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Abstract: The human immunodeficiency virus 1 (HIV-1) still remains one of the leading 

life-threatening diseases in the world. The introduction of highly active antiretroviral therapy has 

significantly reduced disease morbidity and mortality. However, most of the drugs have variable 

penetrance into viral reservoir sites, including gut-associated lymphoid tissue (GALT). Being 

the largest lymphoid organ, GALT plays a key role in early HIV infection and host–pathogen 

interaction. Many different treatment options have been proposed to eradicate the virus from 

GALT. However, it becomes difficult to deliver traditional drugs to the GALT because of its 

complex physiology. In this regard, we developed a polymer-based Pluronic nanocarrier con-

taining anti-HIV drug called efavirenz (EFV) targeting Microfold cells (M-cells) in the GALT. 

M-cells are specialized epithelial cells that are predominantly present in the GALT. In this work, 

we have exploited this paracellular transport property of M-cells for targeted delivery of Pluronic 

nanocarrier tagged EFV, bioconjugated with anti-M-cell-specific antibodies to the GALT (nano-

drug). Preliminary characterization showed that the nanodrug (EFV-F12-COOH) is of 140 nm 

size with 0.3 polydispersion index, and the zeta potential of the particles was −19.38±2.2 mV. 

Further, drug dissolution study has shown a significantly improved sustained release over 

free drugs. Binding potential of nanodrug with M-cell was also confirmed with fluorescence 

microscopy and in vitro uptake and release studies. The anti-HIV activity of the nanodrug was 

also significantly higher compared to that of free drug. This novel formulation was able to 

show sustained release of EFV and inhibit the HIV-1 infection in the GALT compared to the 

free drug. The present study has potential for our in vivo targeted nanodrug delivery system by 

combining traditional enteric-coated capsule technique via oral administration.

Keywords: HIV-1, drug delivery, GALT, M-cells

Introduction
The introduction of highly active antiretroviral therapy (HAART) has significantly 

reduced human immunodeficiency virus (HIV) infection-related morbidity and mortal-

ity. However, a major limitation in this treatment is lifelong daily drug dosing regimens 

and concomitant side effects.1,2 The gastrointestinal tract plays a key role in not only 

early HIV infection in establishing viral reservoirs in gut-associated lymphoid tissue 

(GALT) but also disease pathology.3 Moreover, most of the anti-HIV drugs have vari-

able penetrance into viral reservoir organs such as central nervous system and GALT. 

As a consequence, viral persistence remains an existing issue despite widespread 

HAART usage.1,4–8 Many different treatment options have been proposed to eradicate 

the virus from GALT. However, it has become increasingly difficult to design drugs 

that would be targeted toward the GALT9 due to its complex physiology. Therefore, 

the identification of the means to improve the bioavailability and therapeutic index of 
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HAART drugs to eradicate the GALT reservoir is of great 

importance. A targeted delivery is an ideal mean to reach the 

GALT and remote lymphatic tissue where conventional drugs 

have failed to reach due to its insolubility and inaccessibility 

to lymph nodes. In this regard, microfold cells (M-cells) from 

the small intestine are an excellent cellular target to deliver 

anti-HIV drug to the GALT.

The epithelium that lines the human gut is imperme-

able to macromolecules/microorganisms except Peyer’s 

patches, where the follicle-associated epithelium contains 

M-cells. Many pathogenic organisms exploit M-cells 

to cross the digestive epithelial barrier.10 The M-cells 

effectively bind, transport, and deliver macromolecules 

to the cells underlying the mucosal immune system. 

They mainly serve as antigen sampling cells that take 

the foreign molecule from the gut and transport it to the 

underlying lymphoid tissue. This unique characteristic 

of M-cells has been utilized as a potential target for oral 

vaccines.11,12 Since they possess a high transcytotic capac-

ity to transport broad range of materials, M-cells have been 

investigated for nanoparticle transport. However, possible 

gastrointestinal digestion and poor intestinal absorp-

tion of nanoformulations leads to low bioavailability.13 

Therefore, new oral formulations have to be developed 

to tackle these difficulties. In this regard, one delivery 

strategy can be designed to encapsulate the drug in some 

drug carrier (liposome, Pluronic block copolymer micelles, 

etc) to prevent the enzymatic digestion and facilitate the 

M-cell-based uptake.

The objective of this study is to develop a long-acting 

nanoformulated antiretroviral drug to improve the exist-

ing antiretroviral therapy. At our end, we have developed 

a Pluronic nanocarrier with incorporated efavirenz (EFV) 

drug. This formulation is further bioconjugated with a 

universal M-cell-specific marker anti-glycoprotein 2 (GP2) 

(together called nanodrug) to target it toward GALT. 

Being one of the potent drugs preventing mother to child 

transmission of HIV, EFV drug has been investigated for 

pharmacokinetic variability, therapeutic effects, and tox-

icity among different patient populations.14–16 It has been 

observed that a very strict pharmacological concentration is 

a must in order to avoid virologic failure and tissue toxicity. 

Therefore, it was worth investigating the nanoformulation 

of EFV for anti-HIV activity and toxicity in GALT. An 

in vitro model of M-cell co-culture system was used to 

characterize this formulation for its cytotoxicity, drug-

loading capacity, sustained release, and anti-HIV activity. 

In future, this nanoformulation will be encapsulated into 

an enteric coating capsule for in vivo drug delivery study 

targeted to GALT.

Materials and methods
Materials
Pluronic F127 (F127), maleic anhydride, toluene, 

pyridine, diethyl ether, N-(3-dimethylaminopropyl)-N′-
ethylcarbodiimide hydrochloride, pepsin, and high-perfor-

mance liquid chromatography (HPLC) water were used as 

received from Sigma-Aldrich Co. (St Louis, MO, USA). The 

tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 

inner salt; MTS] was purchased from Promega Corporation 

(Fitchburg, WI, USA). Transwell polycarbonated filter 

plate with insert (24 well with pore diameter 0.4 µm) was 

purchased from Corning Costar (New York, NY, USA). Anti-

GP2 antibodies were purchased from MBL (Nagoya, Japan). 

