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ABSTRACT OF THE DISSERTATION 

AIRBORNE LASER QUANTIFICATION OF FLORIDA SHORELINE AND BEACH 

VOLUME CHANGE CAUSED BY HURRICANES 

by 

William Robertson V 

Florida International University, 2007 

Miami, Florida 

Professor Dean Whitman, Co-Major Professor 

Professor Keqi Zhang, Co-Major Professor 

This dissertation combines three separate studies that measure coastal change using 

airborne laser data.  The initial study develops a method for measuring subaerial and 

subaqueous volume change incrementally alongshore, and compares those measurements 

to shoreline change in order to quantify their relationship in Palm Beach County, Florida.  

A poor correlation (R2 = 0.39) was found between shoreline and volume change before 

the hurricane season in the northern section of Palm Beach County because of beach 

nourishment and inlet dynamics.  However, a relatively high R2 value of 0.78 in the 

southern section of Palm Beach County was found due to little disturbance from tidal 

inlets and coastal engineering projects.  The shoreline and volume change caused by the 

2004 hurricane season was poorly correlated with R2 values of 0.02 and 0.42 for the north 

and south sections, respectively.  The second study uses airborne laser data to investigate 

if there is a significant relationship between shoreline migration before and after 

Hurricane Ivan near Panama City, Florida.  In addition, the relationship between 

shoreline change and subaerial volume was quantified and a new method for quantifying 
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subaqueous sediment change was developed.  No significant spatial relationship was 

found between shoreline migration before and after the hurricane.  Utilization of a single 

coefficient to represent all relationships between shoreline and subaerial volume change 

was found to be problematic due to the spatial variability in the linear relationship.  

Differences in bathymetric data show only a small portion of sediment was transported 

beyond the active zone and most sediment remained within the active zone despite the 

occurrence of a hurricane.  The third study uses airborne laser bathymetry to measure the 

offshore limit of change, and compares that location with calculated depth of closures and 

subaqueous geomorphology.  There appears to be strong geologic control of the depth of 

closure in Broward and Miami-Dade Counties.  North of Hillsboro Inlet, hydrodynamics 

control the geomorphology which in turn indicates the location of the depth of closure. 
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1. INTRODUCTION 

The state of beaches for Florida residents is of critical importance as they depend 

on healthy coastlines to stimulate tourism interest and more importantly tourism dollars.  

A state-wide survey in 1998 found that the majority of Florida beaches had experienced 

accretion (Dean et al., 1998).  Morton and Miller (2005) found similar results, with the 

east coast of Florida experiencing an average of 0.2 m of seaward shoreline migration.  

These results are misleading since both studies found that almost 39% of east coast 

Florida beaches were eroding.  In fact, Florida’s Department of Environmental Protection 

(FDEP) has declared 385 km of Florida beaches as critical erosion areas, while only 97 

km are considered non-critical (FDEP, 2006).  The FDEP report is based on 

measurements and observations, and previous research documenting beach change was 

limited to land survey techniques that produced sparsely located cross-shore profiles or 

large-scale changes in shoreline position.  There is a critical need for high density 

measurements of beaches in order to effectively mitigate coastal problems and remove 

discrepancies between observed and measured beach change. 

The evolution of beach measurement methods has improved scientists’ ability to 

accurately analyze trends in beach change.  Shoreline measurements began as early as the 

mid 1800’s when the U.S. Coast and Geodetic Survey used standard alidade and plane-

table land surveying techniques to delineate the high water line (Shalowitz, 1964).  This 

method was fairly accurate depending upon the distance from the measuring device.  

However, the method was time and labor intensive, and only produced a few hundred 

points in a good day.  Recent improvements in land surveying (i.e., total station) have 

enabled more rapid measurements, but the process is still labor and time intensive.  Aerial 
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photography became a tool for studying coastal change in the late 1930’s.  Aerial 

photographs were an advantage to land surveying, since they could image large areas in a 

minimal amount of time.  Yet three dimensional profile changes cannot be measured 

because aerial photographs only provide researchers with shoreline position.  Advances 

in Global Positioning System (GPS) have enabled coastal scientists to map the shoreline 

in relatively high accuracies of up to 1 cm (Morton et al., 1993).  Although GPS can 

achieve high accuracies, there is an inverse relationship between the accuracies of the 

GPS and the speed at which measurements can be made. 

One of the more recent advances in coastal surveying technology is airborne laser 

mapping (often referred to as LIDAR).  Airborne laser mapping produces extremely 

dense and relatively accurate elevation measurements for large areas in a short amount of 

time (Whitman et al., 2003).  There has been a steady progression of research into 

applying airborne laser data to measuring coastal change.  Airborne laser measurement 

accuracies of ± 0.15 m RMS verified that this technology is sufficiently accurate for 

coastal change measurements (Sallenger et al., 2003).  Similar accuracies have been 

obtained using airborne laser bathymetry (ALB), and new generations of bathymetric and 

topographic lasers provide seamless data from the ocean floor to subaerial environments 

(Wozencraft and Lillycrop, 2003).  Stockton et al. (2002) showed that shorelines can be 

extracted from airborne laser data, and Robertson et al. (2004) demonstrated that 

shorelines derived from local tidal data matched the high water line measured from aerial 

photographs.  Shoreline positions derived from airborne laser are superior to previous 

methods because they remove human error caused when manually digitizing shorelines 

from aerial photographs or field identification errors when using GPS.  Zhang et al. 
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(2005) quantified volume change caused by a passing hurricane, and more importantly 

developed a tool to separate the alongshore volume change into locations alongshore that 

can show where relative magnitudes of volume change occurred.  Volume change 

derived from airborne laser is a significant improvement over field beach profiling.  

Measuring beach profiles using land surveying is time consuming and there are few data 

sets that cover large areas.  The resolution of volume change derived from airborne laser 

mapping is dependent upon the point spacing and grid resolution.  With points typically 

spaced between 1 to 8 m over large areas, airborne laser has the ability to measure beach 

profiles at every meter alongshore or provide a change grid with 1 m pixels. 

This dissertation uses airborne laser to address scientific questions on coastal 

change.  With airborne laser data and customized geographic information systems (GIS) 

based metric mapping tools, the limitations in previous studies caused by lack of high 

resolution data can be minimized.  Chapters 2 and 3 have been previously published in 

the refereed journals of Shore & Beach and Marine Geology, respectively (Robertson et 

al., 2007; Robertson et al., 2005).  Mr. Robertson did a majority of the work for these two 

publications, and the co-authors represent the normal give-and-take experienced between 

the student and committee member. 

A method for extracting volume change data incrementally alongshore in Palm 

Beach County, Florida is developed in Chapter 2.  By extracting shoreline positions from 

three ALB data sets and calculating change rates, a direct comparison between shoreline 

and volume change indicates that shoreline change does not necessarily indicate volume 

change. 
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In Chapter 3, a time series of five separate airborne laser data sets collected in 

Bay County, Florida, are used to address three questions:  

1) Is there a correlation between landward shoreline migration induced by 

a storm and its subsequent seaward migration during recovery? 

2) Does beach width and subaerial volume share a linear relationship? 

3) Is there a more effective method than mean change when quantifying 

volume change measurements? 

Although List et al. (2006) have shown that shorelines recover at similar magnitudes to 

erosion caused by storms, little correlation is found following Hurricane Ivan.  Previous 

studies suggest that individual beaches have a linear relationship between beach width 

and subaerial volume change, but the beach profile technique limited the relationship to 

only one profile per beach (Dingler and Reiss, 2002; Thom and Hall, 1991).  The high 

spatial resolution of airborne laser data is utilized in Chapter 3 to demonstrate that the 

linear relationship in Bay County is spatially variable.  In addition, a new ratio is 

proposed to indicate the relative amount of sediment either entering or leaving a section 

of coastline.  Results show that most sediment remained in the nearshore, and there was 

mostly a redistribution of sediment along the profile with some loss of sediments 

offshore.  The low amount of change at the seaward limit of the study area suggests that 

the depth of closure (DOC) could be extracted from ALB data. 

A method for extracting the DOC from ALB data is developed in Chapter 4, and 

the vertical and horizontal position of the DOC is compared to several calculated DOCs 

and local geology.  Results suggest that the southeastern Florida DOC (Palm Beach, 

Broward, and Miami Dade Counties) is both hydrodynamically and geologically 
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controlled.  A portion of coastline between Boca Raton and Hillsboro Inlets separates the 

hydrodynamically controlled DOC to the north from the geologically controlled DOC to 

the south. 

The findings of each chapter along with current airborne laser limitations and 

future research are summarized in Chapter 5.  Airborne laser systems are constantly 

improving in data quality and measurement resolution.  Future studies will benefit from 

closer point spacing and higher accuracies, but the largest benefit will come from an 

increase in the airborne laser data library, especially when measuring the same beach 

over long periods of time.   
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2. SHORELINE AND BEACH VOLUME CHANGE BEFORE AND 
AFTER THE 2004 HURRICANE SEASON, PALM BEACH 
COUNTY, FLORIDA1 

ABSTRACT 

This study quantifies the shoreline and volume change utilizing three LIDAR data 

sets that were collected in Palm Beach County before and after the 2004 hurricane 

season. The beaches in Palm Beach County were significantly affected by Hurricanes 

Frances and Jeanne. Shoreline positions were extracted from the LIDAR derived DEMs, 

and the DEMs were differenced to yield volume change. The 52.4 km long study area 

lost nearly 5.8 million m3 of sediment due to the 2004 hurricane season, with major 

erosion occurring to the berm, sandbar, and the northerly sections of ebb tidal deltas. On 

average, nearly 10 meters of shore erosion was observed. Correlation between shoreline 

movement and volume change was quantified. A poor R2 value of 0.39 was found 

between shoreline and volume change before the hurricane season in the northern section 

of Palm Beach County because of beach nourishment and inlet dynamics. However, a 

relatively high R2 value of 0.78 in the southern section of Palm Beach County was found 

due to little disturbance from tidal inlets and coastal engineering projects. The 2004 

hurricane season reduced the R2 values to 0.02 and 0.42 for the north and south sections, 

respectively. 

                                                 
1 Reprinted from Shore & Beach, v. 73, William Robertson, Keqi Zhang, Dean Whitman, and Stephen 
Leatherman, Shoreline and beach volume change before and after the 2004 hurricane season, Palm Beach 
County, Florida, 79-84, with permission from Shore & Beach 
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INTRODUCTION 

Beaches are an extremely valuable resource for the recreation and tourism 

business.  Most sandy beaches along the U.S. East Coast suffer from chronic and episodic 

erosion.  Quantifying these changes is critical for understanding why they occurred, for 

designing and evaluating beach nourishment projects, and for beach management.  Three-

dimensional measurements of subaerial topography and nearshore bathymetry are 

required for quantifying change because beach morphological change occurs along the 

entire beach profile.  Until the recent advent of airborne laser technology, it has been 

difficult to obtain measurements of beaches over large areas with sufficient resolution 

and accuracy to adequately measure three-dimensional volume change. 

Traditionally, there were two methods to quantify beach change.  One was to 

compare the beach profile observations along the shore to locate morphological 

differences and interpolate volume change (Aubrey, 1979; Morton et al., 1995; Morton et 

al., 1994).  This method has been employed by Florida Department of Environmental 

Protection to monitor beach volume change.  A series of monuments along the entire 

sandy coastline of Florida has been installed, and profiles at monuments have been 

ground surveyed repeatedly for change determination.  However, since the monuments 

are spaced approximately 300 m apart, interpolation is necessary to estimate the volume 

change between monuments.  Swales (2002), Finkl (2004), and Zhang et al. (2005) found 

that the sparse sampling intervals may lead to an inaccurate representation of coastal 

change, and higher resolution data are needed to accurately quantify beach volume 

change. 
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Beach change can be determined by analyzing the position of the high water line 

(Galgano et al., 1998; Pajak and Leatherman, 2002; Zhang et al., 2002).  Although 

shoreline position change only represents two dimensional beach variation, the shoreline 

data are often used to estimate volume change due to a lack of three-dimensional 

measurements (Jarrett, 1991; Rosati, 2005).  It is assumed that the entire active profile 

which spans from the berm to the depth of closure moves at the same rate as the rate of 

shoreline change, while the active profile shape remains unchanged.  Detailed 

information for converting shoreline variations into volume change based on this 

assumption can be found in Rosati (2005).  However, little systematic investigation has 

been undertaken on the relationship between shoreline position and volume change, and 

the accuracy of such estimations has suffered due to the lack of high-resolution three-

dimensional measurements. 

Airborne laser mapping allows for rapid and dense three-dimensional 

measurements of the subaerial beach and nearshore bathymetry.  The significant increase 

in resolution makes it possible for researchers to analyze coastal change with great detail.  

Several studies have demonstrated the effectiveness of airborne laser data when applied 

to the analysis of coastal morphological change (Brock et al., 2002; Sallenger et al., 2003; 

Shrestha and Carter, 1998; Shrestha et al., 1999).  The shoreline position (Robertson et 

al., 2004; Stockdon et al., 2002) and beach volume (Irish and White, 1998; White and 

Wang, 2003; Woolard and Colby, 2002; Zhang et al., 2005) can be computed from 

airborne laser data due to the three dimensional properties of these remotely sensed 

measurements.  Therefore, airborne laser measurements allow for a direct comparison of 
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two separate methods for measuring coastal change: shoreline position and beach 

volume. 

The direct comparison between shoreline position and volume change methods 

also allow for quantifying their correlation.  It has long been recognized that beach 

profiles will adjust to seasonal wave climates or major storm events (Aubrey, 1979; King, 

1972; Shepard, 1950).  This adjustment leads to erosion in the upper beach and 

deposition in lower beach in the form sand bars due to storm events.  The profile 

adjustment will influence the correlation between shoreline and volume change, but 

previous studies have not quantified the correlation for normal or storm conditions. 

Hurricanes Frances and Jeanne affected Palm Beach County’s beaches in 2004.  

Frances was a category two hurricane that made landfall on September 5, 2004 over the 

southern end of Hutchinson Island, Florida (Beven, 2004).  Jeanne made landfall at 

almost the same position on September 26, 2004 as a category three hurricane (Lawrence 

and Cobb, 2005).  Palm Beach County was approximately 20 kilometers south of the 

landfall of both hurricanes and on the left or weak side (Figure 2-1).  However, Palm 

Beach County beaches still experienced significant erosion from the storms. 

