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Super-Consistent Tests of Lp-Functional Form

Jonathan B. Hill¤
Dept. of Economics

Florida International University

September 19, 2006

Abstract

This paper develops a consistent test of best Lp-predictor functional
form for a time series process. By functionally relating two moment condi-
tions with di¤erent nuisance parameters we are able to construct a vector
moment condition in which at least one element must be non-zero under
the alternative. Speci…cally, we provide a su¢cient condition for moment
conditions of the type characterized by Stinchcombe and White (1998) to
reveal model mis-speci…cation for any nuisance parameter value. When
the su¢cient condition fails an alternative moment condition is guaran-
teed to work. A simulation study clearly demonstrates the superiorty of a
randomized test: randonly selecting the nuisance parameter leads to more
power than average- and supremum-test functionals, and obtains empir-
ical power nearly equivelant to uniformly most powerful tests in most
cases.

1. Introduction This paper develops consistent parametric tests of best
Lp -predictor functional form for a time series process in the spirit of Bierens
(1991), Bierens and Ploberger (1997) and Stinchcombe and White (1998). In our
main result we utilize two interactive "revealing" moment conditions: at least
one of the moment conditions must be non-zero under model mis-speci…cation.

Apparently the only consistent parametric CM tests are those of Bierens
(1982, 1984, 1990), de Jong (1996), the Integrated CM test of Bierens (1982)
and Bierens and Ploberger (1997). See, also, Andrews and Ploberger (1994), de
Jong and Bierens (1994), and Dette (1999) for related methods. Consistency is
achieved by generating weight functions F (τ 0xt) indexed by a real-valued nui-
sance vector τ 2 ¥ ½ Rk , e¤ectively producing uncountably many moment con-
ditions which "reveal" model mis-speci…cation. Expanding upon Bierens’ (1990)
seminal Lemma 1, Stinchcombe and White (1998) show that any real analytic

¤Dept. of Economics, Florida International University, Miami, Fl; jonathan.hill@…u.edu;
http://www.…u.edu/»hilljona
JEL classi…cation: C12, C45, C52.
Key words : consistent test; conditional moment test; best Lp-predictor; nonlinear model.

1



function F (A(xt)) that is non-polynomial can reveal model mis-speci…cation,
where A : Rk ! R is a¢ne.

Hill (2006) takes a di¤erence tack by constructing a class of revealing weights
Gt(m) = uk

i=1ªi(xt)mi based on integer nuisance parameters m 2 Zk where ª
: Rk ! Rk is any bounded, one-to-one function. The weight Gt(m) need not be
di¤erentiable with respect to xt nor, therefore, analytic, and may be polynomial.

Although much has been said about the measurability of the subset S ½ ¥ on
which consistent tests fail, almost nothing has been said about its exact contents
and how to control them. The extant literature argues S has countably many
elements, cf. Bierens (1990), Bierens and Ploberger (1997) and Stinchcombe and
White (1998). Hill (2006) considers a set of moment conditions that contains
Bierens’ (1990) exponential, and proves Rk/S contains in…nitely many integers.

In this paper we demonstrate that a class of moment conditions exists in
which S is empty, or contains only the origin. In either case we say the moment
condition is "super-revealing" and an associated asymptotic power-one test is
"super-consistent". We e¤ectively provide a su¢cient condition for moment
conditions of the type characterized by Stinchcombe and White (1998) to reveal
model mis-speci…cation for any non-zero nuisance parameter value. When the
su¢cient condition fails an alternative moment condition is guaranteed to work.
Stacking the two moment conditions leads to a super-consistent test statistic.

A simulation study demonstrates that our test statistic with a randomized
nuisance parameter generates more empirical power than average and supremum
test functionals, and obtains power nearly equivalent to uniformly most powerful
tests.

In Section 2 we present a preliminary result concerning revealing moment
conditions for best Lp-predictors. Section 3 develops a "super-revealing" class
of moment conditions. In Section 4 we augment the main result to weights with
integer-valued nuisance parameters in order to simplify test statistic construc-
tion. Section 5 details the construction of a test statistic, and Section 6 contains
a simulation study.

Throughout ! denotes convergence in probability, or …nite distributions.
) denotes weak convergence on a function space. sp(fzign

i=1) denotes the span
of z1, ..., zn, and sp(fzign

i=1) denotes the closed linear span. j ¢ j denotes the
l1-matrix norm. We write C to denote a positive, …nite constant whose values
may change with the context.

2. Vector-Valued Conditional Moments Let fyt, ~xtg 2 R £ Rk¡1 be
a strictly stationary, ergodic stochastic process in Lp(­, =, µ), p 2 (1, 2], with
nondegenerate continuous marginal distributions, = = σ([t=t), =t¡1 µ =t =
σ(f~xtg : τ · t + 1). De…ne xt ´ (1, ~x0

t)0. The regressors ~xt may contain lags of
yt as well as contemporary and lagged values of some other vector process.

Let ft(φ) = f (xt, φ) denote a known response function, ft : Rk £ © !
R, measurable with respect to =t¡1, with © a compact subset of Rk. Consult
Appendix 1 for all assumptions detailed under Assumption A, and see Hill (2006)
for complete details on the following set-up.
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Denote by Qt¡1y ´ Q(yt j=t¡1) the orthogonal Lp-metric projection of yt
onto the space spanned by fxt¡ig1

i=0. If we write

et := ε<p¡1>
t = (yt ¡ Qt¡1yt)<p¡1>,

then clearly E [etzt¡1] = 0 8zt¡1 2 sp(fxt¡ig1
i=0). If p = 2 then Qt¡1yt =

E [yt j=t¡1]. The fundamental hypotheses are

H0 : P (Q (yt j=t¡1) = f (xt , φ0)) = 1, for some φ0 2 ©
H1 : supφ2© P (Q (yt j=t¡1) = f (xt , φ0)) < 1.

Under H0 the function f (xt, φ0) represents the best Lp-predictor of yt.
Write F 0(u) := (∂/∂u)F (u) and de…ne the following class of weights:

HF = fg : Rk ! Rjg(x) = F (A(x)), A is a¢ne, F : R ! R,
F and F 0 are analytic and non-polynomial
on some open interval R0 ½ Rg.