Isotype antibodies were purchased from BD Biosciences 

(San Jose, CA, USA). Human colon carcinoma Caco-2 cell 

line (passages 20–30) and human Burkitt’s lymphoma Raji 

B line (passages 30–40) were purchased from American 

Type Culture Collection (ATCC) (Manassas, VA, USA) and 

used within the passage mentioned in the parentheses. EFV 

drug powder and all other chemicals were obtained from 

Sigma-Aldrich Co.

assay instruments and characterizations
Transmission electron microscopy (TEM) was used to deter-

mine the size and shape of the prepared F127COOH-EFV 

micelles by Phillips CM-200 200 kV transmission electron 

microscope at an accelerating voltage of 80 kV. A 90Plus Par-

ticle Size Analyzer (Brookhaven Instruments Corporation, 

Holtsville, NY, USA) was used to measure the hydrodynamic 

size and zeta potential of the F127COOH-EFV. A microplate 

reader (Synergy HT, multi-mode microplate reader; BioTek, 

Winooski, VT, USA) was used to measure the absorbance 

of samples related to cell viability. A fluorescence spectros-

copy technique based on a pyrene probe using a Shimadzu 

spectrofluorometer (RF-5301PC; Shimadzu, Kyoto, Japan) 

was applied to estimate the critical micelle concentration 

(CMC) of the F127COOH micelles.

Methods
synthesis of carboxylated functional Pluronic F127 
(F127cOOh)
As shown in Figure 1A, carboxylated ABA triblock copoly-

mer F127 (F127COOH) was synthesized according to the lit-

erature with minor modification.17 Briefly, maleic anhydride 
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(1.93 g, 19.5 mmol) was added to a solution of F127 (25.0 g, 

1.95 mM) in a mixed solvent of toluene (100 mL) and pyri-

dine (5 mL). The whole mixture was stirred for 8 hours at 

the room temperature (RT) under a nitrogen stream. After 

purification by precipitation from excessive diethyl ether 

thrice, 21.3 g (85%) of F127COOH as a light brown solid 

was obtained.

Preparation of drug-loaded Pluronics with antibodies 
conjugation (F127-cOOh-eFV-gP2 or nanodrug)
In a typical experiment, hydrophobic drug of EFV dissolved 

in chloroform (2.0 mg) was mixed with F127COOH in chlo-

roform (20 mg) at a weight ratio of 1:10. The mixture was 

gently stirred for 5 minutes, and a rotary vacuum evapora-

tor with a water bath of 35°C was applied to evaporate the 

organic solvent. The deposited film on the vials was hydrated 

with 1.0 mL of HPLC water. The resulting clear dispersion 

was kept at RT for further use.

The 200 µL of F127COOH-EFV aqueous solution 

obtained in the previous step was incubated with 20 µL of 

N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydro-

chloride solution (1.92 mg/mL in water, 1.04×10−6 mol) for 

5–10 minutes, and then, 14 µL solution of anti-GP2 antibod-

ies (0.5 mg/mL, 4.67×10−11 mol) was added.18 After 1.5 hours 

of incubation, the antibodies conjugated F127COOH-EFV 

nanoparticles spun down at 10,000 rpm for 10 minutes and 

then redispersed in 220 µL of phosphate-buffered saline 

(PBS) for further application.

Transmission electron microscopy
The size of the F127COOH-EFV micelles was determined 

using negative staining technique of TEM. In brief, one drop 

of F127COOH-EFV micelles was spread on carbon support 

film on 400 mesh Cu grids (type B; Ted Pella, Inc., Redding, 

CA, USA). The grid samples were examined using TEM 

imaging as explained earlier. The samples on the grids were 

Figure 1 (A) The illustration of synthetic routine of carboxyl-functionalized triblock copolymer F127 (F127cOOh). (B) The efavirenz-loaded F127cOOh micelles 
bioconjugated with antibody.
Abbreviations: eO, ethylene oxide; PeO, polyethylene oxide; PO, pro pylene oxide; PPO, polypropylene oxide.
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negatively stained with phosphotungstic acid (2.0%, w/v; 

pH 6.4) and dried at RT.

Particle size and zeta potential
The hydrodynamic radius, size distribution, and surface 

charge measurements of F127COOH-EFV were carried 

out at 25°C using dynamic laser scattering (DLS) (90Plus 

Particle Size Analyzer). Scattered light was detected 

at a 90° angle and at a temperature of 25°C. Hydrody-

namic size was expressed as mean ± SEM of triplicate 

measurements. The aggregation stability of the nanopar-

ticles in a 10 mM phosphate buffer was examined over 

25 days.

colloid and physiological stability
The nanocarriers were stored at 4°C, and the durability 

of their structural integrity was evaluated by measuring 

their size for up to 28 days. Further, their stability in blood 

fluid was assessed by measuring their size in an in vitro 

closed circulatory system at 37°C for up to 28 hours. This 

closed circulation system was set up using a bidirectional, 

self-priming peristaltic pump (Mini Pump Peristaltic Pump 

Variable Flow C-2 Lab Pump; Thermo Fisher Scientific, 

Waltham, MA, USA). The nanoformulation was allowed 

to circulate in a 0.8 mm capillary 120 times at a flow rate 

of 1 mL/min. The circulating medium was prepared with 

5% dextran-500 (catalog no 50-247-495; Thermo Fisher 

Scientific) in PBS, which gave a viscosity equivalent to 

that of blood (4.5 cP). Samples were collected after 10, 30, 

60, and 120 circulations and subjected to size analysis by 

DLS.19

Dissolution of the nanoformulation
A 2 mL solution of F127COOH-EFV nanoparticles (0.5 mL, 

concentration: 2 mg/20 mg ratio drug/F127COOH) was 

placed into a dialysis bag (molecular cutoff: 6 kDa), sealed, 

and put into a tube filled with 30 mL dissolution solution 

(composition: 0.1% Tween 20 aqueous solution). The tube 

was placed on a 37°C shaker at 150 rpm. At each time point 

(0 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 

60 minutes, 2 hours, 4 hours, 8 hours, 1 day, 2 days, 4 days, 

6 days, 8 days, 10 days, 12 days, and 14 days), 100 µL of 

solution was taken out from the tank when the drug was 

releasing out of the dialysis bag and 100 µL of fresh dis-

solution was refilled. The same concentration of free drug 

was used as a control.

At the last time point, the drug concentration was 

determined by HPLC (150 mm ×4.6 mm column, injection 

volume: 20 µL, detection wavelength: 215 nm, temperature 

of performance: 30°C, retention time: 19.827 minutes).

