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Physiological interference reduction for near infrared spectroscopy brain
activity measurement based on recursive least squares adaptive filtering
and least squares support vector machines
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aSchool of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China; bSchool of Electrical Engineering
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ABSTRACT
Near infrared spectroscopy is the promising and noninvasive technique that can be used to
detect the brain functional activation by monitoring the concentration alternations in the
haemodynamic concentration. The acquired NIRS signals are commonly contaminated by
physiological interference caused by breathing and cardiac contraction. Though the adaptive fil-
tering method with least mean squares algorithm or recursive least squares algorithm based on
multidistance probe configuration could improve the quality of evoked brain activity response,
both methods can only remove the physiological interference occurred in superficial layers of
the head tissue. To overcome the shortcoming, we combined the recursive least squares adap-
tive filtering method with the least squares support vector machine to suppress physiological
interference both in the superficial layers and deeper layers of the head tissue. The quantified
results based on performance measures suggest that the estimation performances of the pro-
posed method for the evoked haemodynamic changes are better than the traditional recursive
least squares method.
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1. Introduction

Near infrared spectroscopy (NIRS) has been a low cost
and effective technique for stimulus evoked function
and activity research by non-invasively measuring the
hemodynamic changes in specific brain regions, which
can be classified to three different NIRS techniques
including continuous wave NIRS (CW-NIRS), frequency
domain NIRS (FD-NIRS) and time domain NIRS (TD-
NIRS), has attracted growing interest [1,2]. Compared
with other functional brain activity measurement tech-
nologies such as electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI), NIRS
has its particular advantages such as safety, fewer
physical restrictions, portability and greater practical-
ity. In addition to these advantages, NIRS is also asso-
ciated with a major problem that is the physiological
interference, which mainly relates to perturbations
caused by cardiac and respiratory events and is often
sufficient to suppress the desired activation signal
[3,4]. Previous research works have been made to

reduce the physiological interference and improve
the performance of brain activity measurements.
Tachtsidis and Scholkmann presented the original per-
spective of possible physiological origins for the inter-
ference signal and summarized some effective and
useful approaches to remove the physiological inter-
ference [5]. Zhang and Brown et al. adopted the adap-
tive filtering model with multidistance probe
configuration to remove the physiological interference,
which is least mean squares (LMS) method based and
using short distance source–detector NIRS signal as
the reference signal [6]. Furthermore, Zhang and Sun
et al. adopted the recursive least squares (RLS)
method to improve the convergence rate and the per-
formance of physiological interference suppression [7].

However, both methods are only effective to
reduce the physiological interferences in the superfi-
cial head tissue layers, the physiological interferences
in deeper tissue layers still obscure the desired
haemodynamic changes of functional brain activation.
To overcome this shortcoming, we combined RLS
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algorithm and least squares support vector machine
(LSSVM) to remove the residual physiological interfer-
ence signal. LSSVM is the novel machine learning
method that defines a tradeoff between the complex-
ity of approximating function and the approximation
quality of given data through replacing empirical risk
minimization (ERM) principle with structural risk mini-
mization (SRM) principle, which is inspired by statis-
tical learning theory and widely applied to text
classification, image processing, time series forecasting
and regression analysis [8,9]. Furthermore, it should be
underlined that the above mentioned method is pro-
posed for CW-NIRS with multidistance probe configur-
ation and could not be approved directly for TD-NIRS
and FD-NIRS, which work in different ways.

2. Theory

2.1. Multidistance multilayer model and the
modified lambert–Beer law

A five-layer, human head tissue model coupled with a
multidistance NIRS probe was employed to explore light
propagation in head tissue, which is illustrated in Figure 1.
The head model contains Grey and white matter, cerebro-
spinal fluid, skull, and scalp. The two-wavelength inte-
grated light source (S) was placed on the surface of scalp
and two separated detectors with different distances from
the light source was used to measure the intensity of light
emerging from the tissue after diffuse reflectance. The dif-
ferent source-detector distances allow us to distinguish
different photon penetration depths, which follows the
banana-shaped propagation path inside the head tissue
[10]. The detector with short distance (D1) was used to
measure the oxyhemoglobin and deoxyhemoglobin con-
centration changes in superficial tissue layers and the
detector with long distance (D2) was used for both super-
ficial and deeper tissue layers.

