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Light controlling light in a coupled cavity-atom system 

Bichen Zou1, Zheng Tan1-2, and Yifu Zhu1 

1Department Physics, Florida International University, Miami, FL, USA 
2Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China 

Abstract. We present a theoretical model of light controlling light in a multi-atom 
cavity QED system consisting of three-level atoms confined in a cavity and 
interacting with a control laser from free space. A signal laser is coupled into the 
cavity and provides two output light channels: the transmitted signal light through 
the cavity and the reflected signal light from the cavity. We show that with the 
cavity electromagnetically induced transparency manifested by the free-space control 
light, the amplitude and the phase of the intra-cavity signal light can be manipulated 
by the free-space control laser. We analyze the cavity transmitted signal light and the 
cavity reflected signal light, and show that the two output channels of the signal light 
are complementary and the cavity-atom system is a versatile system for studies of all-
optical switching and cross-phase modulation at low control intensities. 

1. Introduction

Cavity quantum electrodynamics (cavity QED) studies the coherent interactions of two-level 
atoms and photons in a cavity and has found a variety of applications in quantum physics and 
quantum electronics [1-4]. In recent years, studies of cavity QED have been extended to the 
interactions of the cavity mode and multi-level atoms. There were earlier studies of optical 
bistability in three-level atoms confined in an optical cavity [5]. Recent studies of atom-cavity 
interactions have been directed to a composite system of an optical cavity and coherently 
prepared multi-level atoms, in which the atomic coherence and interference such as 
electromagnetically induced transparency (EIT) [6] can be used to manipulate quantum states of 
the coupled cavity and atom system and selectively enhance the optical nonlinearities [7-11]. It 
has been shown that in a coherently coupled cavity and multi-atom system, the interplay of the 
collective coupling of the atoms and the cavity mode, and the atomic coherence and interference 
manifested by EIT may lead to interesting linear and nonlinear optical phenomena [12-21].  
  Here we present a theoretical study of an atom-cavity system consisting of N three-level atoms 
confined in an optical cavity and coherently coupled from free space by a control laser. The 
system forms a -type standard EIT configuration with the cavity mode. We show that the free-
space control laser induces EIT for the intra-cavity signal field, which can be used to control both 
the amplitude and phase of the cavity-reflected signal light and the cavity-transmitted signal light. 
Under appropriate conditions, all-optical switching and large cross-phase modulation (XPM) for 
the reflected signal field and transmitted signal field can be obtained with a weak control field. 
The cavity-atom system provides an example of resonant nonlinear optics at low light intensities 
and can be used to explore fundamental studies of light controlling light phenomena. 
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2. Theoretical analysis

(a)                                                                            (b)        
Fig.1 (a) Schematic coupling scheme of coherently coupled three-level atoms in a 
cavity. A control laser drives |2> - |3> transition with Rabi frequency 2 .  is the 
control detuning. A cavity is coupled to the atomic transition |1> - |3> with the 
collective coupling coefficient gN  ( c is the cavity-atom detuning). A signal laser is 
coupled into the cavity and p is its frequency detuning from the atomic transition. The 
cavity transmitted signal light and the cavity reflected signal light are collected by two 
detectors. (b) Schematic diagram of the light input and output channels. The cavity-atom 
system provides two output signal channels: the reflection channel and the transmission 
channel. 

   Fig. 1 shows the composite atom-cavity system that consists of a single mode cavity containing 
N -type three-level atoms interacting with a control laser from free space. The cavity mode 
couples the atomic transition |1>-|3> and the classical control laser drives the atomic transition 
|2>-|3> with Rabi frequency 2 . 23  is the control frequency detuning and 13cc is the 
cavity-atom detuning. A signal laser is coupled into the cavity mode and its frequency is detuned 
from the atomic transition |1>-|3> by 13pp . The interaction Hamiltonian for the coupled 
cavity-atom system is  
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where )(ˆ i
lm  (l, m=1-4) is the atomic operator for the ith atom, Vg c 013 2/  is the cavity-atom 