In vitro M-cell co-culture model
The Caco-2 cells were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Thermo Fisher Scientific) with 

20% (v/v) fetal bovine serum, and Raji cells were cultured 

in RPMI 1640 medium supplemented with 10% (v/v) +1% 

penicillin and streptomycin solution. The in vitro M-cell co-

culture model was adopted from previous studies.11,13 Briefly, 

0.1 mL and 1.5 mL DMEM complete media were added to the 

apical and basolateral sides of the 24-well Transwell plates, 

respectively. The Caco-2 cells (5×105 cells/well) were seeded 

on the apical sides of the Transwell, and the medium of the 

apical side was changed every other day for next 14 days 

of culture. Raji cells (3×105 cells/well) were suspended in 

complete RPMI 1640/DMEM (1:2) mixture and then added 

to the basolateral chamber of the Transwell; co-culture was 

maintained for 12 days. The integrity of the epithelial barrier 

was measured by transendothelial electrical resistance using 

Millicell-ERS microelectrodes (EMD Millipore, Billerica, 

MA, USA).20 Caco-2 cells were also cultured without Raji 

cells to serve as a control.

Flow cytometry
M-cells or differentiated Caco-2 cells were scrapped out 

of the Transwell culture and washed with PBS. M-cells 

were further washed with flow-cytometry (fluorescence-

activated cell sorting [FACS]) buffer (PBS, 5%–10% fetal 

bovine serum, 0.1% NaN
3
 [sodium azide]), probed with the 

anti-GP2 antibodies (2 µg/mL), and incubated at RT for 

20 minutes in the dark. Cells were then washed with the 

FACS buffer to remove the unbound antibodies, fixed with 

2% paraformaldehyde, and analyzed by FACS (Accuri C6; 

BD Biosciences). Caco-2 and Raji cells were gated for GP2 

based on the isotype gating on respective cells.

Immunofluorescence staining of M-cells
Caco-2 cells cultured on coverslip were added to Raji cells 

seeded in Transwell culture plate. After the incubation, the 

Caco-2 monolayer was washed several times with PBS and 

fixed with 4% paraformaldehyde for 30 minutes at 4°C. 

Further, the cells were washed with 0.1% Triton X-100 in 

PBS for three times for 5 minutes each. Primary antibodies 

(anti-GP2 antibodies 2.5 µg/mL) were added in PBS with 

0.1% Triton X-100 for 1 hour. The cells were washed three 

times with 0.1% Triton X-100 in PBS for 5 minutes. After 

washing, secondary antibodies (Alexa Fluor 488 goat anti 
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mouse antibodies; 10 µg/mL) were added and incubated at 

RT for 45 minutes. Cells were washed again with 0.1% Triton 

X-100 in PBS. Coverslips were mounted on the slides with 

ProLong® Gold antifade reagent (Invitrogen, Carlsbad, CA, 

USA) before proceeding for fluorescence microscopy. The 

stained cells were examined using a fluorescent Axio Imager.

M2 microscope and AxioCam MRm camera set (Carl Zeiss 

Meditec AG, Jena, Germany).

Cellular uptake of fluorescent nanodrug
To examine the M-cell-mediated drug transport in the  

in vitro system, a specially designed nanoformulation was 

prepared. For this purpose, F127-COOH-EFV-GP2 was 

further conjugated with fluorescent dye Alexa Fluor 610X 

NHS (N-hydroxysuccinimide) ester (Invitrogen)21 before the 

experiment. The uptake of fluorescent nanodrug (FND) by 

M-cells was investigated using a fluorescence microscope 

(Axio Imager 2; Carl Zeiss Meditec AG). The ethanol-treated 

glass slides were put in six-well plates and coated with 0.01% 

poly-l-lysine. The Caco-2 cells were seeded in these six-well 

plates at the density of 5×105 cells/well and allowed to adhere 

and grow. In one set of wells, Caco-2 cells were co-cultured 

with Raji cells for 5–7 days to obtain M-cells, and other set 

of cells were kept as control. At the end of the incubation, 

cells were washed and supplemented with fresh media con-

taining 0.07 mg/mL of nanodrug and incubated at 37°C for 

2 hours. After the incubation, cells were washed with PBS 

to remove any unabsorbed free nanodrug. Fluorescence was 

measured in the lower (receiving) chamber from 0 hour to 

48 hours in order to observe the FND transport via M-cells. 

For the fluorescence imaging studies, the cells were fixed 

with paraformaldehyde for 30 minutes and mounted on the 

slide and images of M-cells with accumulated FND were 

obtained as described above.

cellular toxicity of nanodrug
Cytotoxicity of the nanoformulation was determined by using 

MTS assay (G3582; Promega Corporation) on Caco-2 cells 

and primary human macrophages. Briefly, cells were prein-

cubated in 96-well plates with Caco-2 cells and then treated 

with various concentrations of nanodrug (0.1–10 mg/mL) for 

24 hours at 37°C. In case of primary human macrophages, 

cells were exposed at the concentrations of 1–100 µg/mL of 

nanodrug for 24 hours, separately. After the treatment, cells 

were washed and incubated with fresh respective growth 

medium. Cells were further incubated with 20 µL of MTS 

reagent (CellTiter 96® AQueous One Solution; Promega, 

Madison, WI, USA) in complete 100 µL cell media for 1 hour 

at 37°C. After the incubation, the absorbance at 490 nm was 

measured using the BioTek plate reader (BioTek). Untreated 

cells incubated with fresh media alone were considered as a 

control. All measurements were taken eight times. The net 

absorbance (A) was taken as an index of cell viability. The 

cell viability was calculated as sample/control ×100%. The 

nanoformulations that did not cause more than 10% loss in 

cell viability after at least 24-hour exposure were considered 

nontoxic.

reactive oxygen species assay
The productions of reactive oxygen species (ROS) fol-

lowing exposure to different concentrations of nanodrug 

(0.1–10 mg/mL) were detected in Caco-2 cells using dichlo-

rofluorescein diacetate assay (Molecular Probes, Eugene, 

OR, USA) as per previous published protocol.22 Cells were 

cultured in 96-well plates (100,000 cells/well) overnight 

to allow 70% confluence. The next day, cells were treated 

with different concentrations of nanodrug for 24 hours as 

mentioned above. The following day, cells were washed and 

pretreated with antioxidant catalase (0.001 mg) for 2 hours. 

Next, the cells were treated with dichlorofluorescein diac-

etate assay (100 µM) for 1 hour at 37°C and finally read in 

a BioTek Synergy HT microplate reader (excitation 485 nm 

and emission 528 nm; BioTek). Cells treated with H
2
O

2
 

(50 µM) for 2 hours were considered as positive control.22

anti-hIV activity of nanodrug
The nanodrug was further investigated for anti-HIV activity 

in primary human macrophage and M-cell culture model, 

respectively.

