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ABSTRACT OF THE DISSERTATION 

PHYLOGENETIC AND ECOLOGICAL SIGNIFICANCE IN THE EVOLUTION OF 

CETACEAN TONAL SOUNDS 

by 

Laura Johanna May-Collado 

Florida International University, 2007 

Miami, Florida 

Professor Douglas Wartzok, Major Professor 
 
Cetaceans are aquatic mammals that rely primarily on sound for most daily tasks. A 

compendium of sounds is emitted for orientation, prey detection, and predator avoidance, 

and to communicate. Communicative sounds are among the most studied Cetacean 

signals, particularly those referred to as tonal sounds. Because tonal sounds have been 

studied especially well in social dolphins, it has been assumed these sounds evolved as a 

social adaptation. However, whistles have been reported in ‘solitary’ species and have 

been secondarily lost three times in social lineages. Clearly, therefore, it is necessary to 

examine closely the association, if any, between whistles and sociality instead of merely 

assuming it. Several hypotheses have been proposed to explain the evolutionary history 

of Cetacean tonal sounds. The main goal of this dissertation is to cast light on the 

evolutionary history of tonal sounds by testing these hypotheses  by combining 

comparative phylogenetic and field methods. This dissertation provides the first species-

level phylogeny of Cetacea and phylogenetic tests of evolutionary hypotheses of cetacean 

communicative signals. Tonal sounds evolution is complex in that has likely been shaped 

by a combination of factors that may influence different aspects of their acoustical 
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structure. At the inter-specific level, these results suggest that only tonal sound minimum 

frequency is constrained by body size. Group size also influences tonal sound minimum 

frequency. Species that live in large groups tend to produce higher frequency tonal 

sounds. The evolutionary history of tonal sounds and sociality may be intertwined, but in 

a complex manner rejecting simplistic views such as the hypothesis that tonal sounds 

evolved ‘for’ social communication in dolphins. Levels of social and tonal sound 

complexity nevertheless correlate indicating the importance of tonal sounds in social 

communication. At the intraspecific level, tonal sound variation in frequency and 

temporal parameters may be product of genetic isolation and local levels of underwater 

noise. This dissertation provides one of the first insights into the evolution of Cetacean 

tonal sounds in a phylogenetic context, and points out key species where future studies 

would be valuable to enrich our understanding of other factors also playing a role in tonal 

sound evolution. 
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 CHAPTER I  

INTRODUCTION 

Mammals are among the most morphologically and ecologically diverse vertebrate 

groups (Perrin 1991). They have colonized greatly contrasting habitats and therefore 

evolved various ways to communicate and monitor these environments by using visual, 

olfactory, tactile, and acoustic senses. Most mammals to some extent use all these senses, 

but aquatic mammals like cetaceans rely predominantly on sound. This dependence on 

sound stems from light limitations in aquatic environments (Richardson et al.1995). Light 

attenuates rapidly with depth, limiting visual interactions between sender and receiver. 

Olfactory senses are also less developed in cetaceans than in land mammals, limiting 

their use for communication purposes (Wartzok and Ketten 1999).  Sound, however, has 

the advantage of having low attenuation, allowing for effective communication and 

monitoring of aquatic environments over relatively long distances. For instance, baleen 

whales produce low frequency sounds (<100 Hz), with very small absorption losses; 

some whales are able to communicate over hundreds of kilometers (Richardson et 

al.1995).  

 The sophistication of acoustic communication reaches its pinnacle in cetaceans. 

These animals emit a compendium of communicative sounds that include broadband 

frequency modulated tonal sounds and narrowband frequency pulsed sounds (i.e., bursts, 

razors, barks, etc.). Tonal sounds are perhaps the most studied of these sounds, and are 

produced by both baleen whales (Mysticeti) and toothed whales (Odontoceti)—sister 

clades containing all extant whales. Baleen whales produce tonal sounds called 'moans' 

and 'tones' that have fundamental frequencies generally below 5 kHz (Richardson et 
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al.1995, Clark 1990). In contrast, in toothed whales these tonal sounds are called whistles 

and have frequencies that typically range from 5-20 kHz (Richardson et al.1995). In 

some species fundamental frequencies can go up to 48 kHz (May-Collado and Wartzok 

2007). Although similar in acoustic structure across all whales, tonal sounds are possibly 

produced by two different mechanisms; the larynx in baleen whales and a complex air sac 

system in toothed whales (Cranford 2000, Cranford et al.1999). 

 Tonal sounds are produced in a variety of contexts. Baleen whales are believed to 

use these sounds for long distance communication (e.g., blue whales Sirovic et al.2004) 

and in sexual contexts (e.g., right whales Clark and Johnson 1984, humpback whales 

Tyack 1983, Tyack and Whitehead 1983). In toothed whales they are used for group 

cohesion, recruitment during feeding activities, and overall communication (e.g., Dreher and 

Evans 1964, Caldwell and Caldwell 1965, Herman and Tavolga 1980, Janik 2000, Herzing 

2000, Acevedo-Gutierrez and Stienessen 2004). In 'true' dolphins (Delphinidae), signature 

tonal sounds (referred to as ‘signature whistles’ by Caldwell and Caldwell 1965) allow for 

mother-calf recognition and formation of male-alliances (e.g., Caldwell and Caldwell 1965; 

Caldwell et al.1990, Fripp et al.2005, Herzing 2000, Janik 2000, Tyack 1997, 2000, 

Watwood et al.2004). 

 Comparative studies have shown that some acoustic parameters of tonal sounds 

such as duration and modulation tend to vary within species (e.g., Barzúa-Durán and Au 

2002, 2004, Morisaka et al.2005a, Wang et al.1995a) whereas frequency components 

typically vary across species (e.g., Matthews et al.1999, Oswald et al.2003, Rendell et 

al.1999, Steiner 1981, Wang et al.1995b). Several hypotheses have been proposed to 

explain this variability. Intraspecific variation has been proposed to be the result of local 
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adaptation to ecological conditions or geographical isolation and genetic divergence 

between groups or populations (e.g., Azevedo and Van Sluys 2005, Barzúa-Durán 2004, 

Barzúa-Durán and Au 2004, Morisaka et al.2005b, Rossi-Santos and Podos 2006, Wang 

et al.1995b, Camargo et al.2007, Ansmann et al.2007). Interspecific variation in 

frequency components may be product of zoogeographic relationships (Steiner 1981), 

habitat (Wang et al.1995a), morphological constraints (Matthews et al.1999, Podos et 

al.2002, Wang et al.1995a,), phylogenetic relationships (e.g., Steiner 1981, Matthews et 

al.1999, Wang et al.1995a), and sociality (Podos et al.2002, Herman and Tavolga 1985). 

 

Despite recent technological advances in cetacean bioacoustics, fundamental 

evolutionary questions remain unanswered. For example, in what context did tonal 

sounds evolve? What are the selective forces driving intra- and interspecies acoustic 

signal differentiation? Previous studies addressing such questions have been made with 

little or no reference to phylogenetic relationships and correlation analyses have relied 

upon standard statistics, which assume species as independent data points. Interspecific 

comparative studies, however face problems of non-independence. Failing to account for 

known phylogenetic dependencies among related species and failing to recognize that 

similarity in size or tonal sounds may be due to common ancestry artificially inflates the 

number of observations (and degrees of freedom) and correlations or regressions based 

on such observations are suspect. Therefore, the goal of my dissertation is to cast light on 

the evolutionary history of tonal sound signals by (1) establishing a species level 

phylogeny to test some of the hypotheses of tonal sound evolution at the inter-specific 

level using phylogenetic comparative methods,  (2) confirming the emission of tonal 
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sounds on the river dolphin Inia geoffrensis which due to its phylogenetic position is 

particularly important in this study, and (3) evaluating the role of the environment, 

sympatry between species, and other species-intrinsic factors on the whistle structure at 

the intra-specific level. 

 The dissertation consists of five chapters. Chapters II-V are formatted according 

to the journals in which they have been published and chapter VI to the format of the 

journal to which it will be submitted.  

 In order to test the above hypotheses it was necessary to have a well resolved 

Cetacean species phylogeny, which was not available at the time. Chapter II thus presents 

the first species-level cetacean phylogeny, which is based on the mitochondrial gene, 

Cytochrome-b (cyt-b) and utilizes Bayesian phylogenetic methods. This chapter discusses 

the utility of cyt-b and the importance of exhaustive taxon sampling (including 

outgroups) and Bayesian methods in Cetacean phylogenetics. Although based on only a 

single gene, the phylogeny is deemed reliable—and thus appropriate for hypothesis 

testing—based on its concordance with well established benchmark clades previously 

supported by morphological and mitochondrial and nuclear DNA (May-Collado and 

Agnarsson 2006). 

 Another important issue to be addressed before testing the above hypotheses was 

the long controversy of tonal sound (‘whistle’) production by river dolphins. The 

controversy stems from the assumption that whistles coevolved as a social adaptation 

within delphinids, and therefore sounds produced by river dolphins, regardless of the 

similarities in acoustic structure with whistles, were not considered as such, because river 

dolphins are largely solitary. Because of the phylogenetic position of Inia geoffrensis it 



 5 

was key to ‘solve’ the controversy in order to understand the evolutionary history of 

Cetacean tonal sounds. Chapter III describes high frequency tonal sounds (i.e. whistles) 

produced by Inia geoffrensis in Ecuadorian waters, and proposes the hypothesis that 

whistles in this river dolphin may be emitted under a social context different from that of 

dolphins (May-Collado and Wartzok 2007).  

Having produced a species level phylogeny and addressed the issue of whistle 

production in river dolphins the stage is set to test hypotheses explaining tonal sound 

acoustic structure variation across species. One hypothesis is that body size constrains 

frequency in Cetacean tonal sounds. Body size is one of the most important 

morphological factors believed to influence animal signal frequency (Marquet and Taper 

1998). The general idea is that body size and the size of sound producing organs correlate 

(Fletcher 1992) and the size of vocal tract places physiological constraints on signal 

production. In cetaceans body size has been suggested as a major factor influencing both 

the maximum and minimum frequency of tonal signals (e.g., Matthews et al.1999, Podos 

et al.2002, Wang et al.1995a). Chapter IV reexamines this hypothesis in a phylogenetic 

context. The findings corroborate the relationship between body size and minimum 

frequency but suggest that to explain the variation observed in other tonal sound 

frequency parameters, alternative hypotheses are required. This chapter emphasizes the 

importance of taking into account phylogenetic relations in comparative studies and 

considers the other potential factors playing a role in tonal sound variation i.e., sociality 

and the environment (May-Collado et al.2007a).  

Chapter V considers the role of sociality as a potential factor affecting tonal sound 

acoustic variation across species by using several new comparative phylogenetic 
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methods.  It addresses problems with evolutionary analyses of broad concepts like 

‘whistles’ or ‘tonal sounds’ rather than their component characters. This chapter finds 

new correlations between social structure and some tonal sound parameters. It proposes 

novel hypotheses about the role of social structure in tonal sounds and criticizes the over-

simplistic hypothesis that whistles evolved ‘for’ communication in Delphinidae (May-

Collado et al.2007b).  

Chapter VI discusses several potential sources of whistle acoustic structure 

variation at the intra-specific level, including habitat acoustics (ambient noise levels and 

boat-dolphin interactions), sympatry with other dolphin species, isolation, and behavior 

in two adjacent bottlenose dolphin populations in the Caribbean of Costa Rica and 

Panama.  

Finally, Chapter VII presents the conclusions and questions that emerge from this 

dissertation suggesting future directions of study that would continue to increase our 

knowledge on the evolution of Cetacean acoustic signals. 
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ABSTRACT 
 

In the mid 1990’s cytochrome b and other mitochondrial DNA data reinvigorated 

cetacean phylogenetics by proposing many novel and provocative hypotheses of cetacean 

relationships. These results sparked a revision and reanalysis of morphological datasets, 

and the collection of new nuclear DNA data from numerous loci. Some of the most 

controversial mitochondrial hypotheses have now become benchmark clades, 

corroborated with nuclear DNA and morphological data; others have been resolved in 

favor of more traditional views. That major conflicts in cetacean phylogeny are 

disappearing is encouraging. However, most recent papers aim specifically to resolve 

higher-level conflicts by adding characters, at the cost of densely sampling taxa to resolve 

lower-level relationships. No molecular study to date has included more than 33 

cetaceans. More detailed molecular phylogenies will provide better tools for evolutionary 

studies. Until more genes are available for a high number of taxa, can we rely on readily 

available single gene mitochondrial data? Here we estimate the phylogeny of 66 cetacean 

taxa and 24 outgroups based on Cytb sequences. We judge the reliability of our 

phylogeny based on the recovery of several deep-level benchmark clades. A Bayesian 

phylogenetic analysis recovered all benchmark clades and for the first time supported 

Odontoceti monophyly based exclusively on analysis of a single mitochondrial gene. The 

results recover the monophyly of all but one family level taxa within Cetacea, and most 

recently proposed super- and subfamilies. In contrast, parsimony never recovered all 

benchmark clades and was sensitive to a priori weighting decisions. These results provide 
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the most detailed phylogeny of Cetacea to date and highlight the utility of both Bayesian 

methodology in general, and of Cytb in cetacean phylogenetics. They furthermore 

suggest that dense taxon sampling, like dense character sampling, can overcome 

problems in phylogenetic reconstruction. 

 
Keywords: Balaneidae; Cetancodonta; Cetartiodactyla; Delphinidae; Delphinoidea; 

Euungulata, Iniidae; missing data; mitochondrial DNA; Monodentidae; Mysticeti; 

Odontoceti; monophyly; Perissodactyla; Phocenidae; Platanistidae; phylogeny; taxon 

sampling; Ziphiidae. 
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INTRODUCTION 

Several issues of Cetacean phylogenetics have been intensely debated, as a result 

of independent datasets (morphology, nuclear DNA, and mitochondrial DNA) suggesting 

conflicting hypotheses. These debates include the phylogenetic placement of Cetacea as 

sister to Artiodactyla (e.g., O’Leary and Geisler, 1999; Luckett and Hong, 1998; see also 

Gingerich et al., 1990) or embedded within Artiodactyla, a clade called Cetartiodactyla 

(e.g., Graur and Higgins, 1994; Gatesy et al., 1996, 1999; Gatesy 1997; Hasegawa and 

Adachi, 1996; Montgelard et al., 1997; Thewissen and Madar, 1999; Thewissen et al., 

2001; Shimamura et al., 1999; Nikaido et al., 1999; Lum et al., 2000; Matthee et al., 

2001; Arnason et al., 2004; Murphy et al., 2001; Reyes et al., 2004), the relationship 

between toothed whales and baleen whales (e.g., Luckett and Hong, 1998; Cerchio and 

Tucker, 1998; Douzery 1993, Messenger and McGuire, 1998; Nikaido et al., 2001; 

Nishida et al., 2003; Geisler and Sanders, 2003; Milinkovitch et al., 1993, 1994, 

1995,1996; Milinkovitch, 1995, 1997), the relationships among delphinoids (e.g., 

Milinkovitch et al., 1993; Waddel et al., 2000; Nishida et al., 2003), dolphins (e.g., 

Mead, 1975; Kasuya, 1973; Barnes et al., 1985; deMuizon 1988; Perrin, 1989; Fordyce et 

al., 1994; LeDuc et al., 1999; Pichler et al., 2001), river dolphins (e.g., Flower, 1867; 

Winge, 1921; Slijper, 1936; Simpson, 1945; Cozzuol, 1985; Hamilton et al., 2001; 

Cassens et al., 2000; Nikaido et al., 2001: Yan et al., 2005), and porpoises (Rosel et al., 

1995). 

 Since the mid 1990’s mitochondrial DNA data have been at the forefront of 
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advancing understanding of cetacean phylogenetics (e.g., Arnason et al., 1992, 1993, 

2004; Arnason and Gullberg, 1993, 1994, 1996; Milinkovitch et al., 1993, 1994; Irwin 

and Arnason 1994; Milinkovitch, 1995, 1997; Graur and Higgins, 1994; Gatesy et al., 

1996, Montgelard et al., 1997; Sasaki et al., 2005), for several reasons. Mitochondrial 

DNA is relatively easy to amplify and sequence, it is mostly free of problems with 

paralogy, and it has a relatively high substitution rate and thus offers information at 

various phylogenetic levels (Irwin et al., 1991; Milinkovitch, 1997). Results based on 

mitochondrial DNA offered novel, often controversial hypotheses (e.g., Milinkovitch et 

al., 1993, 1994; Milinkovitch, 1995; Irwin and Arnason, 1994; Arnason and Gullberg, 

1994) and sparked renewed interest in the reconstruction of the evolutionary history of 

whales. Some of these hypothesis such as the placement of Cetacea within Artiodactyla 

(Cetartiodactyla sensu Montgelard et al., 1997) (e.g., Graur and Higgins, 1994; Irwin and 

Arnason, 1994), and the unexpected hypothesis of the sister relationship of Cetacea and 

Hippopotamidae (Cetancodonta sensu Arnason et al., 2000) (see Irwin and Arnason, 

1994; Gatesy 1997; Montgelard et al., 1997) have now received support from studies 

based on new independent datasets. Another unexpected mitochondrial hypothesis (based 

on Cytb, 12S, and 16S), the placement of baleen whales within toothed whales, however, 

was recently resolved in a different direction.  Using the entire mitochondrial genome 

reversed the earlier mitochondrial hypothesis and recovered the monophyly of 

Odontoceti (Arnason et al., 2004). These previously controversial clades can now be 

labeled as ‘benchmark’ clades, i.e. to be likely true: 
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Odontoceti: Arnason et al. (2004) (mitogenomic data); Messenger and McGuire 

(1998) (morphology); Nishida et al. (2003) (nuclear DNA); Nikaido et al. (2001) 

(retroposon SINE data); O’Leary et al. (2004) (combined morphology, nuclear DNA, 

mitochondrial DNA, and amino acids). 

Cetartiodactyla: Thewissen et al. (2001), and Boisserie et al. (2005) (morphology 

including fossil taxa); Arnason et al. (2004) (mitogenomic data); Matthee et al. (2001) 

and Murphy et al. (2001) (nuclear and mitochondrial data); Shimamura et al. (1997, 

1999) (retroposon SINE data); O’Leary et al. (2004) (combined morphology, nuclear 

DNA, mitochondrial DNA, and amino acids). 

Cetancodonta (Cetacea + Hippopotamidae): Geisler and Sanders (2003) and 

Boisserie et al. (2005) (morphology including fossils); Gatesy et al. (1999) (nuclear and 

mitochondrial data); Lum et al. (2000) (retroposon SINE data); Arnason et al. (2000, 

2004) (mitogenomic data); O’Leary et al. (2004) (combined morphology, nuclear DNA, 

mitochondrial DNA, and amino acids). 

Some long standing debates are thus all but resolved: our understanding of deeper 

level cetacean phylogeny has grown strong. However, the strong focus of most recent 

studies, aiming specifically to resolve these higher level conflicts by adding mostly 

characters rather than taxa, has left our understanding of lower level relationships among 

whale species lagging behind. Mitogenomic data, for example, is available only for 16 

cetacean species, and no molecular study to date has included more than 33 cetaceans. It 

seems timely to focus on more detailed (genus, and species level) molecular phylogenies. 
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These will provide better tools for detailed evolutionary studies, and are necessary to test 

existing morphological phylogenetic hypotheses, and current cetacean classification. 

Furthermore, adding taxa, as adding characters, can be an efficient way of overcoming 

phylogenetic uncertainty (Hillis, 1996, 1998; Graybeal, 1998; Pollock et al., 2002; 

Zwickl and Hillis, 2002; Hillis et al., 2003; but see Rosenberg and Kumar, 2001, 2003; 

Miller and Hormiga, 2004; Rokas and Caroll 2005). Obviously, combining multiple lines 

of evidence is beneficial to any phylogenetic problem. The study of O’Leary et al. (2004) 

is an excellent example of how seemingly incongruent data subsets can, when combined, 

yield a globally robust (and credible) result. However, until more genes are available for 

a high number of cetacean taxa, can we rely on readily available single gene 

mitochondrial data? Here we estimate the phylogeny of 66 cetaceans taxa representing 63 

species, and 24 outgroups based on Cytb sequences from GenBank. This data matrix 

approximately doubles the taxon sampling of the most complete previous molecular 

study on cetacean phylogenetic relationships. We chose Cytb as it is available for more 

species than any other gene, and as it is a protein coding gene where alignment is trivial; 

in contrast many portions of the mitochondrial genome are notoriously difficult to align 

(e.g., Cerchio and Tucker, 1998; Messenger and MacGuire, 1998). 

 We judge the reliability of our phylogeny based on the recovery of the previously 

mentioned benchmark clades, in addition to the less controversial clades Perissodactyla, 

Euungulata (sensu Waddell et al. 2001, Perissodactyla + Cetartiodactyla), Cetacea, and 

Mysticeti. Because Cytb is thought to be most reliable at lower taxonomic levels (due to 
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high substitution rates), recovering ‘known’ deeper clades gives credibility to these new 

findings which have not been addressed by studies using few taxa. We compare the 

performance of Bayesian analyses versus parsimony under four different models, and 

briefly examine the sensitivity of the results to taxon sampling. We use our results to 

discuss agreement and remaining conflict in cetacean phylogenetics, and provide 

comments on current classification. 
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MATERIALS AND METHODS 

Cytochrome data was compiled from GenBank for 66 cetaceans representing 63 

species (see table 1 for accession numbers). Most previous mitochondrial DNA studies 

have included relatively few outgroups. For a stronger test of Cetartiodactyla monophyly 

and deeper level relationships we sampled 24 outgroup taxa using the recent mammalian 

phylogeny of Murphy et al. (2001) as a guide to outgroup choice. Murphy’s et al. (2001) 

phylogeny, based on 18 gene segments, suggested the following relationships: (Carnivora 

(Perissodactyla + Cetartiodactyla)). Outgroups therefore include non-cetacean 

cetartiodactylans (16 species), Perissodactyla (six species), and two carnivores chosen as 

primary outgroups on which the preferred tree is rooted (Table 1). To minimize potential 

missing data problems in an already difficult phylogenetic problem, we chose to exclude 

cetacean taxa when the following two conditions applied: 1) only small partial Cytb 

sequences were available (less than 50% of the entire sequence), and 2) congeners with 

longer sequences were already present in the matrix. 

The molecular matrices were matched and aligned using the Needleman-Wunsch 

algorithm (gap cost=10, mismatch=1) in MacClade 4.07 (Maddison and Maddison, 

2003). As Cytb is a protein coding gene, the alignment of the Cytb sequences was 

unambiguous without any gaps. 

 The data were analyzed using Bayesian, and parsimony methods. The appropriate 

model for the Bayesian analyses was selected with Modeltest (Posada and Crandall, 

1998), using the AIC criterion (Posada and Buckley, 2004) with a parsimony tree chosen 
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as the basis for Modeltest. The best model was GTR + ß§ +I (Rodríguez et al., 1990; 

Yang et al., 1994). Estimates for the model parameters (-LnL= 23900.7090, K=10, base 

frequency A=0.368, C=0.400, G=0.0518, T=0.1802). 

 Bayesian analysis was performed using MrBayes V3.0 (Huelsenbeck and 

Ronquist, 2001) with the following settings. The maximum likelihood model employed 6 

substitution types ("nst=6"), with base frequencies estimated from the data. As 

substitution frequencies differ starkly between first, second and third positions in Cytb 

(Irwin et al., 1991), each codon position was treated separately (substitution rate 

partitioning) (charset 1st_pos = 1-1140\3; charset 2nd_pos = 2-1140\3; charset 3rd_pos 

=3-1140\3; partition bycodon = 3: 1st_pos; 2nd_pos; 3rd_pos; set partition = bycodon). 

Rate variation across sites was modeled using a gamma distribution (rates="invgamma"). 

The Markov chain Monte Carlo search was run with 4 chains for 5,000,000 

generations(repeated three times), sampling the Markov chain every 1000 generations, 

and the sample points of the first 70,000 generations were discarded as "burn-in", after 

which the chain reached stationarity. 

 Parsimony analyses were done in PAUP* (Swofford, 1999) and NONA 

(Goloboff, 1993) through the WINCLADA shell (Nixon, 2002). In each of the analyses, 

heuristic searches were done with 1000 random stepwise additions, and subtree-pruning 

and regrafting branch swapping algorithm (chosen arbitrarily). As transitions (Ti) are 

much more common than transversions (Tv) and different codon positions show different 

levels of Ti saturations (third position showing the highest), we used some of the many 
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weightings schemes suggested by previous authors. In addition to equal weights (Tv = Ti 

= all positions = 1), down weighting transitions (Ti = 0, Tv = 1, as suggested by 

Milinkovitch et al., 1996), (Ti = 1, Tv = 3 as suggested by Milinkovitch, 1994, see 

Messenger and McGuire, 1998), unequal codon weighting (4:17:1 as suggested by 

Arnason and Gullberg, 1994). 

 Node support for the parsimony analyses was estimated using Bootstrapping 

(Felsenstein, 1985). Each analysis was run for 200 Bootstrap replicates, with 10 random 

addition sequences, and holding a maximum of 100 trees, per replicate. 

To examine the effect of sparse taxon sampling on the Bayesian analysis 

(numerous previous studies have analyzed smaller Cytb datasets using parsimony) we 

analyzed two, rather arbitrarily chosen subset of the data. First, we pruned the dataset to 

contain a comparable taxon sampling to that of Messenger and McGuire (1998) – 

subsample in Table 1; second, we used the pruned ingroup dataset, but added all the 

outgroups from the main data matrix (subsample, plus outgroups in Table). 
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RESULTS 

Bayesian analysis 

The Bayesian analysis recovered all seven benchmark clades (Table 2). Support 

for five of the benchmark clades is high (100 posterior probabilities) but rather low for 

Cetancodonta (79) and marginal for the monophyly of Odontoceti (67) (Figure 1, Table 

2). The analysis also recovered all but one family level, and most sub- and super-family 

level cetacean taxa (Figure 1, for posterior probability values for each clade, see Figure 

2). The results thus broadly corroborate current cetacean classification, while also 

pointing to some lower-level groups that may need redefinition. 

 

Pruned Bayesian analyses 

The Bayesian analysis of pruned matrix I (see Table 1) was broadly congruent 

with the parsimony analysis of Messenger and McGuire (1998) based on a similar taxon 

sampling, rejecting Odontoceti monophyly. When all outgroups of the main matrix were 

added (subsample matrix II, see Table 1), however all the benchmark clades were again 

recovered (Table 2). 

 

Parsimony analyses 

The parsimony analyses all recovered Perissodactyla, Cetancodonta, Cetacea, and 

Mysticeti, with variable support (Table 2). Euungulata was recovered with high support 

by three out of the four analyses, but not under the 4:17:1 weighting scheme. None of the 
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parsimony analyses unambiguously recovered Cetartiodactyla or Odontoceti. Under 

equal weights, the majority of the most parsimonous trees supported Odontoceti 

monophyly while the strict consensus collapses Mysticeti, Kogia, Physeter, and 

Ziphidae+Platanista, into a pentachotomy with the remaining cetaceans. Cetartiodactyla 

is not recovered under equal weights, due to the placement of Camelus+Lama basal to 

Perissodactyla. Ignoring transitions altogether (see Milinkovitch et al., 1996) was similar 

to the equal weights analysis, although the strict consensus is less resolved, with the same 

pentachotomy formed at the base of Cetacea. Weighting transversions three times 

transitions (see Milinkovitch et al., 1994; McGuire and Messenger, 1998) placed 

Mysticeti sister to Ziphidae, in turn sister to sperm whales (Table 2). 

Apart from benchmark clades, most analyses broadly agreed on the monophyly of 

superfamily, family, and subfamily level taxa within Cetacea. All cetacean families are 

supported with the exception of Balaenopteridae which consistently contained 

Eschrichtiidae. Subfamilies within Phocoenidae and Ziphidae were furthermore 

contradicted by all analyses. Our results support the transfer of Lagenorynchus acutus to 

Leucopleurus (as suggested by LeDuc et al., 1999, 2002), and in our preferred phylogeny 

(Figures 1-2) this taxon is place sister to Delphinae plus Stenoninae. The following 

genera are not monophyletic according to our results: Lagenorynchus (even after 

excluding L. acutus), Stenella, Phocoena, and Balaenoptera. 
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DISCUSSION 

Recovery of benchmark clades 

Many recent cetacean phylogenetic studies include relatively few taxa (exceptions 

include Arnason and Gullberg, 1996; Messenger and McGuire, 1998; LeDuc, 1999, 

2002; Hamilton et al., 2001), in part due to a focus on generating more characters to 

resolve higher level phylogenetics (see e.g., Lum et al., 2000; Nikaido et al., 2001; 

Nishida et al., 2003; Arnason et al., 2004). While addressing crucial questions and 

providing the backbone for lower level phylogenies, such studies have limited utility for 

classification, and for comparative evolutionary studies. In some cases sparse taxon 

sampling may also confound the results (Hillis et al., 2003). Of course, taxon sampling is 

usually simply constrained by the availability of character data, but for some reason 

many studies have opted to include only one, or a few outgroup taxa, even if many are 

available. Outgroup choice may have marked impact on any phylogenetic analysis (see 

e.g., Adachi and Hasegawa, 1995; Milinkovitch and Lyons-Weiler, 1997). 

 Here we have extensively sampled cetacean taxa, and outgroups, to provide a 

more detailed phylogenetic hypothesis than previous studies. We analyzed the data using 

Bayesian methods, increasingly popular in molecular phylogenetics, but hitherto little 

used in cetacean studies (but see e.g. Yan et al., 2005), in addition to parsimony under 

various previously proposed weighting schemes. 

 Given the relatively few characters we certainly acknowledge the limitations of 

our study, and we did not expect robust clade support, especially for deeper level clades 
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that have been consistently contradicted by previous Cytb analyses. However, we set up 

to test the reliability and sensitivity of our extended Cytb phylogeny based on the 

recovery of deep level benchmark clades (Euungulata, Perissodactyla, Cetartiodactyla, 

Cetancodonta, Cetacea, Mysticeti, and Odontoceti). Our study finds: 1) Bayesian 

phylogenetic methods outperformed parsimony under various models; 2) increased taxon 

sampling, in particular outgroup sampling (Table 2) increased congruence with other 

datasets, e.g. for the first time some of our analyses support Odontoceti monophyly 

based on Cytb data alone. 

 We find that as long as outgroup taxon sampling was extensive, Bayesian 

analyses of Cytb recovered all the a priori identified benchmark clades. When only a few 

outgroups were chosen, however, the Bayesian analysis negated Odontoceti monophyly 

(Table 2), as have many previous parsimony analyses of mitochondrial DNA. 

Furthermore, in almost every detailed comparison possible our results mirror the findings 

O’Leary et al. (2004), the most ‘character-complete’ (but including relatively few 

cetacean taxa) analysis to date (37,000 characters from morphology, SINE, and 51 gene 

fragments). This result gives credibility to our findings, including previously untested 

lower level clades. 

 The low support for Odontoceti is unsurprising given previous analysis of Cytb, 

and the finding of Arnason et al. (2004) that explosive radiation took place early in the 

evolutionary history of whales, with little time to accumulate synapomorphies for major 

lineages such as Odontoceti. The parsimony analyses likewise recover the benchmark 
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clades Perissodactyla, Cetancodonta, Cetacea, and Mysticeti, but support for 

Cetartiodactyla and Odontoceti was highly sensitive to a priori character weighting 

schemes. Using the Arnason and Gullberg (1994) codon weighting scheme (4:17:1), a 

relatively strong support is found for Odontoceti monophyly. This is an interesting 

example of how dense taxon sampling can impact the phylogenetic signal. Arnason and 

Gullberg, (1994) used this weighting scheme in an Cytb analysis of 14 cetacean species 

and one outgroup (cow) suggested the placement of Mysticeti within Odontoceti. 

Because Bayesian analyses allows for an objective way of weighting characters 

(Felsenstein, 1981) and because it recovers all the benchmark clades supported by other 

independent data (e.g., Messenger and McGuire, 1998; Nikaido et al., 2001; Arnason et 

al., 2000, 2004; O’Leary et al., 2004) we favor the Bayesian hypothesis. As for other 

clades, most of the analyses showed remarkable congruence with previous phylogenies 

based on nuDNA, morphology, and mtDNA data (e.g., Rosel et al., 1995; Messenger and 

McGuire, 1998; LeDuc et al., 1999;Waddel et al., 2000; Cassens et al., 2001; Hamilton et 

al., 2001; Rychel et al., 2004; Sasaki et al., 2005). Below we briefly review the 

implications of our results to lower level cetacean phylogenetics and classification. 

 

Monophyly and placement of Mysticeti (baleen whales) 

The monophyly of baleen whales is virtually uncontroversial (see e.g. Sasaki et 

al., 2005). However, their placement has been debated. Based on mitochondrial data 

Milinkovitch et al. (1993, 1995,1994, 1996) suggested that baleen whales were sister to 
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sperm whales (Physeteroidea), Verma et al. (2004) placed them sister to Platanistidae, 

while Arnason and Gullberg, (1994) based on Cytb placed baleen whales sister to 

dolphins (however, with very few taxa presented). These hypotheses have remained 

contradicted by both morphological and nuclear data, which agree on the sister 

relationship of monophyletic Odontoceti and Mysticeti. Our phylogenetic results agree 

with morphological and nuclear DNA data (e.g. O’Leary et al., 2004), echoing a new 

mitogenomic study by Arnason et al. (2004). 