This study utilizes two airborne laser data sets collected before and one collected 

after the 2004 hurricane season along the Palm Beach County coast.  These data consist 

of both subaerial and bathymetric measurements that provide excellent information for 

quantifying beach change under normal and storm conditions.  The beach extends from 

the toe of the dune to the depth of closure.  The primary objective of this study is to 

quantify shoreline and beach volume change for central and southern Palm Beach County 

before and after the 2004 hurricane season.  A second objective is to quantify the 
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correlation between shoreline movement and volume change under normal and storm 

conditions. 

 

2-1.  Study area with hurricane tracks and extent of airborne laser data. 

STUDY AREA 

Palm Beach County is located in the southeastern section of the Florida peninsula 

with over 72 km of sandy beaches.  This study focuses on the southernmost 52 km of 

coastline in Palm Beach County and the bathymetry extends approximately 600 m 

offshore (Figure 2-1).  The coastline is relatively straight and oriented north-northeast to 

south-southwest.  The study area includes two inlets, and offshore is characterized by one 

to two sandbars.  Beach sediments are bimodal containing shell fragments and quartz 
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grains.  The average deep water wave height is 0.98 m with the predominant wave 

direction from the northeast (Benedet et al., 2004). 

DATA AND METHODS 

Airborne laser data 

Airborne laser is an active remote sensing technology that determines ground 

elevations by measuring the travel time of laser pulses transmitted from an aircraft.  Over 

the last decade, several airborne laser systems have been employed to collect data of 

Florida beaches.  This study utilizes airborne laser data collected by two systems: LADS 

and CHARTS.  Laser airborne depth sounding (LADS) was flown in October to 

November, 2002, by the Tenix LADS Corporation, Coastal Planning and Engineering, 

and Palm Beach County.  The LADS system fired a green laser (532 nm) at 900 Hz 

yielding a point spacing of approximately 4 meters.  In June 2004 and November to 

December 2004, the U.S. Army Corps of Engineers deployed the compact hydrographic 

airborne rapid total survey (CHARTS) system.  CHARTS has two lasers: one 

hydrographic and the other topographic.  The hydrographic laser fired at 1 kHz while the 

topographic laser fired at 10 kHz.  This produced point spacing on the ground of 

approximately 1.5 meters and a bathymetric point spacing of approximately 4 meters. 

Vertical offsets between airborne laser data can add a bias to shoreline and 

volume change calculations.  Fortunately, these biases can be estimated by comparing 

elevations from different airborne laser surveys on unchanged (hard) surfaces such as 

roads (Zhang et al., 2005).  Four profiles were extracted from concurrent roads 

distributed throughout the study area.  The root mean square (RMS) differences between 

the three data sets were calculated.  Results show that the RMS differences were less than 
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12 cm, suggesting that the three airborne laser data sets match well and there were no 

large systematic offsets.  The airborne laser data were provided as irregularly-spaced 

point measurements including horizontal coordinates and vertical elevations of 

topography and bathymetry.  Analysis required interpolating these data onto a regularly-

spaced grid to produce a digital elevation model (DEM).  The data were gridded at 2 m 

resolution using kriging interpolation and a linear variogram. 

Shoreline change 

Since the shoreline is not a topographic feature, its position cannot be directly 

measured by airborne laser points.  Therefore, local tidal datums were used to extract a 

shoreline contour from the three-dimensional airborne laser data.  Previous studies 

indicate that the digitized high water line from aerial photographs is similar to the contour 

corresponding to the mean higher high water (MHHW) level datum derived from local 

tide gauges (Robertson et al., 2004).  All data were contoured at the calculated MHHW 

level of 0.09 m above NAVD88.  The contours were vectors that represented the 

shoreline position at the time of airborne laser data collection. 

Shoreline change was quantified by using the Metric Mapping system developed 

by the IHRC (Zhang et al., 2005).  In this system, a spine was created parallel to the 

shoreline, and transects perpendicular to the spine were created at every 100 meters 

producing 524 transects.  Distance was measured from the spine to the intersection of 

each shoreline vector.  This allows the calculation of shoreline change as a function of 

along-shoreline position. 
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Volume change 

Volume change was quantified by differencing the airborne laser data sets within 

a user-digitized mask (Zhang et al., 2005).  The mask ensured that volume change was 

measured from the toe of the dune to the furthest extent of the bathymetry data, 

approximately 10 m beneath NAVD88.  By differencing the elevations of two DEMs, 

positive and negative values represent accretion and erosion of sediment, respectively.  

The map view of coastal volume change provides a synoptic perspective on where 

sediments were eroded and accreted.  Profiles were measured and compared at locations 

of interest to represent the two-dimensional beach change.  The increased profile detail 

produced from airborne laser data provide a qualitative perspective on the 

morphodynamic change of the beach. 

Volume change was quantified by using an ArcView extension developed by 

Keqi Zhang of the IHRC.  The same spine and 524 transects used for shoreline change 

were applied with the ALTM tool.  The transects created 100 m bins in the alongshore 

direction where volume change was calculated (Figure 2-2).  This allows the calculation 

of volume change as a function of distance along the shoreline. 

2-1.  Shoreline and volume change before and after the 2004 hurricane season. 

Mean Max Min St.D.
Shoreline Change Before (m) 3.6 48.3 -32.5 12.1
Shoreline Change After (m) -10.7 15.6 -39.0 8.8
Volume Change Before (m3/transect) -4235 37743 -93085 11240
Volume Change After (m3/transect) -10975 75852 -134218 15668  
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BEACH CHANGE BEFORE AND AFTER 2004 HURRICANE 
SEASON 

Summary statistics for the entire study area were compiled to reflect shoreline and 

volume change before and after the 2004 hurricane season (Table 2-1).  Shoreline change 

before the 2004 hurricane season represents the difference between the shorelines 

extracted from the November 2002 LADS and June 2004 CHARTS airborne laser data.  

Shoreline change after the 2004 hurricane season represents the difference between the 

shorelines extracted from the June 2004 and November 2004 CHARTS airborne laser 

data.  Positive values represent seaward movement of the shoreline, and negative values 

represent landward movement of the shoreline. 

 

2-2.  Volume change due to the 2004 hurricane season for the area surrounding Transect 175. 

Results show that the shoreline on average moved seaward 3.9 m before and 

retreated more than 10 m after the 2004 hurricane season.  Conditions before the 2004 
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hurricane season showed maximum accretion at Transect 119 and maximum erosion at 

Transect 418.  The maximum accretion was due to the 2003 Midtown Palm Beach 

nourishment project.  The maximum erosion at Transect 418 was due to the LADS data 

being collected immediately after the 2002 Delray Beach nourishment project, and 

therefore is showing the retreat following the project.  Following the 2004 hurricane 

season, maximum erosion occurred at Transect 515.  This area was nourished as part of 

the 2004 central Boca Raton nourishment project, and the area was significantly eroded 

following the 2004 hurricane season.  The maximum accretion occurred at Transect 12 

which is the northern limit of the study area and appears to be due to the offshore bar 

being driven onshore. 

Volume change represents the amount of change that occurred between transects 

and within the user-specified mask as described in the methods.  Average volume change 

for the entire study area was found to be an erosion of -4,235 m3/transect before the 2004 

hurricane season and -10,975 m3/transect after (Table 2-1).  Since the study area 

contained 524 transects, and each transect was 100 m, the average volume change before 

the 2004 hurricane season was -2.2 million m3, and -5.8 million m3 after.  Increased 

erosion due to the 2004 hurricane season was expected, and locations of maximum 

accretion and erosion are caused by site-specific hydrodynamics and beach nourishment 

projects.  Maximum accretion of 37,743 m3 occurred at the 2003 midtown Palm Beach 

nourishment site at Transect 119 before the 2004 hurricane season, and following the 

2004 hurricane season a maximum accretion of 75,852 m3 occurred at Transect 49 at the 

Lake Worth Inlet channel due to deposition of sediments in the dredged portion of the 

channel.  For maximum erosion, the loss of -93,085 m3 at Transect 67 before the 
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hurricane season was due to the dredging between Transects 55 and 90 for the 2003 

midtown Palm Beach nourishment project.  Following the 2004 hurricane season, a 

maximum erosion of -134,218 m3 was found at Transect 40.  This area before the 2004 

hurricane season had a large amount of sand just north of Lake Worth Inlet in the form of 

an ebb tidal delta.  The two hurricanes not only moved the delta closer to the inlet, but 

they significantly decreased the ebb tidal delta size, resulting in the large volume of 

sediment loss. 

A longitudinal north to south profile of shoreline and volume change is shown in 

Figure 2-3.  The figure shows shoreline and volume change as a function of along-

shoreline distance.  The shoreline change values were multiplied by 500 to match the 

signal range of the volume change values.  In general, shoreline change values are above 

zero, and volume change values are below zero before the 2004 hurricane season as 

summarized in Table 2-1.  Volume and shoreline change following the 2004 hurricane 

season are below the zero line representing the overall erosion caused by the hurricanes.  

Extremes in the signals were found at and north of the dredged area for the 2003 

nourishment project (Transect 69). 

RELATIONSHIP BETWEEN SHORELINE AND VOLUME 
CHANGE 

The shoreline and volume change curves were further compared to examine their 

correlation.  Figure 2-3 shows a good in phase match between two curves before and after 

the 2004 hurricane season south of Transect 304, and a poor match to the north of 

Transect 304.  The apparent match occurs between South Lake Worth and Boca Raton 

Inlets.  To help understand the correlation between shoreline and volume change, four 
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profiles were extracted from the before and after hurricane airborne laser data (Figure 2-

4).  Profiles at Transect 420 in Figure 2-4 show berm erosion and shoreline retreat after 

the 2004 hurricane season.  The volumes of sediment eroded and accreted between 100 to 

300 m along the transect are approximately equal and are averaged out.  The volume 

change mainly reflects the change for the upper portion of the profile, which is closely 

related to variation in shoreline position. 

 

2-3.  Shoreline and volume change along entire study area.  North to south is from left to right. The interval 
between two adjacent transects is 100 m.  LWI is the location of Lake Worth Inlet.  S. LWI is the location 
of South Lake Worth Inlet.  Vertical lines are locations of transects in Figure 2-4.  Data were filtered by a 5 
point moving average for clarity. 
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2-4.  Perpendicular profiles cut from before and after LIDAR data.  Horizontal line represents the MHHW 
datum. 

The relatively poor match spans from just north of Lake Worth Inlet to South 

Lake Worth Inlet.  Large volume change differences between Transects 33 through 47 

and 300 to 304 are due to Lake Worth Inlet and South Lake Worth Inlet, respectively.  

Each inlet area experienced erosion and reduction of the northern half of the ebb tidal 

delta along with deposition immediately south of the inlet following the 2004 hurricane 

season.  In 2003, a nourishment project was completed between Transects 104 and 140.  

This project was responsible for the berm buildup and volume accretion before the 2004 

hurricane season, and berm reduction and large volume erosion found after the 2004 

hurricane season (Figure 2-4, Transect 110).  Transect 110 shows a typical beach 

nourishment profile, where the steep berm and beach face slope was reduced by eroding 
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the berm and depositing that sand just offshore.  The reworking of sediments resulted in a 

large sediment loss between 90 and 350 m along Transect 110 due to the hurricanes. 

There were two areas of slight seaward shoreline migration between Lake Worth 

and Boca Raton Inlets following the 2004 hurricane season at Transects 170 through 174 

(Figure 2-2) and Transects 241 through 244.  For each area, the position of the offshore 

bar was completely eroded, with some of the sediment driven ashore and some quantities 

moved slightly offshore (Figure 2-4, Transect 171).  The sediment being driven onshore 

and pulled offshore resulted in the shoreline position migrating seaward, but still with a 

significant negative volume change (Figure 2-3).  These areas provide an excellent 

example of how shoreline movement does not coincide with the volume change of the 

entire profile.  However, just south of Transect 171 was Transect 178, where little change 

occurred between 2002 and spring 2004 (Figure 2-4).  Following the 2004 hurricane 

season, the offshore bar was completely eroded, leading to a significant volume decrease 

and shoreline retreat.  This demonstrates that the coastal morphological response to 

storms can be different within a short alongshore distance. 

To test the correlation between shoreline migration and volume change before and 

after the 2004 hurricane season, a plot of shoreline position against volume change for 

each transect along the study area was generated (Figures 2-5 and 2-6).  A few outliers 

greater than three sigma representing locations at or close to inlets were removed.  The 

data were then split into north and south sections at Transect 305 for correlation analysis 

due to the distinctive beach change behavior based on previous analysis.  The R2 value 

for the south section was 0.78 between 2002 and 2004, and 0.42 following the 2004 

hurricane season.  The R2 value for the north section was 0.38 and 0.02 for before and 
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after hurricane data, respectively.  The correlation in the south was significantly better 

than the north, and the 2004 hurricane season significantly reduced the correlation for 

both areas. 

 

2-5.  Plot of shoreline change against volume change to show degree of correlation before the 2004 
hurricane season.  North represents transects north of Transect 305.  South represents transects south of 
Transect 305. 

It is understandable that the correlation between shoreline and volume change was 

better before the 2004 hurricanes (Figure 2-5).  The shoreline position change only 

reflects the variation of the upper portion of the beach profile, not volume change for the 

entire beach profile.  The requirement for perfect correlation between shoreline and 

volume change is that the active beach profile has to remain constant and move at the rate 

of shoreline migration.  This is rarely the case for beach profiles because it changes 
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constantly as hydrodynamic factors vary.  However, during a normal conditions, the 

profile change is small thus a high 0.78 R2 value was derived.  This demonstrates that it is 

reasonable to use shoreline change position to estimate volume change if the shoreline 

positions are measured during non-storm conditions.  The correlation decreased 

significantly when a large beach profile adjustment, especially episodically storm-

induced, occurs between two observations (King, 1972).  Therefore, it is not appropriate 

to use storm shoreline positions to estimate volume change. 

 

2-6.  Plot of shoreline change against volume change to show degree of correlation after the 2004 hurricane 
season.  North represents transects north of Transect 305.  South represents transects south of Transect 305. 

The spatial correlation difference between north and south sections is mainly due 

to the inlet activity and beach nourishment projects at the north section.  The inlet activity 

and beach nourishment complicated the beach profile adjustment to changes in 
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hydrodynamic factors.  However, locations of tidal inlets and beach nourishment do not 

explain the shoreline migration and volume mismatch between Transects 165 and 208.  