Primarily, human peripheral blood mononuclear cells 

were isolated from healthy donor and differentiated to mac-

rophages as per previously published protocol.23 Briefly, 

peripheral blood mononuclear cells were isolated with 

Ficoll-Hypaque (Pharmacia) gradient and cells were allowed 

to differentiate for 7 days in the presence of human mac-

rophage colony stimulating factor (Sigma-Aldrich Co.) to 

macrophages. Following 7 days of incubation, macrophages 

were infected with HIV-1BaL (National Institutes of Health 

AIDS Research and Reference Reagent Program; Cat 510) 

(100 ng) and incubated for 24 hours. The next day, cells were 

thoroughly washed to get rid of any unattached virus particle 

and fresh medium was added. At the same time, same con-

centration (70 µg/mL) of nanodrug and unformulated drug 

(EFV) was added to these cells separately. The HIV-infected 

macrophages served as control. The nanodrug/EFV drug-

treated cells were monitored for up to 10 days along with 
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infected control cells. The cell supernatant was collected at 

days 0, 1, 3, 5, and 7 and 10 days post treatment. The viral 

p24 level in the supernatant was measured with p24 ELISA 

assay (Cat 0801200; ZeptoMetrix Corporation, Buffalo, NY, 

USA). The minimum assay detection limit for p24 antigen 

by ELISA was 7.8 pg/mL as provided by the manufacturer. 

The p24 level at different time points gave the level of viral 

inhibition with nanodrug and EFV. The p24 level of the cul-

ture supernatant was inversely proportional to the anti-HIV 

activity of nanodrug.

Simultaneously, a parallel anti-HIV activity study was 

set up in an in vitro model of M-cell. In this model, Raji cells 

were exposed to HIV-1BaL at the concentration of 100 ng 

for 24 hours in a co-culture and then washed from unat-

tached viral particles.24,25 Following this, same concentra-

tion (70 µg/mL) of nanodrug and EFV was added to M-cell 

culture model separately. The M-cell co-culture model 

was observed for 10 days for viral replication, which was 

measured by p24 ELISA assay (ZeptoMetrix Corporation) 

at different time points up to 10 days. The untreated Raji 

cells were kept as a control for all the experiments related 

to drug activity. In the M-cell culture model, infected Raji 

cells were also treated with EFV to compare with nanodrug. 

The effect of nanodrug on HIV replication was measured 

for up to 10 days post treatment in culture supernatant.

At the end of both the experiments, a quantitative HIV-1 

DNA protocol (long terminal repeat [LTR] real-time poly-

merase chain reaction) was used to analyze the viral tran-

scripts in HIV-infected Raji cells and macrophages. This was 

done in order to ensure that untreated macrophages and Raji 

cells got infected with the exposure of HIV-1. The following 

previously published23 primers and probes were used: LTR 

U5/R – sense-5′-GGCTAACTAGGGAACCCACTG-3′, 
antisense-5′-CTGCTAGAGATTTTCCACACTGAC-3′, 
and probe 5′-FAM-TGTGTGCCCGTCTGTTGTGTG-

TAMRA-3′. Relative gene expression was quantitated, and 

the mean fold change in expression of the target gene was 

calculated using the comparative CT method (transcript 

accumulation index =2−ΔΔCT). All data were normalized 

for quantity of RNA input by performing measurements on 

an endogenous reference gene, GAPDH.

statistical analysis
All experiments were performed in replicates, and data 

are presented as mean ± SE. The statistical analysis was done 

by two-tailed paired t-test with GraphPad Prism software 

(GraphPad Software, Inc., La Jolla, CA, USA). A P-value 

of 0.05 was considered as significant.

Results and discussion
Preparation and characterization of  
nanodrug formulation
EFV is a non-nucleoside reverse transcriptase inhibitor being 

used as part of HAART for the treatment of HIV-1 infection. 

Although it is always given in combination with other drugs 

to treat HIV infection, low efficacy is still a main concern 

for this drug. This is due to its poor aqueous solubility, low 

bioavailability, and resistance profile that may attenuate its 

therapeutic effect.26

Currently, nanotechnology has attracted significant atten-

tions in the field and also brought a revolutionary change 

in the drug delivery system. By now, over 20 nanodrug 

formulations have been approved by US Food and Drug 

Administration (FDA).27 Among these nanomaterials, F127 

plays an important role because of its specific chemical 

structure and excellent biological biocompatible future.17 

Figure 1A and B elucidated the main idea for the preparation 

of F127COOH-EFV nanodrug formulation. The synthetic 

yield of F127COOH from F127 was around 85%. The load 

yield of EFV in F127COOH-EFV nanodrug formulation, 

close to 100%, was determined by HPLC assay.

As shown in Figure 1A, Pluronics are block copolymers 

that consist of hydrophilic polyethylene oxide (PEO) and 

hydrophobic polypropylene oxide (PPO) blocks arranged in 

a basic PEOx-PPOy-PEOx structure (where x and y repre-

sent the repeated number of times ethylene oxide [EO] and 

propylene oxide [PO] in the structure, respectively). F127 

can easily form as core/shell nanoparticles in the aqueous 

solution by simple hydration technique, and its hydropho-

bic core can act as an accommodation for lipophilic drug. 

In this spontaneously formed core–shell structure, poorly 

soluble drugs can be incorporated into the hydrophobic 

core and protected from inactivation in biological media, 

and the outside, hydrophilic section layer may endow the 

micellar system many advantages, such as increased drug 

solubility, circumvented reticuloendothelial system uptake, 

improved circulation time, and enhanced permeability and 

retention effect.3 It has already been applied in the fields of 

biomedicine, drug delivery systems, and gene therapy due to 

its amphiphilic structure and high biocompatibility.28,29 F127 

Pluronic (PEO
101

-PPO
56

-PEO
101

) (SP1049C) is now tested 

in Phase III clinical investigation in patients with metastatic 

adenocarcinoma of the esophagus, gastroesophageal junction, 

and stomach. It has been reported to exhibit an acceptable 

safety profile with a maximum tolerated dose of 70 mg/m2 

with sustained drug release and clearance profile in compari-

son to conventional formulation.30,31
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To improve the target efficiency, new type of F127 with 

functional group is produced by surface chemical structure 

modification. In our study, carboxyl groups were introduced 

on the PEO terminal of F127 (the product of carboxylated 

F127 is abbreviated as F127COOH) for the purpose of bio-

conjugation via gentle esterification with maleic anhydride. 

