, whereas secondary reactions involving hydrogen atom assisted iso-

merization of thermodynamically less stable isomers of [4]-helicene might be important in

combustion flames as well.
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During the last decades, helicenes—ortho-fused polycyclic
aromatic hydrocarbons (PAHs), in which benzene
building blocks are annulated at an angle of 60° to form

helically-shaped molecules1—have received considerable atten-
tion from the organic2, and physical chemistry3, and material
science communities4,5 due to their unique features in optics
(chiroptical activity6, nonlinear optics3, and circular polariza-
tion7) and chiral sensing (chemical sensors)8,9 along with
exceptional properties in organocatalysis4,10,11 and distinctive
molecular structures (Fig. 1)12. Considering the molecular
structure of helicenes, the backbone twists in opposite directions
due to the steric hindrance between the terminal rings. Within
the helicene series, the dihedral angles between both terminal
benzene moieties rises from [4]-helicene (26°) via [5]-helicene
(46°) to [6]-helicene (58°) before it drops in [7]-helicene (30°).
Helicenes are distinguished for their chirality despite missing
asymmetric carbon atoms with the chirality developing from the
handedness of the helix. Clockwise and counterclockwise helices
are non-superimposable as the result of their axial chirality with a
left- and right-handed helices being defined by minus (M) and
plus (P)13. The racemization mechanism depends on the size of
the [n]-helicene involving a concerted process for n= 4–7, but a
multistep mechanism for larger units. A single transition state
with C2v (n= 4) and Cs (n= 5–7) symmetries and barriers

increasing from about 17 kJ mol–1 via 102 kJ mol–1 and 154 kJ
mol–1 to 176 kJ mol–1 connects the M and P forms2,3,14–16.

The first helicene synthesis reported by Meisenheimer more
than a century ago17 describes the formation of two aza-helicenes
in the reduction of 2-nitronaphthalene with metallic zinc under
basic conditions. The first carbohelicene, [5]-helicene, was syn-
thesized only 15 years later by Weitzenböck and Klingler18

through copper-induced radical cyclization of 2-diazostilbenes.
The larger homolog [6]-helicene19 was first obtained through
intramolecular Friedel-Crafts cyclization of an acid chloride fol-
lowed by reductive deoxygenation and rearomatization. While
early synthesis of helicenes took advantage of an intramolecular
oxidative photocyclization of readily accessible stilbenes20, a great
variety of modern transformations have been applied. Among the
most versatile are [2+ 4]21–27 and [2+ 2+ 2] cycloaddition
reactions28–32, a variety of transition-metal catalyzed cross-
coupling reactions33,34, and more recently ring closing
metathesis35,36. Examples for radical transformations, such as the
seminal copper catalyzed cyclization reported by Meisenheimer
are rare, often limited by functional group tolerance and the
formation of linear side products resulting from poor E/Z
regioselectivity in the cyclization step37–39.

Here, we reveal a versatile route to form helicenes via a
directed, vinylacetylene mediated gas phase chemistry. In contrast

a b
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Fig. 1 Molecular structures of helicenes. a (M)-[4]-helicene; b (P)-[4]-helicene; c (M)-[5]-helicene; d (P)-[5]-helicene; e (M)-[6]-helicene and f (P)-[6]-
helicene
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to the aforementioned routes following solution chemistry and
often ionic reaction intermediates28,35,40,41, the innovative gas
phase synthesis encompasses low-barrier reactions through tar-
geted, stepwise ring expansion mechanisms involving free radical
reaction intermediates. Exploiting the simplest helicene as a
benchmark, we reveal the hitherto unknown gas phase chemistry
synthesizing [4]-helicene (C18H12; 228 amu) along with atomic
hydrogen (1 amu) via the bimolecular reaction of the 4-
phenanthrenyl radical ([C14H9]•; 177 amu) with vinylacetylene
(C4H4; 52 amu) (reaction (1)). Our combined experimental and
ab initio study exposes the prototype of a low-barrier reaction
mechanism leading to the facile formation of the simplest heli-
cene. [4]-helicene—an 18-π-electron aromatic molecule—was
formed via a directed synthesis through molecular mass growth
involving the reaction of an aromatic radical—4-phenanthrenyl—
with a single vinylacetylene molecule embracing a low-barrier
ring-expansion via a resonance-stabilized free radical (RSFR)
intermediate (C18H13). This pathway represents a versatile reac-
tion mechanism to build up even more complex helicenes such as
[5]- and [6]-helicene via stepwise ring expansion through
bimolecular gas phase reactions of an aryl radical with vinylace-
tylene. In more complex environments such as combustion
flames, this pathway competes with a secondary reactions invol-
ving a hydrogen atom assisted isomerization of the thermo-
dynamically less stable (E)-4-(but-1-en-3-yn-1-yl) phenanthrene
isomer. Briefly, a chemical reactor was exploited to synthesize [4]-
helicene via the elementary gas phase reaction of the 4-
phenanthrenyl radical ([C14H9]•) with vinylacetylene (C4H4).
The reaction products were probed isomer-specifically in a
molecular beam through fragment-free photoionization of the
neutral products via tunable vacuum ultraviolet (VUV)
light followed by detection of the ionized molecules in a
reflectron time-of-flight mass spectrometer (Re-TOF-MS)
(Methods).