coupling coefficient, and â  is the annihilation operator of the cavity photons. The resulting 
equation of motion for the expectation value the intra-cavity light field (two-sided cavity, one 
input) is given by [22] is  

 in
p

N

i

i
c aigaia /)2/)(( 1

1

)(
3121 , (2) 

where in
pa is the input signal field, i

i
T (i=1-2) is the loss rate of the cavity field of the mirror i 

 (Ti is the mirror transmission and  is the photon round trip time inside the cavity). For 
simplicity, we consider a symmetric cavity such that 2/21 . With g<< , the atomic 
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population is concentrated in |1> and the steady-state solution of the intra-cavity signal field is 
given by 

ii
a

a
c

in
p/

, (3) 

 where χ is the atomic susceptibility given by 

)(12

2
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p i

i

Nig . Here 3 is the 

spontaneous decay rate of the excited state |3> and 12 is the decoherence rate between the 
ground states |1> and |2>. The transmitted signal field is then given by aaT  and the 
reflected signal field from the cavity is in

pR aaa . We are interested in the regime of 
parameters near cavity EIT in which the laser fields are near or at resonance with the atomic 
transitions, and under the conditions of low light intensities in which the intra-cavity field is very 
weak and the control field is well below the saturation level. We show that a weak control light 
can induce large nonlinearities in the cavity-atom system, which then may be used to control the 
amplitude and phase of the cavity transmitted signal field and the cavity reflected signal field 
[23]. The primary control parameters of the light-control-light system are the frequency and 
intensity of the control laser that are characterized by the control detuning  and control Rabi 
frequency respectively.  

Fig. 2 (a) The intensity ratio 2
T  and the phase shift T of the cavity transmitted field 

versus the control frequency detuning /  (c) The intensity ratio 2
R  and (d) the 

phase shift R of the cavity reflected field versus the control frequency detuning /  
The parameters used in the calculations are 10Ng , 32 , 12=0.001 , and 

0pc . The control Rabi frequency =0.2 0.5 , and for the black lines, red 
lines, and blues lines respectively. 

   Fig. 2(a) and 2(b) plot the intensity ratio of the cavity transmitted field, 2
T

in
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shift R versus the control frequency detuning / 3 respectively. Fig. 2(c) and 2(d) plot the 

intensity ratio of the cavity reflected field, 2
R

in

R

I
I  and the phase shift T versus / 3

respectively. The relevant parameters are 310Ng , 32 , 12=0.001 , and 0pc . 
The transmission spectrum in Fig. 2(a) and 2(b) exhibit the standard cavity EIT spectral peak at 

=0 with a peak linewidth that is substantially smaller than the decay width and increases 
with the increasing of the control laser. The phase shift of the transmitted field varies rapidly 
across the resonance at =0 and has a line shape of the anomalous dispersion. Concomitantly, 
the reflected field from the cavity exhibits a dip with the linewidth matching the peak linewidth 
of the transmitted field and its phase shift has a lineshape of the normal dispersion with a steep 
slope across =0. The calculations of Fig. 2 are done with the signal laser tuned to the resonance 

p=0 and show that the transmitted field and the reflected field can be controlled by varying the 
frequency of the control laser. For example, Fig. 2(a) and 2(c) show that with a resonant control 
laser ( =0), the transmitted light field can be turned on or off by turning on or off of the control 
light, and at the same time and in contrast, the reflected light field is turned off or on. Thus the 
coupled cavity-atom system effectively performs all-optical switching with reciprocal functions 
for the transmission and reflection with a weak control laser. When the control laser is tuned 
slightly away from the resonance ( ≠0 but << ), large phase shifts are induced on the 
transmitted field and the reflected field (Fig. 2(b) and 2(d)), which effectively performs the 
cross-phase modulation (XPM) on the transmitted/reflected field with a weak control light near 
the atomic resonance. 

