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CHAPTER I  

INTRODUCTION 

 

1.1 A Review of the mid-Cretaceous Oceanic Anoxic Events 

Quantitative and qualitative studies of Cretaceous sediments around the Tethys realm 

allow the reconstruction of paleoclimatic and paleoceanographic conditions present 

during that time (Schlanger & Jenkyns, 1976; Jenkyns, 1980; Arthur and Premoli Silva, 

1982; Arthur et al., 1990).  Indeed, it has been demonstrated that the evolution of the 

Cretaceous oceans includes series of Oceanic Anoxic Events (OAE’s) particularly well 

recorded in the Tethys ocean from the Early Jurassic (Borrego et al., 1996) to the 

Cenomanian/Turonian (C/T) boundary time (Lamolda, 1978; Lamolda and Mao, 1999). 

These events are characterized by widespread deposition of black shales enriched in 

organic matter (Jenkyns, 1980; Bralower et al., 2002).   Furthermore, the mid-Cretaceous 

sedimentary record includes at least five OAE’s (Jenkyns et al. 1994; Leckie et al., 2002), 

which are associated in most cases with positive δ13C excursions that have been 

documented in the tests of planktonic, benthic foraminifera, marine carbonates and 

organic matter.  

 

Several mechanisms have been proposed in attempts to explain the development of these 

organic-rich levels with positive δ13C excursions, including super productivity and 

expansion of the marine archaea (Kuypers et al. 2001), which could have led to the 13C 

enrichment recorded during the “mid” Cretaceous. Nonetheless, the main controlling 
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factor may also be related to excessive removal of 12C from the marine waters because of 

kinetic isotopic fractionation, and the subsequent preservation of this isotopically light 

12C into living tissues of marine phytoplankton, hence the increased enrichment of 13C in 

the ocean waters, because this isotope is preferentially not incorporated into the 

phytoplankton (Broecker, 1974). Sequestration of marine organic matter into sediments 

and enhanced preservation is thus a plausible mechanism for the relative enrichment of 

13C observed during the mid Cretaceous.  

 

Mechanisms related to the positive δ13C excursions are still poorly understood, although 

several hypotheses have been debated to explain such events. Perhaps the circumstances 

that led to such unusual environmental conditions are related to several factors specific to 

that time, such as: [1] The “mid” Cretaceous was a period with extreme warm 

temperatures “greenhouse conditions” as reported from the tests of planktonic and 

benthic foraminifera (Huber et al., 2002). [2] Major plate tectonic reorganization that 

started in the Triassic continued through the Jurassic and Cretaceous (de Graciansky et 

al., 1984; Olsen, 1997), thereby leading many epicontinental areas to become prone to 

develop restricted circulation (Jenkyns, 1980; Arthur and Premoli Silva, 1982; Arthur et 

al., 1990). [3] The Middle Cretaceous is known as a period of enhanced oceanic crust 

production associated with outpouring of massive basaltic lavas or Large Igneous 

Provinces (LPI) that may have enhanced the supply of nutrients into the ocean (Larson, 

1991; Sinton and Duncan, 1997; Kerr, 1998). [4] Increased volcanism may have 

contributed to an increase of atmospheric carbon dioxide believed to have been three to 

twelve (3 – 12) times higher than at present (Berner, 1992). [5] Increased atmospheric 
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CO2 is hypothesized to have helped raise the already elevated sea level by further 

intensifying greenhouse conditions and creating an “ice free” world (Gale et al. 2002).  

 

The combined effects of these different factors led to unusual environmental conditions 

in the overall structure of the surface and deep waters at that time, and particularly on the 

overall dissolved oxygen content, as inferred from the worldwide deposition of organic-

rich deposits (Jenkyns et al. 1994).  

 

The present work covers the time interval of the Cenomanian/Turonian boundary 

associated with oceanic anoxic event number two (OAE-2). The sedimentary record of 

OAE-2 shows that perturbations that affected both existing deep-sea, and epicontinental 

environments were by far the most extensive, thus they are widely used as models to 

further our understanding of other mid-Cretaceous OAE’s (Wignall, 1994). OAE-2 is 

also coincident with the extinction of numerous marine taxa e.g. mollusks and planktonic 

foraminifera (Harries and Kauffman, 1990; Leckie et al., 2002).  

 

Northeastern Mexico sedimentary record shows that environmental conditions remained 

relatively constant as seen by the evidence of long lasting deposition of carbonate rich 

facies in a shallow epicontinental sea that covered the area since the Jurassic up to the 

Cretaceous. The sequence of the Indidura Formation at Parras de La Fuente also shows 

the overall trend of enriched organic matter in the rock sequence.  As noted previously, 

both epicontinental seas and deep oceanic basins where affected by OAE’s, but at Parras 

de La Fuente the lithologic characteristics indicate that conditions prone to organic 
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carbon enrichment lasted about 4 million years. This dissertation therefore explores the 

link between the mechanisms behind the formation of organic-rich deposits and the 

factors that may have controlled the productivity and preservation of such materials in the 

sedimentary record of the Indidura Formation in the section at Parras de la Fuente. 