 Within Mysticeti, we found support for the monophyly of Balaenidae, and the 

placement of Neobalaenidae sister to (extended) Balaenopteridae. However, Eschrichtius 

robustus consistently nested within Balaenopteridae, rendering the latter paraphyletic as 

found by Rychel et al. (2004), O’Leary et al. (2004), and Sasaki et al. (2005). 

 

Monophyly of Odontoceti (toothed whales) 

Odontoceti is one of our benchmark clades, and was supported by the Bayesian 

analysis and one of the parsimony analyses. The recovery of this clade shows that with 

sufficient taxa mitochondrial phylogenies can be reliable. Within Odontoceti the 

superfamilies Delphinoidea, Physeteroidea, and Inoidea were monophyletic, and also all 

family level taxa (Fig. 1). 
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Delphinoids 

All analyses agree on the monophyly of Delphinoidea and monophyly of each of 

the delphinoid families Monodontidae, Phocoenidae, and Delphinidae, and all 

subfamilies within Delphinidae. Our results strongly support the relationship 

Delphinidae (Monodonotidae + Phocoenidae). Waddel et al. (2000) found the same 

relationships with nuclear genes and Nishida et al. (2003) with SRY (sex determining 

region of the Y chromosome) gene. Our findings contradict the division of Phocoenidae 

into two subfamilies Phocoeninae and Phocoenoidinae. The porpoises Australophoceona 

dioptrica and Phoecoenoides dalli, rather nested within Phocoeninae, and Neophocaena 

phocaenoides is basal to all the porpoises. As Rosel et al. (1995) suggested, 

Australophocoena should be returned to Phocoena where it was originally placed by 

Lahille (1912), and Phocoenoies dalli classification needs further analysis. 

LeDuc et al. (1999) and LeDuc (2002) proposed a new classification for 

Delphinidae based on Cytb data. Unsurprisingly, our results largely agree. Stenella and 

Lagenorhynchus are paraphyletic and both need revision. Grampus griseus nested within 

the subfamily Globicephalinae in all our analyses (see also Kasuya, 1973), rather than 

within Delphininae as previously suggested (Mead, 1975; Barnes et al., 1985; De 

Muizon, 1988; Perrin, 1989). Orcininae (Orcinus orca + Orcaella brevirostris), separate 

from Globicephalinae is supported. Sousa chinensis groups within the subfamily 

Delphininae and not with Stenoninae. Furthermore, our results show a monophyletic 

Lissodelphininae including Cephalorhynchus spp., Lissodelphis spp., and 
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Lagenorhynchus australis, L. cruciger, L. obliquidens and L. obscurus. As suggested by 

previous studies Lagenorhynchus is not monophyletic. Our results support LeDuc et al. 

(1999) in transferring Lagenorhynchus acutus to Leucopleurus, but its phylogenetic 

position also requires the creation of a new subfamily, likely also including L. albirostris. 

LeDuc et al. (1999) and LeDuc (2002) suggested returning these four species to the genus 

Sagmatias (type species L. cruciger), however, in our analyses L. cruciger and L. 

australis are nested within Cephalorhynchus. Thus it may be simplest to transfer the L. 

cruciger and L. australis to Cephalorhynchus, while retaining L. obliquidens and L. 

obscurus in Lagenorynchus. Interestingly, the placement of L. australis within 

Cephalorhynchus is supported by acoustic data. Uniquely among dolphins, L. australis, 

and the four Cephalorhynchus species do not whistle (Schevill and Watkins, 1971). There 

is not published data on the acoustic behavior of L. cruciger. 

 

River Dolphins 

Our results agree with most molecular and recent morphological studies that river 

dolphins are polyphyletic, and do not offer unambiguous support for the infraorder 

Delphinida (containing Delphinoidea, Lipotidae, Iniidae, Pontoporidae, Platanistidae). As 

suggested by most studies Platanistidae does not group with other river dolphins, but is 

here the most basal family of Delphinida (e.g., Messenger and McGuire, 1998; Cassen et 

al., 2000; Hamilton et al., 2001; Yan et al., 2005). Note that a recent study based on 

nuDNA and Cytb placed Platanistidae sister to Mysticeti, although with little support 
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(Verma et al., 2004). Platanista is the only surviving genus of the superfamily 

Platanistoidea which contains the extinct marine families Prosqualodontidae, 

Dalpiazinidae, Waipatiidae, Squalondontidae, Squalodelphinidae, in addition to 

Platanistidae (deMuizon, 2002). Although, paleontologists agree that Platanista is a close 

relative of the family Squalodelphinidae (Heyning, 2002) new paleontological data points 

to Lipotes vexillifer and Inia geoffrensis as its closest relatives (Geisler and Sanders, 

2003). 

 Geisler and Sanders, (2003) suggest a single ecological shift to riverine habitats in 

the ‘river dolphins’, instead of two as argued by other authors (e.g., Cassens et al., 2000; 

Nikaido et al., 2001; Hamilton et al., 2001). Our results indicate two to three shifts in the 

‘river dolphins’. An unambiguous one in Platanista, and either one in Inia and another in 

Lipotes, or a single origin in the node leading to Inoidea plus Lipotoidea with a reversal 

in Pontoporia. In addition, populations of Sotalia fluviatilis, Orcaella brevirostris 

(LeDuc, 1999), and the porpoise Neophocaena phocaenoides, independently shifted to a 

riverine habitat. 

 Previously the three ‘river dolphin’ genera were placed in a single family Iniidae 

(Heyning, 1989) or two families Pontoporidae (Pontoporia and Lipotes) and Innidae 

(Inia) (Fordyce et al., 1994). Our phylogenetic results agree with the classification of the 

three genera into three families as suggested by Fordyce and deMuizon (2001) with the 

following relationship ((Pontoporidae + Iniidae) + Lipotidae)). This arrangement is 

supported by both morphology and molecular data (e.g., Messenger and McGuire, 1998; 
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Yang and Zhou 1999; Cassen et al., 2000; Hamilton et al., 2001; Nikaido et al., 2001; 

Yan et al., 2005). Furthermore, the relationship of Inia subspecies is unsurprisingly 

identical to that found by Hamilton et al., (2001) (I. g. humboldtiana + I. g. geoffrensis) + 

I. g. boliviensis)). 

 

Beaked and sperm whales 

Our results support the superfamily Physeteroidea which includes the families 

Kogiidae and Physeteridae, whereas ziphiids interrelationships were largely unresolved. 

The molecular work of Dalebout et al. (2004) calls for a revision of Ziphiidae and Mead 

(2002) proposed the subfamilies Ziphininae (Berardius spp., Tasmacetus shepherdi, and 

Ziphius cavirostris) and Hyperoodontinae (Mesoplodon spp. and Hyperoodon spp). Our 

analyses all indicate Tasmacetus shepherdi sister to all other ziphiids. To date, most 

cetacean phylogenies have not aimed at solving ziphiid species relationships, and thus 

their relationships are largely unknown. Since low level taxonomic relationships were 

fairly well supported in other groups of toothed whale, Cytb seems promising in 

providing future insights in the evolutionary relationships of ziphiids. Physeteroids and 

ziphiids are the most basal toothed whales. Both groups show a clear reduction in 

dentition, in physeteroids teeth are only present in the lower jaw, and in most ziphiid 

species, teeth are reduced or absent in both jaws, with the exception of males that have 

two prominent teeth in the lower jaw (Mead 2002). 
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 It is interesting to notice that T. sheperdi is basal in our ziphiid phylogeny and it 

is the only beaked whale with full dentition in both jaws. Although this particular 

relationship is weakly supported, it hints that the loss of teeth may be convergent in 

Physeteroidea, and within Ziphiidae. 
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CONCLUDING REMARKS 

Substitution saturation imposes limitation on Cytb (and other mitochondrial data) 

for deeper level phylogenetics, and may lead to misleading results (Irwin et al. 1991; 

Springer et al. 2001). Furthermore, many studies have shown that single gene analyses 

rarely agree with global optima (e.g., O’Leary et al., 2004). However, our results show 

that by densely sampling taxa, especially outgroup taxa, and using appropriate methods 

of analysis with realistic models of evolution, this problem may be reduced, and in this 

particular example, mostly overcome. Low-level phylogenies are essential for 

classification and as a tool for comparative evolutionary (and ecological) studies. In this 

context ‘single gene’ phylogenies may be of great value (as long as they are ‘reality 

checked’) as relatively many species can be included, offering more detailed phylogenies 

than currently possible with phylogenies based on multiple genes and morphology. 

Ultimately, of course, a major goal of phylogenetics is a phylogeny of life (i.e. many 

taxa), based on multiple lines of evidence (many characters of many types). However, 

when phylogenies based on relatively few characters can be judged reliable based on 

external evidence (taxonomic congruence with other phylogenies using many characters, 

but few taxa), they seem like very promising and useful ‘first guess’ hypotheses. The 

evolution of sexual dimorphism, echolocation, social behavior, and whistles and other 

communicative signals, and major ecological shifts (e.g. transition to fresh water) are 

among the numerous interesting questions in cetacean biology that this phylogeny can 

help answer. 
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Table 1. Species used in the analyses with respective GenBank accession numbers of 
cytochrome b sequences. 
 

All species (Bayesian + Parsimony) 
 

Subsample1 Subsample2 

Species Accession #    
Carnivora    
Canis familiaris AY729880  X 
Panthera leo AF053052  X 
    
EUUNGULATA    
Perissodactyla    
Dicerorhinus 
sumatrensis 

AJ245723  X 

D. bicornis X56283  X 
Equus caballus AY515162  X 
Equus grevyi X56282  X 
Tapirus indicus AF145734  X 
T. terrestris AF056030  X 
    
Cetartiodactyla    
Alces alces M98484  X 
Antilocapra americana AF091629 X X 
Antilope cervicapra AF022058  X 
Babyrousa babyrussa  Z50106  X 
Bos Taurus AB090987 X X 
Camelus dromedarius X56281 X X 
Cephalophus zebra AF153903  X 
Giraffa 
camelopardalis 

X56287  X 

Lama lama U06429  X 
Moschus leucogaster AF026889  X 
Odocoileus hemionus X56291  X 
Oryx gazelle AF249973  X 
Ovis aries AB006800  X 
Pecari tajacu X56296 X X 
Sus barbatus  Z50107  X 
    
CETANCODONTA    
Hippopotamus 
amphibius 

Y08813   

    
Cetacea    
Mysticeti    
Balaena glacialis X75587   
Balaena mysticetus U13125 X X 
Balaenoptera 
bonaerensis 

X75581 X  
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B. borealis X75582   
B. edeni X75583   
Capera marginata X75586   
Eschrichtius robustus X75585 X X 
Megaptera 
novaeangliae 

X75584 X X 

    
Odontoceti    
Physeteroidea    
Physeteridae    
Physeter 
macrocephalus 
(catodon) 

X75589 X X 

    
Kogidae    
Kogia breviceps U72040 X X 
Kogia simus AF304072-U13135 X X 
    
Ziphoidea    
Ziphiidae    
Berardius bairdii X92541   
Hyperoodon planifrons AY579560   
H. ampullatus AY579558   
Indopacetus pacificus AY162441   
Mesoplodon 
densirostris 

X92536 X  

M. bidens X92538 X  
Tasmacetus shepherdi AF334484   
Ziphius cavirostris AF304075-U13146 X X 
    
Platanistoidea    
Platanistidae    
Platanista gangetica AF304070   
Platanista minor X92543   
    
Inoidea    
Pontoporidae    
Pontoporia blainvelli  AF334488   
    
Iniidae AF334487   
Inia geoffrensis 
boliviensis 

AF334485 X X 

Inia geoffrensis 
geoffrensis 

AF521110   

Inia geoffrensis 
humboldtiana 

   

    
Lipotoidea    
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Lipotidae    
Lipotes vexillifer AF304071   
    
Delphinoidea    
Monodontidae    
Delphinapterus leucas U72037 X X 
Monodon monocerus U72038   
    
Phocoenidae    
Australophocoena 
dioptrica 

U09681   

Neophocaena 
phocaenoides 

AF334489   

Phocoena phocoena U72039 X X 
P. sinus AF084051   
P. spinipinnis U09676 X X 
Phocoenoides dalli U09679   
    
Delphinidae    
Cephalorhynchus 
commersonii 

AF084073   

C. eutropia AF084072 X X 
C. hectori AF084071   
C. heavisidii AF084070   
Delphinus delphis AF084085 X X 
D. capensis AF084087   
D. tropicalis AF084088   
Feresa attenuata AF084052   
Globicephala 
macrorhynchus 

AF084055   

G. melas AF084056 X X 
Grampus griseus AF084059   
Lagenorhynchus 
acutus 

AF084075   

L. australis AF084069   
L. cruciger AF084068   
L. obliquidens AF084067 X  
L. obscurus AY257161 X X 
Lagenodelphis hosei AF084099   
Lissodelphis borealis AF084064   
L. peronii AF084065 X X 
Orcinus orca AF084061   
Orcaella brevirostris AF084063   
Pseudorca crassidens AF084057   
Stenella attenuata AF084096   
S. clymene AF084083   
S. coeruleoalba AF084082   
S. frontalis AF084090   
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S. longirostris AF084103   
Sousa chinensis AF084080   
Sotalia fluviatilis AF304067   
Steno bredanensis AF084077   
Tursiops truncatus AF084095 X X 
 
Note: In subsample 1 species were included to mirror taxon selection in Messenger and 
McGuire (1998) molecular analyses except for the outgroup species Tragulus napu. 
Furthermore, the following cetacean species were replaced by close relatives: 
Mesoplodon europaeus and M. peruvianus by M. bidens and M. densirostris, 
Lagenorhynchus albirostris by L. obliquidens, and Balaenoptera physalus by B. 
bonaerensis.  In subsample 2 the same species were included as in subsample 1 plus all 
outgroups from this study. 
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Table 2. Posterior probabilities and bootstrap values for all benchmark clades 
 

 Benchmark clades 
Model Euungulata Perissodactyla Cetartiodactyla Cecantodonta Cetacea Mysticeti Odontoceti 
Bayesian 
GTR+Г+I 100 100 100 79 100 100 67 
Subsample 
Bayesian n/a n/a n/a n/a 100 98 NO 
Subsample 
w/outgr. 100 100 100 71 100 99 78 
Equally 
Weigthed 
MP 100 100 NO <50 100 100 NO 
MP (3:1) 100 100 NO 100 100 100 NO 
MP 
(17:4:1) NO 100 NO <50 100 100 <50 
MP (1:0) 88 91 NO <50 97 100 NO 
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ABSTRACT 
 

Because whistles are most commonly associated with social delphinids, they have been 

largely overlooked, ignored, or presumed absent, in solitary freshwater dolphin species. 

Whistle production in the freshwater dolphin, the boto (Inia geoffrensis geoffrensis), has 

been controversial. Because of its sympatry with tucuxi dolphins (Sotalia fluviatilis), a 

whistling species, some presume tucuxi whistles might have been erroneously assigned to 

the boto. Using a broadband recording system we recorded over 100 whistles from boto 

dolphins in the Yasuní River, Ecuador where the tucuxi dolphins are absent. Our results 

therefore provide conclusive evidence for whistle production in Inia geoffrensis 

geoffrensis. Furthermore, boto whistles are significantly different from tucuxi whistles 

recorded in nearby rivers.  The Ecuadorian boto whistle with a significantly greater 

frequency range (5.30 to 48.10 kHz) than previously reported in other populations (Peru 

and Colombia) that were recorded with more bandwidth limited equipment. In addition 

the top frequency and the range are greater than in any other toothed whale species 

recorded to date.  Whistles production was higher during resting activities alone or in the 

presence of other animals. The confirmation of whistles in the boto has important 

implications for the evolution of whistles in Cetacea and their association with sociality. 
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INTRODUCTION 

The Amazon River dolphin, or boto, is known to produce a variety of sounds e.g., 

echolocation clicks, single intense clicks, jaw snaps, and burst-pulsed sounds (Caldwell 

and Caldwell 1967, Caldwell et al. 1966). Whistles were first reported by Nakasai and 

Takemura (1975) in Peru and later documented in more detail by Wang et al. (1995a, 

2001). Whistles have been also reported in the boto from the Orinoco River 

(Diazgranados and Trujillo 2002). Despite these reports, whistle production in this 

riverine dolphin has been questioned on the basis that boto distribution overlaps largely 

with tucuxi dolphins (Sotalia fluviatilis), a well documented whistling species. Hence, 

tucuxi whistles may have been erroneously assigned to the boto (e.g., Podos et al. 2002).  

In fact, it has been suggested that whistles are unique to social delphinids (Herman and 

Tavolga 1980, Podos et al. 2002). Certainly, whistles are best studied in social 

delphinids, where they are used for various communication purposes such as individual 

identifiers, coordination of group behavior, and maintenance of group cohesion (e.g., 

Caldwell and Caldwell 1965; Caldwell et al. 1990, Fripp et al. 2005, Herzing 2000, Janik 

2000, Tyack 1997, 2000, Watwood et al. 2004). However, non-delphinid toothed whale 

species like the Chinese river dolphin Lipotes vexillifer (Jing et al. 1981, Xianying et al. 

1981,Wang et al. 1989, Wang et al. 2006), the beaked whales of the genus Berardius spp 

(Dawson et al. 1998, Rogers and Brown 1999), the narwhal Monodon monocerus, and 

the beluga Delphinapterus leucas (e.g., Belikov and Bel’kovich 2001, 2003, Ford and 

Fisher 1978, Karlsen et al. 2002, Shapiro 2006, Sjare and Smith 1986, Watkins et al. 

1970) are known to produce whistles as well in a variety of contexts.  
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Here we document whistles and their behavioral context in the boto dolphins of 

the Yasuní River, Ecuador and discuss the potential of these signals as communicative 

signals in this solitary freshwater dolphin.  
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MATERIALS AND METHODS 

Study Site 

The boto is one of the most widely distributed freshwater dolphins. In parts of its 

distribution it is sympatric with Sotalia fluviatilis (da Silva 2002). The boto inhabits 

principal tributaries of the Amazon River as well as small rivers and lakes across its 

distribution (da Silva 2002). Since one of the main criticisms of previous work on boto 

whistles is the presence of S. fluviatilis in the area of recordings, it was important for our 

study to be conducted in areas where only botos were found. We selected the Yasuní  

River a tributary of the Napo River, a narrow river that inundates the adjacent forest and 

lagoons, during the high-water season (Fig.5). During the low-water season the river 

becomes narrower and the lagoons dry out (Galacatos et al. 2004), not the type of habitat 

in which S. fluviatilis is known to occur (da Silva 2002).  

Overall S. fluviatilis is believed to have low population densities in Ecuador 

(Dekinger 2001, Zapata-Rios and Utreras 2004).  While relatively common in the 

Putumayo and Morona Rivers, local biologists (Zapata-Rios and Utreras 2004, Victor 

Utreras pers. comn. 2006), park rangers, and inhabitants of the area confirm that S. 

fluviatilis is rare in the Yasuní, Napo, and Aguarico rivers, and absent in theYasuní 

during the low-water season. Our study took place in the Yasuní River during the low-

water season when boto were confined to deeper areas of this narrow river.  

We recorded boto dolphins from 14 to 19 August 2005 between 6 a.m. to 6 p.m.  

In order to decrease chances of encountering (and accidentally recording) S. fluviatilis we 

recorded botos at least 1.5 km away from the point of intersection with the Napo River 
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where the chances to see S. fluviatilis may be higher (Zapata-Rios and Utreras 2004). As 

expected we observed only botos in the Yasuní River and are thus confident that all the 

whistles presented in this study correspond exclusively to the boto. To verify this, we 

compare and contrast boto whistles with 20 whistles recorded from six individuals of S. 

fluviatilis and 13 whistles from one group that contained both species at the intersection 

between the Napo and the Aguarico rivers, about 14 km downstream from the 

intersection between Yasuní and the Napo rivers. The 20 whistles recorded from single 

animals, were very similar in contour, time, and frequency parameters to other S. 

fluviatilis populations (e.g., Podos et al. 2002, Azevedo and Van Sluys 2005, Wang et al. 

1995a, 2001). These single animals were recorded near the boat and botos were not 

present in the area. The other 13 whistles were identical to these in all acoustic 

parameters therefore they were assigned to S. fluviatilis. 

 

Whistle Definition 

To understand the evolutionary history of whistles and the factors that may have 

influenced their evolution we must first understand their distribution among cetaceans. 

To do so it is important not to a priori bias whistle definition e.g. by defining them in the 

context of a behavior that may have much more limited distribution than the sounds 

themselves. Rather, it seems less presumptuous to define sounds in terms of acoustic 

parameters. Whistles are tonal sounds produced by toothed whales. These sounds have a 

specific acoustic structure that consists of narrowband and frequency modulated sounds 

(Richardson et al. 1995). Whistles may be complex in contour (e.g., sine, convex, 
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concave, upsweep, downsweep) or simply constant in frequency e.g., Lagenorhynchus 

albirostris (Rasmussen and Miller 2002), Sotalia guianensis  (Azevedo and Van Sluys 

2005) and Stenella longirostris (Barzúa-Durán and Au 2002). Often whistle fundamental 

frequency is below 20 kHz (Richardson et al. 1995), but not limited to this range e.g., 

Oswald et al. (2004) found that Delphinus delphis, Stenella attenuata, S. coeruleoalba, 

and S. longirostris produced whistles with frequencies up to 24 kHz, in Lagenorhynchus 

albirostris whistle fundamental frequency can go up to 35 kHz (Rasmussen and Miller 

2002) and up to 41 kHz in Tursiops truncatus (Boisseau 2005). Whistles may be 

continuous or consist of series of breaks and segments (Richardson et al. 1995) and 

contain or not harmonics (Au 2000). Some dolphin species like S. longirostris (Lammers 

and Au 2003) and L. albirostris (Rasmussen et al. 2006) produce whistles with high 

order-harmonics. Finally whistles vary greatly in duration. For instance, Sousa chinensis 

whistles can range from 0.01 to 1.3 seconds (Van Parijs and Corkeron 2001) and in 

Tursiops truncatus from 0.05 to 3.2 seconds (Wang et al. 1995b). 

 

Recordings and Behavioral observations 

Dolphin signals were recorded using a broadband system consisting of a RESON 

hydrophone (-203 dB re 1V/µPa, 1 Hz to 140 kHz) connected to AVISOFT recorder and 

Ultra Sound Gate 116 (sampling rate 400-500 kHz 16 bit) that sent the signals to a laptop. 

Recordings were made continuously. For accompanying behavioral observations, 

recording sessions were segmented into three-minute intervals. Behavioral observations 

were made in every other three-minute interval and the predominant behavior during that 
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interval was recorded. Because the river was narrow and relatively shallow, animals were 

in sight for the observers most of the time. When animals were not in sight during a 3-min 

scanning period, the behavior was noted as unknown. Only 3-min periods with acoustic 

and behavioral information were used for the analyses.  Five behavioral categories were 

defined: (1) Feeding/Foraging, animals that were actively searching, pursuing, and/or 

consuming prey were assigned to this category, (2) Social activities, when dolphins 

interacted among themselves e.g., body contact, tail slapping, and animals following the 

boat or other animals, (3) Traveling, when dolphins were swimming either slowly or fast 

while maintaining a defined direction, (4) Resting was defined as in Dekinger (2001) 

were animals showed non directional swimming and surfaced regularly at a slow speed or 

when surfacing occurred in the same area without any abrupt or fast movement, (5) 

Unknown behavior, was assigned when the animals were not in sight and thus the 

behavior activity could not be determined. 

 Group size, group composition, photo-ID, and geographical position data were 

also collected. Recordings were obtained from 14 to 19 August 2005, giving a total of 

214 files recorded (~ 9 hours and 45 minutes of recorded time). We analyzed all good 

quality whistles using the program Raven 1.1 (Cornell Laboratory of Ornithology, New 

York) with a FFT size of 1024 points, an overlap of 50%, and using a 512-522 sample 

Hann window. 

 Eight parameters were measured for each whistle: starting frequency (SF), ending 

frequency (EF), minimum frequency (MinF), maximum frequency (MaxF), delta 

frequency (DF=MaxF—MinF), peak frequency (PF, measured in the whistle contour 
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were intensity was the highest), duration (s), number of inflection points and contour 

type. Contour type was categorized as by Azevedo and Simão (2002).  

We used SYSTAT® statistical software for descriptive and non-parametric 

statistics. After testing for normality using the K-S Lilliefors, Skewness, and Kurtosis 

Tests, non-parametric tests were selected to analyze the data. The Kruskal-Wallis test was 

used to determine if whistle acoustic parameters varied across behavioral states and 

groups [sightings] and Chi-square one sample test for Goodness of Fit to determine if 

whistle production rate (#whistles/min/individual) varied across behaviors. The 

Kolmogorov-Smirnov test for two independent samples was used to determine if the 

medians of the acoustical parameters differed between the two species. A multivariate 

Discriminant Function Analysis was used to classify whistles within and between species. 

The Jackknife method was used to calculate the percent of correct classification for each 

species.  
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RESULTS 

A total of 121 high quality tonal sounds fitted the definition of ‘whistles’ (see above) 

until now only described in delphinids and a few other toothed whales. However, these 

whistles were not produced in bouts as in many delphinids species. They were produced 

singly and spaced in time. The overall whistle production was  0.015 whistles per minute 

per individual.  

 Whistle fundamental frequency ranged from 5.30 up to 48.10 kHz and were short 

in duration (0.002-0.080 sec) (Table 3, Fig.6). About half (48%; n=58) of the whistles 

had maximum frequency values above 24 kHz. This demarcation point was chosen 

because most dolphin whistles reportedly do not go beyond 24 kHz (with the exceptions 

mentioned earlier) and this is often the upper limit of recording equipment used in many 

earlier studies. Similarly 42.1% (n=51) of beginning frequency, 13.2% (n=16) of peak 

frequency, 5.78% (n=7) of end frequency, and 1.65% (n=2) of minimum frequency 

measurements were above 24 kHz. 

 In terms of whistles contours 95.8% (n=116) of the whistles were descending in 

frequency. Examples of whistle contours produced by botos are shown in Figure 2 in 

conjunction with tucuxi whistles for comparison purposes. Only five of all selected 

whistles had harmonics. The highest frequency harmonic reached 43.5 kHz.  

The whistles were recorded during three behavioral categories: slow traveling, 

feeding, and resting. Although more whistles were produced during travel activities when 

accounting for time and number of individuals, whistle production was significantly 

higher during resting activities with 0.24 whistles per minute per individual (χ2=0.50, 

df=1, p<0.05) compared to traveling (0.03) and feeding (0.03). There were no significant 
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differences in the acoustic parameters of whistles across behaviors at p-value 0.05 level 

(Table 4). 

 Whistles did vary significantly in their acoustic structure across sighted groups 

(only groups with more than five whistles were compared) for all whistle parameters 

except delta frequency (Kruskal-Wallis test, df=8, n=121: MinF χ2=20.31, p=0.026; 

MaxF χ2=25.46, p=0.005; SF χ2=23.31, p=0.010; EF χ2=23.86, p=0.008; PF χ2=23.28, 

p=0.010; Duration χ2=25.46, p=0.005, DF p>0.05, Table 5). Whistle acoustic parameters 

did not vary significantly when comparing whistles of groups consisting of adults with 

groups of adults with calves (p>0.05). 

 When comparing boto and tucuxi whistles we found significant differences in all 

whistle parameters medians (MinF Kolmogorov Smirnov (KS)=0.543, p<0.001; MaxF 

KS=0.537, p<0.001; DF KS=0.190, p<0.001, SF KS=0.683, p<0.001; EF KS=0.298, 

p<0.001; PF KS=0.336, p<0.001; Duration KS=0.901, p<0.001). The boto whistles were 

higher in frequency for all frequency parameters and much shorter in duration than the 

whistles produced by tucuxis recorded from the Napo and Aguarico rivers (Fig. 3). 

Tucuxis produced two classes of whistles that can be described as (1) whistles with 

maximum frequencies below 20 kHz and minimum frequencies below 10 kHz, and (2) 

whistles with maximum frequencies below 25 kHz and minimum frequencies above 10 

kHz (see Fig. 4). Both categories of whistles overlap with boto whistles. Despite of this 

overlap in frequency, the discriminant function analysis correctly classified (based on all 

acoustical parameters) all boto whistles (100%). Only 15% of the tucuxi whistles were 

incorrectly classified. 
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DISCUSSION 

Our results confirm previous findings that botos indeed whistle (Wang et al. 1995, 2001, 

Diazgranados and Trujillo 2002) and suggest that boto whistles are frequency modulated 

with one of the widest frequency ranges ever reported in a toothed-whale species. 

Interestingly, the acoustic structure of these whistles is not only distinct from those of the 

sympatric S. fluviatilis but also appears quite distinct from other acoustically known boto 

populations in Colombia (Inia geoffrensis humboldtiana) (Diazgranados and Trujillo 

2002) and Perú (Inia geoffrensis geoffrensis) (Wang et al. 1995a, 2001). However, the 

comparison between these studies is difficult due to differences in recording equipment 

as discussed below. 

 

Between and within species variation 

Boto whistles differ from tucuxi whistles in all their acoustical parameters. As shown in 

Figure 4, botos produced higher frequency whistles. These whistles are more limited in 

their contour diversity (95.8% of the whistles were downsweep) than tucuxi whistles (and 

those of most other dolphins). Several factors have been proposed to explain interspecific 

whistle variation including: morphological constraints (Wang et al. 1995a, Matthews et 

al. 1999), environment (Wang et al. 1995a), sociality (Podos et al. 2002), 

zoogeographical relationships (Steiner 1981), and phylogenetic relationships (Steiner 

1981, Wang et al. 1995a).  

Body size is the most important morphological factor believed to influence signal 

frequency in animals (Marquet and Taper 1998). Overall, the larger the animal the lower 

frequency sounds it tends to produce. This is because body size and the size of sound 
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producing organs are often correlated (Fletcher 1992). Some authors (e.g., Wang et al. 

1995a, Podos et al. 2002) have proposed a similar relationship between body size and 

maximum frequency. However, in the case of cetaceans a recent study showed that when 

accounting for phylogeny the proposed relationship between body size and maximum 

frequency disappears (May-Collado et al. 2007a). Thus the fact that botos (~2.6 m, 160 

kg) can produce much higher frequency whistles than the smaller tucuxis (~1.52 m, 40 

kg) is not counter to any general rule.  

It is unlikely that whistle variation is explained by differences in habitat acoustic 

structure since both species live in very similar environmental conditions. Another 

proposed factor to explain interspecific whistle variation is zoogeographical relations. 

Steiner (1981) suggested “the degree of differences in the whistle vocalizations among 

[five dolphin] species closely followed predictions based on classic allopatric/sympatric 

relations among species”. This idea is congruent with the “species recognition 

hypothesis” (see Sætre et al. 1997) that states that animal vocal acoustic structure has 

evolved 'to' reduce hybridization. Unfortunately, there is very little quantitative 

information of the extent to which botos and tucuxis are allopatric and sympatric at both 

spatial and temporal scales to test this idea.  

Botos and tucuxis are not closely related (e.g., Hamilton et al. 2001, May-Collado 

and Agnarsson 2006) which could largely explain their differences in whistle structure. 

However, there is recent evidence that social structure (or at least some components of 

sociality) could also explain part of this variation. For instance, differences in whistle 

contour and frequency and time parameters of the distantly related spinner and bottlenose 

dolphins (e.g., Hamilton et al. 2001, LeDuc et al. 1999, May-Collado and Agnarsson 
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2006) have been largely explained in terms of “group fluidity” [a component of sociality] 

(Barzúa-Durán 2004). Botos and tucuxis are not only more distantly related but also 

differ even more radically in their social structure.  While botos appear to be solitary 

(Best and da Silva 1993) or at least live in small non-structured groups (where the 

strongest social bond appear to be limited to mother and calf) (e.g., Aliaga-Rossel 2002, 

McGuire and Winemiller 1998), Sotalia spp. lives in structured social groups (Monteiro-

Filho 2000). Additionally, May-Collado et al. 2007b found that whistle complexity—a 

concept based on whistle mean number of inflection points—may be influenced by group 

size and social structure [two components of sociality]. More specifically, they found that 

simple whistles (mean number of inflection points equal or below one) were particularly 

concentrated in ‘solitary’ species while the phylogenetic distribution of complex whistles 

and social species largely overlap.  

Although boto dolphins from the Yasuní River produced whistles with frequency 

parameters that appear to be far above (5.30 to 48.10 kHz) the values reported by Wang 

et al. (1995a, 2001) in botos from the Marañon and Tigre Rivers in Peru (0.22 to 5.16 

kHz) and by Diazgranados and Trujillo (2002) in the Orinoco River (3 to 13 kHz) (Table 

3) comparisons can not be done at this point. This is due in part to differences in the 

recording systems maximum frequency limitations (up to 25 kHz), to the lack of 

information on several standard acoustic parameters (Diazgranados and Trujillo (2002), 

and the uncertainty regarding the assignment of the low frequency whistles to boto 

dolphins (Wang et al. 1995a, 2001). Therefore, until we have full frequency range 

recordings from other botos populations, comparisons are difficult and speculative.  
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 We limit this part of the discussion to the observed differences among ‘groups’ 

groups [note that several of the 'groups' consisted of only one individual] where with the 

exception for delta frequency, whistle acoustic parameters vary significantly across 

groups (Table 5). In most delphinids within species variation is primarily in duration and 

modulation (e.g., Wang et al. 1995b, Morisaka et al. 2005a-b, Barzúa-Dúran and Au 

2002, 2004) rather than in frequency as observed in this boto population (also see 

Azevedo and Van Sluys 2005, Rossi-Santos and Podos 2006 for Sotalia guianensis). In 

part, this variation has been explained as product of adaptation to local ecological 

conditions (e.g., ambient noise, see Morisaka et al. 2005b). It is unlikely that the among 

group whistle differences observed in this boto population are explained by contrasting 

habitat acoustic characteristics alone, since recorded single animals and groups were in 

the same environment.  Furthermore, age composition and behavioral states appear not to 

influence whistle variation either. However, our sample size is too small and 

geographically restricted to conclude age and behavior does not have some influence on 

boto dolphin whistles acoustic structure. In addition to these two factors, others such as 

genes, gender, and overall inter-individual variation, merit further study.  

