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Online power quality disturbance detection by support vector
machine in smart meter

Imtiaz PARVEZ1, Maryamossadat AGHILI2, Arif I. SARWAT1,

Shahinur RAHMAN1, Fahmida ALAM1

Abstract Power quality assessment is an important per-

formance measurement in smart grids. Utility companies

are interested in power quality monitoring even in the low

level distribution side such as smart meters. Addressing

this issue, in this study, we propose segregation of the

power disturbance from regular values using one-class

support vector machine (OCSVM). To precisely detect the

power disturbances of a voltage wave, some practical

wavelet filters are applied. Considering the unlimited types

of waveform abnormalities, OCSVM is picked as a semi-

supervised machine learning algorithm which needs to be

trained solely on a relatively large sample of normal data.

This model is able to automatically detect the existence of

any types of disturbances in real time, even unknown types

which are not available in the training time. In the case of

existence, the disturbances are further classified into

different types such as sag, swell, transients and unbal-

anced. Being light weighted and fast, the proposed tech-

nique can be integrated into smart grid devices such as

smart meter in order to perform a real-time disturbance

monitoring. The continuous monitoring of power quality in

smart meters will give helpful insight for quality power

transmission and management.

Keywords Machine learning, One-class support vector

machine, Power quality, Disturbances, Smart grid, Smart

meter

1 Introduction

An efficient, robust and smart power grid system is the

key driving force for the development of the energy sector

in the twenty-first century [1]. Smart grid plays a vital role

to improve efficiency via reducing carbon emissions. In

recent years, smart grid has become the emerging trend

because of its flexible and steadfast energy distribution

through a duplex communication system between the

supplier control hub and the smart meters on the consumer

end [2–4]. A smart meter is employed for monitoring

power consumption with two-way communication and

consumers can access detailed information about their

usages and the quality of the service. These acquired data

provide information to the customers regarding their

overall power consumption, how they consume power, and

also inform them in a way to reduce their consumption

[5–9]. Similarly, the finer resolution of data is used for the

supply to loads during peak time by the power companies.

Hence, the ultimate aspiration of the smart meter is not

only to increase effectiveness of the power management,

but to integrate new power generation techniques into the
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distribution level. Moreover, it reduces excessive power

consumption and alerts people about it [10]. Now-a-days,

advanced smart meters are equipped with monitoring of

voltage disturbances, harmonics and power factor that

assist power companies for better understanding of the

power quality (PQ) [11].

The quality of power and its assurance have become a

prime factor for the utility sector in the recent past. The

equipments on the consumer ends are highly sensitive to

numerous PQ problems. Apart from this, they have nega-

tive impact on the power supply system [12, 13]. Poor

multifarious power system interruptions such as notches,

transients, momentary disorder, voltage swell and sag,

under-voltage, over-voltage, harmonic, etc., are caused due

to poor quality of power supply [14, 15]. The majority of

industrial electronic instruments are highly sensitive to PQ

issues. Therefore, a cost effective solution is essential to

keep them away from the malfunction and unnecessary

expenses to install PQ monitoring system [16]. Simulta-

neously, it is necessary to know the root of the disturbance

for both sides - utility and supply, before taking suit-

able mitigating action to facilitate electric PQ and energy

efficient system. A continuous in-sit observation of PQ

enables consumers to inform the distribution companies

regarding the issues. Therefore, a real-time on-line quality

monitoring and assurance is the only solution to correct

various actions such as reduction of consumption, power

factor improvement and load demand balance.

In this paper, we propose a combination of discrete

wavelet transform (DWT) and two types of machine

learning-based algorithms to extract features from the

power signal and sort out PQ issues. From a voltage

transformer, continuous data are given as input to wavelet

transform (WT) filters, then the output feature set is fed to a

model trained by one-class support vector machine

(OCSVM). The disturbance is detected and tagged as

abnormalities if any. In the case of disturbance detection,

another multi-class support vector machine (SVM) will

analyze the corrupted data to define the disturbance

types.

In the literature, various solutions for this problem are

presented which are mainly composed of two steps: �

extracting useful information from the waveform as a

feature set; ` training a model based on the provided

feature sets and labeled data for supervised pattern recog-

nition. However, the driver events and various components

of the distribution network along with scarcity of all kinds

of abnormal data in the training period, hinder the effective

applications of the proposed methods. Also for PQ detec-

tion at the distribution level, such as meter level, we need

light but robust method due to the limited computational

resources in smart meters. Based on the aforementioned

data driven pipeline for this problem, majority of the

research papers defined and simulated the possible distur-

bance patterns and then trained their models based on the

simulated data. While these methods can detect the

abnormalities of the defined pattern, they fail to capture the

unknown types of abnormalities. In this paper, with focus

on the real power data, we redress this shortcoming by

applying a semi-supervised technique.

Our proposed method applies a cascade two-level clas-

sification algorithm on a simulated data set of power

voltage after carefully preprocessing the data. The contri-

bution of our study is:

1) To develop real-time PQ monitoring system for smart

meter level.

2) To detect and classify any type of disturbance even the

novel form.

3) To provide a light but robust method for PQ

assessment.

The rest of this paper is as follows: In Section 2,

the literature review and preliminaries of our applied

techniques have been described. The system model is

presented in Section 3. The simulation results are illus-

trated in Section 4. Finally, a brief conclusion is included

in Section 5.

2 Literature review

In the literature, several research directions can be found

for PQ disturbance detection. One direction explores the

efficient, accurate and high-speed techniques of feature

extraction from signals using various methods such as

Fourier transform (FT), S-transform (ST), WT, root mean

square (RMS), fast Fourier transform (FFT), and fast

dyadic Fourier transform (FDFT), etc. [17–20]. Another

direction investigates the optimal sets of features out of all

the extracted features from the signal [21, 22]. This

direction performs PQ disturbance detection and segrega-

tion using diverse artificial intelligence (AI) and machine

learning (ML) techniques such as fuzzy logic [23], neural

network [24], SVM [25, 26], decision tree [27, 28], expert

system [29–31], and hidden Markov model [32]. Most of

the researchers not only considered the classification and

anomaly detection performance but also gave importance

on the computational efficiency and processing speed

[27].