By typical preparation process of micelles, EFV encapsulated 

in carboxyl-functionalized amphiphilic polymers can result in 

stable, micelle-like structures due to the strong hydrophobic 

interactions between native hydrophobic EFV and the PPO 

hydrocarbon chains (from hydrophobic section of F127) to 

form F127COOH-EFV nanoparticles. Anti-GP2 antibodies 

were conjugated with carboxyl groups on the surface of 

F127 via the formation of active amino intermediate group 

(Figure 1B). Being a very specific monoclonal antibody 

designed for human M-cells, anti-GP2 antibody will help 

in specific targeting of this nanodrug toward M-cell located 

at the GALT.32,33

This work is a consequent study based on our previous 

achievement on the F127COOH application.17 As we reported 

before, the degree of maleic acid substitution onto F127 

was ~1.5 mol%. The yield of F127COOH in this synthesis 

was measured to be above 85% by acid–base titration, and 

no significant degradation of the copolymer was found. The 

CMC determined the stability of micelles against possible 

dilution of the micellar system in bodily fluids. To this end, 

the CMC of F127COOH nanoparticles was 4.7×10−7 M, 

which indicates extreme stability after dilution. The size of 

F127COOH-EFV nanodrug formulation in aqueous media 

was around 140 nm with excellent monodispersion under 

TEM measurement, shown in Figure 2A. The hydrodynamic 

size in aqueous dispersion by method of DLS has high con-

sistence with TEM results, which was around 140 nm with 

0.12 polydispersion index (PDI). In general, the value of PDI 

less than 0.3 is recognized as a narrow size distribution for 

particles. The shape and the size were not significantly altered 

after conjugation with anti-GP2 antibodies. The TEM analy-

sis clearly indicated that no aggregation occurred during the 

conjugation process. The surface charge of F127COOH-EFV 

nanodrug formulation was 19.38±2.2 mV by zeta potential 

measurement. Vectorization of the nanocarriers with anti-

bodies did not affect the surface charge and had negligible 

change in the particles.

DLS technique was also used to measure the hydrody-

namic size distribution and colloidal stability of F127COOH-

EFV in PBS. As displayed in Figure 2B, the DLS results 

showed the average hydrodynamic radius of F127COOH-

EFV to be 128.8±15.6 nm (PDI =0.10) over 2 weeks. The 

surface charges of nanodrug formulation of F127COOH-EFV 

were not significantly changed with or without conjugation 

of antibodies based on the DLS measurements. The mimic 

stability evaluation in blood fluid was also found to be 

stable by measuring their size in an in vitro closed circula-

tory system at 37°C for up to 28 hours (viscosity: 4.5 cP).19 

The time-dependent changes in hydrodynamic diameter of 

the F127COOH-EFV with conjugation of antibodies were 

less than 10% under the PBS (pH 7.4) and 0.005% pepsin 

solution (pH 6.8) (Figure 3A and B), indicating that these 

nanoparticles have well colloidal stability for a quite long 

term in a blood physiological condition and intestine enzy-

matic circumstance.

Generally, the stability test on nanodrug under gut cir-

cumstance is critical for the full understanding of the char-

acterization and fate of particles applied in in vivo model 

and potential clinic. In our strategy, this nanodrug will be 

finally encapsulated into an enteric-coated capsule for oral 

Figure 2 (A) TeM and (B) Dls of the formulation.
Notes: (A) Presents the representative particle shape and size of F127cOOh-eFV nanodrug around 120–140 nm using the TeM technique, which shows excellent 
monodispersion directly. (B) Displays the hydrodynamic radius of F127cOOh-eFV nanodrug particles in the aqueous solution about 130 nm using the Dls technique with 
small size distribution index (PDI) as 0.10. The hydrodynamic size in aqueous dispersion by the method of Dls has high consistency with the TeM results.
Abbreviations: Dls, dynamic laser scattering; eFV, efavirenz; PDI, polydispersion index; TeM, transmission electron microscopy.
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administration in animals. This enteric surface coatings 

can endow capsule presenting stability at highly acidic pH  

(eg, in stomach) and breaks down rapidly at around pH 6.8 

(eg, in intestine) to release drug. This is the main reason 

why the stability test and drug release measurement are 

not conducted under acidic condition in our experiment for 

nanodrug.

In order to find out hydrodynamic size variation of 

F127COOH-EFV nanodrug under mimetic intestine solution 

(0.005% pepsin solution, pH 6.8), DLS size of particles was 

monitored against time up to 7 days. The results showed 

that fluctuation in diameter of particles was less than 10% 

in 7 days, which is almost same as the variation extent in 

water (Figure 3B). This 1-week measurement confirmed 

the stability of nanoformulation under intestine enzymatic 

circumstance.

Since drug release from nanoformulation follows dif-

fusion mechanism, with intact shape and structure under 

intestine enzymatic circumstance, the loaded EFV may 

release at the targeted site and time once the nanoformulation 

is encapsulated into enteric-coated capsule and administered 

into mice. All these parameters, including drug pharmacoki-

netic and distribution, will be performed in future in vivo 

studies.

sustained drug release of nanodrug
To analyze the drug release profile, F127COOH-EFV was 

subjected to dissolution test. In complying with sink condi-

tion from FDA requirement on drug product dissolution, 

F127COOH-EFV in PBS (pH 7.4) was placed in the dialysis 

bag using composition of 0.1% Tween 20 aqueous solution 

as dissolution solution at 37°C.34 The released drug outside 

of dialysis bag was sampled at different time intervals (from 

5 minutes up to 14 days) and was assayed by HPLC.35

The data indicated that 80% of drug was released from 

the Pluronic particles over 6 days. As shown in Figure 4, 

the t
1/2 

of EFV in F127COOH-EFV nanodrug formulation 

was about 48 hours (t
1/2

=48 hours). This was considerably 

longer than the release of free drug (t
1/2

=8 hours). This 

phenomenon presents the acceptable characterization for 

sustained drug release in in vitro and may satisfy work in 

in vivo. The free EFV without dialysis bag was also used as 

second control, which provided t
1/2

=0 hour under the same 

Figure 3 stability characterization of nanoformulation: (A) ph 7.4 PBs and (B) 0.005% pepsin solution.
Notes: (A) DLS hydrodynamic size against time indicated the long-term stability of nanodrug in aqueous solution. Both of them showed size fluctuation 10%. hydrodynamic 
diameter of F127COOH-EFV presented size fluctuation 10%, indicating the long-term well colloidal stability in a physiological condition (ph 7.4). (B) One week incubation 
with 0.005% pepsin solution showed the stability of nanoformulation under intestine enzymatic circumstance.
Abbreviations: Dls, dynamic laser scattering; eFV, efavirenz; PBs, phosphate-buffered saline.