 

Behavior and Communication 

Diazgranados and Trujillo (2002) reported that boto whistles were produced within 

groups that engaged in social and feeding activities. Half of the whistles produced by the 

botos in this study occurred during traveling activities, but when accounting for time of 

the encounter and number of individuals present, whistles production was higher during 
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resting activities. In addition, whistles were produced by both solitary and grouped 

animals.  

 The closest neighbor maximum distance was found at approximately 0.15 to 1.5 

km, suggesting these animals might be still in acoustic contact. Because of the behavioral 

context at which most whistles were emitted and the low whistle production, it is possible 

that whistles in boto dolphins may be used to keep distance between animals, rather than 

promote social interactions or cohesion among individuals as it occurs in delphinids (e.g., 

Jones and Sayigh 2002). Assuming cylindrical spreading loss and freshwater absorption 

at the mean maximum frequency, the boto whistles could propagate as far as 3.3 km 

before falling below the ambient noise although the actual range will be less depending 

on channel depth, bottom type, and vegetation (Quitana-Rizzo et al. 2006). Wang et al. 

(2006) assuming spherical spreading losses estimated that Lipotes vexillifer low 

frequency whistles (with dominant frequency 5.7 kHz) could propagate in a very calm 

environment up to 6.6 km, but possibly only 22-220 m considering the noisy conditions 

of the Yangtzee River. The Yasuní River is a very calm environment, unlike the 

Yangtzee River, it is protected and boat traffic is limited to park rangers and scientists.  

 During the period of this study botos produced whistles randomly and not in bouts 

as many delphinids species. Based on our data it appears that boto dolphins in Yasuní 

whistle rarely. Our sample size is too small not only to clearly associate these sounds 

with the same social contexts as in delphinids but also to determine how frequently botos 

and other riverine dolphin species generally whistle. Nevertheless, confirming the 

presence of whistles in botos and other freshwater toothed whales helps illuminate the 
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evolutionary history of whistles, and their relation to sociality—a factor proposed to have 

shaped the complexity of toothed whale whistles (May-Collado et al. 2007b). 
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CONCLUDING REMARKS 

This study confirms whistles in the solitary freshwater dolphin Inia geoffrensis 

geoffrensis. The frequency range of boto whistles we document is among the greatest 

ever reported in a cetacean species. The acoustic structure of these whistles in Ecuadorian 

botos differs from that of the sympatric Sotalia fluviatilis and apparently from conspecific 

populations from Perú and Colombia.  Differences in the acoustic structure of boto and 

tucuxi whistles may be in large a product of their distant phylogenetic relationships and 

their different social structure. Although, our study suggests remarkable whistle variation 

between populations this may be largely a product of limited recording systems used by 

previous studies. Finally, although the use of whistles for communication purposes has 

been largely attributed to social dolphin species, it is possible that botos (even solitary 

animals) use them to communicate but in the context of keeping distances among animals 

rather than to promote group cohesion. We propose this based on two observations (1) 

whistles were produced when the animals were engaged in resting activities, and (2) 

based on the fact that solitary animals were potentially within acoustic range of each 

other (estimated maximum of 3.3 km). Finally, better understanding of whistle 

production in solitary freshwater species will further understanding of the evolutionary 

history of whistles and their proposed association with sociality.  
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Table 3. Descriptive statistics of boto whistles with comparison to previously published data (in bold values for all 121 whistles and 
in parenthesis values for 70 whistles with frequency values below 25 kHz for comparison purposes). 
 

 Min F (kHz) Max F (kHz) Start F (kHz) End F (kHz) Delta F (kHz) Peak F (kHz) Duration (s) 
This Study 

Mean 
SD 
Range 
 
CV% 

14.54 (12.59) 
4.32 (3.96) 
5.30-26.44 

(5.30-21.37) 
29.7 (31.5) 

24.71 (19.26) 
8.37 (4.0) 

10.88-48.10 
(10.88-24.89) 

33.9 (20.8) 

23.30 (18.49) 
8.53 (4.10) 
9.77-48.10 

(9.77-24.89) 
36.1 (22.1) 

15.48 (13.10) 
5.70 (4.35) 
5.30-42.99 

(5.30-24.62) 
38.60 (33.3) 

10.18 (6.71) 
7.02 (2.47) 
2.94-34.39 

(2.99-16.52) 
68.9 (36.9) 

18.62 (15.36) 
6.61 (4.52) 
3.22-48.83 

(6.35-22.95) 
35.50 (29.5) 

0.009 (0.010) 
0.011 (0.014) 
0.002-0.080 

(0.002-0.080) 
128.2 (134.2) 

Wang et al. (1995, 2001)* 
Mean 
SD 
Range 
CV% 

2.54 
0.76 

0.220-4.22 
29.88 

2.97 
0.84 

0.5-5.16 
28.11 

2.61 
0.75 

0.220-4.22 
28.55 

2.86 
0.77 

0.360-4.86 
27.01 

------------ 
------------ 
------------ 
------------ 

------------ 
------------ 
------------ 
------------ 

1.14 
1.01 

0.16-4.42 
91.10 

Diazgranados and Trujillo (2002) 
Mean 
SD 
Range 
CV% 

------------ 
------------ 

3 
------------ 

------------ 
------------ 

13 
------------ 

------------ 
------------ 
------------ 
------------ 

------------ 
------------ 
------------ 
------------ 

------------ 
------------ 
------------ 
------------ 

------------ 
------------ 
------------ 
------------ 

------------ 
------------ 
------------ 
------------ 

*Recording system with maximum frequency limited to 25 kHz 
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Table 4. Descriptive statistics for each behavioral class for a total of 121 whistles recorded in relation to their behavioral context 
(there were not significant differences for any of these parameters across behaviors). 
 

Parameters Feeding (n=32) Resting (n=21) Slow Traveling (n=68) 
Min F  (kHz)         (mean±SD) 

Range 
CV% 

 
14.48±4.95 
6.56-21.22 

28.0 

 
14.59±4.66 
6.26-23.10 

32.0 

 
14.56±4.39 
5.30-26.44 

30.2 
Max F   (kHz)                   

(mean±SD) 
Range 
CV% 

 
25.25±9.28 
11.83-43.68 

36.8 

 
22.84±6.97 
12.76-41.72 

30.5 

 
25.03±8.36 
10.88-48.06 

33.4 
Delta F  (kHz)                   

(mean±SD) 
Range 
CV% 

 
10.84±7.84 
3.82-28.24 

72.3 

 
8.25±6.48 
2.99-30.35 

78.6 

 
10.47±6.77 
2.94-34.40 

64.7 
Start F    (kHz)                   

(mean±SD) 
Range 
CV% 

 
22.79±9.06 
11.83-43.68 

39.7 

 
22.15±7.14 
12.76-41.72 

32.2 

 
24.43±8.68 
9.77-48.06 

35.5 
End F    (kHz)                   

(mean±SD) 
Range 
CV% 

 
16.85±7.85 
7.06-42.98 

46.6 

 
15.62±5..21 
6.26-26.85 

33.3 

 
14.80±4.50 
5.30-27.34 

30.4 
Peak F   (kHz)                   

(mean±SD) 
Range 
CV% 

 
17.95±4.95 
7.81-27.34 

27.6 

 
16.15±5.80 
3.22-26.86 

35.9 

 
18.49±5.75 
6.35-33.69 

31.1 
Duration (s)         (mean±SD) 

Range 
CV% 

 
0.006±0.007 
0.002-0.039 

111.5 

 
0.008±0.008 
0.002-0.039 

103.4 

 
0.010±0.014 
0.002-0.080 

129.4                                      
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Table 5. Whistle acoustic structure described for each recorded single animal and group. 
 

Groups Min F 
(kHz) 

Max F 
(kHz) 

Delta F 
(kHz) 

Start F 
(kHz) 

End F 
(kHz) 

Peak F 
(kHz) 

Duration 
(s) 

# 
whistles 

#Individuals 
present 

Group 
Composition 

G1 Mean±SD 
Range 
C.V.% 

17.20±2.48 
13.90-20.04 

14.4 

30.23±8.28 
19.71-38.60 

27.4 

13.04±7.62 
3.62-23.27 

58.4 

29.63±9.27 
16.10-38.60 

31.3 

17.80±2.60 
13.9-20.04 

14.6 

23.43±4.56 
17.58-27.34 

20.0 

0.006±0.007 
0.002-0.019 

111.8 

6 1 
 

Adult* 

G2 Mean±SD 
Range 
C.V.% 

14.44±4.18 
7.18-24.90 

27.1 

23.68±8.93 
11.83-43.68 

37.7 

9.24±7.56 
3.82-28.02 

81.8 

23.44±9.13 
11.83-43.68 

38.9 

14.53±4.01 
7.44-21.22 

27.6 

17.32±4.69 
7.81-24.90 

27.1 

0.005±0.003 
0.002-0.017 

76.0 

23 3 
 

 

Adults 

G3 Mean±SD 
Range 
C.V.% 

16.08±5.03 
5.30-26.44 

31.1 

26.95±7.82 
12.58-48.10 

29 

10.87±7.72 
2.94-34.39 

71.0 

26.37±8.22 
9.77-48.07 

31.2 

16.19±5.11 
5.30-27.34 

31.6 

19.03±6.6.30 
3.22-27.83 

33.1 

0.009±0.015 
0.002-0.080 

156.9 

33 4 
 

 

3 Adults 
1 calf** 

G4 Mean±SD 
Range 
C.V.% 

14.60±3.22 
7.43-17.68 

22.1 

24.36±6.40 
12.07-33.14 

26.3 

9.77±4.47 
4.64-18.14 

45.7 

24.36±6.40 
12.07-33.14 

26.3 

14.60±3.22 
7.43-17.68 

22.1 

18.80±4.85 
9.76-24.41 

25.8 

0.004±0.002 
0.002-0.007 

43.1 

8 3 
 

 

2 Adults 
1 Juvenile*** 

G5 Mean±SD 
Range 
C.V.% 

14.53±3.72 
7.85-18.31 

25.6 

24.39±9.84 
10.88-41.44 

40.4 

9.84±7.89 
2.99-25.02 

80.2 

23.80±10.17 
10.84-41.44 

42.7 

14.66±3.76 
7.85-18.31 

25.7 

17.94±6.35 
8.79-33.69 

35.4 

0.008±0.009 
0.002-0.030 

116.2 

12 3 
 

 

2 Adults 
1 Juvenile 

G6 Mean±SD 
Range 
C.V.% 

8.92±3.48 
6.53-17.80 

39.0 

16.20±4.07 
14.13-27.01 

25.1 

7.28±1.07 
6.02-9.21 

14.8 

16.03±4.15 
13.67-27.01 

25.9 

8.92±3.48 
6.53-17.80 

39.0 

11.28±3.52 
7.81-19.53 

31.2 

0.026±0.014 
0.002-0.046 

54.4 

9 1 
 

 

Adult 

   G7 Mean±SD 
Range 
C.V.% 

13.84±4.10 
7.06-18.87 

29.6 

27.89±9.81 
13.98-42.99 

35.2 

14.05±8.09 
6.93-28.24 

57.6 

19.17±6.48 
13.98-29.92 

33.8 

22.56±13.40 
7.06-42.99 

59.4 

18.30±5.35 
10.90-21.41 

29.3 

0.012±0.012 
0.002-0.039 

105.3 

7 2 
 

 

1Adult 
1calf 

G8 Mean±SD 
Range 
C.V.% 

13.83±2.11 
11.71-16.66 

15.3 

21.83±2.36 
17.11-24.39 

10.8 

8.0±2.44 
4.01-10.98 

30.6 

20.51±2.87 
16.11-23.44 

14 

14.93±2.22 
12.7-18.55 

14.9 

18.42±2.58 
14.65-22.95 

14 

0.010±0.011 
0.003-0.033 

111.9 

7 2 
 

Adults 
 

G9 Mean±SD 
Range 
C.V.% 

13.98±3.17 
9.12-19.60 

22.7 

26.63±8.06 
17.11-41.72 

34.1 

9.65±7.76 
3.45-30.35 

80.4 

22.63±8.31 
16.11-41.72 

36.7 

15.25±4.51 
9.12-26.85 

29.6 

17.14±4.39 
11.23-26.86 

25.6 

0.007±0.003 
0.002-0.012 

45.3 

13 2 
 

1 Adult 
1 calf 

 G10 
Median±SD 

Range 
C.V.% 

17.27 
15.53-19.01 

14.2 

34.10 
28.02-40.18 

25.2 

17.98 
14.78-21.17 

25.2 

27.85 
15.53-40.18 

62.6 

23.51 
19.01-28.02 

27.1 

23.9320.51-
27.34 
20.2 

0.006 
0.004-0.008 

47.1 

2 2 1Adult 
1calf 

G11 Mean±SD 
Range 
C.V.% 

12.51 
-- 
-- 

17.66 
-- 
-- 

5.15 
-- 
-- 

16.11 
-- 
-- 

17.66 
-- 
-- 

12.51 
-- 
-- 

0.008 
-- 
-- 

1 1 Adult 

   *Adult is defined as full sized individuals 
 **Calf is defined as an individual that is less than half the adult’s size 
***Juvenile defined as an individual larger than a calf but not as big as an adult 
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FIG.3 
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FIG. 4 
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FIG.5 
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FIG.6 
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ABSTRACT 
 

A negative relationship between cetacean body size and tonal sound minimum and 

maximum frequencies has been demonstrated in several studies using standard statistical 

approaches where species are considered independent data points. Such studies, however, 

fail to account for known dependencies among related species—shared similarity due to 

common ancestry. Here we test these hypotheses by generating the most complete 

species level cetacean phylogeny to date, which we then use to reconstruct the 

evolutionary history of body size and standard tonal sounds parameters (minimum, 

maximum, and center frequency).  Our results show that when phylogenetic relationships 

are considered the correlation between body size (length or mass) and minimum 

frequency is corroborated with approximately 27% of the variation in tonal sound 

frequency being explained by body size compared to 86 to 93% explained when 

phylogenetic relationships are not considered. Central frequency also correlates with 

body size in toothed whales, while for other tonal sound frequency parameters, including 

maximum frequency, this hypothesized correlation disappears. Therefore, constraints 

imposed by body size seem to have played a role in the evolution of minimum frequency 

while alternative hypotheses are required to explain variation in maximum frequency. 

 

Keywords: evolution, adaptation, independent contrast, scaling, communication, 

phylogeny, tonal signals, toothed-whales, delphinids, Mysticeti. 
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INTRODUCTION 

Cetaceans produce an array of sounds that can be broadly categorized as tonal 

sounds, pulsed sounds, echolocation clicks, and graded sounds (combination of pulsative 

units and tones) (reviewed by Richardson et al. 1995). Apart from echolocation clicks, 

tonal signals are among the most studied cetacean sounds. Although similar in their 

acoustic structure, tonal sounds may be produced by two different mechanisms, possibly 

laryngeal in baleen whales (Frankel 2002) while in toothed whales sounds are thought to 

be produced by a complex nasal system (e.g., Cranford et al. 1999, Cranford 2000).  

In baleen whales tonal signals are narrowband, low in frequency (<5 kHz), and often 

produced in a stereotypic fashion (Clark 1990, Richardson et al. 1995). These signals are 

associated with a variety of behavioral contexts such as feeding (in Eubalaena australis, 

D’Vincent et al. 1985), courtship and group competition on breeding grounds (e.g., in 

Megaptera novaeangliae, Helweg et al. 1992, Tyack and Whitehead 1983), and other 

social behaviors (e.g., Eubalaena glacialis, Parks and Tyack 2005). In toothed whales 

tonal sounds (commonly referred to as 'whistles') have been documented in monodontids 

(e.g., Karlsen et al. 2002, Shapiro 2006, Sjare & Smith 1986, Watkins et al. 1970), most 

delphinids (e.g., Oswald et al. 2003, Rendell et al. 1999, Steiner 1981, Wang et al. 

1995a), some ziphiids (e.g., Dawson and Barlow 1998, Manghi et al. 1999, Rogers and 

Brown 1999), and river dolphin species (Jing et al. 1981, May-Collado and Wartzok 

2007, Wang et al. 1995a, 1999, 2001, 2006). Whistles are primarily used in social 

contexts such as group cohesion, group coordination during feeding, and individual 

identifiers (e.g., Acevedo-Gutiérrez and Stienessen 2004, Caldwell and Caldwell 1965, 

Caldwell et al. 1973, Dreher and Evans 1964, Fripp et al. 2005, Herzing 2000, Janik 
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2000, Janik et al.1994, Pivari and Rosso 2005, Tyack 1999, 2000, Watwood et al. 2004). 

Delphinid whistles vary across populations and species: acoustic parameters such as 

duration and modulation tend to vary intraspecifically (e.g., Barzúa-Durán and Au 2002, 

2004, Morisaka et al. 2005a, Wang et al. 1995b) whereas frequency components vary 

across species (e.g., Matthews et al. 1999, Oswald et al. 2003, Rendell et al. 1999, 

Steiner 1981, Wang et al. 1995a). Intraspecific variation may result from adaptation to 

local ecological conditions or geographical isolation and genetic divergence between 

groups or populations (e.g., Azevedo and Van Sluys 2005, Barzúa-Durán 2004, Barzúa-

Durán and Au 2004, Morisaka et al. 2005b, Rossi-Santos and Podos 2006, Wang et al. 

1995b). In addition there may be variation at a finer scale, such as within-individual, 

between sexes, groups etc. Interspecific variation in frequency components may 

additionally be the product of zoogeographic relationships (Steiner 1981), habitat (Wang 

et al. 1995a), morphological constraints (Matthews et al. 1999, Podos et al. 2002, Wang 

et al. 1995a,), and phylogenetic relationships (e.g., Steiner 1981, Matthews et al. 1999, 

Wang et al. 1995a). 

Body size is one of the most important morphological factors believed to 

influence animal signal frequency (Marquet and Taper 1998). Broadly, body size and the 

size of sound producing organs correlate (Fletcher 1992) and size of vocal tract places 

physiological constraints on signal production. For example small body-sizes (small 

sound producing organs) limit animals to the production of relatively high-frequency 

signals which are more subject to sound attenuation and degradation, limiting the range at 

which animals can communicate (Gerhardt 1994, Gerhardt and Huber 2002). Some 

insects and anurans have solved this problem either by using alternative strategies (e.g., 



 86 

using plants as acoustic baffles, calling from elevated positions, emitting signals from 

burrows) or by having structural modifications that allow them to produce lower 

frequencies (e.g., some grasshoppers, cicadas) (Gerhardt and Huber 2002, Lardner and 

bin Lakim 2002). 

 In cetaceans body size has been suggested as a major factor influencing both the 

maximum and minimum frequency of tonal signals (e.g., Matthews et al. 1999, Podos et 

al. 2002, Wang et al. 1995a). Using standard statistical methods these studies found a 

strong negative relationship between body size and maximum frequency (Matthews et al. 

1999, Podos et al. 2002, Wang et al. 1995a) and minimum frequency (Matthews et al. 

1999) with up to 97% of variation in frequency being explained by body size. However, 

these methods assume species as independent data points. Felsenstein (1985) emphasized 

that interspecific comparative studies face the problem of non-independence. Failing to 

account for known dependencies among related species and recognizing that similarity in 

size or whistles may be due to common ancestry artificially inflates the number of 

observations (and degrees of freedom) and correlations or regressions based on such 

observations are suspect. Correlations imply that a change in the independent trait will 

result in a change in dependent trait. A single, uniform, large clade of small species with 

high frequency whistles offers little evidence of correlation as no change is observed in 

either trait. Of course, these data do not directly contradict the correlation hypothesis, 

they are just insufficient to strongly test it. That is, when the phylogeny is consulted it 

becomes clear that the number of valid independent comparisons of values for the two 

traits is far less than the number of species in the clade. However, if these small species 

were scattered in the phylogeny among larger lower-pitched species they would provide 



 87 

multiple observations of changes in body size accompanied with a change in pitch thus 

offer stronger support to the hypothesis of correlation. A series of methods have been 

developed to account for known dependencies among related species using phylogenies 

(reviewed by Harvey and Pagel 1991, Martins et al. 2002).  

The goal of this study is to reevaluate the hypotheses that variation in maximum 

and/or minimum tonal sound frequency across whales is correlated with body size, and 

then test more specifically this correlation in toothed-whales with reference to ‘whistles’, 

We explore the relationship between several cetacean tonal signal frequency characters 

and body size using a comparative phylogenetic approach. Our results also cast light on 

the evolution of body size and the evolutionary history of tonal sounds. 
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MATERIALS AND METHODS 

Data and Definitions 

Published data on body size for length (m) and mass (kg), and standard frequency 

variables of tonal sound (kHz) were obtained from various sources (published literature, 

personal communications, and L. May-Collado unpublished data) (see Table 1). 

 Tonal sounds are produced by both baleen whales (Mysticeti) and toothed whales 

(Odontoceti) and were defined as narrowband sounds that can be relatively constant in 

frequency (e.g., Lipotes vexillifer, Wang et al. 2006, Sotalia fluviatilis, Azevedo and Van 

Sluys 2005, Stenella longirostris Barzúa-Dúran and Au 2002, 2004, baleen whales e.g., 

McDonald et al. 2005, Mellinger and Clark 2003, Watkins et al. 2004) but also greatly 

modulated (e.g., Tursiops truncatus, Wang et al. 1995b, Delphinapterus leucas, Karlsen 

et al. 2002; Lagenorhynchus albirostris, Rasmussen and Miller 2002), show variable 

duration (e.g., 0.01 to 1.3 sec in Sousa chinensis, Van Parijs and Corkeron 2001), consist 

of a single or several units, (Richardson et al. 1995) and may or may not contain 

harmonics (e.g., Lammers and Au 2003, Rasmussen et al. 2006). Throughout we assume 

authors reported the fundamental frequency and that is what we discuss, since not all 

state if measurements included harmonics or not. Toothed whale tonal sounds (whistles) 

have been characterized as generally with fundamental frequencies below 20 kHz 

(Richardson et al. 1995). However, this upper limit of around 20 kHz in many cases 

reflects limitations of recording equipment, rather than those of whistle frequency 

production (e.g., the following studies in dolphins and river dolphins – Wang et al. 

1995a,b used a system response up to 24 kHz, Corkeron and Van Parijs 2001 up to 22 

kHz, Morisaka et al. 2005a,b and Van Parijs et al. 2000 up to 20 kHz; in ziphiids –  
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Dawson and Barlow 1998 up to 20 kHz, and Rogers and Brown 1999 up to 16.5 kHz; in 

belugas – Belikov and Bel’kovich 2001, 2003 up to 20 kHz, etc.). Therefore we do not 

exclude higher frequency whistles such as those produced by some delphinid e.g., 

Lagenorhynchus albirostris whistles go up to 35 kHz (Rasmussen and Miller 2001) and 

up to 41 kHz in Tursiops truncatus (Boisseau 2005) or even higher e.g., Inia geoffrensis 

up to 48 kHz (May-Collado and Wartzok 2007). All tonal sounds considered for baleen 

whales in this study were those referred to as exclusively tonal. We did not consider 

sounds that consisted of a combination of pulsative units and tones for either baleen 

whales (see Heimlich et al. 2005, McDonald et al. 2005, Parks et al. 2005) or toothed 

whales (see “graded-vocalizations” in Murray et al. 1998). 

While focus has traditionally been on toothed whales whistles, we also more 

broadly examine the optimization of body size and frequency parameters of tonal sounds 

across cetaceans. It is important to note that the two types of sounds may be produced by 

different mechanisms (e.g., Cranford et al. 1999, Frankel 2002, Reidenberg and Laitman 

2004) and sound production of tonal sounds may well be convergent in baleen whales 

and toothed whales. However, to rule out their homology, data external to this study 

would be required. Regardless of homology, body size could similarly constrain 

frequency in the two types of sounds. Therefore in addition to analyzing them separately, 

exploring them together as potentially homologous, or as potentially subject to similar 

constraints, seems worthwhile.  
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Phylogenetic analysis and ancestral character reconstruction   

The history of character evolution on the phylogeny (character optimization) was 

estimated using Mesquite 1.12 (Maddison and Maddison 2006). For this purpose we here 

produce the most complete species level phylogeny of Cetacea to date by adding two 

species—the blue whale (Accession number AY235202) and the fin whale (Accession 

number U13126)—to the phylogeny of May-Collado and Agnarsson (2006). Cytochrome 

B sequences from Genbank were analyzed in a Bayesian framework using MrBayes 3.1.2 

(Ronquist and Huelsenbeck 2003) with model parameters and search strategies as 

described in May-Collado and Agnarsson (2006). On this phylogeny we optimize body 

size and whistle frequency using weighted squared-change parsimony (Maddison 1991). 

Weighted squared-change parsimony minimizes the sum of squared change along all 

branches of the tree, weighting branches by their length (Maddison and Maddison 2006). 

Since polytomies (unresolved relationships among lineages) can compromise character 

optimization and tests of character correlations, characters were optimized on a fully 

resolved tree, which is the majority rule tree resulting from the MrBayes analysis without 

collapsing nodes with less than 50% frequency (using the contype=allcompat option). We 

mapped the distribution of body length and mass and each of the following standard 

whistle parameters: maximum, mean maximum, minimum, and mean minimum 

frequency. We also mapped the distribution of center frequency, although, it is important 

to note that this parameter is not a direct measurement from the signal itself, but a 

estimation of central tendency calculated and defined by Matthews et al. (1999) as the 

mean of f frequency measurements per call. To normalize the data all parameters were 

natural log transformed (Sokal and Rohlf 1981). 
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Ancestral character reconstruction for each frequency parameter and body size 

were run separately. This was performed for all species with available tonal frequency 

parameters and we also ran a separate optimization including all taxa. In species for 

which we have more than one frequency value in Table 1, we selected the highest for 

maximum and mean maximum frequency and the lowest for minimum and mean 

minimum frequency (selected values shown in bold). The maximum reported value for 

both body length and mass was used for all optimizations. Assuming a normal 

distribution a mid-point value for all variables optimized in this study would be 

preferable, but sufficiently detailed data are available only for very few species. 

 

Phylogenetic Comparative Approach: Independent Contrast Method 

To account for dependencies among of species, independent contrasts were calculated for 

each character. The method makes use of the phylogeny, and a model of evolution 

(Brownian motion), to estimate the number of independent comparisons between species, 

or groups of species, that can be used in a regression analysis. For example, a clade of 10 

species that are invariable for the characters under study does not constitute 10 

independent observations of these characters, instead phylogenetic relationships may 

explain the character covariation. Independent contrasts were calculated using the PDAP: 

PDTREE module (Midford et al. 2005) in Mesquite 1.06 (build h47). This module 

analyzes data using the method of phylogenetically independent contrasts (PIC) 

developed by Felsenstein (1985). To estimate Felseinstein’s independent contrast, branch 

lengths were used as estimated by MrBayes; branch length transformations were not 

necessary (Lack of fit test p>0.05 for all parameters). The current version of PDAP is 
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known to have some error (see Midford et al. 2005) when calculating regressions if some 

taxa have missing values (unknowns, “?”), although it is unclear how seriously it impacts 

the analyses. Therefore, in addition to using the full dataset (where some of the taxa lack 

acoustic data) we also ran analyses on pruned datasets where all species lacking the 

acoustic character under study were removed prior to the regression analysis. These 

calculations are known to be correct, however, pruning species from the cladogram 

affects both estimates of branch lengths and optimization of body size (as available 

information has been thrown out). While we prefer the pruned analyses, it seems 

appropriate to report the values based on both types of analyses; the best estimates may 

lay somewhere in between.  
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RESULTS 

In the novel phylogeny (Fig. 1) the newly added blue (Balaenoptera musculus) and fin 

(B. physalus) whales, as expected are placed within a clade containing other 

Balaenoptera, as well as Megaptera (humpback whale) and Eschrichtius (grey whale). 

The fin whale is sister to the humpback whale as also found by Hatch et al. (2006) and 

Sasaki et al. (2006) while the placement of the blue whale is less well resolved (Fig. 1). 

As the two are not each other sister taxon, these largest of whales provide independent 

evidence of change in body size. In other respects this phylogeny is identical, or nearly 

so, to the phylogeny of May-Collado and Agnarsson (2006). 

Of the many changes in body size implied by the phylogeny the most conspicuous 

are the differences between baleen and toothed whales (Table 1, Fig. 2). Correlated with 

these changes in body size is change in tonal sound minimum frequency, whether 

measured as mean minimum or absolute minimum. Body length explains up to 26% of 

the variation in minimum frequency across Cetacea and 28% within toothed whales and 

up to 66% of the mean minimum frequency in baleen whales, although this should be 

interpreted with care as only 4 independent contrasts were regressed (Table 2, Fig.3). 

When considering body mass, the more commonly used allometric scaling parameter but 

one more difficult to estimate in cetaceans, minimum frequency (both mean and absolute) 

across all Cetacea is significantly correlated with biomass (R2 = .135 for absolute, R2 = 

.101 for mean). The correlation with mean minimum frequency was also significant 

within baleen whales, but insignificant within toothed whales, while absolute minimum 

was not significantly correlated with body mass within each group (marginally 

insignificant in toothed whales p = .052). In contrast, body size explains virtually none 
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(1% or less) of the variation in maximum frequency across Cetacea and there is no 

correlation between body size and maximum frequency in any comparisons (Table 2, 

results are the same using the raw data without log-transformations). The calculated 

center frequency is significant only within the toothed whales (R2 = .182 with length, R2 

= .161 with mass). 

The distribution of tonal sounds and optimization of body size across Odontoceti 

is summarized in Figure 2. The phylogeny broadly implies that cetaceans were 

primitively large and that there has been a gradual reduction in size in the lineage leading 

to dolphins and relatives. However, this optimization should be interpreted with care, 

including fossil data and information from outgroups will be necessary for a detailed 

account of body size evolution in Cetacea. In addition, this broad pattern addresses only a 

portion of the variation; there is much variation in body size at the level of families and 

genera (Fig. 2). Finally there is considerable intraspecific variation in body size, the 

exploration of which is beyond the scope of this paper. In general the greatest variation in 

body size is among baleen whales, nevertheless, size variation among the toothed whales 

is in the range of an order of magnitude in length, and over two orders of magnitude in 

body mass (Table 1). Size variation in toothed whales significantly correlates with 

absolute minimum frequency, and central frequency, of their tonal sounds (Table 2). 

Hence, even if toothed whales whistles are fundamentally different (produced by 

different mechanisms) from tonal sounds in baleen whales size nevertheless constrains 

minimum frequency in both sound systems. Independently of body size, high frequency 

whistles (both in terms of maximum and minimum frequencies) appear to be derived 

(Fig. 4).  
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DISCUSSION 

The new phylogeny is the most detailed phylogenetic hypothesis of whales currently 

available. It agrees well with most recent studies in cetacean phylogenetics (e.g. Hatch et 

al. 2006; May-Collado and Agnarsson 2006; Nikaido et al. 2007; Sasaki et al. 2006) and 

therefore provides an appropriate phylogenetic hypothesis with which to test the 

correlation of body size and tonal sound frequency in whales.  

 Even after accounting for phylogenetic relationships the hypothesis that the 

minimum frequency of whistle, or tonal sounds in general, is negatively correlated with 

body length (Matthews et al.’s 1999) is corroborated. Body mass is more typically used 

in these regressions because it is thought to be a more accurate proxy for physiological 

constraints. However, body mass is more difficult to estimate than body length in 

cetaceans. When body mass is considered instead of length, only the correlation with 

absolute minimum frequency is still significant within toothed whales albeit with reduced 

explanatory power. Our results are congruent with Matthews et al.’s (1999) hypothesis of 

a significant relationship between central frequency and body length (but not mass) in 

toothed whales. However, a much smaller percent of frequency variation is explained by 

body size after accounting for phylogenetic relationships (for minimum frequency about 

28% for toothed whales in our study versus 86-93% in the study of Matthews et al. 

1999).  

 In contrast, the hypothesis that tonal sound (or whistle) maximum frequency is 

negatively correlated with body size (Matthews et al. 1999, Podos et al. 2002, Wang et 

al. 1995a) must be rejected. Even though the phylogeny implies broadly that a major 

decrease in body size and increase in maximum whistle frequency occurred in the 
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common ancestor of pandelphinids (Delphinida sensu Muizon 1998 + Platanista, see 

May-Collado et al. submitted), that single observation does not imply correlation. In 

general, throughout the phylogeny, body size and maximum whistle frequency vary 

independently with only a tiny portion of the variation in maximum frequency being 

potentially explained by body size (Figs 2-3, Tables 1-2). We should note here that due to 

limitations of recording systems in some studies (see Methods) the maximum frequency 

of some species may be underestimated. Hence we cannot rule out that when better 

information is available results of regression analyses will change. However, we do not 

expect the effect to be dramatic as we see no correlation of body size and maximum 

frequency in baleen whales where limitations of equipment is not an issue.  