FT being one of the earliest techniques for signal anal-

ysis can detect the existence of a specific frequency in

power waveforms. However, it is incapable of recognizing

time evolving effect of non-stationary signals [33]. Short-

time Fourier transform (STFT) was proposed afterwards to

Online power quality disturbance detection by support vector machine in smart meter 1329

123



solve the aforementioned problem of FT. Although STFT

or windowed FT improves the FT, it suffers from fixed

window width. Fixed window size cannot analyze low-

frequency and high-frequency of transient signals at the

same time which is important for disturbance detection

[34]. Later, WT gained popularity among researchers

because of its capability to analyze power system’s non-

stationary root in various disturbances [35, 36].

In [37], authors applied WT on the wave as the first step

to remove the noise in the signal. Following this, param-

eters such as peak value and periods can be calculated by

FFT, which helps to identify the disturbance types. Gaouda

et al. exploited the WT combined with K-nearest neighbor

(KNN) for signal feature extraction and classification [38].

Although this method performed well in the low level of

noise, its accuracy degraded when the level of noise

increases (i.e. noise level is greater than 0.5%). In [39], the

authors proposed a less computationally expensive algo-

rithm which extracted the features of the signal by two

relatively simple and quick methods of discrete Fourier

transform (DFT) and RMS. Based on a limited set of fea-

tures and a rule-based decision tree, they detected and

defined the types of nine categories of signal disturbances

in real time.

One of the earliest approaches of PQ disturbance

detection conducts point-to-point comparison of the signal

in a cycle. Despite its simplicity, it has poor performance

when the pattern of disturbance is repetitive in nature [40].

Ghosh and Lubkeman as the pioneer, used artificial neural

network (ANN) for automatic waveform classification

[41]. They applied two different variations of the neural

networks in the unprocessed signal. Later in 2001, a rule-

based system was introduced in [42] for disturbance clas-

sification. Although this method is simple to implement, its

model can not be generalized easily, and with the growth of

disturbance types and patterns, the increasing number of

‘‘If’’ and ‘‘Else’’ rules hinders the system efficiency and

capacity.

In [26], the authors utilized SVM with radial basis

function (RBF) kernel to detect the disturbance patterns in

the three-phase simulated signals. The results show a

promising performance with an acceptable accuracy. In

[25], Axelberg et al. applied the SVM model for classifying

the voltage disturbance on the real and synthetic data.

Extracted features from the data such as minimum RMS

voltage, harmonic components, symmetric components,

RMS voltage at selected time instants, total harmonic

distortion, and the duration of the disturbance composed an

informative sample space [25, 43]. In [44], weighted SVM

(WSVM), FT and WT coupled hand in hand to classify five

disturbance categories. As both of selected features and

tuning parameters influence the classification performance,

Moravej et al. incorporated a two-stage feature selection by

the combination of SVM and digital signal processing

(DSP) techniques [21]. Before applying the SVM on the

feature set, they performed mutual information feature

selection technique (MIFS) and correlation feature selec-

tion (CFS) for prominent features selection and redundancy

elimination. Eristi et al., in a similar approach, added

feature extraction and selection methods along with WT,

aiming to reduce the feature space in order to reach higher

accuracy and lower resource consumption [45]. However,

all these proposed approaches are mostly for the trans-

mission and generation levels of the grid considering

possession of huge computational capacity and

resources.

In order to analyze PQ at the distribution level, the

utility company looks forward for techniques at the smart

meter level. But the meters have limited memory, and the

processing capacity requires the signal processing should

be computationally light weight and fast enough. In this

regard, very limited works have been found in the litera-

ture. Borges et al. proposed their technique which is exe-

cutable inside the smart meter [27]. They extracted some of

the features by using the FFT that are computationally low

cost and routinely integrated in hardware and they captured

the remaining features in time domain. For detecting the

type of the disturbance, they exploited the decision tree and

ANN and reported higher than 90% precision rates. All the

processes were designed to be embedded in smart meter.

Reviewing above studies, we propose new method SVM

for PQ detection in smart meter. Being computationally

light weight and guaranteed global optimum value, our

technique is more feasible in smart meter [46]. Our method

not only detects the disturbances but also classifies them

with higher precession compared to other methods such as

Isolation Forest. Besides that, our method provides real-

time PQ monitoring at meter level and can detect any kind

of new disturbances.

2.1 PQ issues

In the power system, even a short period of disturbances

might lead to a huge amount of power losses. Hence, PQ

monitoring becomes one of the major services of the power

companies. One way of guaranteeing the PQ is the precise

monitoring of the waveform, capturing any distortion form

and rooting out the cause of it.

Some common PQ interferences and their effects in the

distribution sites are provided here to emphasize the

importance of an online accurate disruption detection.

1) Unbalanced waveform: frequency is kept almost

steady in large interconnected distribution networks,

and changes are a rare incident. Therefore, frequency

deviation is frequent on smaller networks, specially for
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those supplied by on-site generators. Lower value of

the inertia constant due to reduction of connected

generators to the power system is the main reason

behind it. It may cause damage of electrical equipment

and have the worse impact on clock (motor driven)

speed.

2) Transients: transients can be defined as unexpected

changes of voltage or current from rated values. Its

duration is very small, typically lasting from 200 ls to
1 s. Lightning strikes, electrostatic discharges (ESD),

poor grounding, load switching, and faulty wiring are

the main reasons behind it. Transients can delete or

change computer data and make hard to identify

calculation errors. In severe cases, they can damage

electronic instruments and hamper power system

operations.

3) Voltage sag: a voltage sag is a short span drop of RMS

voltage. Undervoltages are defined as voltage drop

greater than two minutes duration. Common reasons of

undervoltages and voltage sags are faults (short

circuits) on the power system, weather factors, motor

starting, inclusions of customer load and introduction

of large loads in the power system. Sags can shut down

computers and other sensitive equipments within a

moment. Undervoltage conditions can hamper certain

types of electrical instruments.

4) Voltage swell: voltage swell is momentary rise in

voltage magnitude. Overvoltages are defined as volt-

age increase greater than two minutes duration.

Overvoltages and voltage swells are typically gener-

ated by deviations of power line switching and large

load. If voltage rise has too high value, it may destroy

electrical instruments and shut down power systems.

The consumer’s voltage controlling device is unable to

act as quickly as to give protection from all swells or

sags.

5) Interruptions waveform: when voltage magnitude

reduces to zero, interruptions occur in the power

system. They are categorized as long-term, temporary

or momentary. Momentary disruptions happen when

utility system is being interrupted and automatically

restored within a short duration (less than 2 s).

Researchers have considered diverse types of distur-

bances and they trained their models based on their pre-

defined types. Uyar et al. [47], Koleva [48] and Kostadinov

[49] defined 6 classes of disturbances: sag, swell, outage,

harmonic, swell with harmonic and sag with harmonic.