Assumption B Let F 2 HF , and (∂/∂u)iF (u)ju=0 = ci where ci = 0 for only
…nitely many i 2 N. Let 0 lie in the interior of R0.

Remark: If F and F 0 are analytic on some open interval R0 ½ R then so
are F + c and F 0 + c, where c is any real-valued constant. Trivial examples of
weights satisfying Assumption B are expfug, [1 + expfug]¡1, and trigonometric
functions.

Let h : Rk £ ¢ ! Rk be a uniformly bounded, Ft¡1-measurable function,
k ¸ 1, where ¢ is an arbitrary subset of Rl for some l ¸ 0. Write ht(δ) =
h(xt, δ). The following is a required, although easy, extension of Theorem 1
of Bierens and Ploberger (1997) and Theorem 3.9 of Stinchcombe and White
(1998).

LEMMA 1 Let et be a random variable satisfying E jet j < 1, and let xt be
an =t¡1-measurable bounded vector in Rk such that P (E [etjxt] = 0) < 1.
Let Assumption B hold. For each δ 2 Rl the set

S =
\k

i=1

©
τ 2 Rk : E [etht,i(δ)F (τ 0xt)] = 0g and P (τ 0xt 2 R0) = 1

ª
,

has Lebesgue measure zero and is nowhere dense in Rk.

Remark: By Assumption B and Theorem 3.9 of Stinchcombe and White
(1998), Lemma 1 holds with F (¢) replaced by F 0(¢).
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3. Super-Revealing Moments Let ¡ be an arbitrary compact subset
of Rk with positive Lebesgue measure. We will require

0 2 ¡

to expedite the proof of the main result, but sets ¡ not containing zero may be
considered in practice. Consider any weight function F satisfying Assumption
B, and let ª : Rk ! Rk be bounded, one-to-one =t¡1-measurable function.
Write

et = ε<p¡1>
t

and de…ne the moment

η(γ) := E [etF (γ0ª(xt))].

Construct the set ¡(¤) of matrices γ(¤) = [γ (1), ..., γ (k)] 2 Rk£k from

γ(i) = arg supγ2¡ f(∂/∂γ i)η (γ)g .

For the sake of convention assume (∂/∂γi)η(γ)jγ=γ(i) ¸ 0. All subsequent results
carry over to the general case (∂/∂γi)η(γ)jγ=γ(i) R 0.

In general ¡(¤) may contain more than one element under either hypothesis,
and may have zero or positive Lebesgue measure. Under the null hypothesis,
for example, (∂/∂γ)η(γ) = E [etª(xt)F 0

t(γ)] = 0 holds with probability one for
all γ 2 ¡, hence ¡(¤) = ¡ £ ¢¢ ¢ £ ¡. Under H1 if η(γ) is non-monotonic then
arg supγ2¡ fE[etª(xt)F 0

t (γ)]g need not be unique and may be zero. Lemma
1 implies the set of τ on which E [etª(xt)F 0

t(γ)] = 0 under H1 has Lebesgue
measure zero, but this is immaterial here.

De…ne the vector weight function

(1) Ht(γ, γ (¤)) :=
h
Ft(γ), ª1(xt)F 0

t(γ
(1)), ..., ªk(xt)F 0

t (γ
(k))

i0
2 Rk+1,

and de…ne the set

S(¤) =
\k

i=1
fγ 2 ¡ : E [etHi,t(γ, γ(¤))] = 0, and P (γ 0ª(xt) 2 R0) = 1g.

Consider the moment

$(γ, γ(¤)) := E
·
et

µ
Ft(γ) ¡

Xk

i=1
γiªi(xt)F 0

t (γ
(i))

¶¸
.

LEMMA 2 Let xt be an =t¡1-measurable bounded vector in Rk such that
P (E [etjxt] = 0) < 1. Then $(γ, γ(¤)) = 0 if and only if γ = 0.

The main result of the paper follows easily from Lemma 2.
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THEOREM 3 Let xt be an =t¡1-measurable bounded vector in Rk such that
P (E [etjxt] = 0) < 1. Then S¤ = f0g if and only if et?sp([ªi(xt)F 0

t (γ(i))]ki=1),
and S(¤) = f?g otherwise.

Remark: The vector moment condition E [etHt(γ, γ(¤))] provides a two-
way safety net against failing to detect model mis-speci…cation. If a chosen γ
6= 0 implies failure of a moment condition characterized by Stinchcombe and
White (1998),

E[etFt(γ)] = 0,

then for at least one i 2 f1, ..., kg we are guaranteed a model mis-speci…cation
revealing moment

E
h
etªi(xt)F 0

t (γ
(i))

i
6= 0.

Conversely, because the vectors γ(i) maximize each gradient level E[etªi(xt)F 0
t(γ (i))]

and not the absolute magnitude jE [etªi(xt)F 0
t (γ(i))]j, it is possible that E [etªi(xt)F 0

t (γ(i))]
= 0 for each i = 1...k such that none reveal mis-speci…cation. In such a case
E [etF (γ 0xt)] 6= 0 is guaranteed to hold for all non-zero γ 2 ¡.

EXAMPLE 1 Let F (u) = expfug and assume xt is bounded. If P [E(et jxt)
= 0] < 1 then 8γ 6= 0

h
E [et expfγ 0xtg], E [etx1,t expfγ (1)0xtg], ..., E[etx1,t expfγ(k)xtg]

i0
6= 0.

Stacking moment conditions popularized in the neural network and smooth
transition threshold autoregression literatures generates a fail safe vector
moment condition. Cf. Hornik, Stinchcombe and White (1989), Bierens
(1991), and Teräsvirta (1994).

EXAMPLE 2 Let et = ε<p¡1>
t , 1 < p · 2. Suppose γ (¤) = 0 such that F 0

t (γ (i))
= F 0

t(0) = c1 by Assumption B. If c1 = 0 then 0 2 S¤. If c1 6= 0 then
0 2 S¤ if and only if E [ε<p¡1>

t ª(xt)] = 0. For example, if we use the
weight F (γ0xt) to test linearity ft(φ) = φ0xt then E [ε<p¡1>

t ª(xt)F 0
t(γ (i))]

= E [ε<p¡1>
t (∂/∂φ)ft(φ)] = E [ε<p¡1>

t xt] = 0 is automatically satis…ed by
Lp-orthogonality, hence S¤ = f0g.