Figure 4 Dissolution study of nanodrug in PBs in in vitro model.
Notes: Dispersion of the micelles in PBs (ph 7.4) placed in the dialysis bag and 
dialyzed against the respective buffer solution at 37°c. The released drug outside of 
dialysis bag was sampled at different time intervals (from 5 minutes up to 14 days) 
and measured by hPlc. The data were expressed as 80% of drug released from the 
Pluronics relative to the initial drug loading.
Abbreviations: hPlc, high-performance liquid chromatography; PBs, phosphate-
buffered saline.
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dissolution condition. The delayed release of free drugs in 

dialysis bag may come from the retardation effect of tight 

composition in the cellulose structure.35 In vitro release of 

drug from polymeric micelles was measured by the dialysis 

bag diffusion technique.36 According to US pharmacopeia, 

phosphate buffer (pH 7.4) containing 0.5% Tween 80 was 

used as a dissolution medium. This dialysis-based in vitro 

release assays under sink condition have been commonly 

applied to assess the retention properties of encapsulated 

drugs. However, these results are not always indicative of 

the formulations’ actual in vivo behavior. There are two 

mechanisms for the drug release delay: one is caused by 

sustained drug release from the reservoir effect in polymeric 

vehicles, which may attenuate with time and another retention 

effect may come from the dialysis bag itself. It is reported 

that the dialysis bag may limit the in vitro drug release.37 

Although there is a drug release delay and about 15% of 

drug remained in the dialysis bag from this in vitro method, 

this dose decrease will not affect the administrated drug for 

the future in vitro and in vivo application. Even considering 

this delay impact from dialysis bag, the dissolution profile 

for our Pluronic nanodrug formulation is still adequate for 

sustained drug release requirement.

cytotoxicity of nanodrug
The present study investigated a potential of nanodrug as 

the M-cell-specific drug delivery vehicle for the GALT. 

Lymphatic uptake of nanoparticle, retention, and sustained 

release of the drug at the GALT depend mainly on the size, 

shape, and surface characterization of the nanoparticle. 

Generally, smaller particles have better lymphatic uptake 

than larger particles with lower retention capability.2,38–40 

In this regard, steric stabilization with hydrophilic polymer 

like F127COOH can improve the uptake of EFV by lymph 

nodes and increase their stabilization inside them. Lymph 

node retention of micellar drug has been investigated by 

other researchers in cancer therapy.41 However, it had limited 

success due to poor loading capacity and toxicity issue.42 

In order to address this issue, we carried out cytotoxicity 

studies of this nanodrug (Figure 5).

In this regard, MTS assay was performed to evaluate the 

cytotoxicity of nanodrug in Caco-2 cells and primary human 

macrophages, respectively, as per published protocol.43 The 

result indicated that nanodrug did not significantly affect the 

cell viability over 24 hours incubation with Caco-2 cells at 

nanodrug concentration of 0.1–10 mg/mL (Figure 5A). Even 

in case of primary human macrophage, the effect of nanod-

rug on cell viability did not decrease significantly up to the 

concentration of 100 µg/mL (Figure 5B). Both observations 

indicated that there was no immediate cellular toxicity of 

nanodrug on human cell line (Caco-2) and primary human 

cells (macrophages) at the tested concentrations. Taking into 

account the high drug-loading capacity and cellular toxic-

ity, high drug concentrations (above 10 mg/mL) were not 

considered for further evaluations. Along the same line, the 

ratio of drug and polymer was also optimized in Caco-2 and 

Raji cells in order to get the maximum drug activity (data 

not shown). As a result, 0.07 mg/mL of nanodrug was used 

for further in vitro characterization.

effect of nanodrug on rOs production 
in caco-2 cells
It was also important to test whether the current nanodrug 

itself causes oxidative stress to the cellular environment after 

Figure 5 cytotoxicity of nanodrug on caco-2 cells and primary human macrophages.
Notes: (A) caco-2 cells were exposed to 0.1–10 mg/ml concentration of nanodrug for 24 hours. (B) Primary human macrophages were exposed to 1–100 µg/ml 
concentration of nanodrug for 24 hours. after incubation, MTs assay was performed and optical density of culture supernatant was measured at 490 nm. Data were 
presented as % survival of cells at different concentrations of nanodrug. Untreated cells were considered as control (0) with 100% viability. The changes in viability at different 
concentrations of nanodrug compared to control were found to be nonsignificant.
Abbreviation: MTs, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium.
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treatment, which may affect cellular metabolism. In this 

regard, cells were treated with different concentrations of 

nanodrug in order to observe the effect of this formulation on 

ROS production. As explained in Figure 6, the current nano-

drug did not induce any significant ROS production with the 

treatment as high as 10 mg/mL. This observation indicated 

that the current formulation did not cause any oxidative stress 

to Caco-2 cells post treatment. Thus, it further assured the 

nontoxicity of the nanodrug for cellular treatment.

characterization of M-cells in co-culture 
model
In the co-culture model, Caco-2 cells developed M-cells-

like morphology after incubation with Raji cells. In order to 

investigate the transformation of Caco-2 cells to M-cells, a 

flow-cytometry analysis was done with M-cell-specific anti-

GP2 antibodies.44,45 Monoculture of Caco-2 cells was used for 

this study as a negative control. The data indicated that 14% 

of the Caco-2 cells developed M-cells-like characteristics 

upon co-culturing with Raji cells (Figure 7), whereas there 

was no M-cell characters observed in monoculture of Caco-2 

cells. Thus, the transformations of M-cells from Caco-2 cells 

were clearly observed through this analysis.