Reasons for the weak correlation could be due to an active profile beyond the areas 

captured by the airborne laser data.  To fully quantify beach volume change, the offshore 

profile must cover all significant volume change.  Figure 2-2 shows volume change at the 

offshore edge of the airborne laser measurements, suggesting that sediments were 

exchanged between the offshore portion and the area beyond the scope of current 

airborne laser surveys.  The role of this sediment exchange on beach volume change 

needs to be investigated further. 

CONCLUSIONS 

This study quantified shoreline and volume change before and after the 2004 

hurricane season in Palm Beach County, Florida.  Data used for analysis were three 

topographic and bathymetric airborne laser surveys flown 22 months before, three 

months before, and two months after the hurricane season.  In general, the study area lost 

5.8 million m3 of sediments due to the 2004 hurricane season, with major erosion 

occurring to the berm, sandbar, and northerly sections of ebb tidal deltas.  On average, 

more than 10 meters of shore retreat was observed. 

The difference between shoreline and volume change between two observations is 

determined by the extent of profile adjustment during the same period.  Techniques 

developed by IHRC researchers allowed for extracting the change data as a function of 

along-shoreline distance for comparative purposes.  Alongshore shoreline migration and 

volume change showed a good correlation with an R2 value of 0.78 south of Transect 305 

during normal conditions.  North of Transect 305, inlet activity and nourishment projects 
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were responsible for complicated adjustments in the beach profile, which lowered the 

shoreline and volume change correlation to 0.42 R2.  Shoreline and volume change 

correlation are strong before the 2004 hurricane season and weak after the 2004 hurricane 

season, indicating that shoreline change is more representative of volume change when 

data do not include major storm events. 

 

 

23



3. HURRICANE-INDUCED BEACH CHANGE DERIVED FROM 
AIRBORNE LASER MEASUREMENTS NEAR PANAMA CITY, 
FLORIDA2 

ABSTRACT 

This study used airborne laser data to investigate spatial variations in shoreline 

migration, beach width, subaerial volume, and subaqueous volume change due to a 

hurricane event.  Five separate airborne laser data sets of Panama City, FL area beaches 

were collected during a seven-month period before and after landfall of Hurricane Ivan.  

Contour shorelines were extracted from digital elevation models interpolated from these 

laser measurements and were used to measure changes in shoreline position and beach 

width.  The shoreline migrated 16 m landward due to Hurricane Ivan and migrated 10 m 

seaward following Hurricane Ivan.  No significant spatial relationship was found between 

shoreline migration before and after the hurricane.  Linear relationships between a time 

series of beach width and subaerial volume were found at many locations.  However, 

utilization of a single coefficient to represent all relationships is problematic due to the 

spatial variability in the linear relationship.  Differences in two bathymetric data sets for 

summer and fall show only a small portion of sediments were transported beyond an 

active zone, and most sediment remain within the active zone despite the occurrence of a 

hurricane. 

                                                 
2 Reprinted from Marine Geology, v. 237, William Robertson, Keqi Zhang, and Dean Whitman, Hurricane-
induced beach change derived from airborne laser measurements near Panama City, Florida, 191-205, 
Copyright 2007, with permission from Elsevier 
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INTRODUCTION 

Storm impacts, sea level rise, and human modification make beaches one of 

Earth’s most dynamic landforms.  Quantification of storm-induced beach erosion and 

subsequent recovery is essential for understanding beach response to abrupt changes in 

hydrodynamics and appropriately designing coastal engineering projects such as beach 

nourishment.  Shoreline position mapping (Crowell et al., 1991; Leatherman, 2003; Pajak 

and Leatherman, 2002; Thevenot and Kraus, 1995) and beach profile monitoring 

(Aagaard et al., 2005; Thom and Hall, 1991) are the two primary methods for quantifying 

coastal change.  Shoreline data derived using remote sensing techniques and kinematic 

GPS surveys are an excellent source for analyzing large-scale beach change temporally 

and spatially (Moore, 2000; Sallenger et al., 2003; Zhang et al., 2002).  Previous studies 

have found that shoreline response to storms is highly variable along the shore 

(Robertson et al., 2005; Stockdon et al., 2002; Zhang et al., 2005).  List et al. (2006) 

found that the shorelines at erosion hotspots rapidly recovered to pre-storm positions 

within a week after the storm, and the magnitudes of shoreline recovery at erosion 

hotspots are correlated to the magnitudes of erosion induced by storms.  List et al. (2006) 

focused on the relatively high-energy beaches of North Carolina and outer Cape Cod.  

However, this phenomenon has not been demonstrated on low-energy beaches impacted 

by frequent hurricanes such as the U.S. Gulf of Mexico coast. 

The dynamic interaction between land, wind, and waves creates complicated 

beach morphologies that change over time.  Beach changes not only occur at the 

shoreline, but also over the entire profile, and these changes cannot be quantified by two-

dimensional shoreline position data.  Monitoring beach profiles using ground surveys can 
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provide quantitative information of onshore and offshore changes.  By comparing the 

beach profile measurements on California coasts, Shepard (1950) found that sediments 

from berms were transported offshore to form sandbars during the winter when storm 

waves were dominant.  Sediment moved toward the shore to form berms during the 

summer when swell waves were dominant.  This cyclic behavior of beach profiles has 

been found to occur at many coasts during storm weather and the subsequent fair weather 

periods (Aubrey, 1979; King, 1972; Komar, 1998; Winant et al., 1975).  It appears that 

onshore and offshore sediment movement during a cycle occurs mostly within the active 

profile zone, defined as the zone landward of the depth where sediment movement by 

waves is insignificant (Hallermeier, 1977).  However, quantitative data on the amount of 

sediment redistributing within the active profile zone and the amount of sediment 

exchanged between the active and outside zones are lacking because most beach profile 

surveys do not extend adequately seaward.  Data measuring the active and outside zones 

are rare, and only a few beaches in the world such as Duck, North Carolina have data that 

captures most of the active zone (Lee et al., 1998). 

Beach profiles have also been used to document the recovery processes.  Based on 

analysis of beach profiles on the Texas coast before and after Hurricane Alicia, Morton et 

al. (1994) found that the backshore took longer to recover than the foreshore.  Thom and 

Hall (1991) showed that it took several years for the volume of subaerial beaches to 

recover.  In combination with the study of shoreline response to storms (List et al., 2006), 

these results imply that shoreline and beach volume may recover at different rates.  

However, the relationship between shoreline and volume change has not been examined 

in detail. 
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Beach profiles are an effective method for estimating sediment volume change, 

but cost limitations usually require that profiles be widely spaced alongshore to quantify 

large-scale changes.  The large spacing between profiles limits the accuracy of volume 

change estimates.  Alternatively, subaerial beach volume changes can be estimated by 

assuming that volume changes are proportional to variations in beach width.  Several 

studies have established a linear relationship between the subaerial volume (V) and beach 

width (W) at a specific location: 

  (3-1) KWV =

where the coefficient K is estimated using V and W from a time series of beach profile 

measurements at individual transects.  In Australia, Thom and Hall (1991) measured K 

values ranging from 2.55 to 2.76 m2 for 4 beach profiles.  In Monterey Bay California, 

Dingler and Reiss (2002) found that K values vary considerably from 1.95 to 4.42 m2 for 

7 different beaches.  The number of profiles that were used to determine K in these two 

studies was limited, thus the alongshore variability of K for a single beach has yet to be 

determined.  If there is significant alongshore variation in K, then K cannot be treated as a 

constant, and Equation 3-1 would become location specific.  In such a case, it would be 

very difficult to use temporal variations in beach width to quantify subaerial beach 

changes at a larger scale.  Therefore, it is critical to know how K changes alongshore 

when applying shoreline positions to estimate subaerial volume. 

Panama City on the Florida Gulf of Mexico coast was impacted by Hurricane 

Ivan in 2004.  Five airborne laser surveys measured Panama City beaches before and 

after Ivan, which produce a unique, high-resolution data set to study the response of low-

energy beaches to a storm.  The objectives of this study are:  
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1) to determine if there is a correlation between landward shoreline migration 

induced by a storm and its subsequent seaward migration during recovery,  

2) to determine the relationship between beach width and subaerial volume changes, 

and  

3) to quantify sediment redistribution in the active zone and sediment exchange 

between the active and outside zones. 

STUDY AREA 

The Panama City area is located within the Coastal Lowlands (White, 1970) of 

the Gulf Coastal Plain Physiographic Province (Hunt, 1974).  The Province is a wide 

coastal plain that contains Late Cretaceous to Holocene sedimentary deposits, and this 

study focuses on the Holocene sediments that have been reworked by waves and currents.  

Panama City is located between the Apalachicola delta to the east and detached offshore 

barrier islands with large dunes to the west.  The Apalachicola delta received much its 

sediments from the Appalachian Mountains millions of years ago, and the delta region is 

a primary source of sediment to Panama City beaches due to the dominant east to west 

littoral transport (Davis, 1997). 

Panama City beaches are on the northwest coast of Bay County, Florida facing the 

Gulf of Mexico.  The study area is located between the Walton-Bay County line and St. 

Andrews Inlet (Figure 3-1).  The shoreline orientation is northwest to southeast, and 

slightly concave toward the Gulf.  This study investigates more than 23 km of sandy 

beaches consisting of fine sand to silty sand with shell fragments and a mean grain size of 

0.24 mm.  The beaches were renourished in 1999 throughout most of the study area, and 

4 km east of the eastern section was further renourished in 2002.  The mean tidal range is 

 

28



0.37 m, making the coast microtidal but not necessarily wave dominant.  The average 

deep-water (290 m) significant wave height at NOAA buoy 42039 is 1 m, with 

September through April greater than 1 m, and May through August below 1 m. 

 

3-1.  Map of the study area near Panama City, Florida showing locations of beach transects, track of 
Hurricane Ivan, and location of NOAA offshore wave buoy 42039. 

Hurricane Ivan made landfall east of Mobile, Alabama on September 16, 2004 

with maximum sustained winds of 58 m/s (Leadon, 2004).  Panama City was over 100 

km to the east of the hurricane’s landfall with estimated sustained wind speeds of 27 m/s 

(Figure 3-2).  The storm surge in the study area was less than 2.5 m resulting in minor 
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overwash and dune erosion (Figure 3-3).  Beach change was primarily caused by large 

waves generated by the hurricane.  Significant wave heights greater than 12 m were 

measured during Hurricane Ivan from a NOAA buoy (42039) 150 km offshore.  There 

were two high wave events following Hurricane Ivan, but both were in the offshore 

direction (Figure 3-4).  During early fall, Panama City experienced at least four large 

onshore wave events. 

 

3-2.  Map of Hurricane Ivan wind speeds with storm track, location of NOAA offshore wave buoy 42039, 
and Transect A to B displayed in Figure 3-3.  Wind data courtesy of NOAA’s Hurricane Research Division. 
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3-3.  FEMA surveyed high water marks for Transect A to B in Figure 3-2.  The study area is between the 
asterisks. 

 

3-4.  Significant wave height and wave direction for NOAA buoy 42039 offshore of Panama City during 
2004 with timeline showing when airborne laser data were collected and their proximity to Hurricane Ivan.  
Middle plot represents significant wave height.  Upper plot is wave direction, with north at the top of the 
page.  Dates of airborne laser data collections are vertical lines.  CHARTS data collection dates were 
provided in ranges, thus the median date was chosen. 
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DATA AND METHODS 

Beach response to a storm occurs three dimensionally, and two-dimensional 

shoreline and profile measurements limit the understanding of beach response to storms.  

Until the advent of airborne laser mapping technology (also known as LIDAR), it has 

been extremely difficult to derive three-dimensional measurements of beach change with 

sufficient resolution and accuracy.  Airborne laser measurements can satisfy many of the 

needs for quantifying three dimensional coastal change with horizontal resolutions less 

than several meters and vertical accuracies near 0.15 m RMS (Sallenger et al., 2003).  

Past coastal studies have shown that shoreline position, beach profile, and beach volume 

change can be obtained by comparing multiple airborne laser data sets (Irish and White, 

1998; Robertson et al., 2004; Robertson et al., 2005; Stockdon et al., 2002; Zhang et al., 

2005). 

Airborne Laser Data 

Airborne laser mapping is an active remote sensing technology that utilizes a 

pulsed laser to measure the range between an airborne platform and the Earth’s surface.  

Five airborne laser data sets (Figure 3-4) were collected in 2004 using three systems: the 

University of Florida and Florida International University’s airborne laser swath mapper 

(ALSM), NASA’s experimental airborne advanced research LIDAR (EAARL), and the 

United States Army Corps of Engineers compact hydrographic airborne rapid total survey 

(CHARTS).  Each system operates somewhat differently, and thus produces a different 

type of airborne laser data set. 

The ALSM instrument is an Optech ALTM 1233 topographic airborne laser 

system that fires a laser in the near-infrared spectrum (1.1 µm).  The laser pulses cannot 
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penetrate the water column, so the ALSM instrument is only capable of deriving 

terrestrial surface measurements.  A pulse rate of 33 kHz was used which produced less 

than one meter point spacing on the ground for each flight line.  The EAARL system 

sampled at 3 kHz, yielding a relatively sparse 5 m nominal point spacing per flight line.  

EAARL utilizes a green laser (0.532 µm) which can penetrate water and measure 

bathymetry.  In this study, however, the EAARL data did not extend sufficiently offshore 

and only terrestrial measurements were used.  The CHARTS system uses two lasers, one 

green and one near-infrared.  The green laser is fired at 1 kHz to measure bathymetry, 

and the near-infrared laser measures topography at 9 kHz.  This produced a nominal 8 m 

point spacing for the bathymetry and a 2 m point spacing for the topography for each 

flight line.  Due to multiple flight lines, the resulting point density for each airborne laser 

data collection is slightly higher. 

Airborne laser elevations often contain systematic errors that produce offsets 

between different data sets.  Primary sources for airborne laser errors are erroneous laser 

calibration parameters and inaccurate GPS trajectories.  End users are not able to correct 

laser calibration errors due to unattainable raw data and the proprietary software needed 

to produce laser points.  GPS errors are often generated by incorrect monument 

elevations and GPS drift caused by inadequate modeling of the changing GPS satellite 

geometry.  If the laser system is properly calibrated and the GPS drift are not large, then 

the offsets due to GPS errors throughout the data sets for a shoreline less than 50 km are 

usually systematic and constant.  Fixing systematically shifted data to a known elevation 

significantly reduces errors in the laser elevations. 
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This study compared all five airborne laser data sets to a GPS-surveyed profile on 

a road surface not influenced by overwash and at multiple locations throughout the study 

area similar to the technique used by Zhang et al. (2005) and Robertson et al. (2005).  