Sahani [50] composed 9 classes, including momentary

interruption, sag, swell, harmonics, flicker, notch, spike,

transient, and sag with harmonics. Khokhar [51] presented

6 more categories in addition to [52] which are swell with

harmonics, interruption and harmonics, impulsive

transient, flicker with harmonics, flicker with swell, and

flicker with sag.

Considering the fact that various types of disturbances

can occur together and make several new disturbance cat-

egories, defining a closed set of disturbance has an obvious

drawback of missing some undefined, and unknown pairs

of anomalies [52]. This is one of the limitation of many

proposed automatic disturbance detection and classification

techniques. To address this issue, by considering the fact

that any types of unknown disturbance can possibly happen

together and results a new form of disturbance with a

varying degree of noise, our model (OCSVM) is trained

particularly on the normal dataset. Training a semi super-

vised model on the abundant set of normal data granted the

model the ability of abnormality detection with almost 93%

accuracy. After detection of the disturbance by OCSVM

model, a complementary multi-class classification model

will capture the correct label of the disturbances. This

method will at least detect the disturbance even if it fails in

capturing the appropriate type. This technique is highly

advantageous in the uncertain and real environment while

the types of abnormality cannot be accurately predicted

prior to the application of the system or when enough

samples of different abnormalities are not available for

training the system.

2.2 WT

WT has emerged as a useful tool for presenting a signal

in the time-frequency domain. It is superior than FT when

the frequency content of a signal is non stationary. This

transform provides both time and frequency information

required for extracting transient information from non

stationary signals. WT has multiple implementation such as

DWT, continuous wavelet transform (CWT) and wavelet

packet transform (WPT). Among all, DWT and WPT have

been applied in real world problems.

In our study, we apply DWT which is one of the most

practical types of WT. DWT is mostly used for decom-

posing a time series signal S(t) into components such as

detailed coefficients and approximation coefficients [53].

The low pass and high pass filter yield approximation

coefficients and detailed coefficients, respectively. The

output of low pass filter is further decomposed into level 2

components, consisting of approximation coefficients and

detailed coefficients which is shown in Fig. 1.

2.3 Signal features extraction and selection

Signal features extraction and selection are two impor-

tant steps for signal classification. Effective features set can

heavily impact the performance of the classifier. Feature

selection reappears a subset of the original features while
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feature extraction produces new feature from signal having

native features.

Each signal carries many native features of basically two

types – irrelevant and redundant. Removing those does not

cause information loss [54]. Irrelevant and redundant fea-

tures are two separate ideas. One pertinent feature can be

considered as redundant in the existence of another feature

with which it is powerfully connected [55]. Though

wavelet and multi-resolution analysis (MRA) of signal

extract the significant information, they are inefficient and

sometimes misleading to apply the classifier on the large

feature set. The optimized distinct features must be

extracted and selected in a way to reduce feature vector’s

dimension and maximize classification performance.

Many features such as entropy (Ent), energy (E), mean

value (M), standard deviation (Sd), and RMS were widely

used in several research papers as the most informative and

discriminating features. By carefully evaluating those

research studies [14, 52, 56–58], the feature set provided by

probabilistic neural network based artificial bee colony

(PNN-ABC) optimal feature collection algorithm by Kho-

khar et al. [51] is exploited in our study. Proposed favor-

able features are [E (d1), Kurtosis (KT)(d2), RMS (d3),

Skewness (SK)(d4), SK (d5), E (d6), RMS (d7), Ent (d8),

KT (d8)] which extracted from Daubechies mother wavelet

at level 4 and in different levels of decompositions. These

features are calculated for all the 3 phases of voltage signal.

Calculating a group of attributes for each phase of the

voltage, all three separate sets are concatenated linearly

and composed a row vector corresponding to a 3 phase

voltage signal.

Let us consider a signal S(t) fed into DWT for distur-

bance detection and classification. To detect disturbance

events in the signal, recognizing factor (Rf ) [6] can be

calculated as:

Rf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

M

y¼1
2y
P

Mdy

x¼1
d2yðxÞ

2M
P

McM

x¼1
c2MðxÞ

v

u

u

u

u

u

u

t

ð1Þ

where M, Mdy and dy are the highest decomposition num-

ber, detail coefficient numbers at level y and the coeffi-

cients of approximation at y level, respectively; McM and

cM are detail coefficient numbers and the coefficients of

approximation at M level, respectively.

If Rf [ 1%, classification will be done by calculating

wavelet coefficients. For Rf\1%, further calculation will

be in halted state and it prevents unnecessary

calculation.

The signal S(t) to be resolved into M parts uses DWT as

follows:

SðtÞ ¼ Sc1ðtÞ þ Sd1ðtÞ þ Sd2ðtÞ þ � � � þ SdM ðtÞ ð2Þ

where Sc1ðtÞ; Sd1ðtÞ; Sd2ðtÞ; . . .; SdM ðtÞ are the decomposed

components of S(t). We can further express S(t) as:

SðtÞ ¼
X

i

c1ðiÞ/ðt � iÞ þ
X

i

X

M

j¼1
djðiÞ2j=2Wð2jt � iÞ

ð3Þ

where j is the level of resolution; dj is the detail coefficient

in level j; /;W 2 R. According to MRA, a set of nested

subspaces Vj and Wj are calculated as belows:

VM � VM�1 � � � � � Vj � � � � � V2 � V1

Vjþ1 ¼ Vj �Wj

Vj \Wj ¼£

8

>

<

>

:

ð4Þ

where a summation of two subspaces is marked as �.
The input signal S(t) is resolved into corresponding

subsets in accordance with subsets V1 and Wj, respectively:

Sc1ðtÞ ¼
X

i

c1ðiÞ/ðt � iÞ ð5Þ

SdjðtÞ ¼
X

i

djðiÞ2j=2Wð2it � 1Þ ð6Þ

The average value from the signal S(t) detail coefficients

at decomposition j level ðj�Sdj jÞ is:

j�Sdj j ¼
1

2jMdj

X

i

jdjðiÞj ð7Þ

where Mdj is the number of detail coefficients at j level.