4. Super-Revealing CM’s with Integer Nuisance Parameters In
practice computing γ(i) = arg supγ2¡f(∂/∂γ i)E [εtF (γ 0ª(xt))]g and a test sta-
tistic functional over ¡ may be computationally costly. Moreover, the subset ¡
is itself arbitrary and may be considered to be a nuisance space for small samples
under the alternative. See Hansen (1996) for comments on this problem.

Let ª : Rk ! Rk be any bounded, one-to-one function, and consider the
weight

Gt(m) = uk
i=1ªi(xt)mi .
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If P [E(etjxt) = 0] < 1 then Theorem 3 of Hill (2006) guarantees

E [etGt(m)] 6= 0

for in…nitely many integers m = [mi]ki=1 2 Zk in general, and speci…cally in…-
nitely many m 2 Nk.

For example, assume xt is bounded and use ª(xt) = [expfx1,tg , ..., expfxk,tg].
Then Gt(m) = uk

i=1ªi(xt(δ))mi = expfm0xtg reveals model mis-speci…cation
for in…nitely many m. If xt is not bounded then simply substitute xt for any
bounded one-to-one function.

Now rewrite

γ (i) = arg supγ2Rk f(∂/∂γi)η(γ)g

$(m, γ (¤)) = E
·
et

µ
expfm0xtg ¡

Xk

i=1
γiªi(xt)F 0

t (γ
(i))

¶¸

Ht(m, γ(¤)) =
h
expfm0xtg, ª1(xt)F 0

t(γ (1)), ..., ªk(xt)F 0
t (γ (k))

i0

S(¤)
(m) =

\k

i=1
fm 2 Zk : E [etHi,t(m, γ(¤))] = 0g.

The fact that ¡ in Lemma 2 is arbitrary is advantageous here. The claim
holds for all γ 2 Rk and therefore for every γ = m 2 Zk. That said, notice
Lemma 2 exploits the fact that E [etFtγ)] 6= 0 under H1 for uncountably in…nitely
many γ in any arbitrary compact subset ¡, yet we are not guaranteed that
E [etGt(m)] 6= 0 for any m in any particular subset ¡. Thus, we must take the
supremum supγ2Rk (∂/∂γ i)η(γ) over the entire real-line Rk . In order to ensure
(∂/∂γi)η(γ (i)) is bounded we must assume γ (i) is …nite.

Together with the fact that the weight expfm0xtg reveals mis-speci…cation
for in…nitely many m 2 Zk ½ Rk, the following corollary to Lemma 2 is imme-
diate.

COROLLARY 4 Assume γ (i) 2 ·¡ for some compact subset ·¡ ½ Rk. Let et
be a random variable satisfying E jetj < 1, and assume xt is a bounded
=t¡1-measurable k-vector. If P [E(et jxt) = 0] < 1 then $(m, γ(¤)) = 0 if
and only if m = 0.

COROLLARY 5 Under the conditions of Lemma 4, if P [E(et jxt) = 0] < 1
then S(¤)

(m) = f0g if and only if et?sp[ªi(xt)F 0
t (γ (i))], and S(¤)

(m) = f?g
otherwise.

5. Test Statistic Write φ̂ = arg minφ2©fP jyt ¡ ft(φ)jpg, de…ne ε̂t ´ yt

¡ ft(φ̂), êt ´ ε̂<p¡1>
t , and write ∂f (¢) = (∂/∂φ)f (¢). De…ne the sample conjugate

to γ(¤):

γ̂(¤) = [γ̂ (i)]ki=1 =
h
arg infγ2¡

n
1/n

Xn

t=1
êtªi(xt)Ft(γ)

oik

i=1
.
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In order to reduce notation write

θ ´ fγ, γ (¤)g 2 £ ´ ¡ £ ¡(¤), and θ̂ = fγ, γ̂ (¤)g.

De…ne the sample vector moment

ẑ(θ̂) = 1/
p

n
Xn

t=1
ε̂<p¡1>
t Ht( θ̂) 2 Rk+1,

where Ht(¢) is de…ned in (1). We use a Pitman
p

n-local alternative of the form

HL
1 : yt = ft(φ0) + ut/

p
n + εt ,

where E [ε<p¡1>
t j=t¡1] = 0. We assume ut is measurable with respect to =t¡1

and governed by a non-generate distribution. The null hypothesis is ut = 0 a.s.,
and a global alternative is simply

HG
1 : yt = ft(φ0) + ut + εt .

From the mean-value-theorem and Assumption A, under HL
1 we may write

for some sequence fu¤
t g satisfying u¤

t 2 [0, ut ] and u¤
t = op(

p
n),

ẑ(θ̂) = 1/
p

n
Xn

t=1
(yt ¡ ft(φ))<p¡1> gt(θ) + op(1)(2)

= 1/
p

n
Xn

t=1
ε<p¡1>

t gt(θ)

+ (p ¡ 1)/n
Xn

t=1
ju¤

t /
p

n + εt jp¡2utgt(θ) + op(1)

= zn (θ) + op(1),

say, where

gt(θ) = Ht(θ) ¡ b(θ, φ0)A(φ0)¡1∂ft(φ0) 2 Rk+1

A(φ0) = (p ¡ 1)plimn!1(1/n)
Xn

t=1
jyt ¡ ft(φ0)jp¡2∂ft(φ0)∂

0ft(φ0)

b(θ,φ0) = (p ¡ 1)plimn!1 (1/n)
Xn

t=1
jyt ¡ ft(φ0)jp¡2Ht(θ)∂ 0ft(φ0)

Write

η(θ) = (p ¡ 1)plimn!1 1/n
Xn

t=1
jεt jp¡2utgt(θ)

§(θ) = plimn!1 1/n
Xn

t=1
jεt j2(p¡1)gt(θ)gt(θ) 0.

5.1 Weak Convergence

Weak convergence on a space of continuous real functions C [£] requires con-
vergence of …nite distributions and tightness of the vector sequence fzn (θ̂)g on
£. See Pollard (1984) and Billingsley (1999). In the integer nuisance parameter
case (i.e. γ = m 2 Zk ) tightness is trivial. See Billingsley (1999) and Hill (2006).
Consider, then, γ 2 ¡ ½ Rk.