2-1 All-optical switching      

                    Fig. 2 shows that a weak control laser can be used to control the amplitude and phase of both 
the transmitted and reflected light fields from the cavity. In particular, when =0 and 0pc

, cavity EIT is established, and the coupled cavity-atom system can perform the all-optical 
switching function with two complementary output channels. Under the resonance condition 
( =0 and 0pc ), the reflected signal intensity is 

2
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and the transmitted signal intensity is 

2
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2
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2

2
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22

))((
)(

Ng
II in

T . (5) 

The performance of an all-optical switch can be characterized by the switching efficiency 

defined as
inI

II )0(|)1(| , where I(|1>) is the signal output intensity when the switch is 

closed and I(|0>) is the signal output intensity (leakage) when the switch is open (I(|1>) > I(|0>)), 
and Iin is the input signal intensity. Eq. (4) indicates that IR( =0) > IR( ≠0) so for the all-optical 
switching operating on the reflection output channel, we designate IR( ≠0) =I(|0>) for the open 
state |0> of the switch and IR( =0)=I(|1>) for the closed state |1> of the switch, then the 
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switching efficiency for the reflection output channel is  
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R . (6) 

Eq. (5) indicates that IT( ≠0)>IT( =0). Therefore, for the all-optical switching with the 

transmission output channel, we designate IT( =0)=IT(|0>) for the open state |0> of the switch 

and IR( ≠0)=IT(|1>) for the closed state |1> of the switch. Then, the switching efficiency for the 

transmission output channel is 

22
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2
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2
213
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2
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22

)())((
)(

NgNgT . (7) 

   Eq.(6) and Eq.(7) show that under appropriate conditions, the switching efficiency for the 
reflection channel as well as the transmission can be near unity. In order to provide a detailed 
picture for the study of all-optical switching in the coherently coupled cavity-atom system, we 
present numerical calculations in Figures 3-6 and show that practical parameters can be 
identified, in which the all-optical switching of the two output channels with the switching 
efficiency near unity can be obtained. 
  The switching efficiency ηR and ηT depend on the collective coupling coefficient Ng , the 
control laser Rabi frequency 2 , the cavity decay rate , and the deocherence rate 21. In order to 
clarity the performance characteristics of the coupled cavity-atom system, we plot in Fig. 3 to 

Fig. 3 (a) Switching efficiency of the  reflected signal light ηR and (b) switching 

efficiency of the transmitted signal light ηT versus Ng / with  12=0.0001  (black 

lines), 12=0.001  (red lines) and 12=0.01  (blues lines), respectively. Other 

parameters are p= = Ng . =0.3  and =3 . 
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Fig. 4 (a) Switching efficiency of the  reflected signal light ηR and (b) switching 

efficiency of the transmitted signal light ηT versus / with  12=0.0001  (black 

lines), 12=0.001  (red lines) and 12=0.01  (blues lines), respectively. Other 

parameters are p= = Ng =20 =0.3  and  =3 ,  

Fig. 6 separately the switching efficiency ηR and ηT under the resonance conditions =0 and

0pc , versus these parameters with practical values obtainable experimentally [9].  Fig. 3  

Fig. 5 (a) Switching efficiency of the  reflected signal light ηR and (b) switching 

efficiency of the transmitted signal light ηT versus the decoherence rate 21/ with  

Ng =20  (red lines), Ng =15  (black lines) and Ng =10  (blues lines), 

respectively. Other parameters are =0.5 and  =3 . 

shows that ηR and ηT increases initially with the collectively coupling coefficient Ng  and are 

maximized at moderate Ng value. Fig. 4 shows that the all-optical switching of the cavity-atom 

system can be done with a weak control laser. The switching efficiency increases rapidly with 
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the increasing control field, but saturates as  values near the decay rate 3. Fig. 5 shows that ηR 

and ηT decreases monotonically with increasing 21, which indicates that the all- optical 

switching is a coherent process and the switching efficiency (particularly ηT) depends sensitively 

Fig. 6 (a) Switching efficiency of the  reflected signal light ηR and (b) switching 

efficiency of the transmitted signal light ηT versus / with  12=0.0001  (black 

lines), 12=0.001  (red lines) and 12=0.01  (blues lines), respectively. Other 

parameters are Ng =15 and =0.2 .  

on 21. For the high efficiency operation of the all-optical switching, it is desirable to have an 

atomic system with small decay rate of the ground state coherence. It has been shown [36] that in 

cold Rb atoms, the decoherence rate as small as 12=10-4  has been observed. Therefore, it is 

possible to achieve high switching efficiencies in experiments with cold alkaline atoms as the 

optical medium. 