Accordingly, the average value of the input signal at

individual decomposition levels calculated from detail

coefficients and approximation coefficients is as below:

Low pass filter

High pass filter

Level 1 coefficient

Level 2 coefficient

Low pass filter

High pass filterSignal

Fig. 1 Two-level filter analysis in DWT
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�SðtÞ ¼ ½j�Sc1ðtÞj; j�Sd1ðtÞj; . . . ; j�SdM ðtÞj� ð8Þ

The standard deviation (SD) of detail coefficients’

absolute values at j level ðrSdjðtÞÞ is:

rSdjðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2jNdj

X

i

jdjðiÞj � �Sdj

s

ð9Þ

The SD of detail coefficients absolute values in

individual decomposition level is:

rSdj ðtÞ ¼ ½rSc1 ðtÞ; rSd2 ðtÞ; . . . ; rSdM ðtÞ� ð10Þ

After sampling at a rate of 20 kHz, the feature vector

(wavelet network (WN) input) [6] is:

x1 ¼
rSd1;2;3 ðtÞ

j�Sd1;2;3ðtÞj
ð11Þ

where x1 is the ratio of the standard deviation measured

from input signal S(t) detail coefficients at decomposition

1, 2 and 3 levels ðrSd1;2;3 ðtÞÞ to the average value collected

from input signal S(t) detail coefficients at identical

decomposition levels (j�Sd1;2;3ðtÞj). This determines change

of detail coefficients at 1, 2 and 3 levels, from average

values without concerning about dimension of those

coefficients. Moreover, this technique both diminishes the

dimension of WN by normalizing the details data and

maintains significant characteristics of the input signals. In

the same way, vectors x2, x3 and x4 are defined as:

x2 ¼
rSd4;5;6 ðtÞ

j�Sd4;5;6ðtÞj
ð12Þ

x3 ¼
rSd7;8 ðtÞ

j�Sd7;8ðtÞj
ð13Þ

x4 ¼
rSd9;10;11;12 ðtÞ

j�Sd9;10;11;12ðtÞj
ð14Þ

The x5, x6, x7 and x8 inputs are calculated as follows:

x5 ¼ max jSd2 j
x6 ¼ max jSd5 j
x7 ¼ max jSd8 j
x8 ¼ max jSd12 j

8

>

>

>

<

>

>

>

:

ð15Þ

All the vector inputs (x1 to x8) are extracted from the

distorted waveforms. Following this, all the 8 elements

constitute the feature vector for the input of WN. x1 is

greater for transient disturbances than other PQ

disturbances. High values of x4 and x2 are responsible

for voltage flicker and harmonic distortions respectively.

During the voltage swell and sag, x3 and x5 are higher than

other elements. x5 and x7 are responsible for the voltage

interrupt and notching, respectively. WN can detect DC

offset by evaluating x8. Therefore, different features related

to PQ can be extracted by calculating x1 to x8.

2.4 OCSVM in a nutshell

SVM is a machine learning algorithm based on modern

statistical learning theory [59–62]. It separates two classes

by constructing a hyper surface in the input space. In the

input space, input is mapped to higher dimensional feature

space by non-linear mapping. In this section, we will

explain the multi-class SVM followed by OCSVM.

Let us consider, a data space W ¼ ðxi; yiÞ, i ¼
f1; 2; . . .; ng where xi 2 Rn is input data and yi 2 f�1;þ1g
is corresponding output pattern in the dedicating class

membership. For simplicity, we define the input and pro-

jected data as x and y. SVM first projects the input vector x to

a higher dimensional spaceH by a non-linear operatorUð�Þ :
Rn !H where the data projection is linearly separable.

The non-linear SVM classification is expressed as (16),

where w is the hyper plane direction; b is the offset scalar:

XðxÞ ¼ wTUðxÞ þ b w 2 H; b 2 R ð16Þ

which is linear in consideration of projected data UðxÞ and
non-linear in consideration of original data x.

SVM tries to maximize the margin in hyperplane. Slack

variables (ni) are proposed to permit some data to lie within

margin in order to protect SVM from over fitting with

turbulent data (or introducing soft margin). So the objective

function which includes minimization of jjwjj can be

written as:

min
w;b;ni

�

jjwjj
2
þ C

X

n

i¼1
ni

�

ð17Þ

subject to:

yiðwTUðxiÞ þ bÞ� 1� ni
ni� 0

(

ð18Þ

where C is the regularization parameter (usually greater

than 0) that regulates the trade-off of enlarging the margin

and number of trained data within that margin (thus

reducing the training errors); ni ði ¼ 0; 1; . . .; nÞ is the slack
variable; n is the number of input data.

To minimize the objective function of (17) using

Lagrange multipliers technique, the necessary condition for

w is:

w ¼
X

n

i¼1
ciyiUðxiÞ ð19Þ

where ci [ 0 is Lagrange multiplier corresponding to the

constraints in (18). ci can be solved from (17) and written

as:
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maxwðciÞ ¼
X

n

i¼1
ci �

1

2

X

n

i¼1

X

n

j¼1
cicjyiyjkðxi; xjÞ ð20Þ

subject to:

0� ci�C

X

n

i¼1
ciyi ¼ 0

8

>

<

>

:

ð21Þ

This kðx; yÞ ¼ UðxÞTUðyÞ is known as kernel function.

It determines the mapping of input vector to high

dimensional feature space.

Gaussian RBF kernel for multi-class SVM is:

kðx; yÞ ¼ exp
jjx� yjj2

r

 !

ð22Þ

where r 2 R is the width of RBF function.

OCSVM, which is a variation of the SVM, detects the

abnormal data within a class [61, 62]. OCSVM maps the

input vector to feature dimension according to the kernel

function and separates them from origin keeping high

margin. It penalizes the outliers by employing slack vari-

ables n in the objective function and controls carefully the

trade off between empirical risk and regularization of

penalty.

The quadratic programming minimization function is:

min
w;ni;q

�

1

2
jjwjj2 þ 1

vn

X

n

i¼1
ni � q

�

ð23Þ

subject to:

w �UðxiÞ� q� ni
ni� 0

�

ð24Þ

where v 2 ð0; 1� is a prior fixed constant; q is the resolved

value that indicates whether a stated point falls within the

considered high density area.

Then the resultant decision function f mw;pðxÞ takes the

form:

f mw;pðxÞ ¼ sgnððw	ÞTUðxÞ � q	Þ ð25Þ

where q	 and w	 are values of w and q solving from

(23).

In OCSVM, v characterizes the solution instead of

C (smoothness operation) in that:

1) It determines a top boundary limit on the fraction of

outliers.

2) It finds a lower boundary on the number of trained

instances considered as support vector.

Due to high significance of v, OCSVM is also termed as

v-SVM.