½C14H9�� þ C4H4 ! C18H12 þH� ð1Þ

Results
Mass spectra results. Figure 2a displays a representative mass
spectrum recorded at a photoionization energy of 9.50 eV for the
reaction of the 4-phenanthrenyl radical with vinylacetylene;
reference spectra were also collected by substituting the vinyla-
cetylene reactant with non-reactive helium carrier gas (Fig. 2b). A
comparison of these data sets provides persuasive evidence on the
synthesis of a molecule with the molecular formula C18H12 (228
amu) in the 4-phenanthrenyl–vinylacetylene reaction (Fig. 2a),
which is clearly absent in the control study (Fig. 2b). Accounting
for the molecular weight of the reactants and the products, it is
evident that the C18H12 isomer(s) along with atomic hydrogen is
the result of the bimolecular reaction of the 4-phenanthrenyl
radical with vinylacetylene (reaction (1)). A signal for C16H10

(202 amu) is likely attributed to the reaction of 4-phenanthrenyl
([C14H9]•; 177 amu) with acetylene (C2H2; 26 amu) and can be
identified as pyrene and ethynylphenanthrene42 (Supplementary
Fig. 1). Finally, signals at mass-to-charge ratios (m/z) of 259
(C13

13CH9
81Br+), 258 (C14H9

81Br+), 257(C13
13CH9

79Br+), 256
(C14H9

79Br+), 179 (C13
13CH10

+), 178 (C14H10
+), 177 (C14H9

+/
C14

13CH8
+), and 176 (C14H8

+) can be detected in both the 4-
phenanthrenyl–vinylacetylene and the 4-phenanthrenyl–helium
experiments. Consequently, these molecules cannot be attributed
to the reaction of 4-phenanthrenyl with vinylacetylene. Signal at
m/z= 259–256 can be associated with the non-pyrolyzed 4-bro-
mophenanthrene precursor, whereas ion counts at m/z= 178 and
179 are reflective of phenanthrene and 13C-phenanthrene gen-
erated through hydrogen abstraction by the 4-phenanthrenyl
radical or hydrogen atom addition to this radical. Finally, a signal
at m/z= 176 and 177 is related to distinct phenanthryne isomers
(m/z= 176) along with the unreacted 4-phenanthrenyl radical
([C14H9]•+; m/z= 177) (Supplementary Fig. 1).

Photoionization efficiency spectra. Having identified hydro-
carbon molecule(s) of the molecular formula C18H12 synthesized
in the elementary reaction of the 4-phenanthrenyl radical with
vinylacetylene, we elucidate the nature of the structural isomer(s)
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Fig. 2 Comparison of photoionization mass spectra recorded at a photoionization energy of 9.50 eV. a 4-phenanthrenyl ([C14H9]•) - vinylacetylene (C4H4)
system; b 4-phenanthrenyl ([C14H9]•) - helium (He) system. The mass peaks of the newly formed C18H12 (m/z= 228) species along with the 13C-
substituted counterparts (m/z= 229) are highlighted in blue
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formed in this reaction. This necessitates a thorough examination
of the corresponding photoionization efficiency (PIE) curve,
which reports the intensity of the ion at m/z of 228 (C18H12