 Body size is known to be related to a variety of physiological, ecological, and 

behavioral processes (Marquet and Taper 1998). In acoustic communication, body size 

has been acknowledged as a major factor determining signal frequency components. In 

insects, anurans, birds, and mammals negative relationships between signal frequency 

and body size (particularly body mass) has been largely supported (e.g., Bennet-Clark 

1998, Gerhardt 1994, Hauser 1993, Matthews et al.1999, Palacios and Tubaro 2000, 

Seddon 2005, Tubaro and Mahler 1998, Wang et al. 1995a, Wiley 1991). However, as 

more comparative studies consider phylogenetic hypotheses, this relationship in some 

cases no longer holds (e.g., Farnsworth and Lovette 2005, Laiolo and Rolando 2003). We 

do find evidence in cetaceans that body size has constrained the evolution of tonal sounds 

minimum frequency, although size can only explain a portion of the variation. This 

suggests (1) that in the evolutionary history of whales there has been a selection for low 

frequency sounds, which e.g. enable communication over long distances, and (2) that the 
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degree to which whales have been able to respond to this selection through evolutionary 

history has been, at least in some cases, constrained by body size. There is no evidence, 

however, that body size has constrained the evolution of maximum frequency. This 

certainly does not imply such constraints do not exist, no doubt body size constrains the 

maximum possible frequencies. What it does imply is that, for maximum frequency, the 

range of tonal sound frequencies used by cetaceans seems to lie outside the area where 

physiological constraints would have an impact.  

It is right to point out here that, ideally, recordings and body size measurements 

should come from the same animal, to account for intraspecific size and frequency 

variation. However, such data are simply not available. Given that body size and 

minimum frequency correlate even when such detailed evidence are missing, the likely 

effect of their inclusion would be to increase the amount of variation in minimum 

frequency explained by body size. We point out that intraspecific variation could, at least 

in theory, be used as an independent test of these correlations—a study might record and 

measure multiple individuals within species and explore the intraspecific correlations of 

body size and frequency. For such a study phylogenetic corrections would not be 

necessary. 

Environmental factors seem to be most important in driving the evolution of 

acoustic signals in birds, insects, and anurans (e.g., Bertelli and Tubaro 2002, Couldridge 

and van Staaden 2004, Farnsworth and Lovette 2005, Gerhardt 1994, Laiolo and Rolando 

2003, Seddon 2005, Wiley and Richards 1998). This may also be the case in the 

evolution of cetacean tonal signal frequency as has been suggested by some authors (e.g., 

Morisaka et al. 2005b, Wang et al. 1995a). Finally, social fluidity is another factor 
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suggested to influence tonal frequency within and across species (Bazúa-Durán 2004). 

Studies are underway to examine tonal sound evolutionary history taking into 

considerations some of these factors (May-Collado et al. submitted). 
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CONCLUDING REMARKS 

Our results support the negative relationship in cetaceans between body size and 

minimum tonal sound frequency (whether general tonal sounds, or whistles) as proposed 

by Matthews et al. (1999). This suggests that there has been a selection for low frequency 

sounds (enabling e.g. communication over long distances), and that the response to this 

selection through evolutionary history has been constrained by body size. In contrast, our 

results do not support the negative relationship between maximum frequency and body 

size that has been proposed based on a phylogeny-free analysis of the same data 

(Matthews et al. 1999, and Podos et al. 2002, Wang et al. 1995a). This suggests that if 

there has been selection for high frequency sounds, body size has not constrained 

response to it. In this study we focused on tonal signals because these are the best 

documented sounds in cetaceans. We do not suggest generalizing our findings to other 

organisms, or even to other cetacean sounds such as echolocation clicks. It is not in 

dispute that body size imposes absolute constraints on sound production in organisms in 

general. The question is whether such constraints have come into play in the evolution of 

sound production in any given lineage. To answer such questions it is invalid to use 

species as independent data points, and uninformative to allude to constraints observed in 

other lineages; rather, the lineage of interest should be looked at in isolation using a 

comparative phylogenetic approach.  
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Table 6. Review of published data on Cetacean body size and standard tonal sound frequency variables. 
 
Species Maximum 

Body Size 
References Whistle Frequency Variables (kHz) 

 
References 

 m Kg  Max 
 

MMx Center Min MMin  

SubOrder Mysticeti 
Balaena glacialis 17.0 80,000 Bannister 2002; Reidenberg 

& Laitman 2002 
11.23 3.14 ? 0.02 0.05 Parks & Tyack 2005 

B. mysticetus 19.8 100,000 Bannister 2002; Rugh & 
Shelden 2002 

2 
1 

0.165 
0.3 

 
 

0.175 

0.09 
0.02 

0.02 
0.05 

Ljungblad et al. 1982 
Clark & Johnson 1984 
Matthews et al. 1999 

Balaenoptera bonaerensis 10.7 13,500 Bannister 2002; Reidenberg 
& Laitman 2002 

? ? ? ? ? ? 

B. borealis 18.3 25,000 Reidenberg & Laitman 2002 3.5 
 

1 

?  
2.5 

1.5 
 

~0.1 

? Knowlton et al. 1991 
Matthews et al. 1999 
McDonald et al. 2005 

B. edeni 15.6 25,000 Reidenberg & Laitman 2002 0.245 
 0.180 
 0.079 

 
 

 
 
 

0.128 

 0.07 
 0.09 

0.0207 

 
 

Cummings et al. 1986 
Edds 1993 
Heimlich et al. 2005 
Matthews et al. 1999 

B. musculus 31 200,000 Reidenberg & Laitman 2002 0.0185 
0.0202 
0.122 

 
 

0.052 
0.0277 

 
 

0.242 

 
 
 
 
 
 
 

0.0189 
 

0.0883 

 
 
 
 
 
 
 
 

0.020 

0.0157 
0.0182 

- 
 

0.011 
0.050 
0.0189 

 
 

0.0143 

 
 
 
 
 
 
 

0.0172 
 

0.0166 

Mellinger & Clark 2003 
Stafford et al. 2001 
Alling 2003 pers. comm. to 
Mellinger & Clark 2003 
Ljungblad et al. 1997 
Watkins et al. 2004 
Sirovic et al. 2004 
Stafford et al. 1994 
Matthews et al. 1999 
Berchok et al. 2006 

B. physalus 27 90,000 Reidenberg & Laitman 2002 0.118 
 

0.058 

 
0.023 
0.042 

 
 
 

0.062 

0.010 
 

0.017 

 
0.018 
0.020 

Edds 1988 
Watkins 1987 
Thompson & Friedl 1982 
Matthews et al. 1999 

Eschrichtius robustus 15.2 35,000 Jones & Swartz 2002 0.2 
0.2 

 
 

0.3 

 
 
 

0.150 

0.02 
0.1 

 
 

0.25 

Cummings et al. 1968 
Fish et al. 1974 
Dahlheim et al. 1984 
Matthews et al. 1999 

Megaptera novaeangliae 19.0 48,000 Reidenberg & Laitman 2002 4 1.315  0.25 0.925 Hafner et al. 1979 
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1.108 Matthews et al. 1999 
Capera marginata 6.45 3,500 Bannister 2002; Reidenberg 

& Laitman 2002 
0.135 ?  

0.07 
0.06 ? Dawbin & Cato 1992 

Matthews et al. 1999  
SubOrder Odontoceti 

Kogiidae 
Kogia breviceps 3.7 400 Reidenberg & Laitman 2002 ? ? ? ? ?  
K. simus (sima) 2.7 210 Reidenberg & Laitman 2002 ? ? ? ? ?  

Physeteridae 
Physeter macrocephalus 20.5 57,000 Reidenberg & Laitman 2002 n/a n/a n/a n/a n/a  

Ziphiidae 
Berardius bairdii (B. 
anurxii) 

12.8 11,000 Reidenberg & Laitman 2002 8.0 ?  
6.0 

4 ? Dawson & Barlow 1998 
Matthews et al. 1999, 

Hyperoodon ampullatus 9.8 ? Reidenberg & Laitman 2002 n/a n/a n/a n/a n/a  
H. planifrons 7.45 ? Reidenberg & Laitman 2002 ? ? ? ? ?  
Mesoplodon bidens 5.5 ? Pitman 2002a; Reidenberg & 

Laitman 2002 
? ? ? ? ?  

M. densirostris 4.73 1,033 Pitman 2002a; Reidenberg & 
Laitman 2002 

? ? ? ? ?  

Ziphius cavirostris 7.5 3,000 Reidenberg & Laitman 2002 ? ? ? ? ?  
Tasmacetus shepherdi 7.0 ? Mead 2002 ? ? ? ? ?  
Indopacetus pacificus 8.0 ? Pitman 2002b ? ? ? ? ?  

Platanistidae 
Platanista gangetica  2.5 85 Reidenberg & Laitman 2002 ? ? ? ? ?  

Iniidae 
Inia geoffrensis 2.6 160 Da Silva 2002; Reidenberg & 

Laitman 2002 
48.10 

 
5.16 
13 

24.71 
 

2.97 

 
2.75 

5.03 
 

0.22 
3 

15.06 
 

2.54 

May-Collado & Wartzok 
2007 
Matthews et al. 1999,  
Wang et al. 1995a, 2001 
Diazgranados & Trujillo 2002 

Lipotidae 
Lipotes vexillifer 2.53 160 Kaiya 2002; Reidenberg & 

Laitman 2002 
 

4.5 
4.6 

 
5.84 
6.1 

6.0  
3.8 
3.8 

 
4.975 

4.9 

Matthews et al. 1999, 
Wang et al. 1999 
Wang et al. 2006 

Pontoporidae 
Pontoporia blainvillei 1.77 53 Crespo 2002 ? ? ? ? ?  

Super Family Delphonidea 
Phocoenidae 

Australophocaena 
dioptrica* 

2.4 115 Reidenberg & Laitman 2002; 
Goodall 2002a 

n/a n/a n/a n/a n/a  

Phocoena phocoena 2.0 90 Bjøge et al. 2002; Reidenberg n/a n/a n/a n/a n/a  
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& Laitman 2002 
P. sinus 1.4 ? Rojas-Bracho & Jaramillo-

Legorreta 2002 
n/a n/a n/a n/a n/a  

P. spinipinnis 2.0 ? Reyes 2002 n/a n/a n/a n/a n/a  
Phocoenoides dalli 2.39 200 Jefferson 2002a n/a n/a n/a n/a n/a  
Neophocaena 
phocaenoides 

1.9 100 Reidenberg & Laitman 2002; 
Amano 2002 

n/a n/a n/a n/a n/a  

Monodontidae 
Monodon monocerus 4.7 1600 Heide-Jørgensen 2002; 

Reidenberg & Laitman 2002 
18 
10 

 
8.84 

 
 
 

7.18 

 
 

5.2 
 

0.3 
5 
 

0.360 

 
 
 

0.718 

Ford & Fisher 1978,  
Watkins  et al.1970;  
Matthews et al. 1999 
Shapiro 2006 

Delphinapterus leucas 5.5 1500 O’Corry-Crowe 2002; 
Reidenberg & Laitman 2002 

 
19.6 
15.8 

 
6.8 

4.33 
11.65 

3.89  
0.2 
0.4 

 
3.8 

3.38 
1.99 

Matthews et al. 1999,  
Karlsen et al. 2002;  
Sjare & Smith 1986 
Belikov & Bel’kovitch 2001 

Delphinidae 
Cephalorhynchus 
commersonii 

1.75 86 Dawson 2002; Reidenberg & 
Laitman 2002 

n/a n/a n/a n/a n/a  

C. eutropia 1.67 63 Dawson 2002 n/a n/a n/a n/a n/a  
C. hectori 1.8 60 Reidenberg & Laitman 2002 n/a n/a n/a n/a n/a  
C. heavisidii 1.74 75 Dawson 2002 n/a n/a n/a n/a n/a  
Lagenorhynchus australis 2.18 115 Goodall 2002b n/a n/a n/a n/a n/a  
L.cruciger 1.87 88 Goodall 2002c ? ? ? ? ?  
L. obliquidens 2.5 181 Van Waerebeek & Würsig 

2002; Reidenberg & Laitman 
2002 

? ? ? ? ?  

L. obscurus 2.1 80 Van Waerebeek & Würsig 
2002; Reidenberg & Laitman 
2002 

27.3 16.49 
 

13.22 

 
12.4 

1.04 8.11 
 

8.15 

Wang et al. 1995a 
Matthews et al. 1999 
Yin 1999 

L. acutus 2.7 230 Cipriano 2002; Reidenberg & 
Laitman 2002 

? 12.14  
10.37 

? 8.21 Steiner 1981 
Matthews et al. 1999 

Lissodelphins borealis 3.1 116 Reidenberg & Laitman 2002; 
Lipsky 2002 

? ? ? ? ?  

L. peronii 3.0 116 Lipsky 2002 ? ? ? ? ?  
Delphinus delphis 2.35 200 Perrin 2002a 19.8 11.65 

 
13.6 

 
8.81 

4.8 6.42 
 

7.4 

Moore & Ridgway 1995 
Matthews et al. 1999, 
 Oswald et al. 2003 

D. capensis 2.35 235 Perrin 2002a ? 15.5 ? ? 7.7 Oswald et al. 2003 
Stenella attenuata 2.57 119 Perrin 2002b; Reidenberg & 21.4 15.72  3.13 8.73 Wang et al. 1995a 
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Laitman 2002  
 

 
18.7 

12.54  
8.2 

Matthews et al. 1999, 
 Oswald et al. 2003 

S. clymene 2.0 80 Jefferson 2002b, Jefferson & 
Curry 2003 

19.2 
13.62 

?  
 

11.66 

? 6.33 
9.25 

Watkins & Wartzok 1985 
Mullin et al. 1994 
Matthews et al. 1999 

S. frontalis 2.3 143 Perrin 2002c; Reidenberg & 
Laitman 2002 

19.8 16.04  
11.62 

5 7.91 Wang et al. 1995a 
Matthews et al. 1999 

S. coeruleoalba 2.4 156 Reidenberg & Laitman 2002 22.99 11.53 
14.8 

9.07 1.1 6.84 
8.1 

Matthews et al. 1999,  
Oswald et al. 2003 

S. longirostris 2.16 75 Perrin 2002d; Reidenberg & 
Laitman 2002 

22.5 
 
 

24 
25.25 
23.04 

15.2 
 

13.7 
16.5 
17.56 
16.8 
14.32 

 
12.22 

3.91 
 
 

0.85 
 
4 

9.03 
 

9.1 
9.99 
9.66 
10.19 
8.76 

Wang et al. 1995a 
Matthews et al. 1999;  
Oswald et al. 2003;  
Barzua-Duran & Au 2002, 
Barzua-Duran & Au 2004 
Driscoll 1995 
Steiger 1981 

Tursiops truncatus 4.0 650 Reidenberg & Laitman 2002;  41 
 
 

21.6 

 
 

17.2 
11.35/11.95 

16.24 

 
8.09 

 
 
 

1.86/0.94 

 
 

7.4 
5.46 
7.33 

Boisseau 2005 
Matthews et al. 1999; Oswald 
et al. 2003;  
Wang et al. 1995a,b; 
 Steiner 1981 

Lagenodelphis hosei 2.65 200 Dolar 2002; Reidenberg & 
Laitman 2002 

 
24.0 

 
13.4 

 
16.9 
16.56 

12.82  
4.3 

 
 

 
9.36 

11.949 
7.64 

Matthews et al. 1999;  
Watkins et al. 1994 
Oswald et al. submitted 
Leatherwood et al. 1993 

Sousa chinensis 3 284 Ross 2002; Reidenberg & 
Laitman 2002 

22 
 

20 

16.3 ? 0.9 
3 

1.2 

4.5 
 
 

Van Parijs & Corkeron 
2001;  
Zbinden et al. 1977; 
Schultz & Corkeron 1994 

Sotalia fluviatilis** 2.20 40 Flores 2002  
 

23.9 
38.25 

 
18 

17.49 

 
19.95 
15.41 
21.32 

 
13 

13.312 
15.65 

12.68  
1.34 
3.65 
2.714 

 
0.5 

1.031 

 
7.21 
10.2 
13.14 

 
7.6 

10.521 
9.18 

Matthews et al. 1999; 
Azevedo & van Sluys 2005;  
Wang et al. 1995a, 2001; 
May-Collado & Wartzok 
unpublished. 
Azevedo & Simao 2002;  
Erber & Simao 2004  
Podos et al. 2002 

Steno bredanensis 2.65 155 Jefferson 2002c; Miyasaki & 
Perrin 1994 

7.0  
 

9.1 

 
5.5 

4  
 

6.03 

Busnell & Dziedzic 1968 
Matthews et al. 1999;  
Oswald et al. 2003; 

Feresa attenuata 2.7 225 Reidenberg & Laitman 2002 ? ? ? ? ?  



 120 

Globicephala 
macrorhynchus 

7.2 3950 Reidenberg & Laitman 2002  
23.6 

 
10.87 

6.1 

7.87  
0.24 

 
6.25 
3.6 

Matthews et al. 1999;  
Rendell et al. 1999;  
Oswald et al. 2003 

G. melas 6.3 1750 Reidenberg & Laitman 2002  
21.2 

 
8.86 
4.716 

4.48  
0.32 

 
3.48 
2.82 

Matthews et al. 1999;  
Rendell et al. 1999;  
Steiner 1981 

Grampus griseus 4.3 500 Reidenberg & Laitman 2002  
 

23.8 

 
20 

13.44 

11.3  
 

1.90 

 
3.9 

8.83 

Matthews et al. 1999;  
Corkeron & Van Parijs 2001; 
Rendell et al. 1999 

Peponocephala electra 2.75 275 Perryman 2002  
 

24.5 

 
12.14 

12.75  
 

5.5 

 
8.381 

Matthews et al. 1999, 
Oswald et al. submitted, 
Watkins et al. 1997 

Pseudorca crassidens 6 2200 Baird 2002; Reidenberg & 
Laitman 2002 

 
18.1 

 
8.29 
6.1 

6.82  
1.87 

 
5.43 
4.7 

Matthews et al. 1999;  
Rendell et al. 1999;  
Oswald et al. 2003 

Orcaella brevirostris** 2.75 150 Reidenberg & Laitman 2002 6.0 4.2 ? 1.1 3.2 Van Parijs et al. 2000 
Orcinus orca 9.75 10,500 Reidenberg & Laitman 2002 18 

 
 

8.9 
16.7 

 
6.61 

 
 

9.9 
12.64 

 
 

5.0 

 
 
 

0.05 
2.4 

1.5 
4.27 

 
 

5.4 
3.36 

Ford 1989;   
Dahleim & Awbrey 1982; 
Matthews et al. 1999 
Steiner et al. 1979 
Thomsem et al. 2001 
Riesch et al. 2006 

*Now recognized as Phocoena dioptrica (Lahille 1912) 
**In this paper these species are still treated as one single species (with two ecotypes: riverine and marine), however there is recent evidence that each may be a separate 
species (see details in Cunha et al. 2005 and Beasley et al. 2005)  
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Table 7.  Previous and present regression analyses between body size and standard tonal sound frequency variables. This study uses 
independent contrast both on the entire (values in parenthesis) and pruned (values in bold) data sets (see Methods). 
  

** Significant results (based on the level of significance of p ≤0.05) 
       (!) very small number of contrasts  

Source Maximum Mean Maximum Minimum Mean Minimum Center 

Wang et al. 1995 
Delphinids + Inia 

R-square 
d.f. 

p-value 

 
 

79%,  
97% (excluding Inia) 

9 
<0.05** 

 
--------- 

 
--------- 

 
--------- 

 
--------- 

Matthews et al. 1999 
Toothed-whales 

R-square 
d.f. 

p-value 

 
 

68% (uwtd.), 76% (wtd.) 
18,16 

<0.001, <0.001** 

 
--------- 

 
 

86% (uwtd.), 93% (wtd.) 
18,16 

<0.001, <0.001** 

 
--------- 

 
 

69% (uwtd.), 84% (wtd.) 
25,14 

<0.001, <0.001** 

Matthews et al. 1999 
Baleen-whales 

R-square 
d.f. 

p-value 

 
--------- 

 
--------- 

 
--------- 

 
--------- 

 
 

64% (uwtd.) 
9 

0.003** 
Podos et al. 2002 
Delphinids+Inia 

R-square 
d.f. 

p-value 

 
 

85.1% 
16 

<0.05** 

 
--------- 

 
--------- 

 
--------- 

 
--------- 

This study Body Length 
Cetacean-Tonal Sounds 

R-square 
d.f. 

p-value 

 
 

0.0963 % (0.0406%) 
32 

0.413 (0.455) 

 
 

0.18% (0.0732%) 
28 

0.410 (0.443) 

 
 

26.3% (22.8%)  
32 

0.001 (0.002)** 

 
 

12.8% (10.2%) 
29 

0.024 (0.040)** 

 
 

4.2% (3.5%)                                                                           
28 

0.136 (0.160) 
Toothed-Whales-Whistle 

R-square 
d.f. 

p-value  

 
2.2% (1.45%) 

23 
0.241 (0.283) 

 
3.9% (4.5%) 

22 
0.174 (0.160) 

 
27.7% (23%) 

23 
0.003 (0.008)** 

 
6.2% (5.7%) 

23 
0.116 (0.125) 

 
18.2% (14.1%) 

20 
0.023 (0.042**) 

Baleen-whales 
R-square 

d.f. 
p-value 

 
0.052% (0.37%) 

7 
0.476 (0.437) 

 
33.3% (14.2%) (!) 

4 
0.11 (0.230) 

 
10.2% (7.8%) 

7 
0.201 (0.233) 

 
66.2% (80.3%) (!) 

4 
0.024 (0.007)** 

 
0.0028 (0.496%) 

6 
0.495 (0.434) 

 
 

This study Body Mass 
Cetacean-Tonal Sounds 

R-square 
d.f. 

p-value 

 
 
 
 

0.00427% (0.00463%) 
32 

0.485 (0.485) 

 
 
 
 

0.520% (0.144%) 
28 

0.452 (0.421) 

 
 
 
 

13.5% (12.06%) 
32 

0.016 (0.022)** 

 
 
 
 

10.1% (8.2%) 
29 

0.040 **(0.058) 

 
 
 
 

7.4% (6.04%) 
28 

0.074 (0.095) 
Toothed-Whales-Whistle 

R-square 
d.f. 

p-value 

 
1.04% (0.52%) 

23 
0.313 (0.365) 

 
3.60% (4.10%) 

22 
0.186 (0.170) 

 
11.1% (9.3%) 

23 
0.052 (0.068) 

 
5.2% (4.9%) 

23 
0.137 (0.142) 

 
16.1% (12.2%) 

20 
0.033**(0.055) 

Baleen-whales 
R-square 

d.f. 
p-value 

 
0.0107 (0.21%) 

7 
0.489 (0.452) 

 
24.7% (3.2%) (!) 

4 
0.158 (0.367) 

 
17.4% (16.0%) 

7 
0.130 (0.142) 

 
65.5% (49.0%) (!) 

4 
0.025 **(0.059) 

 
3.5% (2.10%) 

6 
0.326 (0.366) 
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FIG. 7 
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FIG. 8 
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FIG.9 
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FIG.10 
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ABSTRACT 

Background 

It is widely held that in toothed whales, high frequency tonal sounds called 'whistles' 

evolved in association with 'sociality' because in delphinids they are used in a social 

context. Recently, whistles were hypothesized to be an evolutionary innovation of social 

dolphins (the ‘dolphin hypothesis’). However, both 'whistles' and 'sociality' are broad 

concepts each representing a conglomerate of characters. Many non-delphinids, whether 

solitary or social, produce tonal sounds that share most of the acoustic characteristics of 

delphinid whistles. Furthermore, hypotheses of character correlation are best tested in a 

phylogenetic context, which has hitherto not been done. Here we summarize data from 

over 300 studies on cetacean tonal sounds and social structure and phylogenetically test 

existing hypotheses on their co-evolution. 

Results 

Whistles are 'complex' tonal sounds of toothed whales that demark a more inclusive clade 

than the social dolphins. Whistles are also used by some riverine species that live in 

simple societies, and have been lost twice within the social delphinoids, all observations 

that are inconsistent with the dolphin hypothesis as stated. However, cetacean tonal 

sounds and sociality are intertwined: (1) increased tonal sound modulation significantly 

correlates with group size and social structure; (2) changes in tonal sound complexity are 

significantly concentrated on social branches. Also, duration and minimum frequency 

correlate as do group size and mean minimum frequency. 

Conclusions 
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Studying the evolutionary correlation of broad concepts, rather than that of their 

component characters, is fraught with difficulty, while limits of available data restrict the 

detail in which component character correlations can be analyzed in this case. Our results 

support the hypothesis that sociality influences the evolution of tonal sound complexity. 

The level of social and whistle complexity are correlated, suggesting that complex tonal 

sounds play an important role in social communication. Minimum frequency is higher in 

species with large groups, and correlates negatively with duration, which may reflect the 

increased distances over which non-social species communicate. Our findings are 

generally stable across a range of alternative phylogenies. Our study points to key species 

where future studies would be particularly valuable for enriching our understanding of 

the interplay of acoustic communication and sociality. 
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BACKGROUND 

Cetacean tonal signals are broadly defined as narrowband, frequency modulated sounds 

[1-3]. Such sounds are produced by both baleen whales (Mysticeti) and toothed whales 

(Odontoceti)—sister clades containing all extant whales. They are also produced by other 

mammals [e.g., 4] and thus appear primitively present in the order. Baleen whales 

produce sounds that have fundamental frequencies generally below 5 kHz [2,5], as do 

members of the sister lineage of Cetacea, the hippos [4]. In toothed whales, in contrast, 

these sounds most commonly range from 5-20 kHz [2], and in some species, e.g. 

Delphinus delphis, Stenella attenuata, S. coeruleoalba, S. longirostris [6] 

Lagenorhynchus albirostris [7], Tursiops truncatus [8], fundamental frequencies can go 

as high as 48 kHz in Inia geoffrensis [9]. In delphinid toothed whales these high 

frequency tonal sounds, especially when complex, are often referred to as 'whistles', 

although within the group whistle acoustic characteristics vary enormously. Several 

species produce both frequency modulated whistles (e.g., sine, convex, concave, 

upsweep, downsweep) and simple whistles that are relatively constant in frequency (e.g., 

Lagenorhynchus albirostris, [7]; Sotalia fluviatilis [10]; Stenella longirostris [11], others 

are limited to simple whistles (Lipotes vexillifer) [12] or to few frequency modulated 

whistles (e.g., mostly downsweep in Inia geoffrensis) [9]. In addition, whistle contour 

may be continuous or consist of a series of breaks and segments [2]. Whistles may or not 

contain harmonics [2]. In delphinid species like S. longirostris [13] and L. albirostris [14] 

whistles can contain high order-harmonics. Finally, whistle duration is very variable. For 

instance, in Sousa chinensis whistles can range from 0.01 to 1.3 seconds [15] and in 

Tursiops truncatus from 0.05 to 3.2 seconds [16]. In delphinids, whistle frequency 
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modulation and duration varies within species in relation to geography [e.g., 10, 

11,16,17], and related species differ in many whistle frequency components (e.g., 

maximum, minimum, end, and start frequency) [e.g., 18-22].   

Baleen whales produce a great variety of sounds, among them tonal sounds that 

like toothed whale 'whistles', are narrowband and frequency modulated, although 

typically much lower in frequency [1]. These tonal sounds can be produced in isolation or 

in combination with other sounds (e.g. pulsative sounds). In the Right whale (Balaena 

glacialis) these tonal sounds, again like 'whistles' in toothed whales, are used in a social 

context [23]. For example, in Blue whales (Balaenoptera musculus) tonal sounds are 

presumably used for long-distance communication [24], and in Right whales tonal sounds 

are used in combination with pulsative sounds in a sexual context [25]. However, in 

baleen whales, these tonal sounds are never referred to as whistles, but as 'calls', 'moans' 

or 'tones' [26, 24, 27-29]. Nomenclature of sounds, both in toothed and baleen whales, is 

confusing. As stated by Au (2000: 31) [1] in baleen whales "as with dolphins there is a 

lack of any standard nomenclature for describing emitted sounds", this frustrates 

comparison of sounds across taxa and obscures homologies. It remains unclear exactly 

what is a 'whistle', and if narrowband, frequency modulated tonal sounds of baleen 

whales and toothed whales are homologous at some level. One reason to question tonal 

sound homology across whales is that the sound production mechanisms of baleen whales 

and toothed whales are dramatically different. In baleen whales tonal sounds are thought 

to be laryngeal [30, 31], as they are in other related mammals [e.g. 4, 32], but in toothed 

whales sounds are produced by a unique and complex nasal system [e.g. 33, 34]. This 

offers some support for the hypothesis that toothed whales ‘whistles’ are unique and 
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different from (not homologous with) baleen whale tonal sounds. However, this also 

suggests that high frequency tonal sounds are homologous across toothed whales and 

such sounds in non-delphinid toothed whales should also be called whistles (contra Podos 

et al. 2002) [35]. To accommodate both possibilities we do all analyses across all whales 

(allowing for potential homology of tonal sounds across the order) and separately within 

toothed whales. 

Most of the work on whistles has been done with social delphinids, where they 

are often referred to as “social signals” and are thought to facilitate individual 

recognition, group cohesion, recruitment during feeding activities, and overall 

communication [e.g., 1, 3, 36-44]. Generalizations about the function of whistles have 

translated into the hypothesis that whistles evolved in concert with sociality, and that the 

two traits are tightly correlated [e.g., 45, 35]. Herman and Tavolga (1980) [45] suggested 

that the degree of gregariousness in toothed whales seemed to be related to whistle 

production [see also 46]. More specifically, they proposed that species that live in small 

groups or are solitary tend not to whistle, whereas species that live in large groups 

frequently do. Recently, Podos et al. (2002) [35] proposed that whistles are an innovation 

of social delphinids; in other words that whistles are synapomorphic for a clade within 

Delphinidae. However, even within delphinids some social species such as 

Cephalorhynchus spp and some species of Lagenorhynchus do not whistle [e.g., 46, 47], 

which seems to contradict the dolphin hypothesis.  The hypothesis was furthermore based 

on an assumption of the absence of whistles in river dolphins (Inia, Lipotes, Platanista, 

and Pontoporia), porpoises (Phocoenidae), beaked whales (ziphids) and belugas and 

narwhals (Monodontidae). However, we do not believe this assumption is justified. Tonal 
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sounds from Inia geoffrensis, for example, have been independently recorded in several 

studies [9, 21, 22, 48]. These sounds, just like in other toothed whales, have been referred 

to as whistles, although they are simpler and shorter in duration, and higher in frequency 

than the whistles of some dolphins [9].  Similar whistles have also been reported in 

another river dolphin Lipotes vexillifer [e.g., 12, 49, 50] and in social non-delphinid 

toothed whales such as some beaked whales [51, 52], and the Monodontidae, belugas and 

narwhals [e.g. 53-57).  Podos et al. (2002) [35] concluded that the tonal sounds in these 

species should not be classified as 'whistles', and hence found support for the dolphin 

hypothesis. While we agree with Podos et al. that whistle structure seems different in 

delphinids and non-delphinid toothed whales we believe this demonstrates the basic 

problem of treating broad, arbitrary, concepts as single traits in evolutionary analyses. To 

define whistles as social sounds produced by delphinids—a priori denying homology 

with tonal sounds in related taxa—and then concluding that they evolved in association 

with sociality in Delphinidae risks circularity. In such a framework reconstructing the 

origin of 'whistles' on a phylogeny will simply depend on the whistle definition chosen by 

any given author.  

To facilitate discussion, and comparability with previous research, we use the 

word 'whistle' for toothed whales tonal sounds, however, we do not imply that whistles 

are necessarily non-homologous to baleen whale tonal sounds—their homology requires 

further study. We use whistles as a category for some of our analyses, mainly to test the 

dolphin hypothesis as it was proposed. It is not very informative, however, to simply map 

the distribution of 'whistles' on a phylogeny (Fig. 11, [see Appendix 1]). Authors differ in 

their interpretation on the presence or absence of whistles across species, e.g. some define 
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them in the context of a behavior that may have much more limited distribution than the 

sounds themselves. Furthermore, even within dolphins 'whistles' can be highly variable. 

We thus highlight the need to focus on the various acoustic parameters (such as 

frequency variables, modulation, etc.) that may vary independently and have non-

identical phylogenetic distributions [see Appendix 1 for rationale]. Hence, our major 

focus is on such analyses which may reveal which, if any, of the characteristics of 

'whistles', or tonal sounds in general, seem associated with sociality.  

Our understanding of tonal sound acoustic structure, diversity, and use, is 

growing, but the evolution of tonal sounds and their association with sociality remains 

highly speculative. We therefore believe we here improve upon previous studies by 

providing a more detailed analysis, and using novel and more detailed phylogenies than 

any study hitherto. We also test these hypotheses across a range of alternative 

phylogenies. 

In sum, we here review current knowledge of both tonal sound production and 

social structure in Cetacea, and explore the evolution of tonal sounds and the association 

of individual tonal sound components with sociality (overall social structure and social 

components). Taking advantage of a new species-level cetacean phylogeny [58, 59] we 

provide the first phylogenetic test of the hypotheses of Herman and Tavolga (1980) [45] 

and Podos et al. (2002) [35]. This study identifies large gaps in knowledge on both traits, 

and points to key species where future studies would be particularly valuable for 

enhancing our understanding of the interplay of tonal sounds and sociality.  
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RESULTS 

Testing the Dolphin Hypothesis 

The following is presented merely to test the dolphin hypothesis as stated (see 

Introduction, Methods, and [see Appendix 1] for problems with this coarse approach). 