   Fig. 6 plots ηR and ηT versus the cavity decay rate  and shows that it is more efficient to 

operate the all-optical switching of the cavity-atom system at a relatively high  value. 

Therefore, a moderate to low Q value of the cavity provides a better switching efficiency. 

Overall, the highly efficient all-optical switching at low control intensities requires a moderately 

large collective coupling coefficient Ng , a sufficiently large cavity decay rate , and a small 

decoherence rate 21. These requirements can be readily fulfilled experimentally. As a numerical 

example, consider cold Rb atoms ( 3=3 MHz) confined in a 5 cm cavity with a finesse of 150 

( =10 MHz), with Ng =50 MHz (N≈104 atoms), 21=10 KHz(~0.003 3), and =1.5 MHz 

(corresponding to a control intensity 2
230

2
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times smaller than the Rb saturation intensity of 1.6 mW/cm2), the switching efficiency is 

derived to be ηR=0.83 and ηT=0.56. Fig. 3-6 also show that the switching efficiencies for the two 

output channels are different. Under the normal operating conditions discussed here, ηR > ηT: it 

is more efficient to operate the all-optical switch of the cavity-atom system in the reflection 

mode. 

2-2 Cross-phase modulation 

  When the control laser is tuned away from the resonance ( ≠0, but keeping 0pc ), the 
phase shift of the intra-cavity signal field is introduced by the control laser. We first derive the 
analytical results with 12=0 (neglecting the decoherence. The effect of decoherence with 12≠0 
will be considered in the numerical calculations) for the two output channels of the signal light. 
Specifically, the light field transmitted through the cavity is in

p
i

TT aea T .
The amplitude ratio of the transmitted signal field to the input signal field is given by 

2/12
3

222

2/12
3

4

)))(()((
))(((

NgT  , (8) 

and the phase shift T is given by 

4
3

22

22
31 )(tan
Ng

Ng
T . (9) 

Under the condition of the strong collective coupling ( 3
2 Ng ) and for a weak control field (

3
2 . For the near resonant nonlinear optics studied here, < 3, the phase shift of the 

signal field is
3

2

T , and the amplitude ratio of the transmitted field to the input signal 

field is 
NgT 2
3 . The phase shift is proportional to the control laser intensity and corresponds 

to the standard Kerr nonlinearity. Under the strong collective coupling condition, a large phase 
shift of the transmitted field can be obtained but the transmitted field amplitude is very small.  
The reflected signal field from the cavity is in

p
i

RR aea R . The amplitude ratio of the reflected 
signal field to the input signal field is given by 

2/122
3

222

2

))()(( Ng
Ng

R , (10) 

and the phase shift R of the reflected signal field is 

)(
tan

3
2

2
1

NgR . (11) 

As an example, with a weak, near resonant control ( =0.5  and =0.01 ), 310Ng , and 
=2 3, the amplitude ratio of the reflected signal field to the input signal field is ~ 79% and the 
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XPM phase shift of the reflected field from the control laser is ~0.5 rad. In the limit of 

|)(| 3
22 Ng , one derives 

3
2

2

Ng
Ng

R  and 
)( 3

2

2

NgR , which is the 

phase shift from the Kerr nonlinearity induced by the weak control field on the reflected cavity 
field. The reflected field amplitude can be nearly equal to the input signal field when the 
condition of strong collective coupling is satisfied ( 3

2 Ng ), but the phase shift R 
approaches zero. Therefore the optimal performance of the cavity system for XPM is achieved 
for moderate Ng 2 values. As it will be further clarified in the numerical calculations that by 
inducing cavity EIT in the coherently coupled cavity-atom system, the XPM can be obtained 
near the atomic resonance with the control detuning << , which leads to a larger R value, but 
at the same time still maintains a sufficiently large amplitude of the transmitted/reflected field. 
This is in sharp contrast with the conventional XPM systems in which the laser fields have to be 
tuned far away from the atomic resonance to minimize the absorption loss.   