+) as a
function of the photon energy from 7.20 eV–9.75 eV (Fig. 3a).
These data have to be fit with a linear combination of distinct
reference PIE curves of discrete C18H12 isomers: [4]-helicene
(benzo[c]phenanthrene), 4-vinylpyrene, chrysene, benz[a]
anthracene, triphenylene, 4-((E)-but-1-en-3-yn-1-yl)phenan-
threne, and 4-(but-3-en-1-yn-1-yl)phenanthrene (Supplementary
Fig. 2). More explicitly, a linear combination of two reference
curves is required to replicate the experimentally derived PIE
curve for m/z of 228 (black): [4]-helicene (blue) and 4-
vinylpyrene (red). The experimental and reference PIE curves
for 4-vinylpyrene depict an onset of the ion signal at 7.30 ± 0.05
eV. However, at photoionization energies higher than 7.60 eV, the
PIE reference curve of 4-vinylpyrene cannot fit the experimental
PIE curve alone, and ion counts are clearly lacking. To account
for this mismatch, an incorporation of the PIE curve of [4]-
helicene is required. The overall fit (black) of the ion counts
consists of [4]-helicene (33 ± 10%) and of 4-vinylpyrene (67 ±
10%). It should be noted that inclusions of any contributions
from 4-((E)-but-1-en-3-yn-1-yl)phenanthrene and 4-(but-3-en-
1-yn-1-yl) phenanthrene do not improve the fit of the experi-
mental data. This indicates that these isomers can be produced
only at levels within the experimental error limits of the ion
counts. We emphasize here that the aforementioned contribu-
tions to the fit of the experimental PIE curve do not represent the
product branching ratios since absolute ionization cross sections
are not available for any of the C18H12 isomers. A more detailed
discussion on the computed product branching ratios based on
computational fluid dynamics (CFD) simulations coupled with
kinetic modeling of chemical reactions inside the reactor is given
in the Supporting Information (Supplementary Note 2, Supple-
mentary Fig. 5, Supplementary Tables 1–4). It is important to
highlight that the PIE curve recorded at m/z= 229 (Fig. 3b)
matches after scaling the PIE curve of m/z= 228. Consequently,
the data at m/z= 229 can be linked with 13C substituted isomer
(C17

13CH12) of [4]-helicene and 4-vinylpyrene with an overall
abundance of close to 20% to account for the 1.1% 13C natural
abundance. It is vital to highlight that the PIE curves of the
C18H12 isomers are specifically linked to each specific isomer
underlining that the co-existence of additional isomers in the
molecular beam except [4]-helicene and 4-vinylpyrene would
significantly alter the shape of the PIE; therefore, alternative
C18H12 isomers can be eliminated to contribute to m/z= 228.

Consequently, we conclude that only [4]-helicene and 4-
vinylpyrene account for the observed signal at m/z= 228 within
our error limits. The latter are based on the 1 σ error of the PIE
curve averaged over multiple scans and the ±10% error stated by
the manufacturer as the accuracy of the photodiode.

Discussion
This study provides evidence that the simplest representative of
the class of helicenes, i.e., [4]-helicene, can be formed in a
directed synthesis through the gas phase elementary reaction of
the 4-phenanthrenyl radical with vinylacetylene. Having identi-
fied [4]-helicene along with its 4-vinylpyrene isomer, we are
attempting now to elucidate the underlying reaction mechanisms.
Therefore, the experimental data are merged with electronic
structure calculations on the C18H12 and C18H13 potential energy
surfaces (PESs) (Fig. 4, Supplementary Fig. 4) (Methods). The
calculations reveal that the vinylacetylene molecule approaches
the 4-phenenthrenyl radical leading to the formation of two
weakly stabilized distinct van-der-Waals complexes [1] and [2];
in each complex, the radical center at the C4 carbon atom is
directed to the H2C= or HCC moiety of the vinylacetylene
reactant at the C1 and C4 carbon atom, respectively. These
complexes can isomerize through addition of the radical center to
the carbon–carbon double and triple bond, respectively, forming
a covalent carbon–carbon bond and intermediates [3] and [4]
after passing through transition states located 14 and 17 kJ mol–1