Under the definition of 'whistle' we use here, the optimization of whistles on the 

phylogeny is ambiguous (Fig. 11b). However, all of the equally most parsimonious 

reconstructions reject the dolphin hypothesis. The phylogeny implies that whistles either 

evolved independently twice, once in Berardius and once in the node leading to 

Delphinida sensu Muizon (1988) [60], delphinoids plus river dolphins + Platanista (a 

clade we here refer to as Pandelphinida), with secondary losses in Phocoenidae and 

within Delphinidae (Cephalorhynchus spp. and Lissodelphis spp.). Alternatively whistles 

evolved once in the common ancestor of ziphiids plus pandelphinids and then were 

subsequently lost thrice in Hyperoodon, phocenids and within delphinids (the 

optimization of whistles is equally ambiguous on previously published phylogenies, [see 

Appendixs 2-4], while dual origin of whistles is better supported when optimized across 

the entire set of filtered post-burnin trees, see Methods). Likewise, there are two possible 

optimizations of sociality under a broad concept approach. One is that sociality evolved 

in the common ancestor of Odontoceti and was then lost secondarily twice in the riverine 

species (Fig. 11b). Alternatively sociality may have evolved independently four times (in 

Physeter macrocephalus, within Ziphiidae, Pontoporia, and in Delphinoidea). The 

optimization of sociality is ambiguous on over 99% of the alternative trees examined, 

however, the multiple loss of sociality within Cetacea seems more likely in general, given 
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that relatives of whales are social. Regardless of choice of optimizations, whistles did not 

originate in the lineage leading to the social dolphins, contra the dolphin hypothesis.  

 

Character Optimizations 

Results of character optimizations led to the same conclusions across all alternative 

phylogenies examined (previously published hypotheses, [see Appendixs 2-4], and post-

burnin trees from our Bayesian analysis of Cytochrome b), unless otherwise noted. 

Group sizes in Cetacea [see Appendix 5] appear to have been ancestrally small, 

but to have gradually increased in the lineage leading to the dolphins, with a number of 

independent derivations of societies with hundreds of individuals and some secondary 

reductions in group size (e.g., Cephalorhynchus spp, Orcaella and Orcinus Fig. 12). 

 Here we present some alternative optimizations of sociality under both a 'broad 

two and four state concept' framework simply to test the dolphin hypothesis and under a 

multiple component framework. We note, however, that our study offers limited insights 

into the evolution of sociality in cetaceans. Future studies will require examining a 

greater number of component characters of sociality as such data becomes available, and 

it will require the inclusion of comparative social data also from the outgroups.   

 We compare three optimizations of sociality represented as a four-state character 

(social structure) (see Table 8 and [see Appendix 5]). First, we keep polymorphic species 

(species reported to show more than one type of social organizations) as such and then 

compare results when the ‘lowest' and 'highest' social state is chosen for each 

polymorphic species (Fig. 13). All three optimizations have some ambiguity, but 

optimizations across all trees suggest that family based groups evolved independently at 
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least three times (Physeter, Monodon, and Globicephalinae Fig. 13,). The optimization of 

social components (including polymorphism) is shown in additional material [see 

Appendix 6]. Group composition appears to have ancestrally been simple groups 

consisting only of mother and calf. Segregated (by sex and/or age) and mixed groups may 

have evolved independently at least four times [see Appendix 6b]. Finally, member 

associations appear to have evolved from simple mother and calf interactions to complex 

family based associations [see Appendix 6c].  

 Figure 4 shows the optimization of each acoustic character (all transformed using 

the natural log). Relatively high maximum and minimum frequencies (both absolute and 

mean) appear derived in toothed whales (Fig. 14a-b,d-e). Particularly high mean 

maximum and minimum frequencies have evolved within delphinids (note that some of 

the variation within delphinids and other groups is visually masked by the way Mesquite 

groups continuous variables in color ranges; [see Appendix 7 for greater detail]. 

 There appears to be a similar trend in the number of tonal sound inflection points 

(an indicator of tonal sound complexity) going from few ancestrally and increasing in the 

lineage leading to the dolphins (Fig. 14f). There is an inverse trend in tonal sound 

duration, where particularly short tonal sounds appear to be derived within the delphinids 

(Fig. 14c). 

 

Character regressions and correlations 

Under the independent contrast method the regression between group size and the mean 

number of inflection points was marginally significant: species with larger groups tend to 

produce tonal sounds with greater mean number of inflection points. Group size 
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explained approximately 7.9% of the variation in inflection points across cetaceans 

(p=0.05, df=33 see Fig. 15 (this and some of the following results are dependent on the 

choice of phylogeny, see section Phylogenetic uncertainty). Group size also significantly 

explained variation in the mean minimum tonal sound frequency within toothed whales 

(R2=12.4%, df=23, p-1tailed=0.04). We justify using a one-tailed test based on the 

expectancy that low frequency sounds travel longer distances so that a priori one might 

expect that low frequency tended to be associated with solitary species, while species that 

live their entire lives in large groups need only communicate over short distances. 

However, given that the two tail test is non-significant we consider this hypothesis only 

weakly supported. Regressions between group size and other acoustic parameters were 

not significant. 

 In addition, there is a significant negative relationship between tonal sound 

duration and absolute and mean minimum frequency both for all cetaceans (Abs-MinF, 

R-square=17%, p=0.02, df= 31, Mean-MinF, 17.5%, p=0.02, df=29) and for toothed 

whales (Asb-MinF, R-square=38%, p<0.001, df=22,  Mean-MinF, R-square=24%, 

p=0.01, df=23). There was a significant positive relationship between tonal sound 

duration and complexity for all cetaceans (R-square=12%, p=0.04, df=32) and for 

toothed whales (R-square=45%, p<0.001, df=23).  

 Changes in tonal sound complexity were significantly concentrated within social 

lineages in four of the five most parsimonious reconstructions when both traits were 

treated as two state characters [see Appendix 8] f.  

Tests of character state associations (SIMMAP) show that complex whistles (state 

1 = more than one inflection points) were positively associated with group living species 
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(Dij=0.13, p>0.999) and negatively with less social species (Dij=-0.024, p<0.001) 

treating social complexity as a two state character. In general there was an association 

between tonal sound complexity and social structure (Dstatistic=0.376, p<0.001, Table 9). 

However, the associations between individual states vary depending on how finely tonal 

sound and social characters are divided (Table 9). For instance, when treating social 

complexity as a four state character but tonal complexity as a two state character we find 

a significant positive association between highly social species (states 2 and 3) and 

complex tonal sounds  and a negative association between complex tonal sounds and 

‘solitary’ (state 0) species (Table 9). When both are treated as four state characters only 

negative associations are significant (but in the same directions as before, see Table 9). 

 When three component characters of sociality were analyzed we found similar 

significant character associations with inflection points (Group size Dstatistic=0.394, 

p<0.001; Group Composition Dstatistic=0.306, p<0.001; Stability/Associations 

Dstatistic=0.364, p<0.001, [see Appendix 9 and legend for detail], all indicating association 

between complex whistles and high levels of sociality. 

 

Phylogenetic uncertainty 

 In general, most of our findings are not strongly dependent on the phylogeny of 

choice, as long as all the species are included. In other words, results in most cases are 

similar whether the data are analyzed across the trees favored by our own analyses (all 

post burnin trees and post burnin trees filtered using agreement among multiple studies), 

or restricted to trees filtered to be congruent with the alternative hypotheses of Messenger 

and McGuire (1998) [61], Nikaido et al. (2001) [62] or Arnason et al. (2004) [63], 
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respectively (see Methods for detail). On the all-species phylogenies results significant in 

the main analyses were also significant across all sets of trees for all SIMMAP analyses. 

The only difference between analyses was that social and whistle character states were 

more strongly associated on the trees constrained by the Messenger and McGuire 

hypothesis than in the remainder [see Appendix 10].  Similarly, the PDAP analyses 

results agree irrespective of phylogeny choice [see Appendixs 11 and 12], except the 

following. Group size and number of inflexion points correlate significantly except on 

trees constrained by the hypotheses of Arnason et al. (2004) [63] or Nikaido et al. (2001) 

[62], and group size and mean minimum frequency correlate except on trees constrained 

by the Messenger and McGuire (1998) [61] hypothesis. For ancestral character 

reconstruction under parsimony, the optimizations of the continuous characters such as 

group size, tonal sound frequencies, duration, and inflexion points are nearly identical 

across the trees considered. The optimization of whistles as a presence/absence character 

was ambiguous on our, and previous, phylogenetic hypotheses. However, on 70% of the 

filtered post-burnin trees dual origin of whistles was preferred (see above). The 

optimization of sociality (as a two state character) was ambiguous (single origin followed 

by multiple losses, or two origins followed by fewer losses), except on the Nikaido et al. 

(2001) [62] hypothesis which favors two origins of sociality. Similarly optimizations of 

whistles and sociality as multistate characters varied little across trees with no impact on 

conclusions.  

When we used the phylogenies resulting from reanalyzes of the data of Messenger 

and McGuire (1998) [61], however, significance was lost in a higher number (although 

not the majority) of the hypotheses tests [see Appendixs 10-12] and some character 
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optimizations changed. Although this can in theory imply sensitivity to phylogenetic 

pattern, a simpler explanation for this finding seems to be that much of the power of the 

comparative tests is lost as Messenger and McGuire’s data [61] includes only a portion of 

the species of our main dataset. Hence we do not see a reason to discuss these 

‘disagreements’ further. 
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DISCUSSION AND CONCLUSIONS 

Our results show that the interplay of tonal sounds and sociality is complicated and that 

studying the relationship between conglomerate characters such as 'whistles' and 

'sociality' largely conceals these intricacies. Under the very simple 'concept approach' the 

cladistic test [see 64] rejects the dolphin hypothesis stating that 'whistles' evolved as an 

adaptation for social communication in dolphins. Whistles, as here defined, appear to be a 

synapomorphy of pandelphinids, or even a more inclusive group including ziphiids (Fig. 

11b). Therefore, the current evidence implies that whistles arose earlier in the 

evolutionary history of whales than presumed by Podos et al. (2002) [35], and whistles 

are furthermore present in some non-social species, and have been lost more than once 

within social clades. Apparently then, whistles are not necessary for functional cetacean 

societies and social communication, and they can play some role in communication in 

solitary species.  

Our findings highlight some of the problems with evolutionary analyses of 

imprecise, broad concepts. Even though 'whistles' do not correlate with any measure of 

sociality we find evidence that the evolutionary histories of sociality and tonal sounds are 

intertwined in the direction suggested by many authors, including Podos et al. (2002) 

[35]. This is evidenced mainly by two findings. (1) The significant association between 

group size and tonal sound inflection points (complexity) whether tested using 

independent contrasts, concentrated changes, or character association tests; and (2) the 

association between group size and minimum tonal sound frequency (and the association 

of the latter with duration). Simple tonal sounds are mostly confined to species with 

simple societies (mostly solitary) such as river dolphins and rorquals while tonal sound 
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and social complexity increase in the lineage leading to Delphinoidea (Tables 2). Within 

that lineage reversal to simpler societies has occurred twice and each time tonal sounds 

have been secondarily lost (Figs 1a-b, 3), although whistle loss may represent a response 

to predatory pressure rather than change in social structure (see below).  

In addition, especially in toothed whales, species emitting longer tonal sounds 

tend to show a greater number of inflection points. These observations and tests are 

congruent with hypotheses stating that complex tonal sounds function as social signals 

for group cohesion (e.g., most delphinids) during social, traveling, and feeding activities 

[e.g.,42, 65] or individual recognition (e.g., bottlenose dolphins, Atlantic spotted 

dolphins) [e.g., 3, 37, 41, 66, 67].  

But functionality in a social context can only explain a portion of the variation in 

tonal sound production and complexity. The secondary loss of tonal sounds in porpoises 

and the dolphin clade containing Lagenorhynchus australis, L. cruciger and 

Cephalorhynchus spp, for example, suggests these signals may sometimes be costly, for 

example in terms of energy production or predation risk. These odontocetes live in very 

fluid societies where acoustic communication is accomplished by means of rapid pulsed 

sounds [47, 68]. One potential costs of tonal sounds is that these signals may be 

intercepted (eavesdrop) by an unintended receiver [69, 70]. Delphinid tonal sounds are 

within a frequency range that is readily detected by predators like killer whales which are 

known to predate on many marine mammal species including these non-whistling 

species. Furthermore, porpoises and Cephalorhynchus seem to have converged upon 

similar morphology and biosonar systems [71, 72], both have ears tuned for high 

frequency sounds and produce narrowband clicks [73] that are used for echolocation 
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purposes and communication [74, 75].  As emphasized by Morisaka and Connor (2007) 

[76] if killer whales poorly detect these signals, then it may be beneficial for these species 

to use high frequency signals for social communication [73, 74] instead of tonal sounds.  

In stable societies like those of Physeter macrocephalus and Orcinus orca, 

animals tend to produce group-specific sounds (termed codas and calls respectively) 

whereas in fission-fusion societies like those of Tursiops truncatus and Stenella frontalis, 

animals produce individual-specific whistles, so called “signature whistles” [see 3, 15, 

41, 38]. Signature whistles are sounds (single-loop and multiple-loop) [see 75] that to 

date have only been found in species with fluid societies where mother and calf use them 

as contact calls and some animals (particularly males) form coalitions (individual 

recognition may be important when forming these alliances) [e.g., 15, 37, 38, 44, 66, 67, 

73, 77-82]. 

We found evidence for association between group size and the mean minimum 

frequency, as well as between mean minimum frequency and duration. Given that the 

former was only marginally significant, we will not place much emphasis on this finding. 

However, if this finding will be better supported with the addition of further data it may 

suggest that low minimum frequency (and long duration) is selected for in mostly solitary 

species which must communicate with other individuals over relatively greater distances 

than do species that live in permanent societies. It should be noted that May-Collado et 

al. (2007) [59] found a correlation between minimum frequency and body size across 

whales. This may explain a part of the observed pattern here, as social species are often 

small, but it remains to be explored if sociality and body size are correlated.  
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Despite the possible differences in the context in which tonal sounds are produced 

by riverine dolphins and other delphinoids, there is no a priori reason to assume that 

whistles produced by these toothed whales are not homologous (contra Podos et al. 2002) 

[35], and phylogenetically their homology is supported (Fig. 11).  It has been proposed 

that marked deviations of Inia from delphinids in scaling relationship in body size and 

frequency [e.g., 21, 83] is evidence that their sounds are produced by mechanisms 

different from those used by delphinoids. This is primarily based on the assumption that 

vertebrate scaling of vocal frequency occurs through size-dependent effects on a common 

vocal apparatus [e.g. 80], thus deviations from scaling relationships might indicate an 

independent proximate mechanism [35]. However, these scaling patterns, for maximum 

frequency disappear once phylogenetic relationships are taken into account [59]. 

While some cetacean societies have been studied for a long time, detailed 

observations are lacking for many species and it is difficult to define and compare levels 

of sociality across cetacean species. Likewise there are many gaps in our knowledge of 

tonal sound production [see Appendixs 5 and 7]. Our study highlights critical gaps in 

knowledge, and pinpoints key taxa whose future study could quickly enhance our 

understanding of the evolution of tonal sounds. As can be seen in Figure 1, tonal sound 

data would be especially valuable from Kogia, ziphiids other than Berardius, and from 

Platanista and Pontoporia. In a similar manner information on social structure of Kogia, 

Mesoplodon, and Ziphius would help resolve the optimization of sociality.  

Many factors in addition to sociality have been proposed to have influenced the 

evolution of tonal sounds, including body size and maximum frequency scaling [21, 35, 

59, 83, 84], habitat [21], predation [76], and zoogeographical [20] and phylogenetic 
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relationships [20, 21]. Given that multiple factors are at work true co-evolutionary 

histories of any given characters could easily be masked. Hence, finding significant 

correlations between tonal sounds and social structure is particularly interesting. For 

example, we find a significant, but rather weak, correlation between group size and 

inflexion points using the independent contrast method. One of the conspicuous outliers 

in this analysis is Orcinus orca, a social delphinid living in relatively small groups that 

nevertheless produces extremely modulated whistles. Thomsen et al. (2001) [85] discuss 

these extreme modulations and suggest that whistles in killer whales serve a different 

function than in related dolphins. Removing O. orca from the analyses increases the 

strength of the correlation between whistle complexity and group size (R-square=9.7%, 

p-value=0.03).  It should furthermore be noted that comparative biology is fraught with 

difficulty, getting enough data together for a strong hypothesis testing is typically 

difficult and missing data results in a loss of power. By accounting for uncertainty in 

phylogenetic relationships we hope to reduce the rate of type I error. Further, accounting 

for differences in interpreting and scoring whistle and sociality data attempts to reduce 

type I error. It is quite possible that in an attempt to avoid type I error we are introducing 

an unacceptable amount of type II errors. In other words, our ability to detect true 

character correlations in evolutionary history may be compromised. In this study, 

however, most of the results were not sensitive to choice of phylogeny or alternative 

scoring scenarios which adds some confidence to our conclusions.   

Our findings point to gaps in knowledge of both tonal sounds and social structure 

that need to be filled to significantly advance our understanding of their putative co-

evolutionary histories. Nevertheless, our results allow us to reject the simple hypothesis 
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that 'whistles' evolved for social communication in dolphins. However, group size 

explains some of the variation in tonal sound frequency and frequency modulation 

indicating a special role for complex tonal sounds in a (complex) social context and 

perhaps for low frequency, long-duration sounds in solitary species. May-Collado and 

Wartzok (2007) [9] suggested that whistles in Inia geoffrensis may be use to keep 

distance between animals rather than to stimulate social interactions. However, this 

hypothesis needs to be tested. Future studies should focus on particularly poorly known 

groups of species such as riverine species, ziphiids, and Kogia spp.  
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METHODS 

Definitions 

For purposes of this study the association between tonal sounds and sociality will be 

studied under both a broad concept [tonal sounds and whistles versus sociality, emulating 

previous studies], and using a ‘component’ approach whereby tonal sounds and sociality 

are dissected into (some of) their component characters. For tonal sounds, standard 

acoustic parameters we use here include absolute and mean minimum and maximum 

frequencies (kHz), duration (s), and number of inflection points (a measure of whistle 

modulation, and a proxy for whistle complexity) [see Appendix 7]. 

 Current knowledge on cetacean sociality indicates the existence of a wide range 

of social structures, ranging from ‘solitary’ to highly structured group living species [see 

86]. Generally in the study of cetacean sociality, social species are those that show 

evidence of group living [87] where animals are associated in a nonrandom fashion [88]. 

Under the broad concept approach, we have classified species into two general social 

frameworks, one simply organizing species into non-group living species (state 0) and 

group living species (state 1) and a second one assigning species to four social types 

(Table 8, [see Appendix 5]. Under the component approach, we also examine some 

component characters of sociality for which there is sufficient data available (group size, 

composition, and stability/associations) either from short and/or long term studies as well 

as anecdotal observations (Table 8, [see Appendix 5]).  Table 8 provides detailed 

descriptions of these character and their states. It is important to note that for any type of 

qualitative characterization of sociality, some species may fit into more than one category 

due to intraspecific variation. For instance, some populations of Stenella longirostris 
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have unstable (or ‘fluid’) groups whose compositions change throughout the day, while 

populations in the Hawaiian atolls exhibit long-term group fidelity and social stability 

[89]. These, and other limitations of this study should be kept in mind when interpreting 

our findings, nevertheless, we believe our approach improves upon previous attempts to 

detect the associations between sociality and tonal sound production in whales.  

  

Character Optimizations 

Published data on cetacean tonal sound production and sociality were obtained from 

literature and personal communications [see Appendixs 5 and 7]. For tonal sounds we 

compiled information on the most used acoustic parameters: absolute and mean minimum 

frequency, absolute and mean maximum frequency, duration, and mean number of 

inflection points. We only considered studies conducted in the wild or in captivity where, 

based on the information provided by the authors, it could be assumed species were not 

recorded in mixed-species groups. We assumed authors were not including harmonics in 

the acoustic measurements of the tonal sounds emitted by the studied species, unless 

specified. Information about the social structure of cetaceans was obtained from short to 

long-term studies, as well as anecdotal information. We searched for information for each 

of the following social components group size, composition, stability and associations 

patterns. In addition, information on these social components was used to define four 

social categories. A minimum of two components was required to place a species within 

a social category as defined in Table 8.  Species for which insufficient components were 

available were coded as unknown. For species with populations that varied in their social 

structure or any of the social components (‘polymorphic’) we selected the highest social 
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state for that particular character. Group size is analyzed as a continuous character using 

the highest mean group size found in the literature, and also as a discrete character which 

allows the inclusion of more species [see Appendix 6] since many authors do not provide 

a mean value but instead offer a description of group sizes. 

 We relied upon the recent species level phylogenies provide by May-Collado and 

Agnarsson (2006) [58] and May-Collado et al. (2007) [59]. All the main analyses were 

made using the preferred tree from May-Collado et al. (2007) [59] [see Appendix 13]. 

Because polytomies can compromise character optimization and tests of character 

correlations, characters were optimized on a fully resolved tree, which is the majority rule 

tree resulting from a MrBayes analysis  (see May-Collado and Agnarsson 2007 for 

details) [58] without collapsing nodes with less than 50% frequency (using the 

contype=allcompat option). However analyses were also run on a range of alternative 

phylogenies (see below) Character optimization was performed with the program 

Mesquite 1.12 [90], using weighted squared-change parsimony [91]. 

  Acoustic characters were optimized in two data sets (1) with of all cetacean 

species and (2) pruning species that are known not to emit tonal sounds, species for 

which acoustic behavior is poorly known, and species that are known to produce tonal 

sounds but for which detailed information for the character under study was not available. 

When several values were reported in a species for a particular trait the largest maximum 

frequency and duration, and the smallest for minimum frequency were used for the 

analyses [see values in bold in Appendix 7]. Number of inflection points was analyzed 

both as continuous, reflecting the continuous nature of the data, but also as a two and four 
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state discrete character to facilitate additional analyses that require ordinal data (Table 8, 

[see Appendixs 5 and 9]). 

 Sociality was optimized as discrete two and four state characters, and using the 

social components: group size, composition, stability and association patterns (Table 8, 

[see Appendix 5]). Because several species were polymorphic for one or several 

characters we optimized species in three ways (1) as polymorphic, (2) emphasizing their 

'highest' social level reported, and (3) emphasizing their 'lowest' social level reported. 

Finally, we analyzed group size as a continuous character.   

 

Independent Contrasts  

Assuming group size as a coarse proxy for social complexity (as defined above by 

Connor 2000) [87] we regressed it against tonal sound parameters to examine the 

association of sociality and tonal sound production. Contrasts were calculated using the 

method of phylogenetically independent contrasts [92]. The method takes into account 

known dependencies among observations due to phylogenetic relationship of species, and 

therefore reduces error [93]. Independent contrasts were calculated using the PDAP: 

PDTREE module [94, using an unpublished version provided by P. Midford] in Mesquite 

1.12 (build h47, 85). To estimate independent contrasts, branch lengths were used as 

estimated by MrBayes; branch length transformations were necessary for group size 

(Lack of fit test p<0.05) and were exponentially transformed. We also tested the 

relationship between tonal sound frequency and complexity [mean number of inflection 

points] and tonal sound duration using the independent contrast method.  
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Character correlations  

We also tested character associations between discrete characters of sociality and tonal 

sound complexity using two different methods. First we used the software SIMMAP 1.0 

[95] which allows for multistate character associations. We did the following tests using 

all post-burnin trees (n=2000) from our Bayesian analysis (May-Collado et al. 2007) [59] 

using default settings of the program and employing a rough false discovery rate (FDR) 

to correct for multiple simultaneous comparisons (critical p values for tests of 8, 12, and 

16 comparisons are 0.028 (0.972), 0.027 (0.973), and 0.27 (0.973), respectively). We 

tested the association of (1) sociality and tonal sound complexity both scored as two state 

characters, (2) social structure and tonal complexity scored as four state characters, and 

(3) each of the social components and tonal sound complexity scored as two and four 

states characters [see Appendix 5].  Second using the concentrated changes test [96] in 

the software MacClade [97] we tested if changes in tonal sound complexity were 

concentrated on social branches. For this test we used only two state characters.  

 It is important to note that testing the role (if any) of sociality in tonal sound 

evolution is challenging due to the large gaps in our knowledge of cetacean societies, 

difficulties of objectively defining tonal sound complexity, and levels of sociality, and the 

limitations of available methods. We note that, as with all of the ordinal data we use here, 

the divisions between character states are rather arbitrary and open to criticism and 

alternative coding. Nevertheless we believe that our, be it coarse, phylogenetic approach 

represents an advance over previous studies that have speculated on social and whistle 

evolution using less data and lacking a phylogenetic reference. We have tried to test the 

association of characteristics such as group size and whistle parameters using various 
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different approaches (independent contrast test, concentrated changes test, pairwise 

comparisons on the phylogeny, and character association test for multistate characters), 

testing them across various alternative phylogenies, and our results are presented in the 

form of hypotheses that we hope will subsequently be better tested upon the availability 

of more data and more sophisticated methods. Also, importantly, our data highlight gaps 

in knowledge and should guide future studies to where allocating resources might be 

most beneficial. 

 

Current Knowledge on Cetacean Sociality and Tonal Sounds 

Connor et al. 1998 [86] and Matthews et al. 1999 [83] provided brief reviews of the 

evolution of sociality in toothed whales and tonal sounds in cetaceans, respectively. 

Connor et al. 1998 [86] review highlighted the lack of knowledge for most toothed whale 

species and focused on the social structure of a few species including Tursiops truncatus, 

Orcinus orca, Globicephala spp., Berardius bairdii, Physeter macrocephalus. They 

compared toothed whale social structure with some terrestrial mammals e.g. elephants 

and chimpanzees, and found both similarities between the two, but also identified some 

social elements unique to toothed whales.  Matthews et al. 1999 [83] summarized the 

frequency and time parameters of 40 cetacean species tonal sounds in relation their body 

size. 

  This review summarizes information from 335 sources on sociality and tonal 

sounds for 64 and 36 Cetacean species, respectively [see Appendixs 5 and 7]. The 

information was gathered from via searches on Web of Science and Google Scholar, and 
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include scientific papers in peer-reviewed journals, conference abstracts, M.Sc. theses, 

Ph.D. dissertations, technical reports to international organizations, etc.  

  Although not the main aim of this paper, a few summary statements can be made 

about current knowledge of sociality and tonal sound production in whales [see 

Appendixs 5 and 7]. Baleen whales have a rather uniform social structure, generally live 

in simple societies where animals spend considerable time solitary. Weak associations are 

limited to aggregations form during the breeding and feeding time, and long-term 

associations appear to be limited to the time mother and calf remained together. In 

contrast, toothed whale social structure varies enormously, ranging from solitary to 

species living in huge groups. In groups, group members show an array of association 

patterns, from weak to stable family associations. For porpoises (Phocoenidae) and 

several of the freshwater cetacean species (e.g., Platanista, Lipotes, Inia) authors have 

described group member associations as ‘undeveloped’, ‘weak’, or ‘fluid’. Such 

description are difficult to interpret and do not necessarily mean that the authors are 

suggesting these species live in a fission-fusion society as reviewed in Connor et al. 1998 

[86] for Tursiops truncatus. For most delphinids, association patterns have been 

described as ‘fluid’, ‘highly fluid fussion-fusion’, or ‘fluid with short-lasting 

associations’. In these cases authors appear to imply by ‘fluid’ that the species do live in 

fission-fusion societies [as described by 86]. In these species males tend to form 

coalitions and alliances to ‘capture’ and maintain consortship with females. Finally, the 

most stable social structures have been described in the Sperm whale, (Physeteroidea), 

most members of the subfamily Globicephalinae, and possibly the Narwhal 

(Monodontidae). Notably, these species are not all closely related so that “stable” 
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societies have evolved convergently, however, species differ in the degree of dispersal 

particularly male dispersal from the group.   

 Our review updates Matthews et al. (1999) [79] review on Cetacean tonal sounds. 

We included recently reported information on species like Delphinus capensis and 

Sotalia guianensis [see Appendix 7]. We also updated information on several others like 

the Narwhal and Beluga (Monodontidae) and the river dolphins Lipotes and Inia where 

more data has become available. The previous review [83] included tonal sound 

information from two beaked whale species (Mesoplodon densirostris, M. carlhubbsi) 

that we considered controversial due to the possible pulsative nature of these sounds, thus 

exclude this information from the table.  In addition, Sousa chinensis and Sousa plumbea 

were considered here a single species, since no clear evidence yet exists to separate them 

into two distinct species. Likewise, we consider Stenella plagiodon as a synonym of 

Stenella frontalis.  

  Despite of the increasing knowledge on sociality and tonal sounds the 

information remains lacking, or scattered, for many species. Here we are highlighting 

some of these species, particularly key species in the phylogeny that would ‘resolve’ the 

ambiguities observed in the evolution of sociality and tonal sounds. 

 Pygmy and Dwarf sperm whales (Kogia breviceps and K. sima) [98] are close 

relatives of the Sperm whale (Physeter macrocephalus) a species that shows a matrilineal 

society and does not produce tonal sounds. There are no indications that these species 

show a similar society to that of the Sperm whale. In general their social structure and 

acoustic signals are poorly known [99-104]. Pygmy and Dwarf sperm whales are often 

seen and strand in small groups that are can be segregated by age and sex or mixed [102], 
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see Table 8]. The few published accounts on their sounds describe click trains 

[99,101,103] and cry-like sounds [104] but no tonal sounds.  

 Beaked Whales (Ziphiidae) are largely unknown. The social structure of the 

Northern Bottlenose Whale (Hyperoodon ampullatus) is the best known of all beaked 

whales [e.g, 105-109]. The Baird’s Beak Whale (Berardius bairdii) is believed to live in 

stable groups where males may perform parental care [e.g., 86,110, 111]. However, other 

sources suggest these species live in fission-fusion societies [51]. However both sources 

report anecdotal evidence and long-term studies are necessary. The social structure of 

other beaked whales is largely unknown. In terms of tonal sounds, Winn et al. (1970) 

[112] reported whistles in H. ampullatus, but it appears to be the general consensus that 

this species does not produce tonal sounds [e.g. 109, Whitehead pers. comn. 2005]. Tonal 

sounds have been reported as well in the Cuvier’s beaked whale, Ziphius cavirostris by 

Manghi et al. (1999) [113] but other acoustic studies only recorded pulsed sounds [e.g., 

114,115]. The only beaked whales for which tonal sounds have been reported are the 

Baird’s Beaked Whale [52] and the Arnoux’s Beaked whale (Berardius arnuxii) [51]. 

There is some possibility that the recordings of Dawson et al. (1998) [52] were of a 

sympatric dolphin species (Dawson pers. comm.), however, the recordings of Rogers and 

Brown (1999) [51] seem conclusive.  

 Inia, Platanista, Lipotes, Orcaella, Neophocaena live in freshwater environments. 

Generally riverine species are considered solitary, however in some areas these species 

are often seen forming small groups [see Appendix 1 and respective references]. 

Although, most authors describe group member interactions in riverine species as weak, 

there is really little knowledge about their societies. In terms of sound production, like the 
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rest of the family (Phocoeenidae) [2], Neophocaena does not produce tonal sounds 

instead the species emits burst pulses under social context [2]. Tonal sounds have been 

described for two of the subspecies of Inia geoffrensis, Lipotes vexillifer [see Appendix 

7], but not for Pontoporia [116]. Mizue et al. (1971) [117] reported whistles from 

Platanista gangetica, recorded in captive conditions. However, it is not clear if the 

animals were acoustically isolated from another riverine dolphin (I. geoffrensis), which 

produces tonal sounds.  

  The dolphins Lagenorhynchus cruciger,  L. australis, Lissodelphis spp, Steno 

bredanensis, Feresa attenuata, and Peponocephala electra social structure is largely 

unknown. Most available information comes from stranding and anecdotic information. 

Although Fish and Turl (1976) [118] documented whistles in Lissodelphis spp., recent 

work did not find whistles (Oswald pers. comn). No published accounts on tonal sounds 

for Feresa and L. cruciger were found. May-Collado and Agnarsson (2006) [58] predict 

that L. cruciger may not emit whistles as it nests within a clade of species that do not.  

 

Phylogenetic uncertainty 

Taking phylogenetic relationships among species into account is crucial for 

hypotheses testing in comparative biology. However, this is no simple procedure – 

phylogenies themselves are merely hypotheses and for any given comparative study the 

number of possible alternative phylogenetic arrangements grows exponentially with the 

number of species being considered. The key question then becomes, how dependent are 

our conclusions on the choice of phylogeny? Do the results remain mostly unchanged—

implying robustness to phylogenetic uncertainty—or do they change when tests are run 
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on alternative “reasonable” phylogenies. Alternative phylogenies can come from several 

sources, e.g. from previously published independent phylogenetic studies, or from the set 

of near-optimal trees from a given analysis, e.g. each unique tree from the post burnin set 

of a Bayesian analysis. If the results of the comparative analyses are different under some 

of the alternative phylogenies we have not rejected our conclusions but we have been 

cautioned that the conclusions are dependent on the chosen phylogeny and may be altered 

as new phylogenetic data become available. If, however, the results are the same across 

the set of alternative phylogenies then confidence is gained in the conclusions. Here, we 

attempt to account for phylogenetic uncertainty using various approaches. 