If a constant term is included then the matrix §(θ) = §(γ, γ(¤)) may be
close to singular if γ is near zero. If γ = 0 then §(0, γ(¤)) 2 Rk+1£k+1 will have
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rank k due to ẑ( θ̂) = 1/
p

n
Pn

t=1[0, ª1(xt)F 0
t(γ (1)), ..., ªk (xt)F 0

t (γ(k))]0. We
ameliorate the problem by bounding γ away from 0.

For arbitrary ξ > 0 de…ne the subspace

£ξ ´ ¡ξ £ ¡(¤), where ¡ξ = fγ 2 ¡ : jγ j > ξg.

Denote by λmin(θ) the minimum eigenvalue of §(θ).

Assumption C infθ2£ξ λmin(θ) > 0.

LEMMA 6 Let Assumption C hold. Let z(θ) denote a Gaussian element of
C[£ξ ] with mean function §(θ)¡1/2η(θ) and covariance function E[z(θ1)z(θ2)0]
= §(θ1)¡1/2 §(θ1, θ2)§(θ2)¡1/2. Under Assumption A and H L

1 , §(θ)¡1/2zn(θ)
! z(θ) pointwise in £ξ. Moreover j§(θ)¡1/2zn(θ)/

p
nj ! 1 with proba-

bility one under HG
1 for every θ 2 £ξ .

LEMMA 7 Under Assumptions A-C and H L
1 the sequence f§(θ)¡1/2(zn(θ) ¡

η(θ))g is tight on £ξ .

De…ne

§̂(θ̂) = 1/n
Xn

t=1
ĵεt j2(p¡1) ĝt(θ̂)ĝt(θ̂)0

ĝt(θ̂) = Ht(θ̂) ¡ b̂( θ̂, φ̂)Â(φ̂)¡1∂ft(φ̂)

Â(φ̂) = (p ¡ 1)(1/n)
Xn

t=1
ĵεt jp¡2∂ft(φ̂)∂0ft(φ̂)

b̂(θ̂, φ̂) = (p ¡ 1)(1/n)
Xn

t=1
ĵεtjp¡2Ht( θ̂)∂ 0ft(φ̂).

The following is an immediate consequence of Assumption A, (2) and Lemmas
6 and 7.

THEOREM 8 Under Assumptions A-C and HL
1 , §̂( θ̂)¡1/2ẑ(θ̂) ) z(θ) on

C[£ξ ] where z(θ) is de…ned in Lemma 6.

5.3 Super-Consistent Test Statistic
Consider a standard Lagrange multiplier test statistic

Tn (θ̂) = Tn(γ, γ̂ (¤)) = ẑ(γ, γ̂ (¤))0§̂(γ, γ̂ (¤))¡1ẑ(γ, γ̂ (¤)).

Theorem 8 and the continuous mapping theorem guarantee Tn(γ, γ̂(¤)) ! χ2(k
+ 1) under H0. Under HG

1 the test statistic Tn(γ, γ̂ (¤)) reveals model mis-
speci…cation asymptotically with probability one for any nuisance parameter γ
6= 0: Tn(γ, γ̂ (¤))/n ! 1 a.s.

In practice, however, the analyst may want to improve small sample power
by considering continuous, σ([=t)-measurable functions h : R+ ! R+ , includ-
ing supremum and average functionals. See Davies (1977), Andrews (1993),
King and Shively (1993), and Andrews and Ploberger (1994). Whether such
functionals actually improve small sample power over a test with a randomized
nuisance parameter γ is considered below.
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6. Monte Carlo Study Write ~xj,t¡1 = [xt¡1, ..., xt¡pj]0. We simulate
100 of the following processes

H0 : xt = φ0
1~x1,t¡1 + εt

HS
1 : xt = φ0

1~x1,t¡1 + φ0
2~x2,t¡1 £ I(xt¡1 > 0) + εt

HES
1 : xt = φ0

1~x1,t¡1 + φ0
2~x2,t¡1 £ expf¡γx2

t¡1g + εt

HLS
1 : xt = φ0

1~x1,t¡1 + φ0
2~x2,t¡1 £ [1 ¡ expf¡γxt¡1g]¡1 + εt

HAN
1 : xt = φ0

1~x1,t¡1 + [1 ¡ expf¡γxt¡1g]¡1 + εt

HALL
1 : randomized H1,

where εt
iid» N (0, 1). In all cases each pj is randomly selected from the set

f1, ..., 10g, and each φj 2 Rpj is randomly selected from [¡.9, .9]pj subject to all
roots lying outside the unit circle; β is randomly selected from [¡.9, .9]; and γ is
randomly selected from [.5, 10]. Under H0 the process is AR(p); under HS

1 the
process is SETAR(p, p); under HES

1 and HLS
1 the process is ESTAR and LSTAR

respectively; under HAN
1 it is an AR(p)-ANN (arti…cial neural network); under

HALL
1 the alternative is selected at random from those just described. Sample

sizes are n 2 f200, 500g.
We estimate a null model by …tting an AR(p) to the series fXtgn

t=1, where
p is selected by minimizing the AIC. We test the residuals for omitted nonlin-
earity at the 5%-level using supγ 2¡p

n
Tn (γ, γ̂ (¤)) and supm2Np

n
Tn(m, γ̂ (¤)), and

randomized tests Tn(γ, γ̂(¤)) and Tn(m, γ̂ (¤)) where γ and m are randomly se-
lected from subsets ¡p

n and Np
n de…ned below. In simulation experiments not

reported here average test functionals are uniformly dominated by supremum
functionals simply because the alternatives are not local, or "close" to the null.
Cf. Andrews and Ploberger (1994).

For supγ2¡p
n

Tn(γ, γ̂ (¤)) we use the sample moment conditions ẑ(γ, γ̂(¤)) =
1/

p
n

Pn
t=1 ε̂<p¡1

t Ht(γ, γ̂ (¤)) where Ht(γ, γ̂(¤)) is one of the following:
·
expfγ 0xtg,

h
xt¡i expfγ (i)0xtg

ip0

i=1

¸0

"
(1 + expfγ0xtg)¡1 ,

·
xt¡i expfγ (i)0xtg

³
1 + expfγ (i)0xtg

´¡1
¸p0

i=1

#0

.