above the van-der-Waals complex, respectively. In our earlier
work43,44, the addition of the smallest aryl radical, phenyl, to the
H2C=moiety at the C1 carbon atom of vinylacetylene was found
to be peculiar. There, a barrier to addition exists, but the corre-
sponding transition state lies lower in energy than the separated
reactants. Therefore, a barrier is present, however, the inherent
transition state is located below the energy of the separated
reactants and hence defined as a submerged barrier. The situation
appears to be different for the 4-phenanthrenyl radical, where the
barrier to form the carbon–carbon covalent bond is not sub-
merged, but instead resides 6 to 9 kJ mol–1 above the separated
reactants according to the G3(MP2,CC) and higher-level CCSD
(T)/CBS calculations (Methods), respectively. The increase of the
entrance barrier height in the 4-phenanthrenyl plus vinylacety-
lene reaction as compared to phenyl plus vinylacetylene is caused
by the steric repulsion with the bay hydrogen atom in 4-phe-
nanthrenyl, which hinders the approach of the H2C= group
toward the radical site. The isomerization of [2] to [4] via
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Photon energy (eV)
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Fig. 3 Photoionization efficiency (PIE) curves relevant to the formation of [4]-helicene. a m/z= 228 and b m/z = 229. Black: experimentally derived PIE
curves; blue: [4]-helicene (benzo[c]phenanthrene) reference PIE curve; cyan: 4-vinylpyrene PIE curve; yellow: overall fit. The overall error bars (gray area)
consist of two parts: ±10% based on the accuracy of the photodiode and a 1 σ error of the PIE curve averaged over the individual scans
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addition of the 4-phenanthrenyl radical to the HCC moiety
proceeds via the transition state residing 9 kJ mol–1 above the
energy of the separated reactants at the G3(MP2,CC)//B3LYP/6-
311G(d,p) level of theory, which is also higher than the corre-
sponding energy in the phenyl plus vinylacetylene system, 5 kJ
mol−1, but the steric hindrance for the HCC group approach is
less than for the bulkier H2C=moiety.

The C18H13 intermediate [3] rearranges via a hydrogen shift
from the C3 carbon atom of the phenanthrenyl moiety to the
former vinylacetylene reactant forming intermediate [5] by
switching the unpaired electron effectively from the side chain to
the aromatic ring, which subsequently follows ring closure
through a barrier of only 36 kJ mol–1 to intermediate [6]. The
latter already mirrors the carbon skeleton of the target [4]-heli-
cene and undergoes a hydrogen shift from the methylene group
to the carbene center providing intermediate [7]. A closer look at
this structure reveals that only an atomic hydrogen loss accom-
panied by aromatization is required to form [4]-helicene (p1) in
an overall exoergic reaction (246 kJ mol–1). This hydrogen elim-
ination proceeds almost perpendicularly to the molecular plane
and passes a tight exit transition state located 22 kJ mol–1 above
the separated products. Note that the existence of this tight exit
transition state is reasonable because in the reverse reaction, the
hydrogen atom has to add to a closed shell aromatic molecule,
and the bond formation requires a significant change in electron
density. This barrier to addition is of comparable magnitude as of
37 kJ mol–1 and 26 kJ mol–1 determined for the addition of
atomic hydrogen to benzene and naphthalene—two benchmark
aromatic systems45,46.

What is the fate of the second C18H13 intermediate [4]? The
computations reveal that this intermediate can undergo two
competing rearrangement pathways leading either to [4]-helicene
or 4-vinylpyrene. The channel producing [4]-helicene is multistep
and rather demanding both in terms of energy and entropy. It

begins from a [1,4]-H shift from the attacked ring in the phe-
nanthrene core to the bare carbon atom of the side chain in [4]
forming [8] via a barrier of 139 kJ mol–1. Intermediate [8] cannot
undergo immediate ring-closure because its side chain features a
trans conformation with respect to the C=C double bond.
Rotation around the double bond is not feasible and hence the
trans-cis isomerization to [10] occurs in two steps via inter-
mediate [9] and involves a closure and opening of a four-member
ring. However, the barriers along the [8] → [9] → [10] path are
rather high. Next, [10] undergoes facile ring closure to [11] and a
hydrogen atom loss in the latter produces [4]-helicene via an exit
barrier of only 13 kJ mol–1. The alternative reaction channel
starting from [4] is much more favorable. It begins with a [1,6]-H
shift through the bay region of the phenanthrene core to the side
chain forming [12] over a relatively low-barrier of 89 kJ mol−1.
[12] is easily subjected to a six-member ring closure in the bay to
form [13] and a hydrogen atom loss from [13] finally produces 4-
vinylpyrene (p2)—a structural isomer of [4]-helicene—in an
overall exoergic reaction (237 kJ mol–1) with an exit barrier of 24
kJ mol–1. Consequently, the computational prediction of the
formation of two structural isomers of C18H12— [4]-helicene and
4-vinylpyrene—is well matched by our experimental studies and
directly reflects two distinct entrance channels to reaction via
van-der-Waals complexes [1] and [2] and hence regioselective
reaction dynamics leading to two discrete structural isomers thus
defining a benchmark of a molecular mass growth process to
PAHs. It should be noted that the initial covalently bound
intermediates [3] and [4] can undergo hydrogen atom losses to
form 1- and 4-phenanthrenyl-vinylacetylene isomers p3 and p4,
respectively. These pathways are noticeable less favorable ener-
getically than the formation pathways of [4]-helicene and 4-
vinylpyrene—more so that in the prototype phenyl plus vinyla-
cetylene reaction—but may play a role at high temperatures due
to a favorable entropic factor. To explore this possibility, we also