 The total number of trees in the post-burnin set from the Bayesian analysis is 

2000. Instead of basing sensitivity analyses on the 95% credibility set (which includes a 

number of trees that contradict all recent studies of whale phylogenetics) we use all the 

post burnin trees filtered based on various constraints reflecting external phylogenetic 

evidence. This filtering reduces the number of trees facilitating analyses, without much 

risk of compromising concerns for phylogenetic uncertainty as the constrained clades are, 

by any standard, uncontroversial. Rather, considering trees that contradict all available 

phylogenetic evidence would seem more likely to be misleading than useful. Here, we  

(1) ran analyzes across the post-burnin set of trees from May-Collado et al. (2007) [59] 

filtered by constraining major clades all recent phylogenetic studies of Cetacea agree 

have supported (see below), and (2) using subsets of the post-burnin trees filtered so as to 

be congruent with other recently published phylogenetic hypotheses of cetaceans chosen 

as they are based on various types of data: morphological/palaentological (Geisler 2003) 

[119], mitogenomic (Arnason et al. 2004) [53], a combination of molecular and 
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morphological data (Messenger and McGuire 1998) [61] and SINE’s (Nikaido et al. 

2001) [62]. We chose to use previously published phylogenies as guides to filter trees 

from the Bayesian post-burnin tree set, rather than to use them directly for analyses (but 

see below). This is simply because each of these phylogenies contains only a small subset 

of cetacean species making them poor for the purposes of comparative analyses. 

Nevertheless, they represent relatively well supported and conflicting hypotheses on the 

interrelationships of some of the major cetacean clades, whose resolution may impact the 

findings of our study. Finally, we ran analyses on trees resulting from re-analyses of the 

Messenger and McGuire dataset, which is the most taxon-rich previously published 

phylogeny.  

 We constructed constraint trees in McClade [see Appendix 2] representing each 

of the previously published phylogeny (see above) and filtered trees from the post-burnin 

set based on these constraint trees. The constraint trees merely reflect the 

interrelationships of major clades (families and more inclusive clades, [see Appendix 2]). 

Species level relationships are not constrained as most of the studies include very few 

species so that they represent poor tests of lower level phylogenetic structure. Finally, we 

produced one constraint tree representing only clades that all the previously published 

studies agree on. This filtering process produced the following datasets: Arnason 

constraint set (325 trees), Nikaido constraint set (341 trees), Messenger and McGuire 

constraint set (4 trees), and the all study agreement constraint set (1069 trees). None of 

the post-burnin trees were congruent with the hypothesis of Geisler (2003) [119]. In fact 

all other recent molecular, morphological, and combined analyses refute aspects of that 

hypothesis, in particular the monophyly of all river dolphins (other studies all agree that 
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Platanista is not closely related to the remaining river dolphins), and the monophyly of 

Physeteroidea (other studies refute the sister relationships of Ziphiidae and Physeteridae). 

Hence we did not further consider that hypothesis, although it played a role in the 

construction of the ‘all study agreement’ subset. 

 SIMMAP analyses were run across all trees in each subset, while PDAP analyses 

were conducted on the majority rule tree (using contype=allcompat) of each of the 

subsets. Furthermore, parsimony ancestral character reconstructions were examined on 

each of the majority rule trees and across all trees from the all study agreement tree 

subset. 
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Table 8. Definitions of sociality and tonal sound characters and respective states 

SOCIALITY-BROAD CONCEPT APPROACH 
CHARACTER/STATES 0 1 2 3 

 
 
 

 
SOCIALITY 

Species do not live in groups. 
Mainly found singly or in pairs. 
Pairs are primarily mother with 
their calf. Sometimes groups may 
form but these are temporal (e.g., 
breeding, feeding, or migration) 
and do not show any social 
structure apart from that of mother 
and calf 

Group living species. In addition to 
mother and calf associations animals are 
continuously associating with other 
conspecific. These associations may be 
short or long-term. Animals within a 
group may or not be related. Living 
singly is extremely rare within this 
species and it is probably limited to old 
or outcast animals.   

  

 
 

SOCIAL STRUCTURE 

Solitary species with strong social 
bonds limited to the time the calf is 
dependent of the mother. Animals 
may aggregate for breeding, 
feeding, or migration but 
associations are limited to the 
duration of these periods. Groups 
are not socially structured 

Group living species where all group 
members show weak or fluid 
associations. Both sexes disperse from 
natal group. 

Group living species. Group 
members show fluid 
associations but may have long-
term associations with specific 
group members that are not 
close relatives e.g, male 
alliances and coalitions. Both 
sexes disperse from natal group. 

Group living species. Group 
members are close relatives. 
Natal philopatry is sex 
dependent but in some 
species there is no 
dispersion. Long-term 
associations. 

SOCIALITY-MULTI COMPONENT APPROACH 
Group Type Species described as largely 

solitary, but that are often found in 
pairs (mother-calf) 

Group living species that are generally 
found in small groups 

Group living species that are 
generally found in medium to 
large size schools 

 

Group 
Stability/Associations 

Short when found in non-socially 
structured groups. Limited to the 
time the calf is dependent of the 
mother.    

Species where group stability is short. 
Animals join and leave the group through 
the day. Described in literature as fluid 
societies.  

Species with fluid societies but 
were some conspecific group 
show relatively long lasting 
associations e.g., male alliances, 
female nurseries 

Species that live in their 
natal group for life. 
Animals are related to 
group members and 
dispersal is limited showing 
long-lasting associations 

Group Composition Mother and calf Segregated by age and sex Mixed (contain both sexes and 
several ages) 

Both segregated and mixed  
(state only used for the test 
of association not for 
optimizations) 

TONAL SOUND COMPLEXITY DISCRETE APPROACH 
Tonal Sound 
Complexity (2-state) 

Mean inflection point is less or 
equal to 1 

Mean inflection point is more than 1   

Tonal Sound 
Complexity (2-state) 

Mean inflection point is between 0-
1 

Mean inflection point is between 1.1-2 Mean inflection point is 
between 2.1-3 

Mean inflection point is 
more than 3.1 
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Table  9. Probabilities of association between sociality (selecting the highest social state 
for polymorphic species) and tonal sound complexity. Significant positive associations at 
p-values >0.972 and 0.973** for two and four state complexity characters, respectively 
and significant negative associations at p-values <0.028 and 0.027* for two and four state 
complexity characters, respectively 
 

SOCIAL STRUCTURE [FOUR STATE 
CHARACTER] 

TONAL SOUND 
COMPLEXITY [TWO & FOUR STATE 

CHARACTER] 0 1 2 3 
0 (≤ 1 mean inflection point) 

D-statistic 
p-value 

 
0.0821 
0.798 

 
0.0536 
0.728 

 
-0.0424 

p<0.0001* 

 
-0.0047 
0.003* 

1 (≤ 1 mean inflection point) 
D-statistic 

p-value 

-0.0440 
p<0.0001* 

0.00045 
0.90 

0.113 
0.99** 

0.0360 
0.99** 

0 (0-1) D-statistic 
p-value 

0.084 
0.93 

-0.00029 
0.055 

-0.0338 
0.002* 

0.009 
0.88 

1 (1.1-2) D-statistic 
p-value 

-0.038 
0.002* 

0.027 
0.91 

0.0781 
0.92 

0.022 
0.92 

2 (2.1-3) D-statistic 
p-value 

-0.003 
0.018* 

0.0121 
0.89 

0.0198 
0.91 

-0.0033 
0.014* 

3 (>3.1) D-statistic 
p-value 

-0.0046 
0.012* 

0.0151 
0.90 

0.0065 
0.86 

0.0023 
0.84 

*Significant negative associations  **Significant positive associations 
D=0.362 p<0.0001, np-value=1465, nD=2000 Social Structure and Tonal Sound Complexity (4-state) 
D=0.376 p<0.0001 np-value=343, nD=2000  Social Structure and Tonal Sound Complexity (2-state) 
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FIG. 11 
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FIG. 12 
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FIG. 13 
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FIG. 14 
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FIG. 15 
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ABSTRACT 

Whistles are narrowband and frequency modulated sound produced by many cetaceans. 

These sounds have been extensively studied in delphinids. Several factors have been 

proposed to explain between- and within-species variation in whistles. This study aims to 

bring insight in micro-geographic whistle variation of two bottlenose dolphin populations 

(Bocas del Toro, Panama vs. Gandoca Manzanillo, Costa Rica) by assessing several 

factors e.g., habitat acoustic characteristics (ambient and anthropogenic), sympatry with 

other dolphin species, and intrinsic differences between populations due to variation in 

behavioral activities and/or distance between populations in some cases leading to 

isolation. Our results show that the two adjacent populations are distinct in both 

frequency and temporal whistle parameters. The differences in the mean values of each 

whistle parameter between these adjacent populations were no smaller than differences 

between those and more distant populations in the north and south. There were no 

apparent trends in increasing or decreasing whistle frequency with latitude as shown for 

other dolphin species. We found that a combination of factors may contribute to the 

significant differences found between these two adjacent (~35 km apart) populations. 

Isolation or relatively low mixing of populations may be important. An ongoing photo-ID 

of these dolphins has hitherto not found any matches between populations.  The 

acoustical structure of their habitat also may play a role. Bocas del Toro has a higher boat 

traffic rate but lower overall low frequency ambient noise levels. Dolphins produced 

whistles with characteristics that may help them to cope with their respective 

environmental noises. While dolphins from Bocas emit longer whistles (maybe to avoid 

masking by high-frequency boats), dolphins from Gandoca-Manzanillo emit high 



 178 

frequency whistles (perhaps to avoid masking by low frequency ambient noise levels). 

Sympatry with Sotalia guianensis also may be a factor. However, if this sympatry has an 

effect, it is in the opposite direction than predicted by the ‘species hypothesis’. Bottlenose 

dolphins sympatric with Sotalia produce whistles that are more similar to Sotalia whistles 

than are the whistles of non-sympatric bottlenose dolphins. Finally, behavior may be an 

important source of within population variation. Populations may vary in their investment 

in different activities. The results of this study suggest that bottlenose dolphin whistles 

are plastic and influenced by a variety of factors. Isolated populations can be expected to 

be locally adapted and thus differ from other isolated populations.  

 

KEY WORDS: ambient noise, isolation, boat traffic, behavior, zoogeography, sympatry 
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INTRODUCTION 

Most toothed whales emit frequency modulated tonal sounds that are narrowband in 

frequency (with most of their energy below 20 kHz) (Au 2000, Richardson et al. 1995).  

These signals are produced under a variety of social contexts. In true dolphins 

(Delphinidae), tonal sounds are typically referred to as whistles, and are emitted 

especially during social interactions that involve group cohesion, individual recognition, 

and recruitment during feeding activities (e.g. Caldwell and Caldwell 1965, 1990, Sayigh 

et al.  1995, Janik et al.  1994, Janik 2000, Acevedo-Gutierrez and Stienessen 2004). 

 Whistle interspecific variation occurs primarily in frequency variables (e.g., 

Steiner 1981, Wang et al.  1995b, Rendell et al.  1999, Matthews et al.  1999). Several 

factors have been proposed to explain frequency variation across species, including 

phylogeny, sociality, zoogeography, and morphological constraints. Recent comparative 

phylogenetic studies May-Collado et al. (2007a-b) examined the evolution of some 

frequency components in Cetacean tonal sounds. Their findings suggest that the evolution 

of minimum frequency in Cetaceans appears to be influenced by body size and group 

size, whereas whistle complexity (measured in terms of mean number of inflection 

points) was influenced by social structure. 

 Whistle variation also occurs within species. Several studies have found variation 

in frequency modulation (mean number of inflection points) and whistle duration (e.g., 

Wang et al. 1995a, Azevedo et al. 2005, Morisaka et al. 2005a). However, recent studies 

have also found frequency parameters as key to discriminate between populations (e.g., 

Morisaka et al. 2005a, Azevedo et al. 2005, Rossi-Santos and Podos 2006). Such 

differences have been observed both at micro-geographic scales (between neighboring 
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populations) and macro-geographic scales, between widely separated ones (e.g., Wang et 

al.  1995a, Barzua-Duran and Au 2002, 2004, Azevedo and Sluys 2005, Morisaka et al.  

2005a, Rossi-Santos and Podos 2006, Azevedo et al. 2007, Camargo et al. 2007, dos 

Santos et al. 2007, May-Collado and Wartzok 2007). The general pattern suggests greater 

whistle variation between populations that are further apart (e.g., Wang et al. 1995a, 

Barzua-Duran and Au 2002, 2004, Azevedo and Sluys 2005, Rossi-Santos and Podos 

2006). However, a recent study in spinner dolphins found that some populations from the 

Atlantic and Pacific where more similar than less distant populations (Camargo et al. 

2007). 

 In many terrestrial animals (particularly birds) geographic variation in signal 

structure has provided insights into the dispersal capabilities of species (e.g., Mundinger 

1982; McGregor et al.  2000), isolation and genetic divergence between groups or 

populations (e.g., Lemon 1966, McGregor et al.  2000, Ford 2002), and adaptation to 

ecological conditions (e.g., Marler 1960, Brumm 2006, Boncoraglio and Saino 2007, 

Gillam and McCracken 2007, Peters et al. 2007).   

 The causes of geographical variation in dolphins (and cetaceans in general) are 

still poorly known. However, recent studies suggest that the acoustic structure of the 

habitat (which is described in terms of ambient noise, known sources of anthropogenic 

noise, and the physical structure e.g., bottom substrate, currents, etc) may play an 

important role in the reported intra-specific whistle variation. Morisaka et al (2005b) 

found that Indo-Pacific bottlenose dolphins (Tursiops aduncus) from three populations 

around Japan differ in their whistle frequency structure (adopted frequencies and 

coefficient of frequency modulation). Dolphins from the noisiest habitat tended to 
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produce low frequencies whistles with little modulation as potential strategy to avoid 

masking and attenuation of higher-frequency signals (Morisaka et al. 2005b). In contrast, 

short-beaked common dolphins (Delphinus delphis) from the English Channel British 

Isles, whistled at higher frequency when compared with common dolphins from the 

Celtic Sea (Ansmann et al. 2007). In this case, dolphins emitted high-frequency whistles 

in the presumably noisiest site (no measurements of ambient noise were taken), the 

English Channel, where dolphins may avoid masking by the low-frequency ambient noise 

produced by the high vessel traffic of the area.  

  Other proposed factors for whistle intraspecific variation include recent isolation 

events (e.g., in spinner dolphins see Camargo et al. 2007), intra-specific variation in 

group fluidity or group stability in association patterns (e.g., in spinner dolphins of 

Hawaii see Barzua-Duran and Au 2002), and zoogeographical relationships (Steiner 

1981). Steiner (1981) suggested that sympatric dolphin species would tend to be more 

different than when they occur separately. 

 The goal of this study is to evaluate the interaction of some of these factors and 

whistle acoustic variation between two adjacent populations of bottlenose dolphins 

(Tursiops truncatus) in the southern Caribbean of Central America. We tested the 

following factors: ambient noise levels, boat traffic, sympatry with the coastal Guyanese 

dolphin (Sotalia guianensis), and intrinsic population in terms of differences due to 

behavioral states and degree of isolation (distance) by comparing the whistle parameters 

of these populations with populations in the western north and southern Atlantic.  
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MATERIAL AND METHODS 

Study areas and dolphin populations 

The study took place in Gandoca-Manzanillo Wildlife Refuge from 2004 to 2007 and the 

Archipelago of Bocas del Toro in 2004, 2006, and 2007. Gandoca-Manzanillo Wildlife 

Reserve is located along the Caribbean coast of Costa Rica, about 35 km north of the 

Archipielago Bocas del Toro. The Refuge was established in 1985 and includes about 

38.33 km of land and sea. It was primarily established to protect coral reefs, mangroves, 

swamps, and flooded forest. Boat traffic is relatively low. Powered boats are used in the 

Refuge for local fishing and tourism interested in sport fishing (at the mouth of the 

Sixaola River) and dolphin watching. Dolphin watching is boat based, and possibly the 

main reason for boat traffic during high tourist season. There are two small resident 

populations of dolphin species, the Guyanese dolphin (Sotalia guianensis) and the 

bottlenose dolphin (Tursiops truncatus). The species are sympatric within the limits of 

the Refuge, where they form mixed-species groups regularly (Acevedo et al. 2005, 

Gamboa-Poveda and May-Collado 2006). Preliminary photo-ID suggests that only a part 

of the identified bottlenose dolphins are resident to the Refuge, most appear to have a 

more offshore range (May-Collado et al. unpublished data). 

 The Province of Bocas de Toro, Panama covers about 8,745 km. The province 

consists of several islands including the main island Isla Colon the protected island of 

Bastimento (under the category of National Park), mainland of Almirante Bay, where the 

main port of the area is located, Bocas Torito, Tierra Oscura, Punta Laurel, and 

Cauchero. Some of the islands of the archipelago are somewhat interconnected with the 

mainland by islets of mangroves (Fig. 10). The main way of transportation between the 
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islands and mainland are powered boats and canoes. In Bocas the resident bottlenose 

dolphin population is small. Unlike Gandoca-Manzanillo most of the identified dolphins 

are regularly seen in the area, and also show strong site fidelity within the Archipelago 

(May-Collado et al. unpublished data). No other dolphin species are found in the area. 

Despite the relatively short distance between the two study areas (35 km) there is no 

evidence of mixing between the two populations after four years of ongoing research 

(May-Collado personal observation).  

 

Recordings 

Signals were recorded using a broadband system consisting of a RESON hydrophone (-

203 dB re 1V/µPa, 1 Hz to 140 kHz) connected to AVISOFT recorder and Ultra Sound 

Gate 116 (sampling rate 400-500 kHz 16 bit) that sent the signals to a laptop.  

 Ambient noise was recorded in five stations in Bocas del Toro and in three in 

Gandoca-Manzanillo (see Fig.16) at 500 and 384 kHz sampling rate. One-minute ambient 

noise files were recorded every five minutes in a period of 15 minutes at each station and 

at a known gain level. To calibrate ambient noise level recordings we used a calibrated 

ITC-1001 sound projector to send 2, 6, 10,14, 18, and 22 kHz sine waves to the recording 

system. Projector and hydrophone were at distance of 7.3 m. The rms voltage input to the 

ITC-1001 was measured at each frequency and the received sound level at 7.3 m was 

calculated based on spherical spreading. We randomly selected 1 sec of the ‘control’ 

(each of the above frequencies) and join it with 1 sec segment separately with each of the 

three recorded files with ambient noise (three 2 sec files) of same sampling rate (500 

kHz). For ambient noise files with 384 kHz sampling rate we selected 1.3 sec, to 
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compensate for differences in sampling rate with the control (500 kHz), so that both files 

had the same number of points rather than the same length of time. Each control 1 sec file 

was joined separately with 1 sec (or 1.3 sec) ambient noise using the software Media Join 

1.0 (Mystik Media  2004-2005). Later the joined files were opened in RAVEN PRO 1.3 

beta version build 20 (Cornell Lab of Ornithology 2003-2007 ). The average relative 

power in dB for the one second of control and one second of ambient noise were 

measured. Although RAVEN provides only relative, not absolute, power levels, we knew 

the actual recorded levels in the control segments and could then calculate the levels of 

ambient noise.  

 Dolphin whistles were recorded continuously with a sampling rate between 384-

500 kHz. For accompanying behavioral observations, recording sessions were segmented 

into three-minute intervals. Behavioral observations were made every other interval 

(group scanning lasted two-three minutes as well) and the predominant behavior during 

that interval was recorded. The predominant behavior was decided based on the activity 

of most members in a group.  A group was defined as all group members maintaining a 

distance no more than 10 times their body length and engaged in similar behavioral 

activities (Smolker et al. 1992). However, when several groups were present and 

relatively close to each other, these were considered the same ‘acoustic’ group for that 

particular recording session. This is because we could not associate the recorded signals 

with their respective group. In this case, the predominant behavior was assigned based on 

the most common behavior or behaviors in which all groups were engaged. When animals 

were performing a behavior difficult to assign to any of the below defined categories 
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during a scanning period, the behavior was noted as unknown. Five behavioral categories 

were defined based on a combination of previous definitions (e.g., Lusseau and Higham 

2004, May-Collado and Morales-Ramirez 2005):  

 (1) Feeding/Foraging/Diving: individuals actively searching, pursuing, and/or 

consuming prey were assigned to this category. Often diving periods were long and 

involved ‘steep dives’ where animals arched their backs and lifted the tail vertically 

before each dive. Direction and distance between animals varied depending on individual 

or apparent group feeding. (2) Social activities: dolphins interacted among themselves 

e.g., different types of body contact (aggressive and ‘friendly’), tail slapping, and animals 

following the boat or other dolphins. Groups tend to split in small subgroups and 

sometimes spread over a larger area, or the opposite when small groups reunite in bays 

and form temporarily large groups. (3) Traveling: dolphins swimming either slowly or 

fast but always maintaining a steady direction, (4) Resting: dolphin swimming at a slow 

speed, surfacing regularly and often synchronically but always within a small area. Often 

but not always group members where close to each other. (5) Milling: group members 

spaced and showing random directionality during swimming, often slowly and within the 

same area. Surfacing patterns were variable. (6) Unknown: assigned to groups when 

several factors, such as weather condition, and uncertainty due to elusive behavior by the 

dolphins would not allow the predominant behavior to be clearly determined. 

 Whistles were analyzed in RAVEN 1.2 (Cornell Lab of Ornithology 2003-2007 

) with a FFT size of 1024 points, an overlap of 50%, and using a 512-522 sample Hann 

window. Nine standard parameters were measured for every highly quality whistle (the 

entire contour was clearly seen): beginning frequency (Beg), ending frequency (End), 
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minimum frequency (Min), maximum frequency (Max), delta frequency (MaxF—MinF), 

peak frequency (measured in the whistle contour were intensity was the highest), duration 

(s), number of inflection points, and number of harmonics. In addition, we followed 

Morisaka et al. (2005b) study by measuring adopted frequencies (McCowan 1995) in 

order to measure the frequency distribution of a whistle. Nineteen intervals equally 

distanced were set in every whistle by diving is duration by 20 frequency points 

(McCowan 1995).  These same adopted frequencies were used to calculate a coefficient 

of frequency modulation (COFM) for each whistle (McCowan and Reiss 1995). The 

coefficient measures changes in complexity of whistle contour and represents the 

magnitude of frequency modulation in a whistle. High COFM indicate high frequency 

modulation (see Morisaka et al. 2005b). 

 

Where Yn is the frequency at the nth frequency point. 

 

Boat traffic 

Boat sighting rate during dolphin encounters for Bocas and Gandoca-Manzanillo has 

been estimated as 0.66 and 0.21 boat/min (Taubitz 2007). In Bocas a boat is in sight 

every 1.5 minutes while in Gandoca-Manzanillo every 4.8 minutes (Taubitz 2007).  In 

Bocas boats are used for local transportation, personal, fishing, and for dolphin watching 

activities and in Gandoca-Manzanillo for local fishing and tourist activities like sport 

fishing and dolphin-watching. The majority of boats in Bocas are powered with engines 

between 50-150 hp while in Gandoca-Manzanillo the majority of the boats use engines 
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less than 50 hp (Taubitz 2007). The presence/absence of boats was noted during the 

recording sessions. When boats were present we also noted the number of boats present 

in each recording file.  The absence of boats in this study refers to the presence of only 

our research boat. Boat presence was considered as such when a boat was in view within 

a maximum distance of 500 m or when it was acoustically detectable by our recording 

equipment (and thus possibly within the acoustic range of the dolphins).  

 

Statistical analysis 

The Median nonparametric test, run in JMP 7.0 (SAS Institute Inc. 2007) was used to 

compare the overall median noise levels between sites and within sites. Standard whistle 

parameters (Min, Max, Delta, Beg, End, Peak, duration, number of inflection pointes and 

harmonics), the coefficient of modulation and adopted frequencies were compared 

between populations using the nonparametric test Mann-Whitney U in SYSTAT 12.0 

software (SYSTAT Software, Inc. 2007).  With the exception of the variables number of 

inflection points and harmonics, all whistle parameters were Box-Cox transformed to 

adjust their distribution to nearly normal (Sokal and Rohlf 1995). Then we (1) compared 

the coefficient of frequency modulation considering the effect of population, whistle 

duration and their interaction, and (2) we tested population, behavior, boat presence, and 

site fidelity (in the case of Bocas dolphins) as factors and evaluate their explanatory 

power and their interaction when comparing all whistle parameters between populations 

by analysis of covariance (ANCOVA) in the JMP software (SAS Institute Inc. 2007). The 

transformed variables were also evaluated using a multivariate discriminant function 

analysis (with a discriminant linear method) to classify whistles within and between 
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populations and between and within species (using the software JMP 7.0). Within 

population whistle variation was evaluated across behavioral states and boat 

presence/absence using the nonparametric tests Kruskal-Wallis and Mann-Whitney U, 

respectively. Because dolphins in Bocas appear to show strong site fidelity we evaluated 

if whistle parameters vary across sites using the above statistical tests. Finally, we test if 

the overlap in home ranges between the bottlenose dolphins and Sotalia guianensis from 

Gandoca-Manzanillo influences whistle variation. In other words is whistle variation 

between bottlenose dolphins and Sotalia from Gandoca-Manzanillo larger than the 

variation between Sotalia and bottlenose dolphins from Bocas. We tested if the 

differences in means were significantly different between sympatric and non-sympatric 

dolphins with a χ2 test.  

 Finally, we compare the mean values of whistle parameters from our results with 

other studies by first testing for homogeneity of variances (Levene’s F test) and then used 

a t-test (when variances were equal) or Welch t-test (when variances were unequal). We 

also tested if the differences in the mean of the various whistle parameters were 

significantly different between adjacent and the different distant populations with one-

way χ2 test. We tested for the two adjacent populations the hypothesis, Ho=no significant 

difference, and expected values were calculated dividing the total by the number of 

parameters being compared). 
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RESULTS 

Comparisons between adjacent populations: A discriminant analysis misclassified only 

25.37% of the whistles. A total of 103 out of 128 whistles were correctly assigned to the 

Bocas population, and 50 out of 77 whistles to Gandoca-Manzanillo. Whistle standard 

parameters differ significantly between dolphin populations, with the exception of 

minimum and peak frequency, mean number of harmonics, and the coefficient of 

modulation (see Table 10 for p-values). In general, Bocas dolphin whistled with lower 

maximum, delta, and ending frequencies and higher beginning frequency, producing 

longer whistles, and showing higher mean number of inflection points compared to 

dolphins from Gandoca-Manzanillo (Fig. 17a-b).  

 The difference in the Box-Cox transformed adopted frequencies between 

populations was marginally significant at the 0.05 level (F=3.88, p=0.049). However, 

when accounting for the effect of population, behavior, boat presence, and their 

interaction we found that all interactions affect adopted frequencies: population*behavior 

(ANCOVA F=7.30, p=0.009), population*boat presence (ANCOVA F=7.64, p=0.006), 

and behavior*boat presence (ANCOVA F=7.46, p<0.0001). 

 The coefficient of frequency modulation correlated with duration (R2=0.36, 

p<0.0001, F=101.84, p<0.0001, Fig.18), but not with population or their interaction.  

When considering the effect of population, boat presence, behavior and their interactions 

on whistle standard parameters we found that behavior had a significant effect on the 

coefficient of frequency modulation (ANCOVA F=4.93, p=0.0081), duration (ANCOVA 

F=4.93, p=0.0081), delta and minimum frequency (ANCOVA F=3.32, p=0.038, F=6.04, 
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p=0.003 respectively), and the interaction between population and behavior on ending 

frequency (ANCOVA F=3.44, p=0.034). 

 

Comparisons between distant populations: Pairwise comparisons between populations 

indicate that there are significant differences between bottlenose dolphin whistles from 

Bocas and Gandoca-Manzanillo and other populations studied in Atlantic (see Tables 11 

and 12, Fig. 19).  The magnitude of the differences in whistle mean values between the 

adjacent populations of Bocas and Gandoca-Manzanillo are small (p>0.05). Interestingly 

the same pattern was found between Bocas and each of the distant populations (p>0.05). 

The magnitude of the differences, in whistle mean values were significantly higher 

(particularly in maximum and ending frequencies) between Gandoca-Manzanillo and  

Texas (χ2= 45.91, p<0.0023, df=5), Brazil (χ2= 35.38, p<0.013, df=5), and Argentina 

(χ2= 40.43, p<0.009, df=5). 

 

Factors promoting whistle variation  

Sympatry: We tested the hypotheses that bottlenose dolphins living in sympatry with the 

Sotalia guianensis will show significantly greater differences in their whistle parameters 

mean values relative to Sotalia guianensis than will non-sympatric bottlenose dolphins, 

as predicted by the ‘species hypothesis’. The differences in whistle frequency mean 

values between Tursiops and Sotalia are significantly larger between sympatric and non-

sympatric species (χ2=1593.8 p<0.0001, df=5). However, the trend is opposite as 

expected by ‘species hypothesis’. The differences between S. guianensis and bottlenose 
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dolphins from Gandoca-Manzanillo (sympatric) were significantly smaller than those 

between S. guianensis and bottlenose dolphins from Bocas (non-sympatric) (Fig.20). 

 

Behavior: Bocas del Toro dolphins showed significant differences across behavioral 

states only in minimum frequency (χ2=16.26, df=4, p=0.0027), ending frequency 

(χ2=12.10, df=4, p=0.017), and in adopted frequencies (ANOVA F=10.35, p<0.0001).  

Minimum frequency was higher during foraging and resting, and ending frequency was 

higher during foraging (Fig. 21a). Adopted frequencies were significantly higher during 

foraging than during traveling and social activities, but not when the animals were 

milling or resting. No significant differences were found in other whistle parameters. 

 Gandoca-Manzanillo dolphins whistled with significantly greater modulation 

during traveling than foraging (ANOVA F=3.73, p=0.029). Dolphins emitted whistles 

with a greater mean number of harmonics (χ2=10.43, df=2, p=0.005) during social 

activities, and when engaged in foraging activities they whistled with lower delta 

frequency than during social and traveling activities (χ2=6.22, df=2, p=0.044) (Fig. 21b). 

No significant differences were found between other standard whistle parameters, 

adopted frequencies and behavioral states.  

 

Site fidelity: Dolphins from different sites within Bocas showed significant differences in 

frequency whistle parameters. Dolphins recorded from Bocas Torito whistled with lower 

minimum (χ2=11.80, p=0.02, df=4) and maximum frequency (χ2=9.78, p=0.04, df=4), 

lower ending (χ2=23.42, p=0.0001, df=4) and peak frequencies (χ2=12.84, p=0.012, 

df=4) compared to the dolphins recorded from other sites (see Fig.22). 
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Ambient noise: Overall noise levels differ significantly between Gandoca-Manzanillo  

and Bocas (χ2=5.41, p=0.020, Fig. 23a). Noise levels were significantly different across 

frequencies within each site. In Bocas noise levels were particularly high at 2, 10, and 14 

kHz (Bocas χ2=36.11, p<0.0001, df=5). Noise levels were higher at 2 kHz in Gandoca-

Manzanillo (χ2=22.47, p=0.0004, df=5). Sites were significantly different only at 2 kHz 

(χ2=4.57, p=0.033, df=1).  Ambient noise stations at each study site also varied in noise 

levels (Bocas: χ2=35.23, df=5, p<0.0001, Gandoca-Manzanillo: χ2=16.14, df=2, 

p=0.0003). In Bocas, the stations Drago, Torito, and Almirante Entrance and stations 

BEG and MID in Gandoca-Manzanillo had the highest noise levels (Fig. 23b-c). It is 

important to note that we did not assess directly the relationship between noise levels and 

whistle structure because our ambient noise data were not measured simultaneously with 

dolphin recording sessions. 

 

Presence/absence of boats: Boat traffic has been found to be significantly higher in 

Bocas than in Gandoca-Manzanillo (Taubitz 2007). Because traffic is very low in 

Gandoca-Manzanillo the sampled size of interactions between dolphins and boats was too 

low for analysis. Therefore, the following results are just for Bocas. In Bocas dolphins in 

the presence of boats tended to emit whistles with higher maximum frequency (χ2=5.02, 

p=0.025, df=1), greater delta frequency (χ2=6.74, p=0.0009, df=1), longer duration 

(χ2=5.14, p=0.023, df=1), and higher mean number of inflection points (χ2=7.30, 

p=0.007, df=1) than when only the research boat was present. Adopted frequencies were 

also higher in the presence of boats (ANOVA F=5.08, p=0.024) and the coefficient of 
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frequency modulation was slightly higher (ANOVA F=4.02, p=0.046) when only the 

research boat was present. 
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DISCUSSION 

Dolphin whistles are important communicative signals used in a variety of contexts 

including, mother and calf recognition, formation of male alliances, group cohesion, etc 

(e.g., Caldwell and Caldwell 1965; Caldwell et al. 1990, Fripp et al. 2005, Herzing 2000, 

Janik 2000, Tyack 1997, 2000, Watwood et al. 2004). Because of their important role in 

social interactions, some of the variation in whistles may reasonably be assumed to 

facilitate transmission efficiency and avoid signal masking. In general animals are 

believed to produce signals that are adapted to their particular environment (Peters et al. 

2007). Recent studies have found evidence that geographical variation in dolphin whistle 

acoustic structure may be largely due to local environmental conditions (e.g., Wang et al. 

1995, Morisaka et al. 2005, Ansmann et al. 2007). However, other factors such as 

learning, genetic differentiation (Azevedo and Sluys 2005, Rossi-Santos and Podos 2006, 

Camargo et al. 2007), and zoogeographical relationships (Steiner 1981) may be important 

as well. This comparative study provides evidence that dolphin whistles are plastic and 

appear to be shaped by a combination of factors. The contribution of each of these factors 

to whistle variation may vary in accordance to local biological and abiotic conditions. 