Fig. 7 (a) The intensity ratio 2
T  and (b) phase shift T of the cavity transmitted 

signal field versus (  / (c) The intensity ratio 2
R  and (d) phase shift R of 

the cavity reflected field versus (  / The parameters used in the calculations 
are 310Ng , 32 , =0.01 3, and 0pc . The decoherence rate 12=0, 
0.001 0.005 , and 0.01 for the black lines, red lines, purple lines, and blues 
lines respectively.  

  It is necessary to quantify the XPM performance of the cavity-atom system by comparing the 
phase shit and the field amplitude. A useful system has to be able to produce large XPM phase 
shits and at the same time, provides sufficiently large field amplitudes. For studies of nonlinear 
optics at low light intensities, such requirements have to be obtained at the condition of low 

control field intensities. Fig. 7 plots 2
T

in

T

I
I , 2

R
in

R

I
I , T, and R versus the square of the 

control Rabi frequency 2, which is proportional to the control light intensity 2
230 )/(hcI . 
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It can be seen that for the reflected field, the XPM phase shift increases with the control light 
intensity and exhibits saturation at high control intensities while the reflected light intensity 
decreases with the control intensity and approaches zero at high control intensities. For 

comparison, the green curve in Fig. 4(c) plots the phase shift given by
)( 3

2

2

NgR , 

(Eq. (10) with |)(| 3
22 Ng ). For the transmitted field, the XPM phase shift exhibits 

rapid change at low control intensities near zero and also saturates at high control intensities 
while the transmitted intensity increases with the control intensity.   

  The ground state decoherence degrades the system performance of the light control light. 12 
ultimately determines the minimum linewidth of the cavity EIT and also the lower limit of the 
control Rabi frequency . As the decoherence rate 12 increases, the amplitudes of the transmitted 
field and the reflected field decrease; the phase shifts of the transmitted field and the reflected 
field also decrease. It is preferable to select an atomic system with a small 12. We note that in 
cold Rb atoms, the decoherence rate 12=10-4  has been observed [24]. Therefore, a possible 
experimental system may consist of cold Rb atoms ( 3≈6 MHz) and a cavity with a moderate 
finesse (with 32  and a cavity length of 5 cm, the required finesse is F=124). With a weak 
control laser, the linewidth of the cavity EIT is much smaller than 3 (with =0.5  and 

12=0.001 , the linewidth of the cavity EIT is ~ 0.01 ), it is necessary to have the control laser 
and the signal laser with a linewidth much smaller than 0.01 3. For the Rb atoms, the required 
laser linewdth is in the KHz range, which can be obtained with the frequency stabilized diode 
lasers.  

Fig. 7(a) and 7(c) show that at low control intensities, the reflected field amplitude is greater 
than the transmitted field amplitude. To achieve a large field amplitude, it is desirable to operate 
the cavity-atom system with the reflected light field. At low control intensities, the XPM phase 
shift is proportional to the control intensity, which is in the Kerr nonlinearity regime. A large R 
value can be obtained at a sufficiently large 2

R  value with a weak control light. As a numerical 
example, In an cavity-atom system with 12=0.001 , the XPM phase shift R ~0.5 rad. and the 
reflected intensity ratio 2