3 System model

Considering the fact that abnormality patterns in controlled

experiment are different from the reality and that the real

abnormal patterns are not easily accessible for training purpose,

a functional model should be trained on the available data with

less assumption about the types of abnormalities. As it is

required to run themodel in a smartmeter in real time, it should

take the least possible computation time to learn the pattern of

normal and abnormal signals from a small set of samples.

To create the mentioned model, signal samples are sim-

ulated with the Simulink toolbox in MATLAB with the help

of different circuits [63], mimicking the real condition in the

distribution network. The sampling time for all the samples is

set to 5 ls, and 500 samples of normal and 500 samples of

abnormal waveforms, equally spread in different five cate-

gories with 0.2 s length are generated. However, the entire

sample set is not used for training and testing in each

experiment. The input voltage and current to the circuits

randomly change between 0.05 higher or lower than the

defined standard in all the circuits resembling the real power

change in distribution circuits.We attempt to keep a standard

setting for all the parameters in all the circuits to avoid the

effects of confounding variables. The DWT is exploited to

extract the most informative features out of each signal.

Having 3 phase signal, we process each phase separately

extracting the following features: RMS, Ent, E, average

value (l), KT, standard deviation (dr), SK, range (RG), detail
value (D), and approximation (A) coefficients. All these are

being measured using MATLAB built in wavelet decom-

position function. The process flow is provided in Fig. 2.

The processed features are fed into OCSVM for distur-

bance detection. If disturbance is appeared, the data is further

processed bymulti-class SVM for getting details disturbance

classifications. The process is described in Fig. 3.

4 Simulation result

Having the same set of features for each signal phase, they

all are concatenated linearly to compose a sample set of

feature vectors. Creating the sample space, OCSVM is

Sag, swell,
transient, 

unbalaced, etc.
Multi-class SVM OCSVM

Voltage Normalization

Input signals Preprocessing

DWT

Feature extraction

Decision space Abnormality classification Abnormality
detection

Feature
sleection

RMS, E,
SK, etc.

Fig. 2 Process flow of disturbance detection by SVM
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trained exclusively with the 300 samples. Another 200

samples are kept for testing phase. To define the hyper

parameters of m and c, grid search is performed and the results

are shown in Fig. 4. The figure represents the confusion

matrix for different parameters setting, representing the

numbers of true positive (TP), false positive (FP), true neg-

ative (TN) and false negative (FN) by adjusting different

values for m and c. Considering the fact that we aim at

detecting all the abnormalities with the cost of some false

alarms, we picked m = 0.01 and c = 0.1 with the highest

number of TNequal to 199 andTP equal to 188,whichmeans

that among all 200 abnormal samples and 200 normal sam-

ples, OCSVMwith (Gaussian) radial basis function kernel is

able to detect 188 normals and 199 abnormal samples cor-

rectly with 13 false alarms. In this case, the average accuracy

becomes ð188=200 þ 199=200Þ=2
 100% � 97%.

Principle component analysis (PCA) is applied on the

dataset to reduce the dimensionality and provide results

representable in two dimensional (2D) space. The OCSVM

boundaries with RBF kernel and two different m and c on a

sample set of data are illustrated in Fig. 5. The training

samples are green spots in the center of the figure sur-

rounded by decision boundaries. The blue clouds show

nearest vectors to the defined plane. The closer it gets, it

becomes darker and it shows the higher risk area. The pink

area surrounded by red boundary is the safe area, and all

the samples which fall in this area is flagged as normal. For

m = 0.001 and c = 1, the accuracy is 80% (160/200). On the

other hand, accuracy as high as 93% (187/200) is found for

m = 0.01 and c = 0.1. While representation of the entire

samples in the 2D space reduces the interpret-ability of the

figure, a subset of the sample data is selected and repre-

sented here to clarify the effects of hyper parameter in

decision boundaries and classification performance.

Receiver operating characteristic curve (ROC) which is

used for evaluating classifier output quality, is shown in

Fig. 6. TP and FP rates are represented on the y-axis and x-

axis, respectively. The red dashed line indicates that if we

do not use any binary classification algorithm and just

randomly label the samples, we will tag them correctly by

50% chance. Therefore, the ROC will be 50%. The more

we cover the area, the better and more accurate the clas-

sifier is. The blue line shows the diagnostic ability of the

proposed classifier, while discrimination threshold is var-

ied. In the figure the top left corner of the graph is the ideal

point where a zero FP rate, and a one TP rate are found.

Following the provided process schematic (Fig. 2), after

abnormality detection, the type of the abnormality is

Input training data

Define OCSVM
boundary by (25)

Define multi-class
SVM boundary

through (25)

Training phase

={ }Ft , i=1,2, ,Nfi
Input real data

}, i=1,2, ,N={Fr f i

Run OCSVM
for Fr

Run multi-class
SVM for Fr

If abnormality
exists?

No disturbance

Get classifications

Real-time phase

Y

N

Fig. 3 Disturbance detection and classification
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Fig. 4 Grid search result of hyper parameters
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defined in the next step by a multi-class SVM classification

algorithm. This two-step approach increases the robustness

of the model specially in the detection phase when an

unknown disturbance appears.

To the best of our knowledge, the majority of the

research in the field has simulated their own dataset with an

arbitrary assumption about the size of the sample data and

the disturbance pattern complexity as well as the simula-

tion parameter settings. Considering the fact that the

accuracy and F-measure can vary dramatically based on the

complexity of the underlying input dataset and knowing

that there is no access either to earlier research dataset or to

any other public dataset in the scope [64], there is no actual

baseline available to compare the current result with it.

Furthermore, considering the fact that this kind of dataset is

unbalanced (abnormal samples are not as abundant as

normal samples), classification accuracy alone is not

informative enough. We use Precision, Recal, Confusion

Matrix and F-measure metrics to have a better under-

standing of how the method performs [65]. Precision is the

ratio of TP number to TP and FP numbers, and Recall is the

ratio of TP number to TP and FN numbers.

After applying anomaly detection by OCSVM, types of

the anomaly should be detected by a multi-class classifica-

tion algorithms. Considering the fact that in the training time

the abnormal samples are scare, to achieve a realistic result

multiple algorithms are trained on a relatively small training

dataset in which the number of abnormality samples are at

most 10 in each class. The accuracy of the algorithms in an

unbalanced testing dataset are shown in the Table 1. It is

noted that the F-measure (F1-score or F-score) is a measure

of an algorithm’s accuracy and is defined as the weighted

harmonic mean of the precision and recall of the test.