In order to confirm this observation, further characteriza-

tion of M-cells was done through immunocytochemistry with 

anti-GP2 antibodies. The cells were grown and co-cultured 

as mentioned above, and at the end of incubation, cells were 

stained with anti-GP2 antibodies. The fluorescent image 

analysis indicated that the presence of anti-GP2 antibodies 

was significantly higher in M-cells compared to Caco-2 cells 

alone as explained in Figure 8.

assessment of model functionality 
by FND transport
In order to monitor the functional activity of M-cell in in vitro 

model, a transport study of Alexa Fluor 610X NHS ester-

conjugated nanodrug or FND was designed and monitored 

the transport rate in mono (Caco-2) and co-culture (M-Cell) 

models. These FND formulations were further conjugated 

with anti-GP2 antibodies (FND-GP2). FND and FND-GP2 

were added apically and incubated for 2 hours at 37°C. After 

the incubation, parts of the Transwells were used for fluores-

cent microscopy studies to observe FND accumulation and 

a parallel set of Transwells was kept to monitor the FND 

transport from apical to basolateral site. The microscopic 

analysis indicated that FND-GP2 was more accumulated in 

the M-cells, at a greater extent, than FND. At the same time, 

the Caco-2 cells treated with FND and FND-GP2 accumulated 

significantly less fluorescence than the M-cells (Figure 9A).

Noteworthy, both M-cells and Caco-2 cells showed a 

sustained uptake of FND in the external medium. The mea-

surement of FND uptake on the basolateral side of Transwell 

was done by measuring fluorescence. The nanodrug uptake 

was measured in terms of fluorescence with respect to time 

up to 48 hours. Along with higher accumulation levels, 

the prolonged drug release characteristics from M-cells 

were demonstrated compared to Caco-2 cells, indicating the 

superior role of M-cells for drug delivery (Figure 9B). We 

hypothesized that Pluronic micelles were transported out 

of the cells through recycling trafficking of endosomes as 

reported previously.46

anti-hIV activity of nanodrug
Anti-HIV activity of nanodrug against HIV was tested in 

primary human macrophages and in vitro M-cell model. 

Primarily, human macrophages were infected with HIV-1 for 

24 hours and then treated with nanodrug or EFV separately. 

Nanodrug treatment data indicated that there was consistent 

viral inhibition up to day 10 and beyond, whereas free EFV-

treated cells showed immediate inhibition of viral replication 

on day 1 and following that there was an increase in viral 

p24 level, indicating gradual loss in antiviral activity of EFV. 

At the end of the experiment (day 10), the effect of EFV 

Figure 6 effect of nanodrug on rOs production in caco-2 cells.
Notes: cells were exposed to 0.1–10 mg/ml concentration of nanodrug for 
24 hours. At the end of incubation, ROS assay was performed. The fluorescence was 
detected at 485 nm excitation and at 528 nm emission spectra. catalase was used 
as antioxidant control, and h2O2 was used as positive control. Data are expressed 
as mean ± se of rFU values of four independent experiments. a value of P0.0001 
was indicative of significance (****). There was no statistical significance between 
treated groups and control.
Abbreviations: ROS, reactive oxygen species; RFU, relative fluorescence unit; SE, 
standard error.
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Figure 7 Flow cytometric analysis of M-cell-like characteristics in caco-2 and raji cell co-culture systems.
Notes: caco-2, raji, and caco-2 + raji cells were cultured simultaneously and stained with anti-gP2 antibody at the end of incubation. cells were gated for gP2, based on 
the isotype in the respective cells.
Abbreviations: FITC, fluorescein isothiocyanate; GP2, glycoprotein 2.
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treatment significantly decreased and p24 level increased 

up to the level of untreated cells. In this regard, untreated 

and HIV-1-infected macrophages were served as a positive 

control, which showed gradual increase in the p24 level up 

to day 10, indicating unaffected HIV-1 replication in mac-

rophages (Figure 10A).

In order to observe anti-HIV activity of nanodrug in 

M-cell model, Raji cells were infected with HIV and cultured 

with Caco-2 cells. They were further treated separately with 

nanodrug or EFV for up to 10 days at the same concentration. 

Viral p24 protein level was measured in culture supernatant 

at different time points. In the case of nanodrug, p24 protein 

level did not change up to day 2. However, from day 3 to 

day 10, there was a significant decrease in viral replication 

when compared to EFV-treated cells. Compared to nanod-

rug, EFV treatment resulted in an immediate reduction in 

viral replication, but p24 level increased closer to the level 

of untreated cells within day 10, indicating viral rebound in 

the cells (Figure 10B). As a positive control, p24 level of 

HIV-infected Raji cells was observed up to day 10.

Figure 8 Immunocytochemical analysis of M-cell characters in caco-2 and raji co-culture.
Notes: Cells were exposed to anti-GP2 antibody after differentiation process and stained with fluorescent secondary antibody. Microscopic images were taken through Axio 
Imager 2. DaPI (in blue) indicated the cell nucleus, and the cells those have developed M-cell-like characteristics were stained with gP2 antibody (green).
Abbreviations: DaPI, 4′,6-diamidino-2-phenylindole; gP2, glycoprotein 2.
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At the end of two experiments, the primary infection 

of HIV-1BaL in both Raji and macrophages was confirmed 

by HIV-LTR-R/U5 gene polymerase chain reaction. The 

data represented in transcript accumulation index values in 

both cells indicated that both cell types were successfully 

infected with HIV and presented an optimum challenge 

to test the nanodrug in evaluating its anti-HIV activity 

(Figure 10C).