The surveyed profile is an independent, high accuracy data set that was collected using 

rapid-static GPS with a short baseline and consisted of 312 points over 5 km.  The GPS 

profile was located at the western end of the study area approximately 100 m landward of 

the shoreline.  Mean differences between airborne laser surfaces and the surveyed profile 

ranged between 0.04 and 0.28 m.  The same offsets were found at multiple locations 

throughout the study area, indicating that the differences between laser surfaces were 

constant.  Offsets were removed by vertically shifting the airborne laser data sets to 

match the GPS survey data under an assumption that the road surface did not change 

during the short study period.  This procedure resulted in RMS errors of less than 0.10 m 

between the airborne laser gridded surfaces and the GPS survey. 

Filtering the airborne laser data was necessary since several of the data sets were 

collected during mid-day hours when the beach was scattered with people and beach 

accessories.  These objects can contribute to inaccurate shoreline positions and volume 

change.  Based on previous studies, a progressive morphological filter with a 3 m 

window and 0.05 slope was used to effectively remove the non-terrestrial data without 

altering the natural beach morphology (Zhang and Whitman, 2005; Zhang et al., 2003). 

The final step in processing airborne laser data involved interpolating the 

irregularly-spaced laser measurements onto a regularly-spaced grid to produce a set of 

digital elevation models (DEMs).  The data were gridded at 1 m resolution using kriging 

interpolation with a linear variogram.  DEMs for each flight were produced with a 
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common origin and cell size to ensure registration.  The DEMs were then analyzed to 

produce elevation contours and transects, or differenced to produce measurements of 

shoreline and volume change. 

Shoreline and Beach Width Change 

The calculation of shoreline change is dependent upon a shoreline that can be 

measured with consistent methodologies over time.  Unfortunately, airborne laser data do 

not directly measure the wet-dry interface that has historically represented the shoreline 

position.  Recent studies have shown that an elevation contour derived from airborne 

laser data can represent the shoreline position (Moore et al., 2006; Sallenger et al., 2003; 

Stockdon et al., 2002).  Robertson et al. (2004) found that a contour generated at the 

mean higher high water (MHHW) tidal datum is compatible to the wet-dry line for North 

and South Carolina.  For this study, the local MHHW datum of 0.30 m (all elevations in 

this dissertation are referenced to the NAVD88 datum) produced a noisy contour in some 

of the laser data sets due to being located seaward of the land-water interface.  To avoid 

this problem, the shoreline contour was located at the 0.60 m elevation which is below 

the measured berm crest observed in the study area.  The horizontal difference in 

shoreline positions corresponding to the MHHW datum and 0.60 m contour was on 

average less than 3 m due to a steep beach face slope at the foreshore. 

Beach width is defined as the distance from the dune toe to the shoreline.  Grids 

representing degrees of slope were visually compared in a GIS to digitized dune toe 

positions from DEMs and orthophotographs.  A 6.5˚ slope most closely matched the 

digitized dune toe positions, but this study was unable to use slope because the 6.5˚ 

contours generated from the slope grids were not continuous.  Therefore, dune toe 
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positions were determined using a contour of 3 m because dune toe positions match this 

continuous contour well.  Calculations of beach width were the horizontal difference 

between the dune toe and shoreline position for each respective airborne laser survey. 

Spatial changes in shoreline and beach width were analyzed using a GIS-based 

metric mapping system (Robertson et al., 2005; Zhang et al., 2005).  This system 

generates a set of transects perpendicular to the shoreline and calculates the intersection 

of each transect to shorelines or other linear features.  Two hundred and thirty-seven 

transects (numbered 18-255, Figure 3-1) spaced at 100 m intervals were analyzed over 

the area of beach covered by all 5 airborne laser datasets.  Distances for each transect 

from a fixed offshore reference line to each dune toe and shoreline position of the five 

temporal surveys were measured, and the distances were exported to an ASCII table.  

Differences between distances were then used to calculate changes in beach width and 

shoreline over time. 

Volume Change 

The DEMs derived from multiple airborne laser data allow an estimation of beach 

volumes.  Volume change was quantified by differencing the DEM surfaces.  Analysis of 

the difference grid allows for the quantification of sediment movement through the series 

of bins bounded by adjacent transects (Figure 3-1).  Two types of volume change were 

calculated in this study: subaerial and active beach (profile) zones.  The subaerial zone 

was measured between the dune toe and the shoreline location for each respective data set 

(Figure 3-5).  Subaerial volume was calculated using all five airborne laser data sets.  

Active beach zone change was limited to the two bathymetric CHARTS data sets.  The 

active beach profile was measured from the dune toe to the furthest seaward extent of the 
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December CHARTS data (Figure 3-5).  The December CHARTS data measured to a 

distance of about 500 m offshore and an approximate depth of 11 m, whereas the May 

CHARTS data measured to a distance of about 1000 m offshore and an approximate 

depth of 19 m. 

 

3-5.  Simplified beach profile showing the active and subaerial zones defined in this study.  Not to scale, as 
active zone is significantly wider than subaerial zone. 

Volume change within each bin was summarized in terms of the total positive, 

negative, and net volume change (Zhang et al., 2005).  The volumes were then 

normalized by the bin width (100 m) resulting in a table of positive, negative, and net 

volume change per alongshore length (m3/m).  Positive grid values in a bin represent 

areas of accretion whereas negative grid values represent areas of erosion.  Since little 

overwash occurred in the study area due to the low surge height and high dunes, sediment 

exchange across the landward boundary of the bin was negligible.  The sediment 

exchange mainly occurred across the seaward boundary of the bin and across the two 

lateral boundaries. 

RESULTS 

The alongshore variations in beach width and volume calculated from the five 

airborne laser data sets are shown in Figures 3-6 and 3-7.  There is a high alongshore 
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variability in beach width and subaerial volume.  In general, areas of large beach width 

and volume correspond to coastlines with less coastal infrastructure, while areas of small 

beach width and volume tend to be adjacent to infrastructure that is close to the shoreline 

and often protected by hard and soft stabilization.  In addition, beaches in the western 

section of the study area are on average about 10 m narrower with standard deviations 4 

m smaller than in the eastern section (Figure 3-6).  The boundary separating the west and 

east section is located approximately at the 13 km distance.  The alongshore variability in 

beach volume exhibits a similar spatial pattern (Figure 3-7).  These general spatial 

relationships changed little throughout the study period. 

 

3-6.  Evolution of beach width over time for Panama City beaches.  Top to bottom are the five sequential 
data sets from Figure 3-4, starting with the May 5, 2004 CHARTS data.  Distance along shoreline is from 
west to east.  Horizontal lines are average beach width for the respective date. 
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3-7.  Evolution of subaerial volume over time for Panama City beaches in 2004.  Top to bottom are the five 
sequential data sets from Figure 3-4, starting with the May CHARTS data.  Distance along shoreline is 
from west to east.  Horizontal lines are average subaerial volume for the respective date. 

Shoreline Migration, Beach Width Change, and Subaerial Beach 
Volume Change 

The five data sets formed the basis for quantifying beach change into four time 

intervals between the data acquisitions (Figure 3-4): May 4 to August 27 for summer 

change (115 days), August 27 to September 18 for change caused by Hurricane Ivan (22 

days), September 18 to October 8 for change during the post-Ivan recovery period (20 

days), and October 8 to December 1 for fall change (54 days).  Summary statistics for 

each time period are provided in Table 3-1.  Hurricane Ivan caused significant landward 

shoreline migration with a reduction of the average beach width from 58 m to 42 m 
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(Figure 3-6, 8/27/04 to 9/18/04).  In addition, subaerial volume was reduced from an 

average of 73 m3/m to 42 m3/m (Figure 3-7, 8/27/04 to 9/18/04).  This period of shoreline 

retreat and erosion was followed by a relatively rapid recovery in beach width from 42 m 

to 53 m (Figure 3-6, 10/8/04).  Somewhat surprisingly, a corresponding recovery in 

subaerial beach volume did not occur (Figure 3-7, 10/8/04). 

3-1.  Panama City shoreline (S), beach width (W), and subaerial volume (V) change for four periods in 
2004.  First numeric column represents mean change, SD represents standard deviation. 

Date Range dS (m) dS SD Min dS Max dS

Summer 2.3 1.9 -4.0 6.3
Hurricane Ivan -16.5 3.4 -22.8 -3.1
Recovery 10.1 2.3 1.9 14.3
Fall -6.0 2.7 -14.7 2.3

dW (m) dW SD Min dW Max dW
Summer 0.8 2.4 -5.7 5.3
Hurricane Ivan -16.2 5.0 -31.0 0.2
Recovery 11.2 2.4 2.3 19.0
Fall -5.4 2.7 -13.9 2.4

dV (m3/m) dV SD Min dV Max dV
Summer 1.2 2.8 -12.7 5.8
Hurricane Ivan -30.9 7.7 -57.9 -12.2
Recovery 2.7 3.7 -0.6 27.5
Fall 5.7 1.9 0.5 11.8  

Shoreline, beach width, and subaerial volume differences between sequential data 

sets over 4 time periods provide more details of the alongshore beach change (Figure 3-8, 

Table 3-1).  For this analysis, a 500 m moving average filter was applied to each 

differenced data set to reduce the noise caused by high frequency spatial variations.  

Shoreline and beach width change signals were similar, which was expected because 

beach width was calculated using shoreline position, and the dune toe position changed 

little during the study period.  Comparison of shoreline and subaerial beach volume 

change in Figure 3-8 illustrates that both measures show seaward shoreline migration and 

 

40



profile accretion during summer months and significant landward migration along with 

erosion due to Hurricane Ivan.  Following Hurricane Ivan, the relationships between 

shoreline migration and volume change differ remarkably.  The shoreline shows 

significant seaward migration during recovery, while subaerial volume increased only 2.7 

m3/m (Table 3-1).  Shoreline and subaerial volume change differed during fall as well, 

with a landward migration of shoreline, but an increase in subaerial volume. 

 

3-8.  (a) Alongshore shoreline, (b) beach width, and (c) subaerial volume change calculated over four time 
periods in 2004.  Lines correspond to the time intervals defined in Results: dashed line (summer, 5/4 to 
8/27), medium line (Ivan, 8/27 to 9/18), thick line (recovery, 9/18 to 10/8), and thin line (fall, 10/8 to 12/1).  
Distance along shoreline is from west to east. 

Previous studies have found strong correlations between shoreline migration 

caused by hurricanes and the subsequent recovery periods (List et al., 2006).  Linear 

correlation coefficients were calculated to test the relationships between change in 
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shoreline position, beach width, and subaerial volume (Table 3-2).  Shoreline migration 

caused by Hurricane Ivan and its subsequent recovery were weakly correlated (-0.38).  

Slightly higher correlations were found with the change in beach width (-0.44) and 

subaerial volume (-0.46) in the same period.  For this dataset consisting of 137 transects, 

the critical t-value at the 95% significance level is 1.98.  This corresponds to a critical 

value of ±0.17 for the correlation.  Therefore, the correlations between each relationship 

with exception to the summer to Hurricane Ivan change in subaerial volume are 

statistically significant. 

3-2.  Correlation coefficients for changes in shoreline position (S), beach width (W), and subaerial volume 
(V) for respective time intervals. 

dS R2 dW R2 dV R2

Summer - Ivan -0.20 -0.22 0.02
Ivan - Recovery -0.38 -0.44 -0.46
Recovery - Fall -0.37 -0.28 -0.18  

Relationship Between Beach Width and Subaerial Volume 

Previous studies have proposed a temporal linear relationship between beach 

width and subaerial volume (Dingler and Reiss, 2002; Thom and Hall, 1991) where K is 

the constant of proportionality between beach width and volume (Equation 3-1).  This 

study utilized the high spatial resolution of airborne laser measurements to examine the 

alongshore variation in K.  Beach width and subaerial volume were regressed over the 

five data acquisitions in each of the 237 bins. 

Figure 3-9a shows that K varies considerably alongshore, ranging between 0.75 

and 1.79 m2 with a mean of 1.09 m2.  However, this study utilizes only five airborne laser 

data sets during 2004; therefore not all K values are significant due to the limited sample 

size.  The critical t-value at the 95% significance level with 5 samples is 3.18.  This 
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corresponds to a critical R2 value of 0.77, and values below 0.77 indicate linear 

relationships are not significant between beach width and subaerial volume.  When only 

analyzing transects above the critical R2 value (66 of 237), the high variability in K 

remained, ranging from 0.75 to 1.79 m2 with a mean of 1.10 m2. 

 

3-9.  Alongshore (a) K values and their respective (b) R2 values for the 237 transects measured on Panama 
City beaches, from west to east.  Dashed horizontal line (a) is the mean.  Circles represent statistically 
significant K values discussed Results.  Solid horizontal line (b) is the critical R2 value of 0.77 at 95% 
significance. 

Active Zone Sediment Movement 

The two CHARTS airborne laser data sets allow quantification of both onshore 

and offshore sediment movement.  The net sediment exchange (VN) represents the 
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amount of sediments added or removed from a bin and is equal to the sum of the 

deposition (VD > 0) and erosion (VE < 0): 

  (3-2) EDN VVV +=

Results show that on average 27 m3/m of sediment left the measured area during the 

summer to fall time period (Table 3-3).  Net sediment exchange is helpful when 

quantifying changes for an entire study area, but it includes both removal and deposition 

of sediment and cannot distinguish the magnitudes of erosion and accretion that occur 

within the active profile zone.  The amounts of sediment redistribution within the active 

profile zone and the relative magnitude of sediment exchange with the outside zone are 

critical for designing coastal engineering projects.  If all sediment are contained in a 

given bin, then VN = 0.  For this case, VD and VE are equal in magnitude, all sediment 

movement is due to redistribution, and the volume of redistributed sediment is equal to 

VD (or EV ).  For most cases, the net sediment exchange is not zero.  Therefore, the 

volume of redistributed sediment is equal to the lesser of the volumes of deposition or 

erosion.  Thus, the volume of redistributed sediment (VR) within the bin can be expressed 

as: 

 ),min( EDR VVV =  (3-3) 

The following ratio is proposed: 

 
R

N
V V

VR =  (3-4) 

to measure the relative magnitude of sediment exchange with outside areas to the 

sediment redistribution within a bin.  When the majority of sediments are contained 
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within a bin, VR is greater than VN and RV is less than 1.  When the majority of sediments 

are deposited in or eroded from a bin, VN is greater than VR, and the absolute value of RV 

is greater than 1.  The sign of RV indicates if the net change was deposition (positive) or 

erosion (negative).  In the rare case when the entire profile sustains deposition or erosion, 

then VR would be equal to zero.  This would result in RV equaling positive or negative 

infinity, representing complete deposition or erosion.  Based on change of the RV value, 

sediment movement for a bin can be separated into four categories: accretion dominated 

when RV is greater than 1, mix of accretion and redistribution when RV is greater than 

zero but less than 1, mix of erosion and redistribution when RV is less than zero but 

greater than -1, and erosion dominated when RV is less than -1 (Figure 3-10). 