  Wang et al. (1995) compared several populations of bottlenose dolphins and found 

that neighboring populations tended to show a smaller magnitude of whistle variation than 

distant populations. We found evidence of geographical variation in whistle structure 

between the adjacent populations of bottlenose dolphins from Bocas and Gandoca-

Manzanillo. Bocas dolphins tended to produce lower frequency and longer whistles than 

Gandoca-Manzanillo dolphins. The significant differences in duration are expected, as it has 

been shown that duration varies the most within species (e.g., Ding et al. 1995, Barzua-
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Duran and Au 2004, Rendell et al. 1999, Whitten and Thomas 2001).  However, the 

differences in frequency are interesting since these are generally more ‘important’ in 

interspecific variation (Wang et al. 1995b, Rendell et al. 1999, May-Collado et al. 2007a).  

 Both populations also differ significantly in almost all standard whistle parameters 

with populations in north and south Atlantic. However, the magnitude of the differences 

between Bocas and Gandoca-Manzanillo were not necessarily smaller than their differences 

with each of the distant populations. In other words, we did not find evidence that differences 

in whistle structure were greater between far separated compared to closer populations as 

found by Wang et al. (1995). Dolphins from Bocas and Gandoca-Manzanillo are as different 

as other populations in the Atlantic. This may suggest that genetic isolation is important and 

that these adjacent populations are as isolated from each other as they are from more distant 

populations. An ongoing Photo-Id study (four years) in these two sites has not yet found 

evidence of mixing between these populations (May-Collado unpublished data). Until, 

genetic data are available we cannot estimate the contribution of population isolation to the 

overall differences in whistle structure between these two populations, but it appears to have 

a significant role.  

 Other factors that appear to be influencing whistle structure are local ambient and 

anthropogenic noise levels. Boat traffic is high in Bocas although low frequency (2 kHz 

ambient noise levels are higher in Gandoca-Manzanillo. Dolphins have been shown to 

respond acoustically to environmental noise in a variety of ways including whistle production 

rate (Van Parijs and Corkeron 2001, Buckstaff 2004), shifts in signal frequency (from low to 

high see Lesage et al. 1993), and an increase (Foote et al. 2004) or decrease (Buckstaff 2004) 

in signal duration. When comparing whistles recorded in presence and absence (not counting 
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the research boat) of boats, particularly dolphin-watching boats, we found that Bocas 

dolphins tend to increase slightly their whistle maximum frequency from 15.35 kHz to 16.74 

kHz, and duration from 1.05 to 1.30 sec., and their whistle modulation (measured as the 

mean number of inflection points) from 3.28 to 5.13. However, when accounting for site 

fidelity, dolphins from Bocas Torito (the area with the most intense dolphin-watching 

activities, up to 15 boats following a single group) had the lowest frequency parameters 

(except for beginning frequency) and longest whistles. These results contrast those by 

Buckstaff (2004) where bottlenose dolphin whistles did not change significantly in frequency 

range or duration. 

Engine noise is due to air bubbles that collapse near the blades of the propellers, which is 

the most significant source of noise above 2 kHz (Evans et al. 1992). Increasing propeller 

rotation rate also shifts engine noise to higher frequencies (Richardson et al. 1995), which 

would have greater potential for masking cetacean signals (Bain and Dahlheim 1994) and 

may explain the general respond of dolphins to increase their maximum frequencies, like 

common dolphins in the English Channel were vessels are large with more noise at low 

frequencies compared with the small boats (with more noise at higher frequencies) in Bocas. 

In Bocas, for those dolphins that are continuously targeted by dolphin-watching boats, 

perhaps lowering frequency parameters to be below the noise level, may be a more adequate 

strategy to avoid masking (like the dolphins from Bocas Torito). While Beluga whales and 

common dolphins whales have been reported to use higher frequencies when ships are in the 

area (Lesage et al. 2003; Ansmann et al. 2007), other dolphin species like the Indo-Pacific 

bottlenose dolphin lower its frequency and modulation to overcome masking.  Increased 

occurrence of long whistles to overcome signal interference, has also been reported in the 
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calls of three populations of killer whales where whale-watching activities have become 

intense (Foote et al. 2004). Erber (2002) estimated whale-watching boat engine levels to be 

145 to 169 dB re 1µPa @ 1m, more than sufficient to mask important signals such as the 

communicative whistles of dolphins (1 to 35 kHz) (Richardson et al. 1995).  In general, 

dolphins can overcome signal masking or interference by increasing their frequency, 

amplitude, and duration (Foote et al. 2004). Dolphins from Gandoca-Manzanillo do not 

experience intense boat traffic, but overall ambient noise levels are relatively high, 

particularly at 2 kHz. High frequency whistles may help to cope with this. This is also 

supported by the fact that even in the presence of another dolphin species, Sotalia guianensis, 

bottlenose dolphins from Gandoca-Manzanillo produced high frequency whistles. According 

to the ‘species hypothesis’ sympatric species are expected to be more different than when 

found separately. Despite the overall differences between these two species, the magnitude of 

these differences in whistle structure between Sotalia and bottlenose dolphins of Gandoca-

Manzanillo are smaller than the differences between Sotalia and bottlenose dolphins from 

Bocas.  

 Behavior also played a significant role in whistle variation, but its contribution to 

this variation is not clear. Overall, behavior and its interaction with population, explained 

the variation observed in several whistle parameters (duration, COFM, delta, minimum, 

and ending frequencies). In addition, whistle structure varied across behavioral states 

within each population. We did not find a common pattern between these two populations 

and their whistle structure in association with the different behavioral activities. In Bocas, 

frequency parameters (minimum, ending, and adopted frequencies) varied the most 

across behaviors, while in Gandoca-Manzanillo frequency modulation (measured as 
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COFM), and mean number of harmonics were the most variable parameters. Significant 

variation of whistle duration has been found in other dolphin species associated with 

behavioral states or context (Whitten and Thomas 2001), but this was not the case for 

these two populations. Unfortunately, most studies report whistle production rate but not 

the frequency and temporal parameters for each behavioral state (e.g., Van Parijs and 

Corkeron 2001, dos Santos et al. 2005, Nowacek 2005). In common dolphins, behavior 

was considered a small source of variation in whistle frequency and temporal parameters 

(Whitten and Thomas 2001, Barzua-Duran and Au 2004, Ansmann et al. 2007) but there 

were no common patterns between these studies.  

 Dolphins vary geographically in their whistle structures. The factors that 

influence these sounds may contribute differently according to local conditions. 

Furthermore, selection for individual plasticity in whistle structure may be key when 

living in a continuously changing environment. Our study shows that there are many 

sources that promote variability between and within populations, but dolphins appear to 

be plastic and respond differently to these factors.  
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CONCLUDING REMARKS 

Whistles are key communicative signals in dolphin societies. These sounds show high 

inter and intra specific variation. Several factors have been proposed to influence this 

variation.  This study finds that in the case of two adjacent populations both population 

isolation and environmental variables may contribute significantly to variation in both 

frequency and temporal parameters. Unlike a previous study, we do not find evidence 

that neighboring bottlenose dolphin populations are significantly more similar than more 

distant populations.  Both adjacent populations live in contrasting habitats in terms of 

ambient noise and boat traffic and both factors appear to influence differently each 

population. Behavioral and zoogeographical relationships with other dolphin species may 

also have some part in the observed variation but at a much smaller scale.  
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Table 10. Descriptive statistics of whistle acoustic parameters for both dolphin populations (see Fig. 16). 

 ACOUSTICAL PARAMETER MEAN ± SD RANGE C.V. % MEAN ± SD RANGE C.V. % 

 BOCAS DEL TORO (n=128) WILDLIFE REFUGE OF GANDOCA-MANZANILLO (n=77) 

Minimum Frequency (kHz) 
(p>0.05) 

5.27±1.76 1.6-11.9 0.334 5.68±2.24 1.61-10.85 0.393 

Maximum Frequency (kHz)* 
(Mann-Whitney U=12145, p=0.012) 

15.84±3.65 8.35-26.54 0.231 17.61±4.93 8.77-28.48 0.280 

Delta Frequency (kHz)* 
(Mann-Whitney U=4003, p=0.025) 

10.56±3.75 3.25-20.14 0.355 11.94±4.32 4.21-22.89 0.362 

Beginning Frequency (kHz)* 
(Mann-Whitney U=5984, p=0.010) 

9.95±3.78 3.43-19.63 0.380 8.43± 3.66 1.61-17.21 0.435 

Ending Frequency (kHz)* 
(Mann-Whitney U=2332.5, p<0.001) 

8.43±4.0 1.64-21.38 0.469 13.15±5.57 4.13-27.14 0.424 

Peak (kHz) 
(p>0.05) 

10.40-3.20 5.27-21.10 0.308 10.64±4.24 4.13-28.32 0.399 

Duration (s)* 
(Mann-Whitney U=6131.5, p=0.003) 

1.14-0.69 0.061-3.35 0.603 0.89±0.69 0.087-3.40 0.771 

Number of Inflection Points* 
(Mann-Whitney U=5800, p<0.031) 

3.93±4.10 0-20 1.04 2.64±3.41 0-19 1.295 

Number of Harmonics 
(p>0.05) 

1.47±2.05 0-15 1.399 2.34±1.16 0-13 1.157 

COFM 
(Mann-Whitney U=5473, p=0.185) 

4.96±4.11 0.32-20.31 0.828 4.80±6.53 0.439-48.725 1.360 
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Table 11. Bottlenose dolphin standard whistle parameters from this study and with other studied populations in the Atlantic  
 
STUDY POpULATION N MIN (KHZ) MAX (KHZ) BEG (KHZ) END (KHZ) DURATION (S) #IP 
This study Bocas del Toro, Panama 

(CA)* 
128 5.27±1.76 15.84±3.65 9.95±3.78 8.43±4.0 1.14-0.69 3.93±4.10 

This study Gandoca-Manzanillo, 
Costa Rica (CA)* 

77 5.68±2.24 17.61±4.93 8.43± 3.66 13.15±5.57 0.89±0.69 2.64±3.41 

This study ‘Southern Central 
America’ 
(both sites together)* 

205 5.43±1.96 16.50±4.26 9.38±3.80 10.20±5.15 1.04±0.69 3.44±3.90 

Azevedo et al. 2007 Patos Lagoon, Brazil 
(SA)* 

788 5.96±2.15 12.21±3.20 8.28±3.11 8.37±3.7 0.553±0.394 1.42±1.85 

Wang et al. 1995 Golfo San Jose, 
Argentina (SA)* 

110 5.91±1.5 13.65±1.54 9.24±2.74 6.63±2.29 1.14±0.49 1.58±1.24 

Wang et al. 1995 Texas, USA (NA)* 2022 5.77±1.84 11.32±3.31 8.01±2.81 8.16±3.78 0.68±0.40 2.09±2.54 
Steiner Western North Atlantic 

Ocean (NA)** 
857 7.33±1.66 16.235±2.688 11.26±3.98 10.225±3.646 1.30±0.63 2.86±2.45 

CA=Central Atlanctic (southern most area) 
SA=Southern Atlantic 
NA=Northern Atlantic 
*Coastal populations  
** Some appear to be oceanic and other two of the recording sites are in coastal waters of the Caribbean 
Ω significantly higher value 
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Table 12. Pairwise comparison of whistle standard parameters between populations, significant values a the p-value level of p<0.05 
 

 
 
 
 
 
 

COMpARISIONS MIN (KHZ) MAX (KHZ) BEG (KHZ) END (KHZ) DURATION (S) #IP 
Bocas vs Brazil t= 3.44, P<0.0006 t= 42.93, P<0.0001 t=5.40, P<0.0001 P>0.05 t= 13.78, P<0.0001 t= 11.46, P<0.0001 
Bocas vs. Argentina t= 3.26, P<0.001 t= 5.86, P<0.0001 P<0.005 t= 4.17, P<0.0001 P>0.05 t= 5.78, P<0.0001 
Bocas vs Texas t= 2.99, P<0.003 t= 14.88, P<0.0001 t= 7.35, P<0.0001 P>0.05 t= 11.94, P<0.0001 t= 7.59, P<0.0001 
Bocas vs Western NA t=13.10, P<0.0001 P>0.05 t= 3.48, P<0.0005 t= 5.13, P<0.0001 t= 2.64, P<0.0080 t= 4.10, P<0.0001 
       
Gandoca-Manzanillo vs Brazil P>0.05 t= 13.35, P<0.0001 P>0.05 t= 11.01, P<0.0001 t= 6.59, P<0.0001 t= 5.10, P<0.0001 
Gandoca-Manzanillo vs. Argentina P>0.05 t= 7.89, P<0.0001 P>0.05 t= 11.62, P<0.0001 t= 2.89, P<0.0043 t= 3.00, P<0.0031 

Gandoca-Manzanillo vs Texas P>0.05 t= 16.02, P<0.0001 P>0.05 t= 11.92, P<0.0001 t= 4.36, P<0.0001 P>0.05 
Gandoca-Manzanillo vs Western NA P>0.05 t= 3.94, P<0.0001 t= 6.01, P<0.0001 t= 7.17, P<0.0001 t= 5.43, P<0.0001 P>0.05 
       
Bocas vs Gandoca-Manzanillo See Table 10      

       
Southern Central America vs Brazil t= 3.20, P<0.0014 t=15.88, P<0.0001 t= 4.30, P<0.0001 t= 5.78, P<0.0001 t= 14.17, P<0.0001 t= 10.65, P<0.0001 
Southern Central America vs. Argentina t= 2.24, P<0.0258 t= 6.78, P<0.0001 P>0.05 t= 6.91, P<0.0001 P>0.05 t= 4.86, P<0.0001 
Southern Central America vs Texas t= 2.51, P<0.012 t= 20.74, P<0.0001 t= 6.41, P<0.0001 t= 7.08, P<0.0001 t= 11.30, P<0.0001 t= 6.84, P<0.0001 

Southern Central America vs Western NA t= 14.22, P<0.0001 P>0.05 t= 6.10, P<0.0001 P<0.05 t= 5.13, P<0.0001 t= 2.61, P<0.0092 
       
Argentina vs Brazil P>0.05 t= 4.64, P<0.0001 t= 3.11, P<0.002 t= 4.80, P<0.0001 t= 14.17, P<0.0001 P>0.05 

Texas vs. Brazil t= 2.34, P<0.019 t=6.46, P<0.0001 t= 2.14, P<0.032 P>0.05 t= 7.59, P<0.0001 t= 6.74, P<0.0001 
Western NA vs. Brazil t= 14.56, P<0.0001 t= 27.70, P<0.0001 P>0.05 t= 10.24, P<0.0001 t= 28.05, P<0.0001 t= 13.10, P<0.0001 
Argentina vs/ Texas P>0.05 t= 7.33, P<0.0001 t= 3.36, P<0.0008 t= 4.20, P<0.0001 t= 11.60, P<0.0001 t= 2.10, P<0.0358 

Argentina vs Western NA t= 8.55, P<0.0001 t= 9.90, P<0.0001 t= 5.15, P<0.0001 t= 10.10, P<0.0001 t= 2.55, P<0.0109 t= 7.18, P<0.0001 
Texas vs Western NA t= 4.03, P<0.0001 t= 38.45, P<0.0001 P>0.05 t= 13.54, P<0.0001 t= 30.70, P<0.0001 P<0.0001 
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FIG. 16 
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FIG. 17 
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FIG. 18 
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FIG. 19 
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FIG. 20 
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FIG. 21 
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FIG. 22 
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FIG. 23 

 
a. Overall median values by study site 

 
b. Median values for each ambient noise station in Wildlife Refuge of Gandoca-
Manzanillo. 
 

 
c. Median values for each ambient noise station in Bocas del Toro 
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CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

• A detailed species-level cetacean phylogeny was reconstructed to test several 

evolutionary hypotheses regarding tonal sound evolution. This phylogenetic 

hypothesis is concordant with well establish benchmark clades previously 

supported by morphological and mitochondrial and nuclear DNA and thus seems 

appropriate for hypotheses testing. Both exhaustive taxon sampling and a 

Bayesian approach for analysis seem to have contributed to phylogenetic accuracy 

as judged by recovery of benchmark clades. Still, some key clades, most notably 

ziphiids, remain poorly resolved due to lack of data, and the phylogenetic 

placement of some lineages is still controversial, e.g. the river dolphin Platanista. 

My future research directions in this field aims to produce a comprehensive ‘total 

evidence’ Cetacean phylogeny by combining multiple datasets that are already 

available (morphology, nuclear DNA, mitochondrial DNA, SINE). We also aim 

to continue testing the utility of cyt-b for rapid, but reliable, estimates of 

phylogenies for other mammal groups, including Cetartiodactyla (Agnarsson and 

May-Collado in prep.). 

• The freshwater dolphin Inia geoffrensis (Boto), emits tonal sounds that, although 

relatively short, closely resemble in several acoustical parameters the ‘whistles’ a 

category of sounds applied by some authors exclusively to social dolphin tonal 

sounds. Despite the general assumption that river dolphins are solitary, very little 

is known about their social structure. In some parts of their distribution, at least, 

they can be found in groups. However, the relationships between group members, 
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or the stability of these groups is unknown. Based on our behavioral observations 

and the distance at which their tonal signals can be detected in their environment, 

it is possible that at least the study population of the Boto in Ecuador use these 

tonal for social communication. However, instead of promoting social encounter, 

we suggest they may be used to maintain distance between individuals or groups. 

Finally, our results suggest remarkable whistle variation between botos from 

Ecuador and other populations (Colombia, Peru, and Brazil). Although, this may 

be largely a product of limitations of recording systems used by previous studies, 

it will be important to revisit these populations and obtain recordings using a 

broadband system as the one used in this dissertation. If the differences in whistle 

structure turn out not simply to be a product of recording limitations, they may 

represent one of the most remarkable geographical variation ever reported in 

toothed whales. 

• Tonal sound acoustical structure varies across species particularly in frequency 

parameters. We tested two hypotheses that are believed to shape these frequency 

parameters through their evolutionary history: body size and sociality. The results 

of this dissertation find evidence that Cetacean body size has constrained the 

evolution of tonal sounds minimum frequency (although only a portion of the 

variation can be explained by body size). This suggests (1) that in the 

evolutionary history of whales there has been a selection for low frequency 

sounds, which e.g. enable communication over long distances, and (2) that the 

degree to which whales have been able to respond to this selection through 

evolutionary history has been, at least in some cases, constrained by body size. 
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However, there is no evidence, that body size has constrained the evolution of any 

other frequency parameter and alternative hypotheses are required to explain their 

evolution. 

• We find no evidence supporting the ‘dolphin hypotheses’ stating that ‘whistles’ 

evolved within Delphinidae in a social context. Whistles arose earlier in the 

evolutionary history of whales than hitherto appreciated, however, the 

evolutionary history of sociality in Cetaceans is complex and several alternative 

hypotheses are discussed in this dissertation.  Nonetheless, sociality does seem to 

explain some of the variation observed in minimum frequency. Cetacean species 

that live in large groups tend to produce whistles with higher minimum frequency. 

In these group-living species, members are generally relatively close to each other 

so that sounds need not be transmitted over long distances. Furthermore, the 

evolution of tonal sound complexity seems to be intertwined with social structure: 

(1) increased tonal sound modulation (whistle ‘complexity’) significantly 

correlates with group size and social structure and (2) changes in tonal sound 

complexity were significantly concentrated on social branches. For future 

directions in the study of evolutionary history of sociality and sound 

communication in Cetaceans it will be important to obtain data on social structure 

and tonal sounds for a greater number of cetaceans, and to take into consideration 

the social structure and tonal sound production of outgroups.  

• Studying the intraspecific variation of tonal sounds (‘whistles’) in bottlenose 

dolphins also proved to be complex. The observed variation appears to be product 

of a combination of factors that may influence differently each of the acoustical 
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parameters in a whistle. However, in the study populations, it appears that 

isolation and local adaptation to the acoustic characteristics of their habitat are 

important factors promoting intraspecific variation. Future, studies should assess 

the genetic isolation between these two populations, and directly measure the 

relationship between ambient noise levels and whistle frequency and duration by 

obtaining ambient noise levels from the same recordings from which whistles are 

extracted.  
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APPENDIX I 
 

 
 
Whistles as a unit for evolutionary analyses. As noted above there are several reasons 
why using conglomerate concepts like 'whistles' as units of study can hinder progress in 
the understanding of sound evolution. Apart from being rather arbitrarily defined, and 
hence differently by different authors, 'whistles' represent a set of characters that may 
vary independently and may each have different phylogenetic distributions. As a thought 
experiment let us think of an example where sound production is being compared in two 
sister lineages. Let us assume that some authors are interested in the evolutionary origin 
of tonal sounds called 'snorts', and that snorts are defined as narrowband, frequency 
modulated sounds, with a contour containing at least two inflection points and frequency 
above 10 kHz. In group A it is noted that sounds are narrowband, frequency modulated, 
with three inflection points and frequency ranging from 12-15 kHz. In group B sounds 
are narrowband, frequency modulated, with a contour of two inflection points and 
frequency ranging from 7-9 kHz. Under a 'broad concept' analysis we would therefore 
conclude that 'snorts' were present in A, but absent in B, and might conclude that snorts 
originated in the common ancestor of A (diagram a). However, this belies both the 
similarities and differences that exist in sound production in the two groups. It denies 
homology of frequency modulation, contours etc, and even suggests that tonal sounds 
evolved independently in each group (as 'snorts' are 'different' tonal sounds from non-
snorts). Under a 'component' analysis (diagrams b and c), traits like frequency modulation 
and band width would be scored as identical in the two groups—their similarity would be 
taken as evidence of common ancestry, i.e. homology. Instead of 'snorts' originating in A, 
we would more simply explain the differences between the two groups in terms of 
frequency, and if e.g., the outgroups shared the lower frequency (indicated by white 
branches) of B we would conclude that a switch to higher frequency (indicated by black 
branches) occurred in the common ancestor of A (diagram b). In other words, we would 
learn that the difference between what people call 'snorts' and what they don't call snorts 
may simply be a matter of sound frequency. In this latter case there is no indication of 
tonal sound production being non-homologous in A and B, and in fact they share most 
characteristics of the tonal sounds. Additionally we would learn (diagram c) that 
inflection points increased from two (white branches) to three (dark branches) in the 
lineage leading to B (supposing the condition in A was shared with the outgroups). This 
is information that the concept of 'snorts' obscured. By a component analysis we learn a 
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lot more than by a concept analysis. If we now were interested in the association of 
sounds and sociality, and group A was social and group B (and outgroups) not, it might 
be claimed that 'snorts' and 'sociality' are associated and evolved in concert (following 
diagram a). However, a much more precise and informative conclusion would be that 
sociality and sound frequency (diagram b) might be related. Hence instead of explaining 
the social context of 'snorts' we would do well to examine how sound frequency might 
play an important role in social communication etc. We believe that 'whistles' are no 
better justified as a unit for evolutionary analysis than 'snorts' in the example above. We 
do use them in an attempt to test the dolphin hypothesis, but then we opt for a component 
approach for most of our analyses. 
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APPENDIX 2 

 
A cetacean phylogeny consistent with Arnason (2004). A majority rule consensus of all 
post-burnin trees from May-Collado et al. (2007) filtered to be congruent with the 
mitogenomic phylogeny of Arnason (2004). Numbers on nodes represent posterior 
probabilities. 
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APPENDIX 3 

 
A cetacean phylogeny consistent with Messenger and McGuire (1998). A majority rule 
consensus of all post-burnin trees from May-Collado et al. (2007) filtered to be congruent 
with the combined morphological and molecular phylogeny of Messenger and McGuire 
(1998). Numbers on nodes represent posterior probabilities. 
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APPENDIX 4 

 
A cetacean phylogeny consistent with Nikaido et al. (2001). A majority rule consensus of 
all post-burnin trees from May-Collado et al. (2007) filtered to be congruent with the 
SINE phylogeny of Nikaido et al. (2001). Numbers on nodes represent posterior 
probabilities. 
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APPENDIX 5. Cetacean social structure and group size. This table reviews published data on cetacean social structure and group 
size. Numbers in parenthesis correspond to state assigned to each characters as described in Table 1 (bold numbers represent the 
most common state reported for a particular species). 
 

SPECIES SOCIALITY COMPONENTS 
BALEEN WHALES 
(MYSTICETI) 
BALAENIDAE 

SOCIALITY 2-
STATES 

CHARACTER 

SOCIALITY 
 4-STATES 

CHARACTER 

GROUP 
MEAN 
SIZE 

DESCRIPTION OF GROUP 
SIZE 

STABILITY/ 
ASSOCIATIONS 

COMPOSITION 
 

REFERENCES 

Eubalaena glacialis** 0 0 2.57 -Singly, Pairs, (0) 
-Breeding and feeding 
grounds aggregations, (3) 

-Short (except for mother and calf) (0) 
- Weak associations when found in 
groups(1) 
 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

1, 2,3  

Balaena mysticetus 0 0 1 -Singly, Pairs, (0) 
-Breeding and feeding 
grounds aggregations, (3) 

Short (except for mother and calf) (0) 
- Weak associations when found in 
groups(1) 
 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

3, 4, 5 

BALAENOPTERIDAE        
Balaenoptera borealis 0 0 1 -Singly, Pairs, (0) 

-Breeding and feeding 
grounds aggregations, (3) 

Short (except for mother and calf) (0) 
- Weak associations when found in groups 
(1) 
 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

3,6  

B. bonaerensis 0 0 1 -Singly, Pairs, (0) 
- Breeding and feeding 
grounds aggregations, (3) 

Short (except for mother and calf) (0) 
- Weak associations when found in groups 
(1) 
 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

3,7  

B. edeni/ B. brydei 0 0 1 -Singly, Pairs, (0) 
-Breeding and feeding 
grounds aggregations, (3) 

Short (except for mother and calf) (0) 
- Weak associations when found in groups 
(1) 
 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

3, 8, 9 

B. musculus 0 0 1 -Singly, Pairs, (0) 
-Breeding and feeding 
grounds aggregations, (3) 

Short (except for mother and calf) (0) 
- Weak associations when found in groups 
(1) 
 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

3  

B. physalus 0 0 1.55 -Singly, Pairs, (0) 
-Small groups, (1)  
-Breeding and feeding 
grounds aggregations, (3) 

Short (except for mother and calf) (0) 
- Weak associations when found in groups 
(1) 
 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

3, 9-13 

Megaptera novaeangliae 0 0 1 -Singly, Pairs, (0) 
- Breeding and feeding 
grounds aggregations, (3) 

Short (except for mother and calf) (0) 
- Weak associations when found in groups 
(1) 
 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

3, 9, 14- 22 

ESCHRICHTIDAE        
Eschrichtius robustus 0 0 1 -Singly, Pairs, (0) 

- Breeding and feeding 
grounds aggregations, (3) 

Short (except for mother and calf) (0) 
- Weak associations when found in groups 
(1) 
 
 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

3, 23-24  

NEOBALAENIDAE        
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Capera marginata 0 0 1 -Singly, Pairs, (0) 
- Breeding and feeding 
grounds aggregations, (3) 

Short (except for mother and calf) (0) 
- Weak associations when found in groups 
(1) 

-Pairs Mother+ Calf (0) 
-Groups segregated by sex 
and age, Mixed (1,2) 

3  

TOOTHED WHALES 
(ODONTOCETI) 
KOGIIDAE 

       

Kogia breviceps** ? ? ~2 -Singly, pairs (stranded 
animals) (0) 
-Small group (1) 

Unknown (except for the mother and calf) 
(?) 
 

-Segregated by sex and age 
(possibly) (1) 
-Mixed (possibly) (2) 

25-26 

K. simus ? ? 1.87 -Singly (stranded animals) (0) 
-Small groups (1) 

Unknown (except for the mother and calf) 
(?) 
 

-Segregated by sex and age 
(possibly) (1) 
-Mixed (possibly) (2) 

25-31 

PHYSETERIDAE        
Physeter macrocephalus 1 3 22.1 -Solitary adult males (0) 

-Small Female + calves 
(nursery groups) (1) 
-Immature males groups (1) 
 

-Weak associations in immature male 
groups (1)  
-Long associations in Matrilineal groups (3) 

-Segregated by sex and age 
(1) 
 
 

27, 32-40 
 

ZIPHIIDAE        
Berardius bairdii (B. anurxii) 1 ? 7.2 -Small groups (male biased) 

(1) 
-Large Aggregations when 
traveling (3) 

Unknown (except for the mother or father 
and calf in this case) (?) 
- Males possibly do parental care but it is 
not clear what kind of associations they 
have (?) 

-Mixed (2) 41-48 

Hyperoodon ampullatus 1 2 7 -Small groups (1) 
 
 

Fluid associations except for long-term 
associations between males (2) 

-Segregated by sex and age 
(1) 
 

49-51 
 

H. planifrons ? ? 3.61 -Small groups (1) 
 

Unknown (except for the mother and calf) 
(?) 
 

Unknown (?) 52 

Mesoplodon bidens ? ? 3 -Small groups (1) Unknown (except for the mother and calf) 
(?) 
 

Mixed (2) 53-55  

M. densirostris ? ? 3.7 -Singly (strandings data), 
pairs (0)  
-Small groups (1) 

Unknown (except for the mother and calf) 
(?) 
 

-Mother+calf (0) 
-Mixed (2) 

54-58 

Ziphius cavirostris ? ? 2.9 -Singly (strandings data), 
pairs (0)  
-Small groups (1) 

Unknown (except for the mother and calf) 
(?) 
 

-Mother+calf (0) 
-Mixed (2) 

27, 28, 56, 59-62 

PLATANISTIDAE        
Platanista gangetica gangetica  
Platanista gangetica minor 

0 0 2.45 -Singly, pairs (Mother+calf) 
(most common) (0) 
-Aggregations (3) 

-Relatively long for mother and calf (0) 
-Weak associations when found in groups 
(1) 

Mother+calf (0) 
Unknown (?) 

27, 63-71  

INIIDAE        
Inia geoffrensis 0 0/1 6.22 -Singly (strandings data), 

pairs (0)  
-Small groups (1) 
-Aggregations in breeding 
and feeding grounds (3) 

-Relatively long for mother and calf (0) 
-Weak associations when found in groups 
(1) 

-Mother+ Calf (0) 
-Single sex (1) 
-Mixed (2) 

27, 72-78 

PONTOPORIDAE        
Pontoporia blainvillei 1 1 7.1 -Solitary animals are rare (0) -Weak associations (described as ‘fluid’) -Mixed (2) 79-82 
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-Small groups (traveling, 
feeding, socializing) (1) 

(1) 

LIPOTIDAE        
Lipotes vexillifer 0 0/1 3.4 -Singly, pairs (Mother+calf) 

(0) 
-Small (most common) (1) 
-Aggregations (3) 

-Relatively long for mother and calf (0) 
-Weak associations when found in groups 
(1) 

Mother+calf (0) 
Unknown (?) 

27, 83-86 

PHOCOENIDAE        
Phocoena dioptrica 1 ? 3 -Singly (0) 

-Small groups (1) 
-Unknown (except for the mother and calf) 
(?) 
 

Mother+calf (0) 
Unknown (?) 

87-89  

Phocoena phocoena 1 1 5.7 -Single (0) 
-Pairs (most common) 
-Small groups (most 
common) (1) 
-Aggregations (3) 

-Relatively long for mother and calf (0) 
-Weak associations when found in groups 
(1) –described as ‘fluid’ 

Mother+calf (0) 
Unknown (?) 

27, 90-94 

P. sinus 1 1 2 -Single  
-Pairs (most common) (0) 
-Small groups (1) 

-Relatively long for mother and calf (0) 
-Weak associations when found in groups 
(1) –described as ‘fluid’ 

Segregated by sex and age 
(possibly) (1) 

27, 95-97 

P. spinipinnis 1 ? 4.5 -Small (most common) (1) 
-Aggregations (3) 

-Unknown (except for the mother and calf) 
possibly short (?)  
 

Mother+calf (0) 
Unknown (?) 

27 

Phocoenoides dalli 1 1 7.4 -Single (sometimes) (0) 
-Small groups (most 
common) (1) 
-Large feeding aggregations 
(rare) (3) 

-Relatively long for mother and calf (0) 
-Weak associations when found in groups 
(1) –described as ‘fluid’ 

Segregated by sex and age 
(possibly) (1) 

27, 98-99 

Neophocaena phocaenoides 1 1 3 -Pairs (most common) (0) 
-Small groups (most common 
in Yangtzee) (1)  

-Relatively long for mother and calf (0) 
-Weak associations when found in groups 
(1) –described as ‘undeveloped’ 

Mother+calf (0) 
Unknown (?) 

27, 100-104 

MONODONTIDAE        
Monodon monocerus 1 3 3 -Small groups (most 

common) (1) 
-Large schools (2) 

-Short and fluid assocaitons (possibly in 
large groups) (1) 
 -Matrilineal (described as possibly 
‘matrifocal’) (3) 

-Segregated by sex and age 
(possibly) (1) 
-Mixed (2) 

27, 105-110 

Delphinapterus leucas 1 1/2 32.9 -Singly (0) 
-Small groups (most common 
in some areas) (1) 
-Schools (most common in 
some areas) (2) 
-Large Aggregations in 
breeding areas (3) 

-Relatively long for mother and calf (0) 
-Weak associations when found in groups 
(1) –described as ‘fluid’ 

Segregated by age and sex 
(1) 

27, 111-119  

DELPHINIDAE        
Cephalorhynchus commersonii 1 1 6.9 -Small groups (1) -Weak (described as ‘fission-fusion’) (1) Mother+calf (0) 

Unknown (?) 
27, 120-121 

C. eutropia 1 1 10 -Small groups (1) -Weak (described as ‘fission-fusion’) (1) Mother+calf (0) 
Unknown (?) 

120,122 

C. hectori 1 1 8 -Small groups (1) -Weak (described as ‘fission-fusion’) (1) Segregated by age and sex 
(possibly) (1) 

123-127 

C. heavisidii 1 1 3.2 -Small groups (1) -Weak (described as ‘fission-fusion’) (1) Mother+calf (0) 128, 120 
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Unknown (?) 
Lagenorhynchus australis ? ? 6.92 -Small groups (1) 

-Aggregations (rare) (3) 
-Unknown (except for the mother and calf) 
(?) 
-Weak (described as ‘fission-fusion’) (1) 

Mother+calf (0) 
Unknown (?) 