R  ~ 70% can be obtained with practical parameters =0.5  

310Ng , 32 , =0.01 3, and 0pc .   
  The nonlinear optics at low light intensities requires a weak control field below the saturation 
intensity ( ). The presented calculations are valid under the condition 11~1, i.e., the atomic 
population is concentrated in |1>, which requires g<<  Therefore, the cavity-atom coupling 
coefficient g<< , consequently, this is the weak coupling regime of the cavity QED with single 
atoms (the bad cavity regime).  
   It is interesting to compare the light-control-light scheme based on the cavity EIT here with the 
earlier published scheme based on the cavity polariton interference [19-20]. The cavity polariton 
scheme works also with three-level atoms, but the free-space control laser and the signal laser are 
tuned to the polariton resonances (the normal mode) that are separated from the respective atomic 
resonances by the vacuum Rabi splitting. The control laser induces the destructive interference 
for the polariton excitation and renders the cavity-atom system opaque to the signal light [25]. 
For the cavity EIT scheme presented here, the control laser and the signal laser are tuned to the 
atomic resonant transitions of the three-level system and create the EIT condition. EIT renders the 
medium transparent to the signal laser. Therefore, the scheme in Ref. 18 and 19 is based on 
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electromagnetically induced opaque in the normal mode excitation while the scheme here is 
based on electromagnetically induced transparency. The two schemes result in comparable phase 
shifts and amplitudes for the transmitted field under the conditions of a weak control laser and 
moderate optical density. 
   Our earlier study of the cavity-atom polariton system only analyzed the cavity-transmitted field. 
Here the analysis is carried out for both the cavity-transmitted field and the cavity-reflected field. 
The phase shift and amplitude of the cavity-reflected field as well as the cavity-transmitted field 
are analyzed and compared. The results show that the cavity reflected field and cavity transmitted 
field are complementary in their performance merits. The cavity system provides the versatility of 
choosing either the reflected field or transmitted field for the studies of all-optical switching and 
the cross-phase modulation according to their respective performance merits in a given parameter 
regime.    
  There are several studies of the EIT enhanced Kerr nonlinearities and XPM at low light 
intensities in multi-level atomic systems in recent years [26-33]. Most of these studies were done 
in four-level N-type systems coupled by three laser fields in free space. They can be divided into 
4 types: a four-level N type coupled by three laser fields (Ref. 26-28), a five-level M type coupled 
by four laser fields (Ref. 26), a four-level tripod type coupled by three laser fields (Ref. 30-31), 
and a modified five-level tripod type coupled by 4 laser fields (Ref. 32). Ref. 28 proposed to 
inject a signal light (that induces the Kerr nonlinearity on a free-space signal light) into a 
Michelson-type double cavity containing the four-level atoms and therefore increase its coupling 
time with the free-space signal light. The double cavity is a passive device used solely for the 
signal light. Ref. 33 explores basically the N-type in the time domain through the EIT light 
storage process. Ref. 34 deals with the self Kerr nonlinearity (self phase modulation) in the three-
level  type system confined in a travelling-wave cavity. In contrast with the EIT schemes in free 
space with multi-level atoms coupled by at least three laser fields, our scheme requires only two 
laser fields coupled with three-level atoms, but needs to operate in a cavity (it differs from Ref. 
[28] in that the signal light is coupled into the cavity and the cavity QED effect measured by the 
vacuum Rabi splitting plays an essential role). Due to the cavity feedback enhancement, our 
scheme produces a large XPM phase shift (~ 0.5 rad. and with a transmitted light intensity about 
50% of the input light intensity under practical conditions). In the fee-space EIT schemes, in 
order to produce the comparable XPM phase shift, a much greater optical depth of the atomic 
medium is required (a few orders of magnitude greater than our scheme, see Ref. 26, 28 and 32).  
   The XPM phase shift in our scheme is very small when the medium optical depth becomes very 
large ( gN >> ). There is no such limiting factor for the EIT schemes. If very large optical 
depths of the atomic medium are available, the EIT scheme may produce a greater XPM phase 
shift (maybe even reaching a value of  as suggested in Ref. 31 and 32). Therefore, our scheme 
performs better with an atomic medium of low to moderate optical depths while the free-space 
EIT schemes perform better with an atomic medium of very high optical depths.   

3. Conclusion
In conclusion, we have shown that coherently coupled cavity-atom system can be used to study

resonant nonlinear optics at low light intensities. The system is well suited for studies of all-
optical switching and XPM at low control light intensities. In the weak coupling regime of the 
cavity QED, the interplay of the EIT and the collective coupling of atoms with the cavity mode 
enable the nonlinear control of the intra-cavity light field through a free-space control laser. The 
analytical results and numerical calculations show that large optical nonlinearities can be induced 
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by the control laser near the narrow resonance of cavity EIT, which can be used to control the 
amplitude and phase of the cavity transmitted and reflected fields.  
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