3-3.  Active zone volume change for all bins (top) and excluding bins containing borrow pits (bottom) 
between May and December, 2004. 

RV

Mean St.D. Min Max Mean St.D. Min Max
All Bins -27 59 -238 136 177 36 51 241 -0.21
Borrow Pit Bins Excluded -13 47 -153 136 184 32 83 241 -0.07

VN (m3/m) VR (m3/m)

 

The difference grid from two CHARTS DEMs was further analyzed to examine 

the spatial change of RV.  RV for the entire study area is -0.21, indicating that the sediment 

movement was dominated by redistribution and a relatively small amount of sediment 

moved further offshore or alongshore (Table 3-3, Figure 3-10).  This agrees with the 

pattern of sediment movement in the active zone from the summer and winter conceptual 

model.  For 224 out of the 237 transects, the magnitude RV is less than 1 and greater than 

-1, indicating that most sediment was redistributed within the same bin.  In 12 locations, 

however, the active zone shows mostly erosion (RV < -1).  RV values less than -1 are 

proximal to borrow pits excavated for a 1999 beach replenishment project (Figures 3-10  
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3-10.  Alongshore RV caused by Hurricane Ivan, from west to east.  Vertical solid lines are the western 
bounds of a borrow pit.  Vertical dashed lines are the eastern bounds of a borrow pit.  Horizontal lines 
separate change environments, from mostly accretion at top to mostly erosion at bottom.  Distance along 
shoreline is from west to east. 

and 3-11).  The offshore bar inshore of a borrow pit is more eroded than offshore bars 

west and east of the borrow pits (Figure 3-12).  It is not possible to compute the exact 

amount of sediment trapped by the borrow pit because the December CHARTS data do 

not extend seaward enough to measure the entire borrow pit. 

Since incomplete coverage for a borrow pit will produce abnormally large RV 

values for bins containing borrow pits, it is necessary to remove the bins influenced by 

borrow pits for an estimation of the average RV for the study area.  The locations of 

borrow pits were identified with the May CHARTS data and the mean RV were 

recalculated by using transect bins that did not contain borrow pits (Figures 3-10 and 3- 
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3-11.  Shaded relief map of May CHARTS data.  Black line is the approximate location of zero change 
when differencing December CHARTS data from May CHARTS data.  Notice the large depressions which 
are borrow pit locations.  Rectangle is the bounds for Figure 3-12. 

 

3-12.  Map view of volume change in an area of borrow pit 3 (Transects 74 to 83). Red is erosion and green 
is accretion.  White line is the shoreline extracted from the CHARTS 12/1 data, straight black lines are 
labeled transects, and black polyline is the active zone.  Refer to transects on Figure 3-1 for location, and 
north is at the top of the page.  Figure 3-12 limits can be seen in Figure 3-11. 
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11).  Removal of bins that did not contain borrow pits reduced RV to -0.07 (Table 3-3).  

The lower ratio indicates that most sediment remained within the study area from 

summer to fall in 2004 even with the impact of Hurricane Ivan. 

DISCUSSION 

Beach recovery following storm events is essential for beach sustainability.  If 

beaches recover more at areas of higher erosion, then the natural recovery of beaches 

could slow landward migration of the shoreline.  For North Carolina and Cape Cod 

coasts, List at al. (2006) found the magnitude of shoreline recovery was small at locations 

with less erosion and large at locations with severe erosion.  It appears qualitatively that a 

similar relationship also exists between the Ivan-induced landward shoreline migration 

and recovery at Panama City beaches (Figure 3-8a).  However, the correlation between 

landward and seaward shoreline migration is -0.38 (Table 3-2), which is low compared to 

those reported in the List et al. (2006) study that range from -0.31 to -0.80.  The major 

reason for this difference is there are many erosion hot spots along North Carolina and 

Cape Cod coasts.  Erosion hot spots are sections of coastline that erode significantly more 

than adjacent sections.  It is the large magnitudes of landward migration at these hot spots 

and corresponding seaward migration during recovery that improves the correlation 

between shoreline changes found in the List et al. study.  This study does not have large 

alternating erosion hot spots.  The spatial variability of shoreline change is small with a 

standard deviation less than 3.4 m (Table 3-1). 

Estimation of subaerial volume from shoreline change appears problematic due to 

the differences between shoreline and subaerial volume change curves (Figure 3-8a and 

3-8c).  Examination of individual beach profiles demonstrates why shoreline and 
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subaerial volume do not change at the same rate.  Transect 95 is representative of many 

profiles in the study area (Figure 3-13).  Prior to Hurricane Ivan, the profile shows a well 

defined berm.  On the September profile, the berm is significantly eroded and flattened 

by Hurricane Ivan with a corresponding landward migration of the shoreline and a 

decrease in subaerial volume.  The October and December profiles show the progressive 

formation and landward migration of a sand ridge.  The sand ridge buildup resulted in an 

increase in subaerial volume along with a landward migration of shoreline position 

during the fall period.  This demonstrates that using shoreline migration to represent 

subaerial volume change after a storm could lead to incorrect results. 

 

3-13.  Beach profiles extracted from Transect 95.  Horizontal line is the 0.6 m contour used to designate the 
shoreline. 
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Previous studies have found a temporal linear relationship (K, Equation 3-1) 

between beach width and subaerial volume (Dingler and Reiss, 2002; Thom and Hall, 

1991).  These relationships were based on a time series of beach profile measurements 

for individual transects that were spaced far apart, often on entirely different beaches.  

The spatial limitation of beach profiles did not allow researchers to test alongshore 

variability in K.  Airborne laser data greatly increase the spatial resolution of beach 

measurements, but few airborne laser data sets measuring overlapping areas exist.  This 

study was temporally limited to 5 data sets measuring the same beaches in 2004.  It was 

determined that 66 of the 237 transects were statistically significant at the 95% 

significance level. 

For the statistically significant transects, the high R2 values indicate that a strong 

linear relationship between beach width and subaerial beach volume exists, but the spatial 

variability of K values suggests that the linear relationship is different from one transect 

to another.  K values for adjacent Transects 150 and 151 (15.0 and 15.1 km for Figure 3-

9a) differ by 0.53, more than 70% of the 0.75 K value for Transect 151.  Estimation of 

subaerial beach volume from beach width using Equation 3-1 with a constant K value 

could yield large uncertainties depending on where transects were measured.  Future 

airborne laser surveys are needed to increase the sample size to produce a more strict 

statistical analysis.  The increased confidence will aid in determining the effectiveness of 

Equation 3-1. 

There appears to be a “depth of closure” along the beach profile as suggested by 

Hallermeier (1977; 1981b), and sediment movement is small beyond this depth.  The 

most seaward zero change contour for the difference grid of two CHARTS DEMs is 
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located around 10 m in depth (Figure 3-11).  Estimated depth of closure for the study area 

is unavailable due to lack of wave data.  However, the depth of closure was estimated to 

be 6.3 m at Destin Beach in terms of extreme wave height and period exceeding 12 hours 

per year, about 50 km west of the study area (Hallermeier, 1981b).  Hallermeier’s 

estimate of the depth of closure is determined by an average wave condition.  Hurricanes 

often induce storm waves with large heights and long periods, therefore the depth of 

closure for storm wave condition is larger than those from a typical annual wave 

condition.  The borrow pits close to the depth of closure are acting as a sediment sink, 

thus leading to more erosion from adjacent landward bars.  Since having borrow pits 

close to the closure depth can lead to large sediment loss from nourished beaches, it 

would be more effective to place borrow pits further seaward to avoid losing sediment 

from nourished beaches.  However, poor quality sand beyond the depth of closure may 

limit the location of borrow pits. 

The depth of closure concept forms the basis for designing coastal engineering 

projects such as beach nourishment, but this concept remains controversial.  In general, a 

number of coastal geologists refute the existence of the depth of closure due to a 

significant sediment exchange between the active beach zone and continental shelf 

(Pilkey et al., 1993).  Coastal engineers defend the depth of closure concept and suggest 

that sediment exchange between the active zone and continental shelf is insignificant over 

the time frame of an engineering project (less than 50 years).  One key reason for this 

controversy is the lack of accurate large-scale three-dimensional field observations of 

bathymetry for the active zone.  Airborne laser measurements provide unprecedented 

high resolution measurements of bathymetry that can reach a depth of 60 m in clear water 
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environments such as the Florida coast (Finkl, 2004).  Repeat surveys before and after 

storms will provide critical information for solving the depth of closure controversy.  The 

noise in airborne laser measurements makes it difficult to accurately measure small 

changes (< 0.15 m).  However, the signal of sediment loss from an active zone will be 

much stronger because significant amounts of sediment have to be eroded from the active 

zone to deposit a thin layer of sediment in the offshore area.  Therefore, three-

dimensional decadal monitoring of sand loss and gain in an active zone will allow 

quantification of sediment exchange between the active zone and continental shelf. 

CONCLUSIONS 

Large-scale beach response to Hurricane Ivan was quantified using five airborne 

laser data sets measuring Panama City beaches.  On average, Hurricane Ivan caused 16 m 

of landward shoreline migration across the study area, and the shoreline recovered by 10 

m in a 20-day period following the storm.  The hurricane also caused similar erosion in 

subaerial beach volume.  However, unlike the shoreline position, a corresponding 

recovery in subaerial volume magnitude was not observed.  Sediment sources to the east 

combined with additional sediment from beach replenishment projects would form a 

beach profile vulnerable to storm-induced erosion.  It appears that at least some of the 

eroded sediments were being returned to the beach face during the low wave environment 

following Hurricane Ivan. 

Weak spatial relationships were found between shoreline migration caused by 

Hurricane Ivan and the subsequent recovery period.  Beach width reduction and subaerial 

volume erosion due to Ivan and accretion after the storm event had low correlations as 

well.  Spatial change in subaerial beach volume differed from shoreline and beach width 
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changes, and the change was often opposite in sign.  This suggests that using shoreline 

migration during and immediately after a storm to predict subaerial volume change can 

yield incorrect results.  For 66 of the 237 transects, beach width and subaerial volume 

showed a linear relationship.  However, the variation of the linear relationship alongshore 

suggests that the coefficient (K) for a linear equation between beach width and subaerial 

volume are not spatially constant.  The sample size for estimating K is limited by five 

data sets.  Future airborne laser surveys will provide a more strict analysis to determine if 

a linear relationship can be used to effectively estimate subaerial volume change from 

changes in shoreline position. 

Sediment movement in the active zone during the summer and fall seasons was 

analyzed using water-penetrating airborne laser measurements.  A negative net volume 

change suggests sediment loss, but a -0.21 RV value suggests most sediment remained in 

the measured area.  Further analysis found that borrow pits, which supplied sediment for 

beach nourishment projects, trapped sediment transported offshore, and lead to more 

erosion of sand bars next to the borrow pits.  The RV value was reduced to -0.06 when 

analyzing beaches not influenced by borrow pits, indicating that most sediment 

movement was confined to the active zone despite the impact of Hurricane Ivan.  

However, there appears to be some change seaward of the airborne laser data coverage, 

thus the full extent of sediment migration was not quantified in this study.  Additional 

bathymetric airborne laser measurements are needed further offshore to confirm the depth 

of closure measurement and to fully understand the sediment exchange between the 

active zone and continental shelf. 
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4. HURRICANE-INDUCED DEPTH OF CLOSURE DERIVED 
FROM AIRBORNE LASER BATHYMETRY, SOUTHEAST 
FLORIDA 

ABSTRACT 

This study develops a method to identify the depth of closure using airborne laser 

bathymetric data, and compares the measured depth of closure to calculated depth of 

closures and subaqueous geomorphology.  Airborne laser data sets were collected before 

and after the 2004 hurricane season along the beaches of Palm Beach, Broward, and 

Miami-Dade Counties in southeast Florida.  Calculated depth of closures in terms of 

wave data are compatible to the measured depth of closures.  However, the calculated 

depth of closure is on average larger than was measured, especially in the southern end of 

the study area.  Horizontal differences between geomorphic maps and calculated depth of 

closures suggest geologic control to the south of Hillsboro Inlet, where hard ground 

consistently match the measured depth of closure.  Diabathic channels best match the 

measured depth of closure to the north.  Since diabathic channels are hydrodynamically 

formed, the northern study area appears to be hydrodynamically controlled. 

INTRODUCTION 

Protection of coastal infrastructure and public beaches has become a primary 

concern for coastal communities due to a rapidly increasing coastal population, active 

hurricane seasons, higher sea levels, and diminishing sand supplies.  Strategies for 

preserving coastal sediments range from hard to soft stabilization, and recent trends have 

used soft stabilization (beach nourishment) as the principal defense from the encroaching 

ocean (Finkl et al., 2006b).  Effective preparation for soft stabilization involves careful 
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consideration when observing and modeling the geologic and physical environments, as 

well as locating suitable sediments and determining their ideal placement. 

It is essential to not only locate sediment that will favor beach continuity, but also 

to mine the sediment from a location that will not disproportionately modify surrounding 

geomorphology that would in turn impact nearby beaches by wave forcing.  A previous 

study has shown that mining sediment too close to the active zone removes material from 

the offshore sandbar (Robertson et al., 2007; Chapter 3).  The locations for beach 

sediment extraction often rely on the determination of the depth of closure (DOC).  The 

DOC is the location at which repetitive cross-shore profile surveys show little change 

(Hallermeier, 1978).  Theoretically, insignificant profile change occurs seaward of the 

DOC, thus sand mining beyond this depth should have a minimal impact on the 

surrounding geomorphology.  Past methods for measuring change in elevation of the sea 

floor included the combination of beach profiles with bathymetric (fathometer) surveys.  

Unfortunately, these methods were both time consuming and cost prohibitive, thus few 

surveys occurred.  Limitations in coastal measurement methods have forced researchers 

to estimate the DOC from linear relationships derived from models and confirmed by 

site-specific field data. 