0
–8

6

–162 [3]

–21

–62

–26

–173

–41

–352

–246

9

–179 [4]

–40

–131 [8]

–177

–26
–10

–139

–353

–98

–233

–90

–150 [12] –144

–354

–213

–237

–15
–28–8

–224

–6

+ H

+ H
+ H

+ H

4-phenanthrenyl + C4H4 8

[1]
[2]

[3]

[5]

[6]

[7]

p1
[4]-helicene

[8]

[9]

[10]

[11]

[12]

[13]

p2
4-vinylpyrene

p3
p4

[5]

[10]

[6]

[7] [11]

[1] [2]

[4] [9]

[13]

R
el

at
iv

e 
en

er
gy

 (
kJ

 m
ol

–1
)
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conducted statistical Rice-Ramsperger-Kassel-Marcus Master
Equation (RRKM-ME) calculations of product branching ratios at
1400 K (Supplementary Note 1). These calculations infer that in
complex systems such as in combustion flames, [4]-helicene can
be also formed via secondary reactions involving a hydrogen
atom assisted isomerization of the (E)-4-(but-1-en-3-yn-1-yl)
phenanthrene isomer (p3, Supplementary Fig. 4); however, in
environments where bimolecular reactions dominate such as in
circumstellar envelopes of carbon stars, secondary reactions are
absent, and [4]-helicene is formed via the elementary reaction of
the 4-phenanthrenyl radical ([C14H9]•) with vinylacetylene
(C4H4).

The facile route to synthesize [4]-helicene (C18H12) through
the reaction of the 4-phenanthrenyl radical ([C14H9]•) with
vinylacetylene (C4H4) represents a versatile pathway that could in
principle be extended to higher helicenes. Our mechanistic stu-
dies reveal that the key step of the reaction is a low-barrier
benzannulation through a resonance-stabilized free radical
(RSFR) intermediate that leads to the simplest helicene. This
pathway involving a bimolecular collision can serve as an alter-
native to other, commonly accepted gas phase reactions such as
the traditional hydrogen abstraction–acetylene addition (HACA)
route47,48. HACA, which has been invoked in an attempt to
unravel the formation of PAHs in high-temperature environ-
ments such as in combustion flames49–51 and in outflows of the
carbon-rich asymptotic giant branch (AGB) stars such IRC+
1021652, cannot lead to helicenes under single collision condi-
tions. This pathway would rather lead to bay closure, but not to
benzannulation as verified in the biphenyl (C12H9)51—acetylene
and 4-phenanthrenyl ([C14H9]•)—acetylene systems (Supple-
mentary Fig. 3)42. Consequently, PAHs as complex as [4]-heli-
cene (C18H12) can be formed via a bimolecular reaction in
circumstellar envelopes of dying carbon stars. However, in
combustion flames such as of benzene53,54, where free hydrogen
atoms are ubiquitous, secondary reactions via a hydrogen atom
assisted isomerization of the (E)-4-(but-1-en-3-yn-1-yl)phenan-
threne isomer likely also play an important role in the formation
of [4]-helicene. In circumstellar environments, starting from [4]-
helicene, propagation via hydrogen loss by photodissociation
followed by reaction with vinylacetylene provides an exceptional
route to [5]-helicene and eventually to [6]-helicene (Fig. 5) thus
supplying a directed, stepwise synthesis of racemic, helically-
shaped three-dimensional nanostructures via elementary neutral-
neutral reactions.