129-131 
 
131b 

L.cruciger ? ? 7 -Small groups (1) - Unknown (except for the mother and calf) 
(?) 
 

Mother+calf (0) 
Unknown (?) 

132-133 
 
 

L. obliquidens 1 1 127.38 -Medium sized groups (2) 
-Large schools (small units 
within)  

-Weak associations (possible strong male 
associations) (1,2) 

Segregated by age and sex 
(1) 

27, 129, 134-136 

L. obscurus 1 1/2 86 -Small groups (1) 
-Medium sized groups (most 
common) (2) 
-Large schools 

-Weak (1) -described as ‘fission-fusion’ 
-Some long term associations (2) 

Segregated by age and sex 
(1) 

27, 137-141 

L. acutus 1 1 53.2 -Small groups (most common 
in some areas) (1) 
-Medium (most common in 
some areas) (2) 
-Large schools 

-Unknown (except for the mother and calf) 
possibly short (?)  
 

Segregated by age and sex 
(based on strandings) (1) 

27, 142-144 

Lissodelphins borealis 1 ? 110.2 -Singly (0) 
-Large schools (most 
common) (2) 

-Unknown (except for the mother and calf) 
possibly short (?)  
 

Mother+calf (0) 
Unknown (?) 

27, 145-147 

L. peronii 1 ? 210 -Singly (0) 
-Small groups (1) 
-Large schools (most 
common) (2) 

-Unknown (except for the mother and calf) 
possibly short (?)  
 

Mother+calf (0) 
Unknown (?) 

146, 148-150 

Delphinus delphis 1 1/2 230.38 
 

-Small subunits (within large 
and Medium size schools) (1) 
-Medium sized groups (most 
common in some areas) (2) 
-Large schools (most 
common in some areas) 
-Large aggregations (3) 

-Strong subunits with possible related 
animals (3) 
-Weak associations-described as ‘highly 
fluid fission-fusion social system’ (1) 

Segregated by age and sex 
(possibly) (1) 

28, 136, 151-155  

Delphinus capensis 1 ? 411.69 -Large schools (2) -Unknown (except for the mother and calf) 
possibly short (?)  
 

Mother+calf (0) 
Unknown (?) 

136 

Stenella attenuata 1 1/2 360 -Small groups (1) 
-Medium sized groups (2) 
-Large schools 

-Strong associations (possibly within male 
groups) (2) 
-Weak associations (described as ‘fluid’) 
(1) 

Segregated by age and sex 
(1) 

27-28, 156-162 

S. clymene 1 ? 97.4 -Small groups (1) 
-Medium sized groups (2) 
-Large schools 

-Unknown (except for the mother and calf) 
possibly short (?)  
 

Segregated by age and sex 
(based on strandings) (1) 

27-28, 136, 163-
167  

S. frontalis 1 1/2 10 -Small groups (1) -Strong associations (within male groups) 
(2) 
-Weak associations (described as ‘fluid’) 
(1) 

Segregated by age and sex 
(1) 

27, 168-173 

S. coeruleoalba 1 1/2 302 -Small (most common in 
some areas) (1) 
-Medium (most common in 
some areas) (2) 
-Large schools (most 

-Strong associations (possibly within male 
groups) (2) 
-Weak associations (described as ‘fluid’) 
(1) 

-Segregated by age and sex 
(1) 
-Mixed (2) 

27-28, 136, 174-
175  
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common in some areas) 
S. longirostris 1 1/2 147.74 -Large schools (2) -Weak associations (described as ‘fluid’) 

(1) 
-Strong (described as ‘strongly bonded’) for 
other group members not necessarily just 
males) (2) 

-Segregation by sex and age 
(1) 

27-28, 136, 177, 
179, 180, 178, 176, 
181,  

Tursiops truncatus 1 1/2 92-2 -Small groups (most common 
in some areas) (1) 
-Medium sized groups  (most 
common in some areas) (2) 
-Large schools (most 
common in offshore ecotype) 

-Strong (males coalitions and alliances) (2) 
-Weak (described as ‘fission-fusion’) (1) 

-Segregation by sex and age 
(1) 

27-28, 136, 182-
199  

Lagenodelphis hosei 1 2 440.05 -Large schools (2) -Strong (described as more strong than 
other social dolphins like Stenella) (2) 

-Mixed (based on 
strandings) (2) 

27, 136, 200-204 
 

Sousa chinensis 1 1/2 14.9 -Solitary large adults (0) 
-Small groups (most 
common) (1) 
-Medium sized groups (rare) 

-Weak  (described as ‘fluid with short-
lasting associations’) (1)  
-Strong mother +calf (0) 
-Strong (affiliations in stable groups from 
Mozambique) (2) 

-Segregation by sex and age 
(1) 
-Mixed (all age classes) (2) 

27, 205-210 

Sotalia fluviatilis (riverine) 
Sotalia guianensis (marine) 

1 2 13 -Singly (both species) (0) 
-Small (riverine) (most 
common) (1) 
-Medium (marine) (2) 
-Large feeding aggregations 
(marine) (3) 

-Weak associations (1) 
-‘Family’ (2adults+calf) described in the 
marine species (2) 

-Mixed (2) 211-218 

Steno bredanensis 1 ? 40 -Small (most common in 
some areas) (1) 
-Medium (most common in 
some areas) (2) 
-Large aggregations (3) 
 

Unknown (except for the mother and calf) 
(?) 

-Mixed (based on strandings 
but largely unknown) (2) 

27-28, 136, 219-
223  

Feresa attenuata 1 ? 30.12 -Small (more common in 
some areas) (1) 
-Medium sized groups (more 
common in some areas) (2) 
-Large schools (rare) 

-Strong (possibly similar to other 
globicephaliinids were individuals are 
related) (3) 

-Mixed (based on strandings 
but largely unknown) (2) 

27, 136, 224-227  

Globicephala macrorhynchus 1 3 41.1 -Small groups (1) 
-Medium sized groups (2) 

-Matrilineal (natal philopatry, males live 
the group) (3) 

-Mixed (2) 27-28, 45, 136, 
228-234  

G. melas 1 3 84.5 -Medium sized groups (2) 
-Large schools  
 

-Matrilineal (natal philopatry, males live 
the group) (3) 
-Weak (some evidence of short term 
associations) (1) 

-Mixed (2) 27, 228-229, 231-
232, 234, 235-238 

Grampus griseus 1 1/2 63 -Small (more common in 
some areas) (1) 
-Medium (more common in 
some areas)(2) 
-Large schools (rare) 

-Possibly strong, calves tend to stay longer 
than non-globicephaliinids dolphins. (2) 
-Natal philopatry, males move between 
groups) (3) 

-Mixed (2)  
-Maybe some segregation by 
age (1) 

27-28, 136, 234, 
239-243  

Peponocephala electra 1 3 257.7 -Large schools (more 
common) (2) 

-Strong (described as ‘strong social bonds’) 
(2) 

Mother+calf (0) 
Unknown (?) 

27, 136, 234, 244-
246  
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Pseudorca crassidens 1 3 36.16 -Small groups (1) 
-Medium (more common in 
some areas) (2) 
-Large schools  

-Strong (described as ‘strong affiliative 
behavior’ in stranded animals) (2) 

-Mixed (based on 
strandings) (2) 

27-28, 45, 136, 
247-250  

Orcaella brevirostris (riverine) 
Orcaella heinsohni (marine) 

1 0 3.5 -Small (most common) (1) 
-Medium sized groups (rare) 
(2) 

-Weak (described as ‘frequency mixing’ (1) Mother+calf (0) 
Unknown (?) 

251-254 

Orcinus orca 1 3 12 -Single (mainly males are 
infrequent) (0) 
-Small to Medium (‘fish 
eating’) (1) 
-Small (‘mammal eating’) (1) 
-Large aggregations (3) 

-Matrilineal with natal philopatry in fish 
eating orcas (3) 
-Two generation matrilineal in mammal 
eating orcas (3)  

-Mixed (2) 27-28, 136, 234, 
255-266  

**Species which part of information comes from the sister species 
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APPENDIX 6 
 

 
Optimization of components of sociality. This figure shows social components optimization (a=group size, b=group composition, 
c=group stability/association patterns) on the preferred phylogeny. Note that this optimization contains polymorphic species and 
thus family based group like Physeter and Monodon and species with long-term associations between non-related group members 
are all optimized using the lowest state of sociality. 
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APPENDIX 7. Cetacean tonal sound acoustic parameters. This table reviews published data on cetacean tonal sound acoustic 
parameters. Numbers in bold correspond to the preferred value used in the optimizations (see Methods). 
 

COMPLEXITY [INFLECTION POINTS-IP] SPECIES MAX 
(KHZ) 

MMAX 
(KHZ) 

MIN 
(KHZ) 

MMIN 
(KHZ) 

MAXD 
(S) 

MD 
(S) 

MIND 
(S) MEAN IP-TWO 

STATE 
IP-FOUR STATE 

REFERENCES 

BALEEN WHALES 
(MYSTICETI) 

BALAENIDAE            
Eubalaena glacialis 11.23 3.14 0.02 0.05 2.08 0.99 0.26 1≤* 0 0 267 
B. mysticetus 2 

1 
0.165 

0.3 
0.09 
0.02 

0.02 
0.05 

 1.1  1≤* 0 0 268 
269 

BALAENOPTERIDAE            
Balaenoptera bonaerensis ? ? ? ? ? ? ? ? ? ?  
B. borealis 3.5 

1 
? 1.5 

~0.1 
?  0.04 

1.1 
 1≤* 0 0 270 

271 
B. edeni/ B. brydei 0.245 

0.180 
0.079 

 
 

0.07 
0.09 

0.0207 

 
 

 0.42 
 

2.3 

 1≤* 0 0 272 
273 
274 

B. musculus 0.0185 
0.0202 
0.122 

 
0.052 
0.0277 

 
0.242 

 
 
 
 
 
 

0.0189 
0.0883 

0.0157 
0.0182 

 
0.011 
0.050 

0.0189 
 

0.0143 

 
 
 
 
 
 

0.0172 
0.0166 

 
 
 
 

10 
 

28.2 

11 
10 
29 

0.80 
8 

16 
22.8 

 
 
 
 
 

3 
 

1 

1≤* 0 0 275 
276 
277 
278 
279 
280 
281 
282 

B. physalus 0.118 
 

0.058 

 
0.023 
0.042 

0.010 
 

0.017 

 
0.018 
0.020 

  
1 

0.7 

 1≤* 0 0 283 
284 
285 

Megaptera novaeangliae 4 1.315 0.25 0.925  0.96  1≤* 0 0 286 
ESCHRICHTIDAE            
Eschrichtius robustus 0.2 

0.2 
 
 

0.3 

0.02 
0.1 

 
 

0.25 

 1.54 
 

 1≤* 0 0 287 
288 
289 

NEOBALAENIDAE            
Capera marginata 0.135 ? 0.06 ?  0.18  1≤* 0 0 290 

TOOTHED WHALES 
(ODONTOCETI) 

KOGIIDAE            
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Kogia breviceps ? ? ? ? ? ? ? ? ? ?  
K. simus ? ? ? ? ? ? ? ? ? ?  
PHYSETERIDAE            
Physeter macrocephalus n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
ZIPHIIDAE            
Berardius bairdii (B. anurxii) 8.0 ? 4 ? ~3.5  ~2 ~3 1 2 46 
Hyperoodon ampullatus n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
H. planifrons ? ? ? ? ? ? ? ? ? ?  
Mesoplodon bidens ? ? ? ? ? ? ? ? ? ?  
M. densirostris ? ? ? ? ? ? ? ? ? ?  
Ziphius cavirostris ? ? ? ? ? ? ? ? ? ?  
PLATANISTIDAE            
Platanista gangetica  ? ? ? ? ? ? ? ? ? ?  
INIIDAE            
Inia geoffrensis 48.10 

5.16 
13 

24.71 
2.97 

5.03 
0.22 

3 

15.06 
2.54 

0.080 
4.42 

0.009 
1.14 

0.002 
0.16 

 
1.05 

1 1 291 
292-293 
294 
 

PONTOPORIDAE            
Pontoporia blainvillei ? ? ? ? ? ? ? ?    
LIPOTIDAE            
Lipotes vexillifer 4.5 

4.6 
5.84 
6.1 

3.8 
3.8 

5.0 
4.9 

1.8 
1.6 

1 
1 

0.4 
0.5 

0.72 1 0 295 
296 

PHOCOENIDAE            
Phocoena dioptrica n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
Phocoena phocoena n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
P. sinus n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
P. spinipinnis n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
Phocoenoides dalli n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
Neophocaena phocaenoides n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
MONODONTIDAE            
Monodon monocerus 18 

10 
8.84 

 
 

7.18 

0.3 
5 

0.360 

 
 

0.718 

6 
0.85 
1.26 

 
 

1.19 

0.05 
0.1 
0.68 

1≤* 
 

1≤* 
1≤* 

0 ? 297 
298 
299 

Delphinapterus leucas  19.6 
15.8 

6.8 
4.33 
11.65 

0.2 
0.4 

3.8 
3.38 
1.99 

3.92 
3.2 

 

1.06 
0.75 
1.12 

0.01 
0.05 

1>* 
1>* 
13.5 

1 3 300  
301 
302 

DELPHINIDAE            
Cephalorhynchus commersonii n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
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C. eutropia n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
C. hectori n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
C. heavisidii n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
Lagenorhynchus australis n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
L.cruciger ? ? ? ? ? ? ? ? ? ?  
L. obliquidens ~13 ~10 ~1 ? 0.2 0.7 1.2 ~>1 1 0 303 
L. obscurus 27.3 16.49 

13.22 
1.04 8.11 

8.15 
3.14 
1.04 

1.03 
0.535 

0.18 
0.014 

1.97 1 1 292 
304 

L. acutus ? 12.14 ? 8.21  0.5  0.92 1 0 305 
Lissodelphins borealis ? ? ? ? ? ? ? ? ? ?  
L. peronii ? ? ? ? ? ? ? ? ? ?  
Delphinus delphis 19.8 11.65 

13.6 
4.8 6.42 

7.4 
  

0.8 
 1>* 

1.2 
1 1 306 

307 
Delphinus capensis ? 15.5 ? 7.7  0.70  1.3 1 1 307 
Stenella attenuata 21.4 

 
15.72 
18.7 

3.13 8.73 
8.2 

1.95 0.53 
0.9 

0.09 
 

0.70 
1.9 

1 1 292 
307 

S. clymene ? 19.2 
13.62 

? 6.33 
9.25 

 0.61 
0.41 

 1>* 1 ? 308 
309 

S. frontalis 19.8 16.04 5 7.91 2.07 0.82 0.08 3.43 1 3 292 
S. coeruleoalba 22.99 11.53 

14.8 
1.1 6.84 

8.1 
 0.54 

0.8 
 1.3 

1.9 
1 1 310 

307 
S. longirostris 22.5 

 
24 

25.25 
23.04 

15.2 
13.7 
16.5 
17.56 
16.8 
14.32 

3.91 
 
 

0.85 
4 

9.03 
9.1 

9.99 
9.66 
10.19 
8.76 

1.82 
 
 

3.35 
4.49 
1.87 

0.75 
0.6 
0.72 
0.49 
0.61 
0.43 

0.10 
 

0.016 
0.013 
0.040 

1.07 
1.9 

 
 
 

0.55 

1 1 292 
307 
311 
312 
313 
305 

Tursiops truncatus 41 
 

21.6 

 
17.2 
11.35 
11.95 
16.24 

 
 

1.86 
0.94 

 
7.4 

5.46 
 

7.33 

 
 

3.20 
3.20 

0.86 
1.4 
0.70 
0.75 
1.3 

 
 

0.05 
0.05 

 
3.7 
1.86 
2.14 
2.86 

1 3 314 
307 
292 
315 
305 

Lagenodelphis hosei 24.0 
18.3 
13.4 

16.9 
14.9 

4.3 
6.6 

9.36 
11 

7.64 

 
 

0.5 

0.77 
0.46 

 
 

0.4 

 
0.80 

1 0 316 
317 
318 

Sousa chinensis 22 
 

20 

16.3 0.9 
3 

1.2 

4.5 
 
 

1.3 1.1 
0.2 
0.13 

0.01 1>* 1 ? 319 
320 
321 

Sotalia fluviatilis**  
23.9 

19.95 
15.41 

1.34 
3.65 

7.21 
10.2 

1.064 
1.04 

0.381 
0.41 

0.038 
0.06 

0.77 
1.38 

1 1 322 
292, 293 
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38.25 
 

18 
17.49 

21.32 
13 

13.312 
15.65 

2.714 
0.5 

1.031 

13.14 
7.6 

10.521 
9.18 

 
0.852 
2.2 

 
0.103 
0.79 
0.63 

 
0.01 
0.009 

 
0.7 
1.3 

Authors 
unpublished 
data 
323 
324 
325 

Steno bredanensis 7.0  
9.1 

4  
6.03 

  
0.6 

  
1.3 

1 1 326 
307 

Feresa attenuata ? ? ? ? ? ? ? ? ? ?  
Globicephala macrorhynchus 23.6 10.87 

6.1 
0.24 6.25 

3.6 
 0.56 

0.4 
 0.69 

0.7 
1 0 327  

307 
G. melas 21.2 8.86 

4.716 
0.32 3.48 

2.82 
 0.72 

0.71 
 0.98 

1.01 
1 1 327 

305 
Grampus griseus  

23.8 
20 

13.44 
 

1.90 
3.9 

8.83 
 4.9 

0.53 
 1>* 

1.37 
1 1 328 

327 
Peponocephala electra  

24.5 
12.14  

5.5 
8.381  

0.9 
0.54  

0.1 
1.05 
0.04 

1 1 317 
329 

Pseudorca crassidens 18.1 8.29 
6.1 

1.87 5.43 
4.7 

 
 

0.56 
0.4 

 0.75 
0.5 

1 0 327 
307 

Orcaella brevirostris** 6.0 4.2 1.1 3.2 0.3 0.3 0.1 ~1≤ 1 0 330 
Orcinus orca 18 

 
 

8.9 
16.7 

 
6.61 

 
9.9 

12.64 

 
 

0.05 
2.4 

1.5 
4.27 

 
5.4 

3.36 

 
 
 
 

18.3 

 
 
 
1.8 
1.11 

 
 
 
 

0.06 

 
 
 

1> 
21.14 

1 3 331 
332 
333 
334 
335 

 
**In this paper these species are still treated as one single species (with two ecotypes: riverine and marine), however there is recent evidence that each may be a separate 
species (see details in references 115 and 116) 
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APPENDIX 8 
 

 
Optimization of tonal sound complexity and the association between sociality and tonal sound complexity. Most parsimonious 
optimizations of tonal sound complexity (based on mean number of inflection points, MIP) and results from the concentrated 
changes test for sociality and tonal sound complexity (yellow= state 0, tonal sounds with MIP≤1, blue=state 1, tonal sounds with 
MIP>1). 
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APPENDIX 9. Association between components of sociality and tonal sound 
complexity. This table summarizes results from SIMMAP analyses of character 
associations between social components (selecting the highest social state for 
polymorphic species) and components of tonal sound complexity on the preferred 
phylogeny. 
 
 

GROUP SIZE (P<0.027, P>0.973) TONAL SOUND COMPLEXITY 
FOUR STATES 0 1 2 3 

0 (0-1) Dij 
p-value 

0.079 
0.91 

0.0090 
0.86 

-0.028 
0.001* 

 

1 (1.1-2) Dij 
p-value 

-0.036 
0.005* 

0.0023 
0.79 

0.123 
0.92 

 

2 (2.1-3) Dij 
p-value 

-0.0049 
0.015* 

0.052 
0.90 

-0.022 
0.007* 

 

3 (>3.1) Dij 
p-value 

-0.0051 
0.021* 

0.026 
0.89 

-0.0025 
0.013* 

 

GROUP ASSOCIATIONS/STABILITY (P<0.027, P>0.973) TONAL SOUND COMPLEXITY 
FOUR STATES 0 1 2 3 

0 (0-1) Dij 
p-value 

0.080 
0.93 

0.0098 
0.88 

-0.031 
p<0.0001* 

0.0012 
0.84 

1 (1.1-2) Dij 
p-value 

-0.036 
0.005* 

0.023 
0.89 

0.061 
0.91 

0.042 
0.89 

2 (2.1-3) Dij 
p-value 

-0.062 
0.009* 

0.014 
0.92 

0.023 
0.92 

-0.054 
0.010* 

3 (>3.1) Dij 
p-value 

-0.0057 
0.009* 

0.020 
0.94 

0.0054 
0.87 

-0.00069 
0.027* 

GROUP COMPOSITION (P<0.027, P>0.973) TONAL SOUND COMPLEXITY 
FOUR STATES 0 1 2 3 

0 (0-1) Dij 
p-value 

0.087 
0.94 

-0.024 
0.004* 

-0.0069 
0.021* 

0.0049 
0.86 

1 (1.1-2) Dij 
p-value 

-0.017 
0.004* 

0.075 
0.93 

0.031 
0.91 

-0.0007 
0.04 

2 (2.1-3) Dij 
p-value 

-0.0014 
0.033 

-0.0043 
0.021* 

0.029 
0.91 

0.003 
0.84 

3 (>3.1) Dij 
p-value 

0.0089 
0.84 

0.014 
0.90 

-0.0016 
0.015* 

0.0055 
0.56 

*Significant negative associations, **significant positive associations 
 

  D=0.394, p<0.0001, np-value=510, nD=2000  Group Size and Tonal Sound Complexity  
  D=0.364  p<0.0001, np-value=553, nD=2000   Group Association/Stability and Tonal Sound Complexity 
  D= 0.306 p<0.0001 , np-value=832, nD=2000   Group Composition and Tonal Sound Complexity
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APPENDIX 10. Association between sociality and tonal sound complexity. This table 
summarizes results from SIMMAP analyses of character associations between social 
structure (categorized as 1-4) and tonal sound complexity on the preferred phylogeny 
across reference phylogenies (see Methods) 
 
 

SOCIAL STRUCTURE (P<0.027, P>0.973) 
Arnasson et al. 2004 filtered (n=325) 

TONAL SOUND 
COMPLEXITY 
FOUR STATES 

D=0.375 p<0.001* 
(2states) 

D=0.356 p<0.001* 
(4states) 

0 1 2 3 

0 (≤ 1 mean inflection 
point) 

D-statistic 
p-value 

 
0.081 
0.73 

 
0.053 
0.75 

 
-0.041 
0.003* 

 
-0.0052 
0.006* 

1 (≤ 1 mean inflection 
point) 

D-statistic 
p-value 

 
-0.044 

p<0.001* 

 
0.002 
0.95 

 
0.111 

0.99** 

 
0.036 
0.98** 

0 (0-1) Dij 
p-value 

0.082 
0.94 

0.016 
0.84 

-0.033 
p<0.001* 

0.0094 
0.90 

1 (1.1-2) Dij 
p-value 

-0.037 
0.006* 

0.026 
0.91 

0.077 
0.95 

0.022 
0.93 

2 (2.1-3) Dij 
p-value 

-0.0036 
0.009* 

0.010 
0.87 

0.020 
0.92 

-0.0024 
0.006* 

3 (>3.1) Dij 
p-value 

-0.0045 
0.006* 

0.016 
0.88 

0.005 
0.84 

0.0025 
0.86 

Nikaido et al. 2001 filtered  (n=341) TONAL SOUND 
COMPLEXITY 
FOUR STATES 

D=0.382 p<0.001* 
(2states) 

D=0.358 p<0.001* 
(4states) 

0 1 2 3 

0 (≤ 1 mean inflection 
point) 

D-statistic 
p-value 

 
0.083 
0.75 

 
0.053 
0.72 

 
-0.043 

p<0.001* 

 
-0.0047 
0.003* 

1 (≤ 1 mean inflection 
point) 

D-statistic 
p-value 

 
-0.046 

p<0.001* 

 
0.0004 
0.91 

 
0.1156 
0.99** 

 
0.036 
0.99** 

0 (0-1) Dij 
p-value 

0.082 
0.91 

0.00006 
0.74 

-0.033 
0.005* 

0.0090 
0.85 

1 (1.1-2) Dij 
p-value 

-0.037 
p<0.001* 

0.0234 
0.91 

0.0776 
0.92 

0.0235 
0.92 

2 (2.1-3) Dij 
p-value 

-0.0044 
0.005* 

0.0133 
0.92 

0.0223 
0.87 

-0.0032 
0.020* 

3 (>3.1) Dij 
p-value 

-0.0050 
0.011* 

0.0165 
0.93 

0.0054 
0.89 

0.0026 
0.90 
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Messenger and McGuire 1998 (n=4) filtered/ 

Bayesian (n=2001) 

 
TONAL SOUND 
COMPLEXITY 
FOUR STATES 

D=0.442/0.269 p<0.001* 
(2states) 

D=0.360/0.217 p<0.001* 
(4states) 

0 1 2 3 

0 (≤ 1 mean inflection 
point) 

D-statistic 
p-value 

 
0.085/0.072 

p>0.999**/0.86 

 
0.064/0.016 

0.5/0.65 

 
-0.050/-0.027 

p<0.001*/0.004* 

 
-0.015/-0.007 

p<0.001*/0.025* 

1 (≤ 1 mean inflection 
point) 

D-statistic 
p-value 

 
-0.044/-0.053 

p<0.001*/0.004* 

 
-0.015/0.015 

p<0.001*/0.96 

 
0.12/0.048 

p>0.999**/0.98** 

 
0.05/0.031 

p>0.999**/0.95 

0 (0-1) Dij 
p-value 

0.081/0.052 
p>0.999**/0.94 

0.0062/0.013 
0.75/0.85 

-0.032/-0.014 
p<0.001*/0.04 

-0.026/-0.009 
p<0.001*/0.06 

1 (1.1-2) Dij 
p-value 

-0.036/-0.033 
p<0.001*/0.021* 

0.023/0.0007 
p>0.999**/0.81 

0.072/0.037 
p>0.999**/0.93 

0.038/0.025 
p>0.999**/0.92 

2 (2.1-3) Dij 
p-value 

-0.0041/0.0011 
p<0.001*/0.78 

0.0060/0.012 
0.75/0.87 

0.026/-0.0032 
0.75/0.064 

-0.0032/0.003 
p<0.001*/0.81 

3 (>3.1) Dij 
p-value 

-0.0057/-0.0019 
p<0.001*/0.09 

0.018/0.006 
0.5/0.85 

0.0028/0.0015 
0.75/0.77 

0.0037/0.005 
p>0.999**/0.87 

May-Collado et al. 2007 filtered (n=1069) TONAL SOUND 
COMPLEXITY 
FOUR STATES 

D=0.378 p<0.001* 
(2states) 

D=0.355 p<0.001* 
(4states) 

0 1 2 3 

0 (≤ 1 mean inflection 
point) 

D-statistic 
p-value 

 
0.082 
0.74 

 
0.053 
0.73 

 
-0.041 
0.007* 

 
-0.006 

p<0.001* 

1 (≤ 1 mean inflection 
point) 

D-statistic 
p-value 

 
-0.045 

p<0.001* 

 
0.0012 
0.92 

 
0.112 

0.99** 

 
0.037 
0.97** 

0 (0-1) Dij 
p-value 

0.082 
0.92 

0.0018 
0.83 

-0.033 
p<0.001* 

0.009 
0.89 

1 (1.1-2) Dij 
p-value 

-0.037 
0.0009* 

0.025 
0.93 

0.077 
0.93 

0.023 
0.90 

2 (2.1-3) Dij 
p-value 

-0.0037 
0.021* 

0.013 
0.91 

0.020 
0.90 

-0.003 
0.012* 

3 (>3.1) Dij 
p-value 

-0.0043 
0.013* 

0.014 
0.89 

0.007 
0.89 

0.002 
0.84 

*Significant negative associations, **significant positive associations 
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APPENDIX 11. Regression between group size and tonal sound characteristics. This table summarizes results from PDAP 
regressionbetween group size and mean minimum frequency (MMinF) and mean number of inflection points (IP) across reference 
phylogenies (see Methods) 

     

         *Significant results 
 
 
 
 

ACOUSTIC 
PARAMETERS 
VS  
GROUP SIZE 

MAY-
AGNARSSON 
2000 TREES 
BURNIN 

MAY-
COLLADO 
FILTERED 

MESSENGER 
AND 
MCGUIRE 
(1998) 
FILTERED 

MESSENGER AND 
MCGUIRE (1998) 
PARSIMONY ON THEIR 
NUCLEAR/MORPHOLOGY 
DATA 

MESSENGER AND 
MCGUIRE (1998) 
BAYESIAN ON THEIR 
NUCLEAR/MORPHOLOGY 
DATA 

ARNASSON 
ET AL 
(2003) 
FILTERED 

NIKAIDO 
ET AL. 
(2001) 
FILTERED 

ALL CETACEANS 
MMINF 
R-SQUARE 
DF 
P-VALUE 

3.5 
29 
0.31 

3.2 
29 
0.33 

1.9 
29 
0.24 

2.8 
21 
0.44 

2.9 
21 
0.43 

3.7 
29 
0.30 

3.1 
29 
0.17 

IP 
R-SQUARE 
DF 
P-VALUE 

7.5 
33 
0.05* 

7.4 
33 
0.05* 

10.2 
33 
0.03* 

<1 
22 
0.86 

<1 
22 
0.85 

5.1 
33 
0.09 

3.7 
33 
0.13 

TOOTHED-WHALES 
MMINF 
R-SQUARE 
DF 
P-VALUE 

13.8 
23 
0.03* 

13.2 
23 
0.03* 

5.8 
23 
0.12 

11.4 
16 
0.08 

9.7 
16 
0.21 

15.4 
23 
0.03* 

13.5 
23 
0.03* 

IP 
R-SQUARE 
DF 
P-VALUE 

7.3 
24 
0.09 

7.1 
24 
0.09 

10 
24 
0.06 

<1 
17 
0.92 

<1 
17 
0.93 

4.7 
24 
0.14 

3.5 
24 
0.17 
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APPENDIX 12.  Regression between duration and other acoustic variables. This table summarizes results from PDAP regression 
analyses between duration (s) and absolute (AbsMinF) and mean minimum (MMin) frequency and mean number of inflection 

  
 

ACOUSTIC 
PARAMETERS 
VS  
GROUP SIZE 

MAY-
AGNARSSON 
2000 TREES 
BURNIN 

MAY-
COLLADO 
FILTERED 

MESSENGER 
AND 
MCGUIRE 
(1998) 
FILTERED 

MESSENGER AND 
MCGUIRE (1998) 
PARSIMONY ON THEIR 
NUCLEAR/MORPHOLOGY 
DATA 

MESSENGER AND 
MCGUIRE (1998) 
BAYESIAN ON THEIR 
NUCLEAR/MORPHOLOGY 
DATA 

ARNASSON 
ET AL 
(2003) 
FILTERED 

NIKAIDO 
ET AL. 
(2001) 
FILTERED 

ALL CETACEANS 
ABS MINF 
R-SQUARE 
DF 
P-VALUE 

17 
31 
0.017 

16.5 
31 
0.018 

19.4 
31 
0.01 

29.7 
20 
0.008 

37 
20 
0.002 

16.5 
31 
0.02 

16.6 
31 
0.018 

MMINF 
R-SQUARE 
DF 
P-VALUE 

17.5 
29 
0.019 

19 
29 
0.014 

12.5 
29 
0.05 

Not significant Not significant 19 
29 
0.014 

19 
29 
0.014 

IP 
R-SQUARE 
DF 
P-VALUE 

11.9 
32 
0.05 

11.7 
32 
0.04 

9.4 
32 
0.07 

35.6 
21 
0.002 

42.3 
20 
0.001 

11.9 
32 
0.04 

12.2 
32 
0.04 

TOOTHED-WHALES 
ABS MINF 
R-SQUARE 
DF 
P-VALUE 

37.8 
22 
0.001 

39 
22 
0.001 

38.7 
22 
0.001 

43.9 
15 
0.003 

45.9 
15 
0.002 

39.2 
22 
0.001 

38.1 
22 
0.001 

MMINF 
R-SQUARE 
DF 
P-VALUE 

23.8 
23 
0.013 

26.7 
23 
0.008 

24.6 
23 
0.01 

25.8 
16 
0.03 

23.9 
16 
0.03 

26.4 
23 
0.008 

26 
23 
0.009 

IP 
R-SQUARE 
DF 
P-VALUE 

44.8 
23 
p<0.001 

44.1 
23 
P<0.001 

44.2 
23 
p<0.001 

38.3 
16 
0.006 

46 
15 
0.002 

45 
23 
p<0.001 

46.1 
23 
p<0.001 
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APPENDIX 13 

 
Phylogeny of Cetacea. This figure reproduces the preferred phylogenetic hypothesis of May-Collado et al. (2007), used here for all 
main analyses. Numbers on nodes represent posterior probabilities
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