F-measure can be calculated inmultiple way and one of them

is F1-macro, as shown in Table 1. The outcomes obviate the

superiority of the multi-class SVM and random forest algo-

rithms for this multi-class classification task.

To attest the effect of the training size on the accuracy

and F-measure, the same experiment is repeated on a larger

dataset composed of 20 abnormal samples in each classes.

The result shown in Table 2 clarifies the direct relation of

the training size and classification accuracy. This com-

parison is done to demonstrate that different algorithms and

techniques can not be compared unless they are applied in

the same training and testing set.

In Table 2, the algorithm onevsall_svm or one-vs-rest is

a classification strategy, in which a single classifier per

class is trained, with the samples of that class as positive

samples and all other samples as negatives. Repeating one-

vs-all strategy on a multi-class data can discriminate the

data into more than two classes. This technique is reducing

the problem of multi-class classification to multiple binary

classification problems.

5 Conclusion

PQ reports by consumer meter is important addition to

smart grid as seen by utility company. Following this, in

this study, we propose machine learning based disturbance

detection. For segregation between regular data and

abnormal data, we propose one-class version of SVM.

Further, for categorization of disturbances, we propose

multi-class SVM. OCSVM detects disturbances with 93%

accuracy. On the other hand, multi-class SVM can classify

the detected disturbances with accuracy as high as 90%

depending on the training data set. The outcome of SVM

Table 1 Classification result with a small training set

Algorithm Accuracy F1-macro

Nearest neighbors 0.66 0.60

Linear SVM 0.68 0.67

Gaussian 0.61 0.61

Decision tree 0.69 0.59

Random forest 0.73 0.67

Neural network 0.25 0.17

Table 2 Classification result with a large training set

Algorithm Accuracy F1-macro

Nearest neighbors 0.86 0.79

Linear SVM 0.89 0.84

Gaussian 0.65 0.34

Decision tree 0.90 0.88

Random forest 0.90 0.82

Neural network 0.84 0.74

Onevsall_svm 0.90 0.86
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Luck
Mean ROC
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FP rate

Fig. 6 ROC of OCSVM
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will be reported to utility company back office. This will

help to get insight into the PQ issue at lowest distribution

level and maintain good PQ.

Acknowledgements This research was supported in part through

U.S. National Science Foundation (No. 1553494). Imtiaz PARVEZ

and Maryamossadat AGHILI contributed equally to this work.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

[1] Ekanayake J, Jenkins N, Liyanage K et al (2012) Smart grid:

technology and applications. Wiley, New Jersey

[2] Qiu RC, Hu Z, Chen Z et al (2011) Cognitive radio network for

the smart grid: experimental system architecture, control algo-

rithms, security, and microgrid testbed. IEEE Trans Smart Grid

2(4):724–740

[3] Parvez I, Khan, T, Sarwat A et al (2017) LAA-LTE and WiFi

based smart grid metering infrastructure in 3.5 GHz band. In:

Proceedings of IEEE region 10 humanitarian technology con-

ference (R10-HTC), Dhaka, Bangladesh, 21–23 December

2017, pp 151–155

[4] Parvez I, Jamei M, Sundararajan A et al (2014) RSS based loop-

free compass routing protocol for data communication in

advanced metering infrastructure (AMI) of smart grid. In: Pro-

ceedings of 2014 IEEE symposium on computational intelli-

gence applications in smart grid (CIASG), Orlando, USA, 9–12

December 2014, 6 pp

[5] Hao X, Wang Y, Wu C et al (2012) Smart meter deployment

optimization for efficient electrical appliance state monitoring.

In: Proceedings of 2012 IEEE third international conference on

smart grid communications, Tainan, China, 5–8 November

2012, pp 25–30

[6] Masoum MAS, Jamali S, Ghaffarzadeh N (2010) Detection and

classification of power quality disturbances using discrete

wavelet transform and wavelet networks. IET Sci Meas Technol

4(4):193–205

[7] Parvez I, Sarwat A, Wei L et al (2016) Securing metering

infrastructure of smart grid: a machine learning and localization

based key management approach. Energies 9(9):1–18

[8] Parvez I, Islam A, Kaleem F (2014) A key management-based

two-level encryption method for AMI. In: Proceedings of IEEE

power and energy society general meeting, National Harbor,

USA, 27–31 July 2014, 5 pp

[9] Sarwat A, Sundararajan A, Parvez I (2017) Trends and future

directions of research for smart grid IoT sensor networks. In:

Proceedings of international symposium on sensor networks,

systems and security, Lakeland, USA, 31 August–2 September

2017, pp 45–61

[10] Fang X, Misra S, Xue G et al (2012) Smart grid-the new and

improved power grid: a survey. IEEE Commun Surveys Tuto-

rials 14(4):944–980

[11] Morsi WG, El-Hawary ME (2011) Power quality evaluation in

smart grids considering modern distortion in electric power

systems. Electr Power Syst Res 81(5):1117–1123

[12] Sarwat A, Sundararajan A, Parvez I et al (2018) Toward a smart

city of interdependent critical infrastructure networks. In: Amini

M (eds) Sustainable interdependent networks. Studies in sys-

tems, decision and control, vol 145. Springer, Cham, pp 21–45

[13] Fuchs EFH, Fuchs H, Masoum M (2008) Power quality of

electric machines and power systems. In: Proceedings of the 8th

IASTED international conference, Corfu, Greece, 23–25 June

2008, pp 35–40

[14] Santoso S, Powers EJ, Grady WM et al (1996) Power quality

assessment via wavelet transform analysis. IEEE Trans Power

Deliv 11(2):924–930

[15] Singh B, Al-Haddad K, Chandra A (1999) A review of active

filters for power quality improvement. IEEE Trans Ind Electron

46(5):960–971

[16] Daponte P, Di Penta M, Mercurio G (2004) TransientMeter: a

distributed measurement system for power quality monitoring.