Methods
Experimental. The experiments were carried out at the Advanced Light Source
(ALS) at the Chemical Dynamics Beamline (9.0.2.) utilizing a high-temperature
chemical reactor consisting of a resistively-heated silicon carbide (SiC) tube of 20
mm length and 1 mm inner diameter50,51,55. This reactor is integrated into a
molecular beam apparatus operated with a Wiley-McLaren reflectron time-of-flight
mass spectrometer (Re-TOF-MS). This setup is designed to explore elementary
chemical reactions to mimic PAH growth in situ through the reaction of aromatic
radicals. In detail, 4-phenanthrenyl radicals [C14H9]• were generated in situ via
pyrolysis of the 4-bromophenanthrene precursor (C14H9Br) seeded in vinylacety-
lene/helium (5% C4H4; 95% He; Airgas) carrier gas at a pressure of 300 Torr in the
entrance of the reactor. Accurate estimation of the concentration of C14H9Br in the
incipient molecular beam is difficult because the vapor pressure of this precursor is
not known but the results of the computational fluid dynamics simulations and
kinetic modeling (Supplementary Note 2, Supplementary Fig. 5 and Supplementary
Tables 1–4) are consistent with experiment at the level of C14H9Br concentration of
1–5%. The temperature of the SiC tube was monitored using a Type-C thermo-
couple and was operated at 1400 ± 10 K. At this temperature, 4-bromophenanthrene
dissociates to the 4-phenanthrenyl radical plus atomic bromine in situ followed by
the reaction of the aromatic radical with vinylacetylene. The reaction products were
expanded supersonically and passed through a 2-mm diameter skimmer located 10
mm downstream of the reactor and enter the main chamber, which houses the Re-
TOF-MS. The products within the supersonic beam were then photoionized in the
extraction region of the mass spectrometer by exploiting quasi-continuous tunable
synchrotron vacuum ultraviolet (VUV) light. VUV single photon ionization is a
fragment-free ionization technique and is often described as a ‘soft’ ionization
method56,57 compared to the harsher conditions of electron impact ionization, the
latter leading to excessive fragmentation of the parent ion. The ions formed via soft
photoionization in the present experiments are extracted and introduced onto a
microchannel plate detector through an ion lens. Photoionization efficiency (PIE)
curves, which report ion counts as a function of photon energy from 7.20 eV to 9.75
eV with a step interval of 0.05 eV at a well-defined mass-to-charge ratio (m/z), were
generated by integrating the signal collected at the specific m/z for the species of
interest and normalized to the photon flux. The residence time in the reactor tube
under our experimental condition are few hundreds of µs58,59. Reference (control)
experiments were also conducted by expanding neat helium carrier gas with the 4-
bromophenanthrene precursor into the resistively-heated silicon carbide tube. No
signals, which can be associated with the [4]-helicene of 4-vinylpyrene molecules at
m/z= 228 or 229, was observed in these control experiments. Reference PIE curves
of [4]-helicene, 4-vinylpyrene, (E)-4-(but-1-en-3-yn-1-yl)phenanthrene, and 4-(but-
3-en-1-yn-1-yl)phenanthrene were measured in the present work. [4]-Helicene (p1)
was purchased from Sigma-Aldrich (98%). The syntheses of 4-vinylpyrene (p2), (E)-
4-(but-1-en-3-yn-1-yl)phenanthrene (p3), and 4-(but-3-en-1-yn-1-yl) phenan-
threne (p4) are described in the Supplementary Information (Supplementary Note
3, Supplementary Figs 6–12, and Supplementary Schemes 1–3).

Theoretical calculations. The energies and molecular parameters of the local
minima and transition states involved in the reaction were computed at the G3
(MP2,CC)//B3LYP/6-311G(d,p) level of theory60–62 with a chemical accuracy of
3–6 kJ mol–1 for the relative energies and 0.01–0.02 Å for bond lengths as well as
1–2° for bond angles62. Additional higher-level calculations for the [1]–[3] tran-
sition state were performed using at the CCSD(T) level in the complete basis set
(CBS) limit involving explicitly-correlated CCSD(T)-F12b and MP2-F12

–H•
–H•

–H•

+C4H4hv

hv

+C4H4

–H•

Fig. 5 Mechanism. Schematic presentation of a vinylacetylene mediated helicene propagation to [5]-helicene and [6]-helicene starting from [4]-helicene
(benzo[c]phenanthrene)
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calculations63 with Dunning’s correlation-consistent basis sets64, where the CCSD
(T)/CBS total energies of the reactants and the transition state were approximated
as follows:

EðCCSDðTÞ=CBSÞ ¼ EðCCSDðTÞ�F12b=cc�pVDZ�f12Þ
þ EðMP2=cc�pVTZ�f12Þ
� EðMP2=cc�pVTZ�f12Þ:

The GAUSSIAN 0963 and MOLPRO 2010 program packages64 were utilized for
the ab initio calculations. The details of the statistical RRKM-ME calculations of
the reaction rate constants and computational fluid dynamics simulations of the
gas flow and chemical kinetics in the microreactor are provided in the
Supplementary Information (Supplementary Notes 1 and 2, Supplementary
Tables 1–4 and Supplementary Fig. 5).

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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