6.1 Nuisance Parameter Spaces

The set ¡p
n = fγ1, ..., γJn

g is constructed from Jn randomly selected γ i 2
[.5, 10]p, Jn = [n/4]. For supm2N p

n
Tn(m, γ̂ (¤)) we use only the exponential and

construct the set of integers Np
n as follows. Denote by j (k)

i a p-vector with the
value j for the ith component and the value k in all other components. Let
~Np

n be a set with [
p

ln n] integer vectors randomly selected from f[0, ..., 0]0 ,
..., [[

p
ln n], ..., [

p
lnn]0]g. Let ·Np

n be the set of all integers in the hypercube
f[0, ..., 0]0, ..., [[(ln n)1/8] , ..., [(lnn)1/8]]0g. Finally, let Ņp

n denote the set of
all integers ffi(0)j g[

p
ln n]

i=1 gp
j=1 and f1(1)

1 , 2(2)
1 , ..., [

p
ln n]([

p
lnn])

1 g. We use Np
n =

9



~Np
n [ ·Np

n [ Ņp
n , which contains simple integer vectors, randomized vectors, and

Np
n ! Np as n ! 1.

6.2 Uniformly Most Powerful [UMP] Tests

In order to gauge the power of the proposed tests we compute UMP tests
against each alternative. Because φ1 and each pi are known within the simula-
tion, each model can be written as yt(φ1) = φ0

2zt(γ) + εt, where yt(φ1) = xt¡
φ0

1~xt¡1, zt(γ) = ~x2,t¡1 expfγ0 ~x2,t¡1g under HE
1 , zt(γ) = ~x2,t¡1I(xt¡1 > 0) un-

der HS
1 , and zt(γ) = [1 + expfγ 0 ~x2,t¡1g]¡1 under HAN

1 . The errors are known
to be iid standard normal, hence the UMP test statistic reduces to Wn(γ) =
y(φ1) 0z(γ) [z(γ) 0z(γ)]¡1 z(γ)0y(φ1).

6.2 Simulation Results

See Table 1 for sup-tests and Table 2 for randomized tests. Two important
observations are immediately apparent. First, with respect to non-UMP tests
constructing a test functional in order to improve small sample power is ut-
terly ine¤ective. Indeed, the randomized test exhibits a non-negligible power
improvement over the sup-test in nearly all cases, although we expect the power
improvement to shrink with the sample size (see below). Second, in some cases
the sup-test obtains power relatively near UMP tests. The randomized super-
consistent test, however, generates empirical power nearly identical to UMP
tests in most cases. Only the randomized logistic test Tn(γ, γ̂(¤)) is noticeably
dominated by the associated UMP test.

Finally, we perform a simulation study in which only ESTAR and LSTAR
processes are generated for n 2 f50, 75, ... , 1975, 2000g. Figure 1 plots the
resulting rejection frequencies of the randomized super-consistent and UMP
tests (tests are performed at the 5% level). The relative performance of the
weight-speci…c super-consistent tests corresponds to the above two cases n 2
f200, 500g. When the alternative is LSTAR the super-consistent exponential
test power (nearly) converges to the UMP test power at roughly n = 500. In
this case logistic test power is much slower to converge, roughly matching UMP
test power at n = 3000 (not shown).
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Appendix 1: Assumptions
Assumption A1: The parameter space © is a compact subset of Rk . φ0 =

arg infφ2© E jyt ¡ ft(φ)jp 2 interiorf©g, p 2 (1, 2]. ft(φ) is twice continuously
di¤erentiable on ©. ut and ft(φ) are =t¡1-measurable, where =t is the sequence
of σ-algebras generated by (xτ : τ · t + 1). Moreover, E [ε<p¡1>

t j=t¡1] = 0
a.s. for some p 2 (minf1, 1 + .25 £ arg supα>0fE jεt jα < 1g, 2): hence
jjε<p¡1>

t jj4+δ < 1 for some δ > 0.

Assumption A2:
i. Let An (φ) = (p ¡ 1)(1/n)

Pn
t=1 jyt ¡ ft(φ)jp¡2∂ft(φ)∂ 0ft(φ), where An(φ) !

A(φ) uniformly on ¥, where A(φ) is a non-stochastic matrix such that A(φ0) is
positive de…nite. For some stochastic sequence fu¤

t g satisfying u¤
t 2 [0, ut ] and

u¤
t = op(

p
n) the Lp-estimator φ̂ = arg minφ2©

Pn
t=1 jyt ¡ ft(φ)jp satis…es

p
n

³
φ̂ ¡ φ0

´
= A(φ0)

¡1

Ã
nX

t=1

ε<p¡1>
t p

n
∂ft(φ0)

∂φ
+

1
n

nX

t=1

¯̄
¯̄εt +

u¤
tp
n

¯̄
¯̄
p¡2

ut
∂ft(φ0)

∂φ

!
+op(1).

ii. infγ2¡ infr0r=1 r 0E [e2
t
¡
[ªi(xt)F 0

t(γ)]ki=1
¢ £ ¡

[ªi(xt)F 0
t(γ)]ki=1

¢0]r > 0.
iii. There exists some γ (¤)

0 2 ¡(¤) such that jγ̂ (¤) ¡ γ (¤)
0 j = Op(1/

p
n) and

supγ2¡

¯̄
¯Ht(γ, γ̂(¤)) ¡ Ht(γ, γ(¤)

0 )
¯̄
¯ = Op(1/

p
n)

supγ2¡,φ2©

¯̄
¯b(γ, γ̂ (¤), φ) ¡ b(γ, γ(¤)

0 , φ)
¯̄
¯ = Op(1/

p
n)

supγ2¡,φ2©

¯̄
¯§(γ, γ̂(¤)) ¡ §(γ, γ(¤)

0 )
¯̄
¯ = Op(1/

p
n).