IEEE Trans Power Deliv 19(2):456–463

[17] Mallet Y, Coomans D, Kautsky J et al (1997) Classification

using adaptive wavelets for feature extraction. IEEE Trans

Pattern Anal Mach Intell 19(10):1058–1066

[18] Learned RE, Willsky AS (1995) A wavelet packet approach to

transient signal classification. Appl Comput Harmonic Anal

2(3):265–278

[19] Granados-Lieberman D, Romero-Troncoso RJ, Osornio-Rios

RA et al (2011) Techniques and methodologies for power

quality analysis and disturbances classification in power sys-

tems: a review. IET Gener Transm Distrib 5(4):519–529

[20] Styvaktakis E (2002) Automating power quality analysis. Dis-

sertation, Chalmers University of Technology

[21] Moravej Z, Banihashemi SA, Velayati MH (2009) Power

quality events classification and recognition using a novel sup-

port vector algorithm. Energy Conv Manag 50(12):3071–3077

[22] Panigrahi BK, Pandi VR (2009) Optimal feature selection for

classification of power quality disturbances using wavelet

packet-based fuzzy k-nearest neighbour algorithm. IET Gener

Transm Distrib 3(3):296–306

[23] Kezunovic M, Liao Y (2001) A new method for classification

and characterization of voltage sags. Electr Power Syst Res

58(1):27–35

[24] Monedero I, Leon C, Ropero J et al (2007) Classification of

electrical disturbances in real time using neural networks. IEEE

Trans Power Deliv 22(3):1288–1296

[25] Axelberg PG, Gu YH, Bollen MH (2007) Support vector

machine for classification of voltage disturbances. IEEE Trans

Power Deliv 22(3):1297–1303

[26] Janik P, Lobos T (2006) Automated classification of power-

quality disturbances using SVM and RBF networks. IEEE Trans

Power Deliv 21(3):1663–1669

[27] Borges FA, Fernandes RA, Silva IN et al (2016) Feature

extraction and power quality disturbances classification using

smart meters signals. IEEE Trans Ind Inform 12(2):824–833

[28] Abdel-Galil TK, Kamel M, Youssef AM et al (2004) Power

quality disturbance classification using the inductive inference

approach. IEEE Trans Power Deliv 19(4):1812–1818

[29] Kezunovic M, Liao Y (2002) A novel software implementation

concept for power quality study. IEEE Trans Power Deliv

17(2):544–549

[30] Dash PK, Mishra S, Salama MA et al (2000) Classification of

power system disturbances using a fuzzy expert system and a

Fourier linear combiner. IEEE Trans Power Deliv

15(2):472–477

[31] Styvaktakis E, Bollen MH, Gu IY (2002) Expert system for

classification and analysis of power system events. IEEE Trans

Power Deliv 17(2):423–428

Online power quality disturbance detection by support vector machine in smart meter 1337

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


[32] Chung J, Powers EJ, Grady WM et al (2002) Power disturbance

classifier using a rule-based method and wavelet packet-based

hidden Markov model. IEEE Tran Power Deliv 17(1):233–241

[33] Allen JB, Rabiner LR (1977) A unified approach to short-time

Fourier analysis and synthesis. Proc IEEE 65(11):1558–1564

[34] Dokur Z, Olmez T, Yazgan E (1999) Comparison of discrete

wavelet and Fourier transforms for ECG beat classification.

Electron Lett 35(18):1502–1504

[35] Burrus CS, Gopinath RA, Guo H et al (1998) Introduction to

wavelets and wavelet transforms: a primer, vol 1. Prentice Hall,

New Jersey

[36] Rioul O, Vetterli M (1991) Wavelets and signal processing.

IEEE Signal Process Mag 8(4):14–38

[37] Wang C, Gao H, Zhu T (2006) A new method for detection and

identification of power quality disturbance. In: Proceedings of

2006 IEEE power and energy society power systems conference

and exposition, Atlanta, USA, 29 October–1 November 2006,

pp 1556–1561

[38] Gaouda AM, Kanoun SH, Salama MMA (2001) On-line dis-

turbance classification using nearest neighbor rule. Electr Power

Syst Res 57(1):1–8

[39] Zhang M, Li K, Hu Y (2011) A real-time classification method

of power quality disturbances. Electr Power Syst Res

81(2):660–666

[40] McEachern A (1988) Handbook of power signatures. Basic

Measuring Instruments, Foster City

[41] Ghosh AK, Lubkeman DL (1995) The classification of power

system disturbance waveforms using a neural network approach.

IEEE Trans Power Deliv 10(1):109–115

[42] Santoso S, Lamoree J,GradyWMet al (2000)A scalable PQevent

identification system. IEEE Trans Power Deliv 15(2):738–743

[43] Bollen MH, Gu IY (2006) Signal processing of power quality

disturbances, vol 30. Wiley, New Jersey

[44] Hu GS, Zhu FF, Ren Z (2008) Power quality disturbance

identification using wavelet packet energy entropy and weighted

support vector machines. Expert Syst Appl 35(1–2):143–149

[45] Eriti H, Uar A, Demir Y (2010) Wavelet-based feature extrac-

tion and selection for classification of power system distur-

bances using support vector machines. Electr Power Syst Res

80(7):743–752

[46] Guo Y, De Jong K, Liu F et al (2012) A comparison of artificial

neural networks and support vector machines on land cover

classification. In: Proceedings of 6th international symposium

on intelligence computation and applications, Wuhan, China,

27–28 October 2012, pp 531–539

[47] Uyar M, Yildirim S, Gencoglu MT (2008) An effective wavelet-

based feature extractionmethod for classification of power quality

disturbance signals. Electr Power Syst Res 78(10):1747–1755

[48] Koleva L, Taskovski D, Milchevski A et al (2012) Application of

near perfect reconstruction filter banks in power quality distur-

bances classification methods. In: Proceedings of 2012 IEEE

international workshop on applied measurements for power sys-

tems (AMPS), Aachen, Germany, 26–28 September 2012, pp 1–5

[49] Kostadinov D, Taskovski D (2012) Automatic voltage distur-

bance detection and classification using wavelets and multiclass

logistic regression. In: Proceedings of 2012 IEEE international

instrumentation and measurement technology conference

(I2MTC), Graz, Austria, 13–16 May 2012, pp 103–106

[50] Sahani M, Mishra S, Ipsita A et al (2016) Detection and clas-

sification of power quality event using wavelet transform and

weighted extreme learning machine. In: Proceedings of 2016

international conference on circuit, power and computing

technologies (ICCPCT), Nagercoil, India, 18–19 March 2016,

pp 1–6

[51] Khokhar S, Zin AAM, Memon AP et al (2017) A new optimal

feature selection algorithm for classification of power quality

disturbances using discrete wavelet transform and probabilistic

neural network. Measurement 95:246–259

[52] Naik C, Hafiz F, Swain A et al (2016) Classification of power

quality events using wavelet packet transform and extreme

learning machine. In: Proceedings of 2016 IEEE 2nd annual

southern power electronics conference (SPEC), Auckland, New

Zealand, 5–8 December 2016, pp 1–6

[53] Akansu AN, Haddad PA, Haddad RA (2001) Multiresolution

signal decomposition: transforms, subbands, and wavelets.