According to the modified Lambert-Beer law (MLBL), the
concentration changes of oxyhemoglobin and deoxyhe-
moglobin in tissue can be represented as following [11,12].

D HbO2½ �
D HHb½ �

� �
¼ R�1 ek1HbO2

DPFk1 ek1HHbDPFk1
ek2HbO2

DPFk2 ek2HHbDPFk2

" #�1
DAk1
DAk2

� �

(1)

where D[HbO2] is the concentration changes of oxy-
hemoglobin, D[HHb] is the concentration changes of
deoxyhemoglobin, R is the distance between the light
source and the detector, ekHbO2

is the molar extinction
coefficients of oxyhemoglobin for wavelength k, ekHHb
is the molar extinction coefficients of deoxyhemoglo-
bin for wavelength k, DPFk is the differential path-
length factor for wavelength k, and DAkis the changes
of optical density for wavelength k.

2.2. Recursive least-squares adaptive filtering

For the physiological interference removal in NIRS, the
RLS adaptive filtering based on a transversal filter with
finite impulse response and the RLS optimization, was
used to remove the physiological interference in
superficial tissue layer. The differential signal e(t) at
the sampling time t can be expressed as:

e tð Þ ¼ d tð Þ�XT tð ÞW tð Þ (2)

where d(t) is the D[HbO2] (or D[HHb]) calculated from
detector D2 based on the MLBL, which contains the
evoked brain activity haemodynamic changes in Grey
matter and the physiological interference in superficial
tissue. X(t)¼ [x(t) x(t-1) … x(t-M)]T, where x(t) is
theD[HbO2] (or D[HHb]) calculated from detector D1

based on the MLBL, which contains the physiological
interference in superficial tissue and is used as the refer-
ence signal,M is the order of the adaptive filter and x(t-M)
is the M-step delay signal of x(t). W(t)¼ [w0(t) w1(t) …
wN(t-M)]T is the weight coefficient vector of adap-
tive filter.

To reduce the physiological interference, the RLS
adaptive filtering algorithm was used to remove the cor-
related components of reference signal x(t) from signal
d(t) by minimizing the following mean square error [13].

J tð Þ ¼
Xt

ti¼0

vt�ti d tið Þ�XT tið ÞW tð Þ
� �2

(3)

where v is the weighting factor (0<v< 1). By solving
the above optimization problem, we can get the opti-
mal weight coefficient vector W�(t). And the optimal
difference signal e�(t) can be obtained based on
Equation (2) as following expression, which is also the
optimal estimation of the evoked responds of brain
activity based on RLS adaptive filtering algorithm.

e� tð Þ ¼ d tð Þ�XT tð ÞW� tð Þ (4)
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Figure 1. Diagram of five-layer head tissue model and NIRS
probe configuration.
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2.3. Least squares support vector machine

Though we can suppress the physiological interfer-
ence in superficial tissue layers of the head by RLS
adaptive filtering method, the residual physiological
interference that arises from deeper tissue layers
remain in the filtered signal e�(t), and the evoked
responds signal e�(t) can be expressed as follows:

e� tð Þ ¼ E tð Þ þ m tð Þ (5)

where E(t) is desired signal related to the evoked brain
functional activity appeared in Grey matter, �(t) is the
noise signal that contain the residual physiological
interference. The problem of solving E(t) from
Equation (5) is equivalent to a nonlinear regression
problem, which can be solved by least squares sup-
port vector machine algorithm. Namely, the LSSVM is
intended to estimate E(t) by the following function:

E tð Þ ¼ wTu tð Þ þ b (6)

And the corresponding optimization problem can
be expressed as:

minw;b;m J w; mð Þ ¼ 1
2
wTw þ 1

2
c
XN
i¼1

m tið Þð Þ2

s:t: e� tið Þ ¼ wTu tið Þ þ bþ m tið Þ; i ¼ 1; . . . ;N

8><
>: (7)

where w is the weight vector, function u(�) con-
structed in an implicit way can map the input signal
into a higher dimensional space, c is the regularization
parameter, b is the bias term. The optimization prob-
lem formulated in Equation (7) can be solved by con-
structing the Lagrangian function with Lagrange
multipliers ai, and the resulting LSSVM estimation
function becomes:

E tð Þ ¼
XN
i¼1

aiK t; tið Þ þ b (8)

where the function K (�, �) is kernel function that
should satisfy the Mercer’s condition, and the typical
choices of kernel function include polynomial kernel,
sigmoid kernel and RBF kernel [8,14]. The kernel func-
tion used for the LSSVM is the RBF kernel, which is
the popular used kernel and compactness compared
with other feasible kernel for developing the LSSVM
estimation function [15].

3. Haemodynamic change and physiological
interference data generation based on monte
carlo simulation

To verify the effectiveness of the proposed algorithm,
Monte Carlo simulations for the five-layered head tis-
sue model with a two wavelengths light source

(750 nm and 830 nm) and two separated light detec-
tors (D1 with 5mm source–detector distance and D2

with 45mm source–detector distance) as shown in
Figure 1 were performed. The Monte Carlo code used
in this paper is the extension of general three-dimen-
sional photon simulation codes developed by Wang
et al. [16]. The parameters used in the Monte Carlo
simulation, which include absorption coefficient, trans-
port scattering coefficient, tissue thickness, baseline
concentration of oxyhemoglobin and deoxyhemoglo-
bin for different tissue layer, can be found in related
literature [12]. The haemodynamic changes in different
tissue layer were simulated as combination of func-
tional evoked haemodynamic responses and the
physiological interference. The task-related haemo-
dynamic responses were defined by the convolution
of the stimulation function and the prototypical
haemodynamic impulse function, which only appeared
in Grey matter. The physiological interference in all
five tissue layers was defined by the combination
of cardiac fluctuation function and respiratory fluctua-
tions function, and additional sweat phenomenon
function was generated only in scalp layer. More detail
about related functions and parameters can be found
in the literature [7].

The three epochs block design experiment were
simulated, and each epoch was consisted of 200 rest
sampling points and 200 stimulation sampling points
with 10Hz sampling rate. The ideal task-related
haemodynamic response without physiological inter-
ference simulated in the Grey matter was shown in
Figure 2, and the shaded regions indicate the periods
of evoked stimulation.

The simulated optical signal of 750 nm and 830 nm
can be measured by two different distances detector
based on Monte Carlo simulations. To simplify the
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Figure 2. Ideal task-related haemodynamic changes in the
Grey matter.

162 X. LIU ET AL.



description, the changes of optical density with long
source-detector distance are shown in Figure 3, the
changes of optical density with short distance are
similar. As shown in Figure 3, the optical density
changes are severely disturbed by the physiological
interference, which is not effectively expressed the
brain functional activity.

4. Results and discussion

The concentration changes of oxyhemoglobin and
deoxyhemoglobin at different distances detector were
calculated with the change of optical density at wave-
length 750 nm and 830 nm based on MLBL, which was
described in Equation (1). As shown in Figure 4, the
concentration changes of oxyhemoglobin were pre-
sented, where the time series signal calculated from
source–detector with long distance based on MLBL
was shown in Figure 4 (a), and the result calculated

from source–detector with short distance based on
MLBL was shown in Figure 4(b). Similarly, the results
of concentration changes of deoxyhemoglobin were
presented in Figure 5.