The epithelium layer that lies in the gut is impermeable 

to any macromolecules, including drug molecules except 

Peyer’s patches that contain M-cells.11,13 In this study, we 

have adopted an in vitro culture system that reproduced the 

characteristic of M-cells. Since this in vitro model is the 

only tool to study the human M-cells, it was very important 

to characterize it in detail. The biological characterization 

revealed that the presence of Raji cells in co-culture with 

×

Figure 9 Uptake and release of fluorescent dye (Alexa Fluor 610X NHS ester) labeled nanodrug (FND) by M-cells.
Notes: (A) Uptake of anti-gP2-conjugated nanodrug by M-cells within 2 hours of incubation. caco-2 and M-cells were treated with and without antibody (gP2) tagged with 
FND. The treatments were as follows (from left to right): (1) caco-2 cells treated with FND; (2) caco-2 cells treated with FND + gP2; (3) M-cells treated with only FND; 
and (4) M-cells treated with FND + gP2. cells were stained with DaPI in order to observe the localization of FND and are represented in the following order: (a) FND;  
(b) DaPI; and (c) FND and DaPI merged (scale bar 50 µm). Co-localization of FND on the cell surface is shown as a magnified image in (I), (II), and (III) of A (scale 
bar =20 µm). (B) Release of FND in vitro Transwell co-culture model at lower chamber. Drug release was observed with respect to fluorescence measurement. Fluorescent 
drug release was significantly sustained in M-cells than Caco-2 cells (P0.0015).
Abbreviations: DaPI, 4′,6-diamidino-2-phenylindole; FND, fluorescent nanodrug; GP2, glycoprotein 2; NHS, N-hydroxysuccinimide.
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Figure 10 comparative analysis of anti-hIV activity of nanodrug vs unformulated eFV on macrophages and M-cells.
Notes: (A) effect of nanodrug on hIV-infected macrophages compared to eFV. (B) effect of nanodrug or eFV was observed on hIV replication in M-cell culture model. hIV 
replication was monitored with respect to p24 protein level in the culture supernatant at different times (days). The data represented with respect to p24 level vs time (days) 
in untreated, nanodrug-treated (ND, in green), and eFV drug-treated (FD, in red) M-cells exposed to hIV (P=0.001). Untreated and hIV-infected macrophage/raji cells were 
treated as positive control (in blue). Statistical significance was calculated with respect to P-values (P=0.001). (C) hIV-lTr-r/U5 gene expression was done through Pcr. 
The two columns show hIV infection in the raji (black) and macrophage (gray) cells after 10 days of incubation. The lTr gene expressions in both cells were expressed in 
TaI and normalized with housekeeping gene gaPDh.
Abbreviations: D, day; EFV, efavirenz; HIV, human immunodeficiency virus; LTR, long terminal repeat; PCR, polymerase chain reaction; TAI, transcript accumulation index.

monolayer of Caco-2 cells help the Caco-2 cells develop 

M-cell-like characteristics. In order to confirm this, flow 

cytometric analysis was done with Caco-2 cells and 

Caco-2 + Raji cells co-culture, respectively. The analysis 

indicated that there was a significant change in Caco-2 cell 

surface, which is more close to M-cells. These data were 

also corroborated with other immunocytochemistry analysis 

indicating the co-cultured cells have expressed M-cell-

specific characteristics confirming establishment of the in 

vitro M-cell model. In order to observe the functional activity 

of the M-cell, anti-GP2-conjugated FND was introduced 

in the M-cell model. Further, M-cell-mediated uptake and 

release study was performed to observe the uptake and suc-

cessive release of nanodrug. The initial immunofluorescence 

study indicated that FND was taken up within first 2 hours 

of incubation. FND + GP2 showed higher uptake, indicat-

ing the M-cell-specific binding of anti-GP2 antibodies and 

adsorption of nanodrug. The absorption of FND and transport 

of FND by M-cells were observed at the lower chamber 

over a period of 48 hours. The fluorescence release study 
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clearly indicated that these cells provided sustained release 

of nanodrug that was slower than that of the unformulated 

drug. We believe that the mechanism of accumulation and 

release of unformulated drug and nanoformulated drug may 

be different. In particular, nanoparticles should enter by 

endocytosis-mediated transport and release through recycling 

mechanism that is a slow process compared to trafficking of 

the free low-molecular drug. This sustained release process 

of nanodrug may be more therapeutically effective than that 

of the unformulated drug.

Overall, the data clearly indicate the potentials of M-cell 

to carry anti-HIV drug from the gut side to the GALT side. 

In this regard, the binding of anti-GP2 antibodies may 

improve targeting of drug molecules toward M-cell, and 

following that, inherent transmigration capability of M-cell 

takes the drug molecule to the other side of the barrier. The 

anti-HIV activity data indicated that treatment of cells with 

free drug or nanodrug significantly lowered levels of viral 

replication compared to untreated Raji cells. In case of free 

EFV, there was an immediate decrease in viral replication 

as expected. However, rebound of viral p24 level within 

day 10 indicated failure of sustained inhibition of HIV 

replication in in vitro model. Whereas, in case of nanodrug, 

the immediate response was slower, but the subsequent 

sustained inhibition of viral replication was observed with 

consistent decline in p24 viral protein even on day 10 post 

infection. This observation definitely established the fact of 

the unique nests of the F127COOH nanoformulation over 

free EFV drug.

Nonetheless, the present study also acknowledged the 

fact that macrophage or reticuloendothelial system can iden-

tify and clear the foreign substances or current nanodrug 

in both the blood and tissues. This is an important part of 

immune system that may bring obstacles for a nanoformula-

tion directly applying in intravenous injection. However, 

the experimental design for current in vitro and future  

in vivo studies combines traditional oral drug formula with 

nano-technique in which nanoparticle may escape from 

macrophage tracking because of enteric coating capsule 

employed in our study. The nanodrug will be first encap-

sulated into an enteric coating capsule and administrated 

to mice. The present in vitro data verified the stability of 

nanoparticles under mimic intestine circumstance. Since 

the short period of drug release from nanodrug to the step 

of uptake by intestinal epithelium, this antibody digestion 

issue may be alleviated by our nanoformulation of enteric 

coating capsule. Because enteric capsule has the charac-

ter of pH sensitivity, the nanoformulation will come out 

from cracked enteric capsule only at the intestine site and 

achieve the targeted drug delivery to increase therapeutic 

efficacy.

Therefore, we report the transmigration of anti-HIV drug 

molecule through M-cells, its potential release, and anti-HIV 

activity. This study will also serve as a model for future 

anti-HIV drug study with new formulations targeting toward 

GALT. In the recent years, few studies indicated the poten-

tial of M-cell for vaccine delivery and also its role in HIV 

transcytosis in the GALT.47 However, this is the first report 

of using M-cells for anti-HIV drug delivery to the GALT and 

high-efficiency targeted drug delivery system. Nonetheless, 

the study could not establish the detailed nanodrug release 

profile compared to free drug and long-term stability of the 

drug in in vivo GALT model. Considering the limitations, the 

study still could establish evidence of delivery of nanodrug 

through M-cells, which is more therapeutically effective. 

Most importantly, this may also reduce the viral reservoir 

in the GALT compared to unformulated drug recommended 

at the clinic.

Conclusion
The main property of M-cells is the vertical transloca-

tion of particle from the intestine to lymphoid system. By 

utilizing this system, we have demonstrated the strong 

potential of F127COOH-EFV formulation to be used for 

high-efficiency targeted drug delivery system to the GALT. 

We also observed the steady release of nanodrug in the cell 

culture media compared to free drug. Considering the impor-

tance of GALT in HIV pathogenesis, this study will help 

us to significantly reduce the viral load of the GALT and 

improve the treatment outcome. It should now be possible 

to identify the mechanism of M-cell-based drug transport 

from the intestinal side to the GALT. The present study 

will help to design future oral nanodrug system to deliver 

anti-HIV drug with enteric-coated capsule that will survive 

the acidic digestion of stomach and deliver the drug directly 

to the GALT.
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