Hallermeier (1977) assumed that most sediments eroded during storm events 

remained in relatively shallow water, and he calculated the DOC based on the wave 

energy needed to suspend and transport bottom sediments.  By using linear wave theory, 

Hallermeier (1978) proposed the popular equation for estimating DOC: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

gT
HbaHDOCc  (4-1) 
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where DOCc is the calculated DOC, H is wave height, g is gravity, and T is the wave 

period.  Values for H and T represent a single location at one point in time, but in the 

natural environment, H and T vary spatially and temporally.  Hallermeier used extreme 

wave conditions to provide an estimation of the DOC for longer periods of time.  

Coefficients a and b were calculated by satisfying the linear relationship forced through 

the origin between measured DOC and DOCc from multiple laboratory studies 

(Hallermeier, 1977).  Research has shown that the coefficients can vary (Table 4-1) 

depending on the profile location and wave conditions (Birkemeier, 1985; Nicholls et al., 

1998).  In fact, Birkemeier found a reasonable linear fit by applying only wave height 

with the equation: 

aHDOCc =  (4-2) 

Coefficients A through D (Table 4-1) were calculated by applying the highest significant 

wave heights that occur 0.137% over a one year period, or 12 hours in that given year 

(Birkemeier, 1985; Hallermeier, 1977; Nicholls et al., 1998).  Coefficient E was 

calculated using the peak wave heights for a specific storm (Nicholls et al., 1998).  

Further research is needed at other beach types in order to test the effectiveness of each 

set of coefficients. 

4-1.  Coefficients used to calculate the DOC.  A is from Hallermeier (1977), B and C are from Birkemeier 
(1985), D and E are from Nicholls (1998).  A, B, D and E use Equation 4-1.  C uses Equation 4-2. 

Source
a b

A 2.28 6
B 1.75 5
C 1.57 N/A
D 1.70 8
E 1.33 4

Coefficient

8.5
7.9

2.3
3.9  
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Assumptions that form the foundation of the DOC equations are often questioned 

by geologists who insist that geologic control has significant influence on the location of 

the DOC and should be modeled accordingly (Browder and McNinch, 2006; Jackson et 

al., 2005; Pilkey et al., 1993).  Hallermeier’s (1981a) equation is based on linear wave 

theory with homogenous sands, thus it cannot account for hard-bottom structure that may 

limit erosion or deposition of loose sediments.  Several barrier islands on the U.S. east 

coast are perched barriers where the locations of the barrier islands are largely 

determined by erosion-resistant geologic units beneath and seaward of the island (Finkl, 

1993; Riggs et al., 1995).  Perched barriers often consist of thin layers of sand lying on 

top of the geologic units, and the thin sand layers easily erode during storm conditions 

(Finkl, 2004; Thieler et al., 1995).  Beach changes caused by storm events are 

complicated when the beach profile contains loose sediments and harder grounds (i.e., 

limestone outcrops).  Small variations in the change profile are often controlled by the 

location of the hard ground, and no change could reflect rock outcrops rather than 

minimal wave activity.  Since Hallermeier’s DOC model assumes unlimited sediments 

and ignores hard ground, it is unrealistic to presume that coefficients a and b in Equations 

4-1 or 4-2 could accurately predict the DOC for all areas.  Some numerical models like 

SBEACH (Larson and Kraus, 2000) are able to include hard ground in their simulations.  

However, this study focuses on the physical location of the DOC and not change that 

occurs landward. 

Because of the variability of the DOC, multiple bathymetric measurements rather 

than individual profiles are required to locate the DOC.  Although long-term trends are 

beneficial for predicting future coastal change, multiple 3-dimensional high-resolution 
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data are needed to detect the spatial variation of sediment movement.  Brown (1998) 

investigated whether southeast Florida beaches are controlled by underlying geology by 

analyzing beach profiles, but his conclusions were limited due to the two dimensional 

properties of the beach profiling technique and the inability to directly compare the DOC 

with geologic data.  Advances in remote sensing techniques have improved the ability to 

measure large-scale coastal change, and airborne laser bathymetry (ALB) provides 

unprecedented resolution of bathymetric measurements at relatively high accuracies 

(Irish et al., 2000).  Multiple ALB data measuring the same areas over time yield 3-

dimensional spatial change.  Seaward locations of no change should represent the DOC 

location, thus ALB data could possibly measure DOC for large areas. 

With perched barrier islands, offshore reefs, and an active beach replenishment 

program, southeast Florida is an ideal location for comparing measured DOC to 

calculated DOC and regional geology.  Two ALB data sets were collected before and 

after the 2004 hurricane season, thus providing a storm environment that represents 

longer periods of time due to the increased energy for suspending sediments.  The main 

objective of this study is to develop a method for extracting DOC information from 

multiple ALB data sets, and use that data to answer several questions: 

(1) Can ALB effectively measure the DOC? 

(2) How variable is the location and depth of the DOC alongshore? 

(3) Does alongshore change in the wave climate correspond to an alongshore change 

in the depth of closure? 

(4) How well does the measured DOC match geologic units? 
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This study presents alongshore variations in the DOC similar to shoreline and 

volume changes quantified in Robertson et al. (2005), Zhang et al. (2005), and List et al. 

(2006).  The extracted locations and depths of the DOC are compared to calculated DOCs 

from wave data and geomorphic locations.  Results are discussed in terms of physical and 

geologic control on the DOC for southeast Florida. 

STUDY AREA 

The peninsula of Florida is located on the southeastern tip of the United States.  

Florida is within the Atlantic Coastal Plain physiographic province, and southeastern 

Florida is located on the Pamlico Terrace within the Atlantic Coastal Ridge 

physiographic region (Schmidt, 1997).  This study focuses on southeast Florida, 

including Palm Beach, Broward, and Miami-Dade Counties (Figure 4-1).  The study area 

is determined by the area of overlapping ALB data, and extends alongshore from 2 km 

north of South Lake Worth Inlet (south-central Palm Beach County) to the southern point 

of Miami Beach (Government Cut) and approximately 600 m offshore.  The total length 

of coastline is over 100 km with 6 inlets. 

Florida geology is considered uncomplicated due to its young age and relative 

lack of structural degradation, metamorphism, or presence of igneous petrology.  

Conversely, the mixture of loose sediments with irregular hard grounds and sedimentary 

outcrops make south Florida beaches extremely complicated.  Hard grounds include the 

Anastasia Formation, Key Largo Limestone, Florida reef tract (FRT), relict barrier reefs, 

and structural sand flats.  The Anastasia and Key Largo Limestone formed during several 

sea transgressions, most notably during the Sangamon approximately 120 kya (Finkl and 

Warner, 2005; Scott, 1997).  The Anastasia Formation is composed of sands and  
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4-1.  Map showing study area, extent of overlapping CHARTS ALB data, and location of reference 
transects along the shoreline.  Inset map denotes tracks of Hurricanes in 2004. 

coquinoid limestones, and it anchors Palm Beach area barrier islands so they cannot 

migrate landward due to sea level rise (Davis, 1997).  The Key Largo Limestone is a 

marine limestone that contains numerous coral fossils and anchors Miami Beach.  The 

FRT is a subaqueous coral-algal reef system that contains long troughs between the reefs 

(Finkl et al., 2005a; Finkl et al., 2005b).  Structural sand flats are areas of thin layers of 

sand overlying hard ground (Finkl and Warner, 2005).  Loose sedimentary mixtures of 
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quartz and carbonates make up the sand composition for the beaches and sand flats.  Sand 

flats are loose sedimentary mixtures trapped between the FRT and relict barrier reefs and 

are considered possible sources for beach replenishment projects (Finkl et al., 2006b).  

Permanent loss of sediments is speculated during high wave events when sand flats 

match the elevation of the hard grounds or offshore moving bottom currents force 

sediments through gaps in the hard grounds (Finkl, 2004). 

Although sea level rise and frequent hurricane activity contribute to beach 

erosion, past comprehensive studies show net accretion for south Florida beaches (Dean 

et al., 1998).  A causal factor for seaward shoreline migration could be the extensive 

beach replenishment programs that have been implemented throughout the study area, 

and several south Florida beaches are considered successful beach replenishment projects 

(Benedet et al., 2005).  Cited reasons for the success of south Florida beaches include its 

surrounding geology, large area of nourishment, high construction densities, and lower 

wave energies (Finkl et al., 2006b). 

DATA 

Successful alongshore extraction of the DOC location requires high resolution 

three-dimensional data over relatively large areas.  Although recent advances in sea floor 

mapping (i.e., sonar, optical, GPS positioning, etc.) have produced high accuracies, the 

data do not compare to ALB data in areas measured.  The ALB data provide researchers 

with unprecedented spatial bathymetric resolution that minimizes the need to interpolate 

between sparse measurements.  By utilizing ALB data with estimated wave data and 

geomorphic maps, this study can determine how well changes in subaqueous 

geomorphology matches calculated DOC and geomorphic units. 
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ALB Data 

The U.S. National Oceanographic and Atmospheric Administration’s (NOAA) 

Coastal Services Center houses many airborne laser and interferometric synthetic 

aperture radar (IfSAR) data sets measuring coastal environments.  This study utilizes the 

Joint Airborne Lidar Bathymetry Technical Center of Expertise’s (JALBTCX) compact 

hydrographic airborne rapid total survey (CHARTS) ALB data collected on the 

southeastern coast of Florida in June and November 2004.  The CHARTS system uses 

two lasers, one green and one near-infrared.  The green laser is fired at 1 kHz to measure 

bathymetry, and the near-infrared laser measures topography at 9 kHz.  This produced a 

nominal 8 m point spacing for the bathymetry and a 2 m point spacing for the topography 

for each flight line.  Due to multiple flight lines, the resulting point density for each 

airborne laser data collection is slightly higher.  The June CHARTS data measured from 

the beach to approximately 1 km offshore, and the November CHARTS data measured 

from the beach to approximately 600 m offshore. 

Quantification of the inaccuracies of ALB data require comparison with data of 

higher accuracies.  Previous studies have successfully removed shifted data to improve 

the accuracy of changes determined from the airborne laser data (Robertson et al., 2005; 

Zhang et al., 2005).  However, these studies focused on subaerial change that can be 

confirmed with higher-order accuracy methods (i.e., differential leveling, rapid-static 

GPS), and this study analyzes bathymetric change that can only be confirmed with 

methods of similar accuracy to ALB instrumentation (i.e., sonar).  Since change in 

subaqueous locations cannot be confirmed during the 2004 year, this study is forced to 

compare subaerial change on a hard road surface.  Two locations found that the June data 
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were slightly higher than the November data, but the mean vertical difference was less 

than 0.1 m.  The small offset is well within measured topographic accuracies (0.15 m), 

consequently the ALB data were not shifted (Sallenger et al., 2003). 

Noise in airborne laser measurements is generally on the order of 1 σ when 

comparing laser measurements to known elevations.  An in-depth accuracy assessment 

for the CHARTS system was carried out prior to the June 2004 data collect (Optech, 

2004).  Mean offsets between CHARTS measurements and known elevations ranged 

between -0.18 to 0.23 m, but most measurements were within ±0.15 m.  The noise in the 

measurements ranged between 0.05 to 0.28 m, which would suggest that changes within 

this range would be difficult to resolve. 

The final step in processing airborne laser data involved interpolating the 

irregularly spaced laser measurements onto a regularly spaced grid to produce a set of 

digital elevation models (DEMs).  The data were gridded at 4 m resolution using kriging 

interpolation with a linear variogram.  DEMs for each flight were produced with a 

common origin and cell size to ensure registration.  The DEMs were then differenced to 

produce a change grid (Figure 4-2, left). 

Wave Data 

Calculation of the DOC with Equations 4-1 or 4-2 requires wave data, more 

specifically wave height and wave period.  NOAA monitors wave activity with many 

wave gauges throughout the world, but the closest wave gauge to the study area is located 

off Cape Canaveral, approximately 200 km north of the most northerly measured area.  

Therefore, deep water wave heights and periods were estimated using NOAA’s 

Wavewatch III model (Tolman, 1992) for 19 locations along the study area spaced  
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4-2.  Map of the change grid (left) and geomorphology (right, after Finkl et al., 2005a) for three separate 
locations along the study area from north to south (top to bottom).  Seaward change contour extracted from 
the change grid is shown with the geomorphology.  Seaward locations of the change contour represent the 
LOC at each transect.  The center maps show the area surrounding Hillsboro Inlet. 

approximately 5 km apart.  Peak conditions during Hurricanes Frances and Jeanne were 

tabulated.  Although Hurricane Jeanne (Category 3) was one category larger than 

Hurricane Frances (Category 2) on the Saffir-Simpson scale, the relatively slow-moving  
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4-3.  Wave data and DOC alongshore.  Distance along coastline is from north to south.  Hurricane Frances 
wave height and period (left) from NOAA’s Wavewatch III model.  Alongshore plot of DOC (right) with 
calculated DOC using different coefficients.  A is from Hallermeier (1977), B and C are from Birkemeier 
(1985), D and E are from Nicholls (1998).  A, B, D and E use Equation 4-1.  C uses Equation 4-2. 
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Frances produced wave heights in excess of 9 m and wave periods greater than 9 seconds, 

while Jeanne produced wave heights less than 5 m and wave periods as low as 6 seconds 

(Beven, 2004; Lawrence and Cobb, 2005).  Higher values are found to the north, as the 

northern areas were closer to the impact of Hurricane Frances (Figure 4-3, left).  

Calculation of the DOC utilized the Hurricane Frances wave data due to the higher values 

and therefore deeper energy to suspend bottom sediments. 

Geology 

The continuing work of Finkl and others have produced seafloor geologic maps 

for most nearshore areas in southeastern Florida (Finkl, 2004; Finkl et al., 2005a; Finkl et 

al., 2005b; Finkl and Warner, 2005).  By utilizing high-resolution ALB data and 

comparing the morphology to aerial photography, satellite imagery, side-scan sonar, sub-

bottom profiling, cores, and diver logs, Finkl and others were not only able to map 

differences between hard and soft ground, but also differentiate between different types 

of hard and soft grounds (Figure 4-2, right). 