Assumption A3: For each i = 1...k let b̂(γ, ~γ, φ0) = (p ¡ 1)(1/n)
Pn

t=1 jyt
¡ ft(φ0)jp¡2 £ Ht(γ, ~γ)∂ 0ft(φ0), where γ 2 ¡ and ~γ 2 ¡ £ ¢ ¢ ¢ £ ¡ ½ Rk£k .
Then supφ2©,γ2¡,~γ 2~¡ ĵb(γ, ~γ, φ) ¡ b(γ, ~γ, φ)j ! 0 where b(γ, γ (i),φ) is a non-
stochastic function satisfying supφ2©,γ 2¡,~γ2~¡ jb(γ, ~γ, φ)j2 < C, supφ2©,γ 2¡,~γ 2~¡ j(∂/∂γ)b(γ, ~γ, φ)j2
< C and supφ2©,γ 2¡,~γ 2~¡ j(∂/∂ ~γ l)b(γ, ~γ, φ)j2 < C, l = 1...k.

Assumption A4: Write θ = fγ, γ(¤)g and θi = fγ i, γ (¤)g.
i. (1/n)

Pn
t=1 E [jεtj2(p¡1)(∂/∂φ)ft(φ)(∂/∂φ0)ft(φ)] ! A2, a …nite, non-stochastic

positive de…nite matrix.
ii. There exists a mapping η : ¡ £ ¡(¤) ! R satisfying (p ¡ 1) £ (1/n)

Pn
t=1 jεtjp¡2utgt(γ, γ(¤))

! (p ¡ 1) £ limn!1(1/n)
Pn

t=1 E [jεt jp¡2utgt(γ, γ(¤))] = η(γ, γ (¤)).
iii. Write θ 2 £ = ¡ £ ¡(¤). There exists a functional § : £ £ £ ! Rk£k satisfy-
ing (1/n)

Pn
t=1 E[jεt j2(p¡1)j=t¡1] £ gt(θ1)gt(θ2)0 ! §(θ1, θ2), (1/n)

Pn
t=1 jεtj2(p¡1)

£ gt(θ1)gt(θ2) 0 ! §(θ1, θ2) and (1/n)
Pn

t=1 E [jεtj2(p¡1) £ gt(θ1)gt(θ2)0] !
§(θ1, θ2) pointwise on ¡ £ ¡(¤).
iv. For some δ > 0, lim supn!1 supfγ,γ (¤)g2¡ 1/n

Pn
t=1 E jjεtjp¡2utgt(γ, γ(¤))j2+δ

< 1.

Assumption A.5: For some δ > 0, jj supθ2£ jgt(θ)jjj4+δ < C and jj supθ2£ j(∂/∂θ)gt(θ)j jj4+δ
< C .
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Appendix 2: Formal Proofs

Proof of Lemma 2. The construction of γ (i) implies for all γ 2 ¡

E[etªi(xt)F 0
t(γ)] · E[etªi(xt)F 0

t(γ
(i))] = supγ2¡ E[etªi(xt)F 0

t (γ)].

Assumptions A and B imply

$(0, γ(¤)) = E[etFt(0)] = 0.

Now di¤erentiate $(γ, γ(¤)) with respect to each γj , and add and subtract
E [etªj(xt)F 0

t(0)]. By construction
¡
∂/∂γj

¢
$(γ,γ (¤))(3)

= E [etªj(xt)fF 0
t (γ) ¡ F 0

t(0)g] ¡ E[etªj (xt)fF 0
t(γ (j)) ¡ F 0

t(0)g] · 0.

Thus $(γ, γ (¤)) is zero at γ = 0 and is weakly decreasing in γ. From (3) we
know E [etªj (xt)fF 0

t(γ(j)) ¡ F 0
t (0)g] ¸ 0 8j = 1...k.

In order to sharpen the weak inequality in (3) consider two possible cases.

Case 1: E[etªj (xt)fF 0
t(γ (j)) ¡ F 0

t(0)g] = 0.

Trivially

E[etªj (xt)fF 0
t (γ) ¡ F 0

t(0)g]jγ=0 = 0,

Lemma 1 therefore implies there exists an open neighborhood N0 ½ ¡ of zero
satisfying

E[etªj (xt)fF 0
t (γ) ¡ F 0

t(0)g] 6= 0 8γ 2 N0/0.

By assumption E [etªj(xt)fF 0
t (γ (j)) ¡ F 0

t (0)g] = 0 hence from (4) we deduce

E[etªj (xt)fF 0
t (γ) ¡ F 0

t(0)g] < 0 8γ 2 N0/0.

Thus $(γ, γ (¤)) is zero at γ = 0, strictly decreasing arbitrarily close to γ = 0,
and weakly decreasing everywhere else. Thus $(γ,γ (¤)) 6= 0 8γ 6= 0.

Case 2: E[εtªj (xt)fF 0
t(γ(j)) ¡ F 0

t (0)g] > 0.

Using (3) we easily deduce 8j = 1...k
¡
∂/∂γj

¢
$(0,γ (¤)) = 0 ¡ E

h
εtªj(xt)

n
F 0

t(γ
(j)) ¡ F 0

t(0)
oi

< 0.

Again, $(γ, γ (¤)) is zero at γ = 0, strictly decreasing at γ = 0 and weakly
decreasing everywhere else.

Proof of Theorem 3. Assume P [E(et jxt) = 0] < 1 and recall xt does
not contain a constant term. By Lemma 2 we know 8γ 6= 0

$(γ, γ(¤)) = E [etFt(γ)] ¡
Xk

i=1
γ iE [etªi(xt)F 0

t (γ
(i))] 6= 0.

12



Trivially, therefore, at least one moment condition E [etFt(γ)], E
£
etª1(xt)F 0

t (γ(1))
¤
,

..., or E
£
etªk(xt)F 0

t (γ (k))
¤

must be non-zero, hence E[etHt(γ, γ (¤))] 6= 0 for
every γ 6= 0.

Finally, under Assumptions A and B

E[etHt(0, γ (¤))] =
h
0, E

h
etª1(xt)F 0

t(γ(1))
i
, ..., E

h
etªk (xt)F 0

t (γ(k))
ii0

,

hence E[etHt(0, γ (¤))] = 0 if and only if et is orthogonal to sp(fªi(xt) £
F 0

t(γ(i))gk
i=1).

Proof of Lemma 6. Invoking a Cramér-Wold device and Assumption A,
under HL

1 it su¢ces to prove for any r 2 Rk+1, r 0r = 1,

1/
p

n
Xn

t=1
ε<p¡1>
t r 0§(θ)¡1/2gt(θ) ! N (0, Ik ) .