Academic Press, Cambridge

[54] Bermingham ML, Pong-Wong R, Spiliopoulou A et al (2015)

Application of high-dimensional feature selection: evaluation

for genomic prediction in man. Sci Rep 5(10312):1–12

[55] Guyon I, Elisseeff A (2003) An introduction to variable and

feature selection. J Mach Learn Res 3(6):1157–1182

[56] Abdelgayed TS, Morsi WG, Sidhu TS (2018) A new approach

for fault classification in microgrids using optimal wavelet

functions matching pursuit. IEEE Trans Smart Grid

9(5):4838–4846

[57] Mishra DP, Samantaray SR, Joos G (2016) A combined wavelet

and data-mining based intelligent protection scheme for

microgrid. IEEE Trans Smart Grid 7(5):2295–2304

[58] Nath S, Dey A, Chakrabarti A (2009) Detection of power

quality disturbances using wavelet transform. World Acad Sci

Eng Technol 49:869–873

[59] Sriyananda MGS, Parvez I, Gven I et al (2016) Multi-armed

bandit for LTE-U and WiFi coexistence in unlicensed bands. In:

Proceedings of 2016 IEEE wireless communications and net-

working conference (WCNC), Doha, Qatar, 3–6 April 2016,

pp 1–6

[60] Parvez I, Sriyananda MGS, Gven I et al (2016) CBRS spectrum

sharing between LTE-U and WiFi: a multiarmed bandit

approach. Mobile Inf Syst 2016:1–12

[61] Vapnik V (1998) Statistical learning theory, vol 3. Wiley, New

York

[62] Schlkopf B (2001) Statistical learning and kernel methods. In:

Della Riccia G (eds) Data fusion and perception. International

center for mechanical sciences (courses and lectures), vol 431.

Springer, Vienna, pp 3–24

[63] Dhote PV, Deshmukh BT, Kushare BE (2015) Generation of

power quality disturbances using MATLAB-Simulink. In: Pro-

ceedings of 2015 international conference on computation of

power, energy, information and commuincation (ICCPEIC),

Chennai, India, 22–23 April 2015, pp 301–305

[64] Medjroubi W, Mller UP, Scharf M et al (2017) Open data in

power grid modelling: new approaches towards transparent grid

models. Energy Rep 3:14–21

[65] Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-

learn: machine learning in Python. J Mach Learn Res

12(10):2825–2830

Imtiaz PARVEZ received the B.Sc. degree in electrical and

electronics engineering from Bangladesh University of Engineering

and Technology, and the M.Sc. degree from University of North

Texas. Currently, he is a Ph.D. candidate at Department of Electrical

and Computer Engineering in Florida International University (FIU).

He served as specialist engineer in Robi Axiata Ltd. in Bangladesh.

He also worked for T mobile (through 3S network Inc.) in 2013. His

research interests include 5G, LTE, wifi, cyber physical systems

security and artificial intelligence with application to smart grid and

IoT.

Maryamossadat AGHILI is a Ph.D. candidate at the School of

Computing and Information Sciences (SCIS), FIU, Miami, USA. She

received her B.Sc. degree in computer engineering from Amirkabir

1338 Imtiaz PARVEZ et al.

123



University of Technology (AUT), Iran in 2007 and earned her M.Sc.

in industrial engineering afterward in 2010. She has over 8 years of

research and development experiences in computer science, ERP,

MIS, and related fields. Her research interests include machine

learning, data mining, image and signal processing, computer vision,

anomaly detection and deep learning. She has published several

research papers and currently works as a research assistant in

computer vision laboratory at Florida International University under

supervision of Dr. Malek Adjouadi.

Arif I. SARWAT received his Masters’ degree from University of

Florida in 2005 and Ph.D. degree from the University of South Florida

in 2010. Currently, he is an Associate Professor and Director of FPL-

FIU Solar Research Facility in the Department of Electrical and

Computer Engineering at FIU, where he leads the Energy Power &

Sustainability group. His research interests include smart grids,

PlugIn Hybrid and Electric Vehicle (PHEV & EV Systems), high

penetration renewable systems, grid resiliency, large-scale data

analysis, advanced metering infrastructure, smart city infrastructure

and cyber security. Dr. Sarwat is the recipient of the NSF CAREER

award in 2016, and recipient of multiple federal and industry research

awards. He was the author/co-author of conference best paper awards

at the resilience week in 2017, and winner of best paper award in

2016 from Journal of Modern Power Systems and Clean Energy. Dr.

Sarwat received Faculty Award for Excellence in Research &

Creative Activities in 2016, College of Engineering & Computing

Worlds Ahead Performance in 2016, and FIU TOP Scholar Award in

2015. Dr. Sarwat worked at Siemens for more than nine years,

winning three recognition awards. He is chair of IEEE Miami

Section Vehicular Technology (VT) and Communication since 2012.

Shahinur RAHMAN is a Graduate Research Assistant, pursuing her

Ph.D. in electrical and computer engineering at FIU. She received her

B.Sc. and M.Sc. degrees in electrical engineering from Bangladesh

University of Engineering & Technology (BUET) in 2014 and 2017

respectively. Her research area includes power quality and protection

issues of photovoltaic integration into the smart grid at distribution

level.

Fahmida ALAM is pursuing Ph.D. while working as a Graduate

Research Assistant in Integrated Nanosystems Research Laboratory in

the Department of Electrical and Computer Engineering of FIU,

Miami, Florida, USA. She received her B.S. degree in engineering

from Chittagong University of Engineering and Technology (CUET).

She worked as a lecturer in the Department of Electrical and

Electronic Engineering of University of Information Technology and

Science from August 2010 to December 2014. Her research interest

includes the design and micro-fabrication of point of care biosensors,

for in-vitro transdermal investigation of bio-analytes using electro-

chemical sensing, development of miniaturized electrochemical

sensing device in wearable platform for specific detection of bio-

analytes in the human body.

Online power quality disturbance detection by support vector machine in smart meter 1339

123


	Online power quality disturbance detection by support vector machine in smart meter
	Online power quality disturbance detection by support vector machine in smart meter
	Abstract
	Introduction
	Literature review
	PQ issues
	WT
	Signal features extraction and selection
	OCSVM in a nutshell

	System model
	Simulation result
	Conclusion
	Acknowledgements
	References