For the purposes of this study, it is useful to differentiate between two major types 

of submarine geomorphology: hard ground and soft ground.  Bars and troughs, sand flats, 

and diabathic channels are soft ground, while nearshore reefs and structural sand flats are 

hard grounds (Finkl and Warner, 2005).  The longshore bars are shore parallel ridges of 

sand lying between 70 and 300 m seaward of the shoreline.  Troughs are depressions 

mostly associated with longshore bars, but they are also located landward of reefs and 

sand flats.  Sand flats are sandy bottoms that occur seaward of the shoreface and between 

coral reefs.  Diabathic channels are large, shore-parallel areas with an average range from 

100 m wide by 300 m long and 3 m deep (Finkl et al., 2006a).  They are considered 
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“channels” due to the small scale shore-perpendicular ridges that have 75 to 150 m 

wavelengths with 1 m of relief.  Diabathic channels are areas surrounded by sand flats, 

but they are lithologically distinct and represent the seaward extent of seafloor and wave 

interaction during large wave conditions. 

Hard grounds range from structural sand flats to present and relict reefs to 

bedrock (Anastasia Formation).  Structural sand flats are thin layers of sand lying on top 

of hard ground.  Since the ALB change data cannot detect changes to structural sand flats 

due to minimal amounts of sand, they are considered hard ground.  Hard grounds are not 

expected to endure large changes during hurricane conditions unless they are covered by 

sediments or the reefs are eroded due to increased wave activity. 

METHODS 

The LOC Contour 

Identification of the DOC is a multi-step process that requires an understanding of 

measurement limitations.  The initial step is to identify differences between the two ALB 

surfaces by subtracting the older DEM from the younger DEM.  The resulting raster 

image contains pixels that represent change in volume (Figure 4-2, left).  It stands to 

reason that locations of zero change would represent the spatial location of the DOC.  

However, this interpretation is limited by noise in the CHARTS measurements. 

The three-dimensional change can be represented two dimensionally by 

contouring the change grid.  The change surface was contoured at 5 cm increments to 

empirically determine what level of change yielded a contour that can be relatively 

consistent and measurable.  The goal was to find a change contour that represents the 

alongshore trend of volume change, but not small localized areas of change.  This 
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analysis indicated that regions in the change grid where the magnitude of depth change 

was greater than 0.3 m generally defined coherent alongshore regions of positive or 

negative change, whereas changes less than this threshold were in general localized and 

non-coherent.  Therefore, the seaward most contour at either ± 0.3 m was used to denote 

the seaward limit of change corresponding to the location of the DOC (Figure 4-2, right).  

This location of the DOC is termed the location of closure, or LOC. 

Selection of ±0.3 m as the threshold of no change is illustrated by analyzing 

profiles in the change grid.  Transects 66, 316, and 628 represent the change profile 

offshore of Palm Beach, Boca Raton, and Fort Lauderdale, respectively (Figure 4-4).  

Each profile sustained large change near the shoreline, but the change diminished to low 

level fluctuations further offshore.  The low level fluctuations correspond to locations of 

hard ground or diabathic channels that sustain little change if any during storm 

conditions, thus it is reasonable to assume that these fluctuations are due to measurement 

noise (Finkl and Warner, 2005).  The low-level fluctuations are effectively filtered out 

when only analyzing change that occurs landward of the most seaward change greater 

than 0.3 m or less than -0.3 m.  When confirming Equation 4-1 with field data, 

Hallermeier (1977) determined that change less than ±0.3 m was negligible due to 

limitations in fathometer measurement resolution.  Although more recent studies have 

achieved higher orders of vertical resolution of up to 0.03 m using U.S. Army Corps of 

Engineers coastal research amphibious buggy (CRAB), the CRAB’s inability to measure 

large areas in short time intervals limits its ability to measure longshore variations in the 

DOC (Birkemeier, 1985; Nicholls et al., 1998). 
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4-4.  Representative profiles of surface change between June and November CHARTS data.  Thin 
horizontal lines are the ±0.3 m change.  Change less than this magnitude is generally not resolvable with 
ALB data.  Vertical thin lines are the LOC.  Map view of Transects 316 and 628 are shown in Figure 4-2. 

Metric Mapping and DOC Extraction 

The relative positions of the LOC and geologic units were measured using a GIS-

based metric mapping system (Robertson et al., 2005; Zhang et al., 2005).  This system 

generates a set of transects perpendicular to the coastline and calculates distance to the 

intersection of each transect with other linear features.  One thousand and forty-six 

transects spaced 100 m were analyzed over the 104 km length of shoreline (Figure 4-1).  

Based on geomorphic unit descriptions, changes in bathymetry should only occur 

landward of hard ground or diabathic channels (Finkl et al., 2005b; Finkl and Warner, 

2005).  Distances were measured for each transect from a fixed offshore reference line to 
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the LOC and the most landward boundary of the hard grounds.  Distance to the landward 

and seaward position of the diabathic channels were also measured. 

DOCc is calculated using Equations 4-1 and 4-2 with the Hurricane Frances wave 

data, producing 19 DOCc depths at specific locations alongshore (Figure 4-3, right).  

Since the LOC represents location, the depth at LOC needs to be determined to compare 

vertically with DOCc.  Intersections between transects generated by metric mapping and 

the LOC are converted to points.  Elevations are assigned to each point based on the 

CHARTS November DEM.  The depth at the LOC represents the measured depth of 

closure, or DOC.  Since each point retains the transect number attribute, the DOC can be 

directly compared to DOCc depths alongshore.  Due to the alongshore variability in the 

DOC, a moving average filter was applied with a window size of 5 (500 m) to reduce the 

effect of possible outliers.  The same depth extraction technique to convert the LOC to 

DOC was applied to the intersection between transects and geomorphic units to 

determine geomorphic unit depth. 

All data are presented as distance along the coastline, from north to south.  Each 

successive transect represents an alongshore position 100 m south of the previous 

position.  Since this study is trying to locate the DOC offshore of beaches, data that 

contain transects that intersect with inlet-related morphologies as defined by the geologic 

map were removed (i.e., ebb tidal delta, dredge spoil). 

RESULTS 

The DOC is highly variable alongshore but with a clear decrease in depth from 

north to south (Figure 4-3, right).  DOC ranges from 10.3 m north of South Lake Worth 

Inlet to only 0.1 m located off of Miami Beach.  The upper limit represents localized 
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areas of change in the diabathic channel region, and the 0.1 m is an unusual location of 

almost no change offshore.  In order to better quantify along coast change in DOC, 

summary statistics were compiled in each of six sections of coastline separated by inlets 

(Table 4-2).  The average DOC decreases from 7.8 m in the north to 3.0 m in the south.  

The decrease in depths appears to stop between Boca Raton and Hillsboro Inlet (40 and 

50 km in Figure 4-3,respectively), and the Pompano Beach to Fort Lauderdale section of 

coastline (Hillsboro Inlet to Port Everglades Inlet, 50 to 66 km) shows a relatively 

shallow DOC average of 2.2 m.  The same signal is found when analyzing the distance of 

the DOC from the shoreline.  DOC is on average located 266 m from the shoreline in the 

north and 116 m offshore in the south, with the Pompano Beach to Fort Lauderdale 

section averaging only 54 m offshore (Table 4-2).  Although DOC outliers force the 

range to differ from the mean by as much as 3 m, the alongshore variability in the DOC 

indicates that a single transect cannot explain the DOC for a specific area. 

4-2.  Measured DOC values split by inlets, from north to south.  Distance along coastline is the location of 
data on Figures 4-3, 4-5, and 4-6.  LOC Dist. is the distance from the shoreline to the LOC.  DOC is the 
depth, in meters. 

Location Distance Along Coastline LOC Dist.
(km) Mean Min Max St.D. Mean

North limit to South Lake Worth 1 to 16.4 7.8 4.5 10.3 0.93 266
South Lake Worth to Boca Raton 18.1 to 40.2 6.7 4.3 9.0 0.74 259
Boca Raton to Hillsboro 41.5 to 48.9 4.7 2.6 6.7 1.00 163
Hillsboro to Port Everglades 50.8 to 66.8 2.2 0.3 6.8 1.00 54
Port Everglades to Haulover 68.4 to 88.2 2.9 0.3 6.3 0.93 124
Haulover to Government Cut 89.5 to 104.0 3.0 0.1 6.5 1.30 116

DOC

 

The calculated depth of closure (DOCc) shows the same north to south decrease as 

seen in the observed data (Figure 4-3, right).  This suggests that the DOC is physically 

linked to wave dynamics.  Since Hurricane Frances made landfall immediately north the 

study area limits (Figure 4-1), the increased wave activity to the north should contribute 

to deeper northern DOC values.  The DOCc calculated from Nicholls (1998; E in Table 4-
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1) best fit the observations (E in Table 4-3 and Figure 4-3).  This is not surprising since 

this study applied peak significant wave heights when calculating Equations 4-1 and 4-2 

similar to Nicholls.  Filtering the DOC signal to assure differences were not from values 

representing outliers provided similar results (Table 4-3). 

4-3.  Vertical difference between measured and calculated DOC, in meters.  Source of A-E same as Table 
4-1 and Figure 4-3.  Filtered data were smoothed by a 5 point (500 m) moving average. 

Coefficients Data dMean dMin dMax dSt.D.
raw -8.4 -5.2 -10.9 1.6
filtered -8.0 -6.1 -10.9 1.4
raw -4.9 -2.3 -7.5 1.7
filtered -4.6 -2.5 -7.6 1.5
raw -7.8 -4.3 -10.7 1.8
filtered -7.4 -5.5 -10.6 1.5
raw -2.7 0.0 -5.2 1.8
filtered -2.4 -0.2 -5.3 1.6
raw -2.6 0.1 -5.3 1.8
filtered -2.2 -0.1 -5.4 1.6

D

E

C

A

B

 

In principle, the coefficients for Equations 4-1 and 4-2 could have been derived 

directly from the observations.  However, given that these equations are based on beaches 

with unlimited sands and no hard ground, calculation of coefficients based on the DOC 

values for this study may not be practical.  Figure 4-2 (right) clearly shows reefs and 

structural sand flats near the LOC which suggests structural control in some areas.  

Comparison between the LOC and geologic units is needed to determine if hard ground is 

proximal to and possibly controls the LOC. 

In many locations striking similarities are found between the positions of hard 

ground and the LOC (Figure 4-5).  The extracted hard grounds include the most landward 

position of the structural sand flats and reefs.  With a few exceptions, south of 50 km the 

landward locations of hard grounds match the DOC location extremely well.  The 

horizontal difference was less than 100 m, on average, between Hillsboro and Haulover  
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4-5.  Horizontal position of hard ground (grey), diabathic channels, and the LOC (black).  Hard refers to the 
landward boundary of hard grounds.  Green and red indicate the landward and seaward boundary of 
diabathic channels, respectively. 

Inlets (Table 4-4).  The small differences and the apparent match between the LOC and 

hard ground in Figure 4-5 for this area suggests that geology determines the LOC.  

However, south of Transect 923 the average difference is over 750 m, and Figure 4-5 
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shows that the hard ground moves offshore.  Transect 923 is in the area of Surfside, 3.2 

km south of Haulover Inlet, where a large sand flat progressively extends offshore down 

to Government Cut (92 km to southern limit of Figure 4-5).  Areas offshore of this 

location have a larger self and provide more accommodation space for sediments to 

accumulate than areas to the north.  The LOC moves further offshore in this region and 

does not match the hard grounds suggesting that geology does not determine the LOC 

south of Surfside.  This may be due to limitations in the geomorphic interpretation or 

overestimation of the wave environment for this area. 

4-4.  Horizontal difference in meters between the LOC and landward boundaries of hard ground (left) or 
hard ground and diabathic (right).  Values are split by inlets, from north to south.  Refer to Table 4-2 for 
location. 

Location
Mean Min Max St.D. Mean Min Max St.D.

North limit to South Lake Worth 965.8 -482.1 1779.7 476.6 161.0 -482.1 1625.9 262.8
South Lake Worth to Boca Raton 984.0 164.9 1848.6 371.1 180.9 -76.1 1319.2 245.1
Boca Raton to Hillsboro 285.2 -149.0 886.0 307.7 285.2 -149.0 886.0 307.7
Hillsboro to Port Everglades 90.3 -124.0 328.4 68.3 90.3 -124.0 328.4 68.3
Port Everglades to Haulover 98.6 -118.4 311.2 70.7 98.6 -118.4 311.2 70.7
Haulover to Government Cut 752.4 -94.7 2029.6 565.5 752.4 -94.7 2029.6 565.5

LOC - Hard Ground LOC - Hard Ground & Diabathic

 

Between Boca Raton and Hillsboro Inlets, the nearshore reefs and structural sand 

flats are no longer continuous and nearshore.  The hard grounds just north of Hillsboro 

Inlet and south of Boca Raton Inlet (Figure 4-5) are further offshore and create large 

discrepancies between the LOC and hard ground and increase the average difference to 

285 m (Table 4-4).  The hard grounds progressively move further offshore and away 

from the zone of wave impact north of Boca Raton Inlet.  The difference between the 

LOC and hard ground north of Boca Raton Inlet is greater than 950 m, indicating that 

geology does not determine the LOC for this section of coastline. 
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Diabathic channels are storm deposits that are hydrodynamically formed due to 

strong underflow (Finkl and Warner, 2005).  They are found only to the north of 

Hillsboro Inlet, and this geomorphic unit appears to match the LOC in the north (Figure 

4-5).  Figure 4-5 shows the LOC matches the landward edge of the diabathic channels, 

with some locations where the LOC is within the diabathic channel unit.  When including 

diabathic channels as the geologic positions landward limit, the geologic positions 

continue to match LOC well, with a mean offset of less than 180 m seaward of the LOC 

(Figure 4-5, Table 4-4).  Since the LOC matches the diabathic channels north of Boca 

Raton Inlet and diabathic channels are hydrodynamic features, the strong fit between the 

two suggests hydrodynamic control of the LOC for this region.  This supports the earlier 

interpretation by Finkl (2005). 

Vertical comparison between the DOC and the depth of geomorphic unit 

boundaries show a poor fit north of Boca Raton Inlet (50 km, Figure 4-6), and a good fit 

south of Boca Raton Inlet.  The northern section where the nearshore reefs move offshore 

differs greater than 8 m, on average (Table 4-5).  However, the depth for the landward 

edge of the diabathic channels matches the DOC to within 2 m, on average.  South of 

Boca Raton Inlet, vertical differences are less than 3.5 m, on average.  The strong fit 

between geologic depths and the DOC suggest some level of geologic control.  The 

surprising location is the section of coastline between Haulover and Government Cut 

Inlets (89 to 104 km, Figure 4-6).  This area had a vertical difference of only 3 m, while 

the horizontal difference in Figure 4-5 showed the hard grounds more than 750 m 

offshore of the LOC.  Vertical change in this region is small due to the wider shelf 

offshore, and this creates a shallower slope and less vertical discrepancy between the  

 

75



 

4-6.  Comparison of the DOC (black) to the extracted depths of the landward location of hard ground (grey) 
along with the landward location of diabathic channels (green). 
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geologic units and the DOC.  While geology cannot be linked to the DOC for this 

location, the small vertical differences show that geology is as effective as DOC model 

calculations when locating the DOC. 