Clearly fε<p¡1>
t r 0gt(θ), =t¡1g forms a martingale di¤erence sequence due E[ε<p¡1>

t j=t¡1]
= 0 under Assumption A. The claim under HL

1 now follows from Assumption
A.4.iii, Lemma A.1, below, and Bierens’ (1994:Lemma 6.1.7) generalization of
McLeish’s (1974) martingale di¤erence central limit theorem.

Write wt(θ) = (yt ¡ ft(φ))<p¡1>gt(θ). Under H G
1 and Lemma 1 we deduce

E [wt(θ)j=t¡1] 6= 0 8θ 2 £ξ . Therefore, we need only show (2) implies

zn(θ)/
p

n = 1/n
Xn

t=1
(wt(θ) ¡ E [wt(θ)j=t¡1]) ! 0,

in probability. The limit follows from Assumption A and a martingale di¤erence
law of large numbers due to Chow (1971). Cf. Corollary 19.8 of Davidson (1994).

Proof of Lemma 7. For any r 2 Rk+1, r 0r = 1, write et = ε<p¡1>
t and

1/
p

n
Xn

t=1
etr 0§(θ)¡1/2gt(θ) = 1/

p
n

Xn

t=1
etr0ψt(θ)

= 1/
p

n
Xn

t=1
etwt(r, θ),

say, where ψt(θ) = §(θ)¡1/2gt(θ) and wt(r, θ) = r0ψt(θ). Using Lemma A.1 of
Bierens and Ploberger (1997) we need to show

lim supn!1 n¡1
Xn

t=1
E [e2

t Kt
2] < 1(4)

supr0r=1 lim supn!1 n¡1
Xn

t=1
E[e2

t wt(r, θ0)2] < 1,

for at least one point θ0 2 £, where it su¢ces to use

Kt = supθ2£ξ
j(∂/∂θ)wt(r, θ)j.

The second inequality in (4) follows from Assumption A and r0r = 1:

supr0r=1 E[e2
t wt(r, θ)2] · ketk2

4 j§(θ)¡1/2j2jj supθ2£ξ
jgt(θ)jjj24 · C,

13



where j§(θ)¡1/2j < 1 is an easy consequence of Assumptions A and C.
For the …rst inequality in (4) we will prove E [e2

t Kt
2] · M for some positive

constant M < 1. By the Cauchy-Schwartz inequality

supr0r=1 E[e2
t Kt

2] · kεtk2
4 £ jj supθ2£ξ j(∂/∂θ)ψ t(θ)j jj24.

The (l , j )th-component (∂/∂θl)ψt,j (θ) of the k(k + 1) £ (k + 1)-matrix (∂/∂θ)ψt(θ)
is exactly

(∂/∂θl)ψt,j (θ) =
Xk+1

i=1
(∂/∂θl)§(θ)¡1/2

j,i £ gt,i(θ)

+
Xk+1

i=1
§(θ)¡1/2

j,i £ (∂/∂θl)gt,i(θ).

Using Minkowski’s inequality repeatedly and Lemma A.2,
°°°supθ2£ξ j(∂/∂θ)ψt(θ)j

°°°
4

·
°°°°
Xk(k+1)

l=1

Xk+1

j=1
supθ2£ξ

¯̄
¯̄Xk+1

i=1
(∂/∂θl )§(θ)¡1/2

j,i £ gt,i(θ)
¯̄
¯̄
°°°°

4

+
°°°°
Xk(k+1)

l=1

Xk+1

j=1
supθ2£ξ

¯̄
¯̄Xk+1

i=1
§(θ)¡1/2

j,i £ (∂/∂θl)gt,i(θ)
¯̄
¯̄
°°°°

4

· k
°°°°
Xk(k+1)

l=1
supθ2£ξ

¯̄
¯̄Xk+1

i,j=1

¯̄
¯(∂/∂θl)§(θ)¡1/2

j,i

¯̄
¯
Xk+1

i=1
jgt,i(θ)j

¯̄
¯̄
°°°°

4

+ k(k + 1)2
°°°°supθ2£ξ

¯̄
¯̄Xk+1

i,j=1

¯̄
¯§(θ)¡1/2

j,i

¯̄
¯
Xk(k+1)

l=1

Xk+1

i=1
j(∂/∂θl)gt,i(θ)j

¯̄
¯̄
°°°°

4

· k
Xk(k+1)

l=1
supθ2£ξ

¯̄
¯(∂/∂θl )§(θ)¡1/2

¯̄
¯
°°°supθ2£ξ

jgt(θ)j
°°°

4

+ k(k + 1)2 supθ2£ξ

¯̄
¯§(θ)¡1/2

¯̄
¯
°°°supθ2£ξ

j(∂/∂θ)gt(θ)j
°°°

4
· C.
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Appendix 3: Supporting Lemmata

LEMMA A.1 Under Assumption A for each θ 2 £ξ and every r 2 Rk+1, r 0r
= 1

plimn!1 1/n
Xn

t=1

³
ε<p¡1>

t r0§(θ)¡1/2gt(θ)
´2

(5)

= limn!1 1/n
Xn

t=1
E

·³
ε<p¡1>

t r0§(θ)¡1/2gt(θ)
´2

¸
= 1,

and for some κ > 0

(6) plim
n!1

Xn

t=1
E

¯̄
¯ε<p¡1>

t r 0§(θ)¡1/2gt(θ)/
p

n
¯̄
¯
2+κ

= 0.

LEMMA A.2 Assumption A implies :
i. supθ2£ξ

jV (θ)¡1/2j2 · C(k + 1)
£
infθ2£ξ λmin(V (θ))

¤¡1 · C ;
ii. supθ2£ξ

j(∂/∂θl)V (θ)¡1/2j · C, l = 1...k + 1.