As shown in Figures 4(a) and 5(a), the time series
results from source–detector with long distance should
contain the evoked hemodynamic response in Grey
matter layer and global interferences in superficial
and deeper tissue layers. The results from source–de-
tector with short distance contain the global interfer-
ences in superficial tissue layers as shown in Figures
4(b) and 5(b). The RLS algorithm can be used to
remove the global interferences in superficial tissue
layer and get the estimation of evoked hemodynamic
response in Grey matter. Usually, the magnitudes of
concentration changes of oxyhemoglobin and deoxy-
hemoglobin calculated from the RLS algorithm were
underestimated, which was called partial volume
effect (PVE) [17]. To compare the results quantita-
tively with the ideal evoked haemodynamic response,
the PVE can be compensated by the ratio of the
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Figure 3. Simulated signals for optical density changes for
long source-detector distance. (a) Optical density changes for
750 nm. (b) Optical density changes for 830 nm.
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Figure 4. The time series signal of D[HbO2] calculated based
on MLBL. (a) The results for long source-detector distance. (b)
The results for short source-detector distance.
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optical pathlength of activated volume to the optical
pathlength of sampling volume for the Monte Carlo
simulations. Furthermore, the proposed method can
be used to remove the residual physiological interfer-
ence. To assess and evaluate the performance of pro-
posed method, the related results were presented in
Figures 6 and 7.

As seen from the Figure 6, it is obvious that the
oxyhemoglobin concentration changes calculated with
the proposed algorithm is better than that calculated
by the RLS method, which residual interference is rela-
tively smaller and more close to the ideal evoked
haemodynamic response signal. In Figure 7, the results
of deoxyhemoglobin concentration changes are similar
to oxyhemoglobin concentration changes shown in
Figure 6. Both the time series results of D[HbO2]
andD[HHb] shown in Figures 6 and 7 demonstrated
that the proposed method exhibited a better process-
ing performance in physiological interference reduc-
tion than the RLS method.

To quantified evaluate the estimation performance
of proposed method, the performance measures
including the mean absolute error (MAE), the root
mean square error (RMSE), the max absolute error
(MaxAE) and the min absolute error (MinAE) are con-
sidered. The calculation equations for MAE, RMSE,
MaxAE and MinAE are shown as following:

MAE ¼ 1
N

XN
t¼1

jŜ tð Þ � S tð Þj (9)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

Ŝ tð Þ�S tð Þ
� �2vuut (10)

MaxAE ¼ max jŜ tð Þ � S tð Þj
	 
N

t¼1

� �
(11)

MinAE ¼ min jŜ tð Þ � S tð Þj
	 
N

t¼1

� �
(12)

where, N is the number of samplings, ŜðtÞis the esti-
mated evoked haemodynamic changes at time t, SðtÞis
the ideal evoked haemodynamic changes at time t.
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Figure 5. The time series signal of D[HHb] calculated based
on MLBL. (a) The results for long source-detector distance. (b)
The results for short source-detector distance.
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Table 1 provides the MAE, RMSE, MaxAE and MinAE
values of different methods for the comparison of the
haemodynamic concentration changes estimation.
Based on the performance measures values in Table 1,
it can be found that the proposed method could con-
sistently provide lower MAE, RMSE, MaxAE and MinAE
values. For instance, if we observe the RMSE
forD[HbO2] andD[HHb] in Table 1, the proposed
method can improve the estimation results by 38.5%
and 48.8% comparing with RLS method. The quanti-
fied results obtained from Table 1 indicate that the
proposed method could significantly improve the esti-
mation performance.

5. Conclusions

In this paper we combined the RLS adaptive filtering
with LSSVM to extract the high precision evoked brain
activity signals based on multi-distance probe config-
uration, which could remove the interference signal

arising both in the superficial regions and deeper
regions of the brain tissue from the target signals. To
assess the effectiveness and performance of proposed
algorithm, the Monte Carlo simulations were used to
derive the optical signals of evoked haemodynamic
responses with physiological interference in both
superficial layers and deeper layers of head tissue.
Then the raw signals of oxyhaemoglobin and deoxy-
haemoglobin could be obtained by MLBL based on
multidistance measurement, which roughly expressed
the haemodynamic response information of evoked
brain activity. The clear evoked trends of deoxyhaemo-
globin and oxyhaemoglobin can be acquired by pro-
posed method, and the quantified results showed that
the proposed method based on multi-distance meas-
urement configuration exhibits better estimation per-
formance and smaller residual interference than the
reference RLS method for the reconstruction of the
evoked brain activity response. Furthermore, the pro-
posed method has the potential to improve the meas-
urement ability of NIRS techniques and promote the
applications of NIRS techniques in the related medical
and clinical fields such as stroke rehabilitation, trau-
matic brain injury and tumor detection.
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