4-5.  Vertical difference in meters between the DOC and landward boundaries of hard ground (left) or hard 
ground and diabathic (right).  Values are split by inlets, from north to south.  Refer to Table 4-2 for 
location. 

Location
Mean Min Max St.D. Mean Min Max St.D.

North limit to South Lake Worth -8.5 -21.2 6.8 6.1 0.3 -10.2 6.8 2.0
South Lake Worth to Boca Raton -11.7 -21.8 -2.3 4.1 -2.0 -18.5 1.4 2.7
Boca Raton to Hillsboro -3.5 -9.5 2.9 3.6 -3.5 -9.5 2.9 3.6
Hillsboro to Port Everglades -2.3 -4.7 2.3 1.4 -2.3 -4.7 2.3 1.4
Port Everglades to Haulover -2.2 -5.1 2.4 1.4 -2.2 -5.1 2.4 1.4
Haulover to Government Cut -3.0 -9.5 2.3 1.7 -3.0 -9.5 2.3 1.7

DOC - Hard Ground DOC - Hard Ground & Diabathic

 

The similarities between the DOC, LOC, and geologic map show that both 

geologic control and hydrodynamically forced geomorphology adequately indicates the 

DOC location.  The distinct change in signals shown in Figures 4-3, 4-5, and 4-6 are 

spatially linked to a transition zone between Boca Raton (40 km) and Hillsboro (50 km) 

Inlets.  It is at this location where outcrops of the Anastasia Formation that anchors the 

perched barrier islands to the north trends offshore and primarily makes up the offshore 

hard grounds to the south.  South of Hillsboro Inlet, the DOC is spatially and vertically 

linked to hard ground (Figures 4-5 and 4-6).  Since hard grounds rarely change, the link 

between the DOC and geologic map indicate geologic control.  However, north of Boca 

Raton Inlet the DOC is linked to diabathic channels.  Diabathic channels are storm 

deposits that are hydrodynamically formed due to strong underflow.  Therefore, the DOC 

location north of Hillsboro Inlet is hydrodynamically determined.  Although geologic 

units better explain the location of the DOC south of Boca Raton Inlet, hydrodynamics 

play an important role in the location of the DOC north of Boca Raton Inlet. 
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DISCUSSION 

The depth of closure concept forms the basis for designing coastal engineering 

projects, but this concept is not without controversy.  Pilkey et al. (1993) cite sediment 

exchange between the active beach zone and continental shelf, and sediment movement 

caused by hurricanes has been measured at 60 m depths (Mitchell et al., 2005; Teague et 

al., 2006).  But Hallermeier (1977) defines the DOC as the location where changes in a 

two dimensional profile are insignificant.  Although sediment exchange seaward of the 

DOC has been measured, the location where minimal sediment exchange occurs is 

critical for many uses like determining where to extract sediments for beach 

replenishment projects.  Locations of borrow areas should have minimal effect on the 

surrounding geomorphology, and the DOC represents the most landward position for 

borrow area placement. 

The major limitation when using ALB data to derive the DOC is vertical 

resolution.  By only looking at differences greater than ± 0.3 m, change less than this 

threshold is lost.  However, given that the changes caused by the 2004 hurricane season 

created the large differences close to the shoreline, the small scale changes further 

offshore are more than likely generated by noise in the ALB system.  Previous studies 

were able to minimize noise found in difference grids by shifting each grid to match 

survey data utilizing higher-order accuracy methods (Robertson et al., 2007; Zhang et al., 

2005).  The previous studies compared subaerial laser data to hard surfaces that remain 

fixed over time (i.e., roads).  ALB data are more difficult to verify due to their 

subaqueous measurements and how water movement is constantly changing the 

geomorphology of the sea floor.  Unfortunately, this study did not have survey data to 
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confirm the vertical accuracy of each ALB flight.  Differences between multiple ALB 

flights could be minimized by comparing the ALB data to higher-order accuracy 

bathymetry that were measured within hours of the ALB flight.  Regardless, the 

similarities in curves found in Figures 4-3, 4-5, and 4-6 suggest that the DOC measured 

in this study is the actual DOC. 

Figure 4-3 and Table 4-3 show that the DOCc is a good general estimate of the 

DOC, but the DOCc tends to the overestimate the DOC at varying degrees depending on 

the coefficients applied.  Overestimations are expected since Hallermeier was trying to 

estimate the deepest location of the DOC, but it is also important to understand the data 

that are used to calculate the DOCc.  The DOCc is determined by an average offshore 

wave condition estimated by the Wavewatch III model at 19 locations alongshore.  

Increasing the locations of wave estimations would not improve the differences in Table 

4-3 since the waves were consistently decreasing from north to south.  True wave 

measurements throughout the study area would confirm the effectiveness of Equations 

4-1 and 4-2, but these measurements are extremely expensive and not available for this 

study.  Hydrodynamic measurements during storm conditions are needed to confirm these 

findings. 

Hurricanes often induce storm waves with large heights and long periods.  

Therefore, the depth of closure for storm wave conditions is larger than those from a 

typical annual wave condition.  Wave heights and periods are spatially linked to the 

hurricane tracks; the closer the hurricane, the larger the wave height and period.  This 

study is no exception, as locations to the north experience larger wave heights and 

periods than those to the south.  To calculate a more average wave condition, Hallermeier 
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suggested using the significant wave height that is exceeded only 12 hours per year.  This 

study was limited to peak wave heights during the hurricanes, and therefore represents a 

larger wave field and deeper calculated DOC.  Nicholls took into account 12 hour and 

peak waves, and recalculated a and b for Equation 4-1 for each.  His coefficients best 

match the measured DOC, but using the peak wave coefficients did not significantly 

improve the DOCc (Table 4-2).  The large overestimations of the DOC could be 

explained by the lack of wave measurements close to the study area, but they also suggest 

that other controls like geology determine the DOC location. 

Closer examination of the geomorphic maps shows sandy areas that are often 

broken by hard ground (Figure 4-2, right).  It is at the hard grounds where change is 

minimized, and change seaward of these locations is assumed to be small.  Figures 4-5 

and 4-6 demonstrate that hard ground matches the LOC and DOC between 50 and 92 km.  

Although the average offset between the LOC and hard ground for this location is 

between 90 and 98 m (Table 4-4), the average vertical difference between the DOC and 

hard ground is less than 2.3 m (Table 4-5).  These areas are dominated by nearshore hard 

grounds that are within 200 m of the shoreline.  Further north, the hard grounds are less 

continuous and move offshore, and there is no surprise that the DOC is located further 

offshore.  It is at these locations (north of 40 km, Figures 4-5 and 4-6) that diabathic 

channels match the LOC and DOC.  Since diabathic channels are storm deposits that 

represent the seaward limit of wave-sediment suspension and change is limited seaward 

of hard grounds, the geologic maps confirm the DOC that was extracted from the ALB 

data is most likely the true DOC (Table 4-5). 
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CONCLUSIONS 

Changes in bathymetry were measured along the southeastern Florida coast from 

two ALB data sets collected before and after the 2004 hurricane season.  Contours were 

extracted from the change grid to represent the measured location of closure, or LOC.  

Noise in the ALB data limit the vertical resolution of the change grid.  Measurement of 

the LOC from ALB data is possible when analyzing changes greater than ±0.3 m.  The 

DOC is the depth that corresponds to the LOC. 

The DOC is highly variable alongshore, and a single transect cannot adequately 

measure the DOC.  The observed DOC matches the general trend calculated from 

models, but the overestimations in the depth suggest that it is not exclusively determined 

by waves and that wave models combined with DOC coefficients do not sufficiently 

estimate the DOC for southeast Florida.  The geomorphic map matches the DOC 

extremely well.  North of Boca Raton Inlet, the landward limit of the hydrodynamically 

formed diabathic channels confirm the DOC extracted from ALB data is the true DOC.  

South of Hillsboro Inlet, structural sand flats and rock outcrops match the DOC.  It is 

evident that a mixture of hydrodynamic and geologic control determines the DOC 

position for southeast Florida.  Higher resolution hydrodynamic data are needed to fully 

understand how water affects sediment movement.  Potential sand mining sites for future 

beach replenishment projects should be located seaward of the landward boundaries of 

the diabathic channels and nearshore reefs. 
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5. SUMMARY 

This dissertation quantified coastal change with airborne laser data, and applied 

those numbers to answer specific scientific questions.  The advantage of using shorelines 

to measure coastal change is that the measurements can be compared to existing 

databases of shoreline position that often extend back many decades.  The long-term data 

set provides researchers the evidence they need to determine if recent shoreline change is 

part of a yearly or decadal trend.  However, when analyzing shoreline change, it is often 

assumed that seaward shoreline migration corresponds to net sediment erosion, whereas 

landward shoreline migration indicates accretion.  This assumption was tested in Chapter 

2 where shoreline and beach volume change caused by the 2004 hurricane season in Palm 

Beach County, southeast Florida.  In general, little correlation was found between 

shoreline and volume change, with some correlation in the southern section before the 

hurricane season.  The poor correlation of change during the hurricane season was 

expected since shoreline response to a hurricane event is usually erratic.  But the low 

correlations before the hurricane season suggest that shoreline change is not necessarily 

linked to volume change.  Since volume change was analyzed from the dune toe to 

furthest extent of the ALB data, it is reasonable to assume that either overwash or 

seaward transport of sediments could have increased the quantified volume loss and 

subsequently lessened the correlation. 

Western Bay County (Florida panhandle) beaches that were over 100 km away 

from hurricane landfall with minimal to no overwash were analyzed in Chapter 3.  The 

setting represented more normal storm conditions and not the catastrophic conditions 

endured by beaches significantly closer to Hurricane Ivan’s landfall.  With five airborne 
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laser data sets before and after the 2004 hurricane season, the study in Chapter 3 was able 

to determine if landward shoreline migration due to hurricane impacts matched the 

seaward shoreline migration during recovery.  Low spatial correlation was found between 

shoreline migration before and after the storm event indicating that the beaches did not 

recover immediately following a hurricane impact.  However, the study in Chapter 2 

indicated that shoreline and volume change were not necessarily linked, and the five 

airborne laser data sets allow for a direct comparison between beach widths with 

subaerial volume.  Although only 66 out of the 237 transects were determined to be 

statistically significant, the range of those measurements indicate that the relationship 

between beach width and subaerial volume change is spatially variable, and application 

of a single coefficient to describe the relationship is not possible when describing a 

beach.  The findings in Chapters 2 and 3 are further evidence that it is improper to use 

shoreline data following storms since they do not accurately represent the beach volume.  

Long-term shoreline change studies should only utilize shoreline positions that were not 

affected by storms. 

The development of alongshore quantification of beach volume change in Chapter 

2 provided the means to directly compare measurements to shoreline change, but the 

change in each bin was limited to net change.  A new ratio was proposed in Chapter 3 to 

describe the volume change characteristics of beach profile change.  By dividing the net 

change by the amount of redistributed sediments, the sign of the quotient indicates 

positive or negative net change, and the amount of the quotient indicates if the bin change 

was dominated by sediment redistribution or an increase/decrease in sediments.  The 

average quotient, or RV, was −0.06, indicating that most sediments were redistributed and 
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few sediments were transported out of the bins.  Since most sediment remained close to 

the coastline, it appears that ALB data can locate the depth of closure (DOC). 

Two high resolution ALB flights were flown before and after the 2004 hurricane 

season in southeast Florida, and their extensive offshore coverage allow for locating and 

extracting the DOC.  A method for measuring the DOC was developed in Chapter 4 

given the measurement noise levels at approximately ±0.3 m.  The DOC was compared to 

calculated DOCs and geologic units.  Results show that the DOC closely matches hard 

ground, but north of Hillsboro Inlet represents a transition zone between geologic and 

hydrodynamic control.  North of Boca Raton Inlet diabathic channels most closely match 

the DOC.  Diabathic channels are storm deposits composed of sand from the subaerial 

beach that result from strong offshore underflow caused by high waves and winds.  

Despite the fact that the geologic map best indicates where the DOC is located north of 

Boca Raton Inlet, the DOC is hydrodynamically controlled for this area since diabathic 

channels are storm deposits.  South of Hillsboro Inlet, however, the DOC is geologically 

determined by structural sand flats and reefs.  Hydrodynamic data is needed to confirm 

these results to actual water movement during storm events. 

Limitations in data derived from airborne laser measurements include vertical and 

horizontal resolution, in addition to the lack of temporal resolution and area coverage.  

Topographic airborne laser systems typically have noise levels between 0.05 and 0.1 m, 

and ALB system noise ranges between 0.05 and 0.3 m.  Sources for the noise include 

laser resolution, GPS drift and inertial measurement drift which is compounded by 

increased scan angle, and incorrect calibration coefficients.  ALB data also have to 

correct for light refraction and changing water levels.  Over time the noise levels are 
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reduced due to an increase in data acquisition and processing experience.  Noise levels in 

topographic data can be minimized by shifting the data to a known elevation on 

unchanged surfaces (i.e. roads).  However, ALB data measure the sea floor and locations 

of unchanged surfaces are difficult to locate or control.  Therefore, it is complicated to 

reduce noise levels and change less than ±0.3 m is probably not resolvable. 

The most significant airborne laser limitation is temporal resolution and areas 

covered.  The five airborne laser data sets measuring western Bay County are atypical, 

and more data are needed to increase the significance of the variability in the linear 

relationship between subaerial volume and beach width.  All shoreline and volume 

change studies would benefit from the increased temporal resolution by lengthening the 

trends analyzed.  An increase in the areas measured is also needed.  Results were limited 

in Chapter 4 by the lack of data in the immediate vicinity of the DOC.  Decadal 

monitoring of seabed morphology in the areas surrounding the DOC would help confirm 

the DOC position and significantly aid coastal engineering projects.  Future coastal 

studies using airborne laser data will also benefit from increasing sample rates.  Airborne 

laser systems today sample at rates greater than 100 kHz and measure the surface of the 

earth at a point spacing less than 1 meter.  The increase in horizontal resolution will allow 

for finer resolution DEMs and lead to quantification of higher frequencies of change. 
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