Proof of Lemma A.1. From the normalization π0π = 1 and Assumption
A it is easy to show E [(ε<p¡1>

t π0§(θ)¡1/2gt(θ))2] = 1 for all t 2 N. Limit (5)
then follows from Assumption A.4:

supθ2£

¯̄
¯1/n

Xn

t=1
jεtj2(p¡1)gt(θ)gt(θ)0 ¡ §(θ)

¯̄
¯ = op(1),

Limit (6) follows from the following bound. By l1-norm properties, the envelope
inequality, and Assumption A, for some small κ > 0 and some …nite M > 0

E jwt(θ)j2+κ

· jr j2+κj§(θ)¡1/2j2+κEjgt(θ)j2+κ

· jr j2+κ supθ2£ξ
j§(θ)¡1/2j2+κjjsupθ2£ξ

jgt(θ)jjj2+κ
2+κ · M,

where jr j2+κ < 1 is trivial. Thus,
Pr

t=1 E jwt(θ)j2+κ/n1+κ/2 = o(1/nκ/2).

Proof of Lemma A.2.

i. Liaponov’s inequality implies for some …nite B > 0:

j§(θ)¡1/2j2 · B j§(θ)¡1/2j22 = B £ Tr
³
§(θ)¡1/20§(θ)¡1/2

´

= B £ T r
¡
§(θ)¡1¢ = B £

Xpk

i=0
λi(§(θ)¡1)

= B £
Xpk

i=0
1/λi(§(θ))

· B £ (k + 1)λmin(§(θ))¡1
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hence

supθ2£ξ
j§(θ)¡1/2j2 · B £ (k + 1)

£
infθ2£ξ λmin(§(θ))

¤¡1 · C,

which is guaranteed for some …nite C by Assumption C: infθ2£ξ λmin(§(θ)) >
0.

ii. By standard properties of matrix di¤erentiation

(∂/∂θl)§(θ)¡1/2 = ¡(1/2)[§(θ)¡1/2 £ (∂/∂θl)§(θ) £ §(θ)¡1].

Hence, for some …nite B > 0, by Liaponov’s inequality and (i),

supθ2£ξ

¯̄
¯(∂/∂θl)§(θ)¡1/2

¯̄
¯

· supθ2£ξ

¯̄
¯§(θ)¡1/2 £ (∂/∂θl )§(θ) £ §(θ)¡1

¯̄
¯

· supθ2£ξ j§(θ)¡1/2j3j(∂/∂θl)§(θ)j

· B(k + 1)3/2 £
infθ2£ξ λmin(§(θ))

¤¡3/2 supθ2£ξ
j(∂/∂θl)§(θ)j

where infθ2£ξ λmin(§(θ)) > 0 by Assumption C. The proof is complete when
we show the l1-normed j(∂/∂θl )§(θ)j is uniformly bounded by some …nite M >
0.

The covariance matrix derivative (∂/∂θl)§(θ) is computed as

(∂/∂θl)§(θ) = (∂/∂θl)E
£
ε2t gt(θ)gt(θ)0¤

=
¡
E

£
ε2t (∂/∂θl)gt,i(θ)gt,j(θ)

¤¢
i,j

+
¡
E

£
ε2

t gt,i(θ)(∂/∂θl )gt,j (θ)
¤¢

i,j .

By the envelope and repeated Cauchy-Schwartz inequalities,

supθ2£ξ
j(∂/∂θl)§(θ)j

· 2
Xk+1

i,j=1
supθ2£ξ

¯̄
E

£
ε2t (∂/∂θl)gt,i(θ)gt,j(θ)

¤¯̄

· 2E
·
ε2

t

Xk+1

i=1
supθ2£ξ j(∂/∂θl)gt,i(θ)j

Xk+1

i=1
supθ2£ξ jgt,i(θ)j

¸

· 2 kεtk2
4

°°°°
Xk+1

i=1
supθ2£ξ

j(∂/∂θl)gt,i(θ)j
°°°°

4

°°°°
Xk+1

i=1
supθ2£ξ

jgt,i(θ)j
°°°°

4

= 2 kεtk2
4

°°°supθ2£ξ j(∂/∂θl)gt(θ)j
°°°

4

°°°supθ2£ξ jgt(θ)j
°°°

4
· C.
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Table 1: Supremum Tests
n = 200

H0 HL
1 HE

1 HS
1 HAN

1 HALL
1

L-supγ2¡p
n

Tn(γ)a .05 .49 .56 .25 .39 .45
E-supγ2¡p

n Tn(γ) .06 .73 .66 .50 .41 .55
supm2Np

n
Tn(m) .06 .67 .63 .48 .37 .54

L-supγ2¡p
n

Wn(γ)b .05 .91 .84 .68 .67 .72
E-supγ2¡p

n Wn(γ) .06 .89 .68 .74 .66 .73
supm2Np

n
Wn (m) .06 .82 .77 .86 .50 .75

n = 500
L-supγ2¡p

n
Tn(γ) .04 .67 .53 .55 .64 .69

E-supγ2¡p
n Tn(γ) .04 .81 .67 .70 .46 .65

supm2Np
n

Tn(m) .05 .86 .79 .76 .70 .77
L-supγ2¡p

n
Wn(γ) .04 .95 .92 .91 .73 .87

E-supγ2¡p
n Wn(γ) .05 .89 .85 .89 .68 .85

supm2Np
n

Wn (m) .05 .93 .85 .92 .76 .86

Notes: a. Super-consistent tests (L = logistic; E = exponential).
b. Uniformly most-powerful tests.

Table 2: Randomized Tests
n = 200

H0 HL
1 HE

1 HS
1 HAN

1 HALL
1

L-Tn (γ)a .09 .75 .69 .56 .55 .64
E-Tn(γ) .04 .80 .75 .72 .51 .66
Tn(m)b .05 .82 .77 .74 .51 .65
L-Wn(γ) .03 .83 .78 .72 .57 .71
E-Wn(γ) .02 .82 .81 .79 .53 .72
Wn (m) .03 .83 .80 .82 .54 .67

n = 500
L-Tn (γ) .08 .74 .72 .69 .73 .72
E-Tn(γ) .07 .85 .82 .80 .69 .82
Tn(m) .05 .95 .79 .81 .79 .88
L-Wn(γ) .03 .94 .92 .84 .74 .81
E-Wn(γ) .03 .86 .93 .91 .70 .85
Wn (m) .07 .96 .84 .88 .80 .90

Notes: a. Real-valued γ are randomly selected from [.5,10]p .
b. Integer-valued m are randomly selected from Np

n .
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Figure 1: Empirical Power Against STAR Alternatives
Exponential Super-Consistent CM Test and UMP Test Power 

Against LSTAR Alternative
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