  

1.2 Productivity or Preservation, the models behind mid-Cretaceous black shales 

Preservation and/or productivity models have often been invoked to explain the 

widespread accumulation of organic-rich rocks during the Cretaceous.  

 

The productivity model argues in favor of enhanced primary productivity that overcomes 

oxidation of organic matter OM (remineralization) through the water column. In present-

day environments productivity is primarily controlled by upwelling of deep waters rich in 

biolimiting nutrients into well-oxygenated surface waters. Overabundance of organic 

matter produced at the surface and their export to the subsurface, where decay takes place 

causes an expansion and intensification of the oxygen minimum zone (OMZ) into the 

shelves, while the bottom waters may remain well oxygenated (Wilde and Berry, 1982; 

Wyrtki, 1962). In the case of the mid-Cretaceous events, several factors appear to have 

been conducive to intensify productivity during that time: strong vertical mixing-

upwelling supplemented by input of nutrients from rivers (Erbacher et al., 1996); 

increased volcanic activity (Sinton and Duncan, 1997; and Kerr, 1998). This model has 

been mainly applied to the Cretaceous Pacific Ocean where anoxia did not reach the 

deepest waters (Schlanger and Jenkyns, 1976). 

 



 5

The preservation model on the other hand is based on a decrease of OM remineralization 

because of diminishing oxygen flux at the water-sediment interface. In present-day 

oceans perennial anoxic conditions favorable to OM preservation only occur in restricted  

areas of the ocean where basins are isolated to circulation of oxygenated deep waters e.g. 

Cariaco Basin (Yarincik et al., 2000). Based on Cretaceous paleoceanographic models, 

Barron (1983) suggested that minimal equator to pole thermal gradients should result in a 

decrease in the formation of oxygen-rich bottom waters. In addition, it has also been 

suggested that a thermohaline circulation mode of subtropical oxygen-poor warm deep 

waters was likely for the mid-Cretaceous ocean (Hay, 1988). Molecular chemical fossils 

or “biomarkers” found in C/T OAE2 bring corroborative evidence in support of such 

mechanisms as they suggest the presence of anoxygenic photosynthetic bacteria in deep-

sea sediments, which implies that anoxic conditions extended into the photic zone 

(Sinninghe Damste and Koster, 1998; Rau et al., 1987; Kuypers et al., 2004). These 

authors also found that N2 fixing cyanobacteria and archaea dominated the phytoplankton 

communities during the early to mid-Cretaceous.  

 

1.3 Methodology of the present work 

Based on current knowledge of factors that may control C-org-rich sediments, the present 

study of the Indidura Formation at Parras is the first attempt to unravel these relationships 

in the northeastern Mexican basin. Thus, through the use of petrography, geochemistry 

and biostratigraphy this study will further our understanding of the prevailing 

environmental and depositional conditions for northeastern Mexico as well as the 
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sedimentary cycles and Corg-rich events in the Indidura Formation. These findings may 

also be relevant to other sites elsewhere worldwide.  

 

1.4 Summary 

In chapters 2, 3 and 4 I present a general picture of the geology, stratigraphy and 

methodology used for the development of this research. 

 

In chapter 5, I describe the stratigraphic sequence found at Parras de la Fuente, which is 

the main site used for detailed analyses that form the framework of this research. 

 

Chapter 6 is a published article (Duque-Botero and Maurrasse, Journal of Iberian 

Geology, 2005), which recapitulates the concept of the Indidura Formation in terms of its 

sedimentologic and petrographic content. Rock sequences from the area that have been 

placed under the name Indidura Formation are compared in three areas in terms of their 

petrographic, TOC/CaCO3 content and primary sedimentary structures, which revealed 

the facies changes present in the basin. The paper also shows for the first time the 

presence of cyanobacterial calcareous microspheroids as a primary component of the 

sedimentary sequence of the Indidura Formation near Parras de la Fuente. These 

sediments indicate environments at Parras where such that the primary laminae are 

perfectly preserved and benthic fossils are almost absent throughout the sequence. 

The sedimentary sequences at the other sections of Las Delicias and La Casita show 

prevailing paleoenvironments with abundant benthic epifauna, planktonic and nektonic 

organisms, which contrast sharply with that found in the Sierra de Parras.  
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Chapter 7 is an article submitted to Cretaceous Research (Duque-Botero and Maurrasse, 

submitted Dec. 2005, and accepted for publication, May 2006), which shows that the 

stratigraphic sequence found at Parras de la Fuente has well-defined rhythms at the 

decimetric to millimetric scales. Compositional differences found in the laminae are 

associated with varying abundance of microspheroids (20-40 μm in diameter) of 

cyanobacterial origin (Duque-Botero and Maurrasse, 2005). These results also show a 

direct correlation between the abundance of the cyanobacterial remains, the type of 

laminae present in the sediments, and the varying composition of the rock, as seen in the 

TOC and Carbonate contents. Laminae developed from varying magnitude of 

cyanobacterial blooms that prevailed throughout the unit. These facies imply unique 

paleogeographic and paleoceanic conditions that enhanced the intervening factors in the 

environment throughout deposition of the Indidura Formation at Parras de La Fuente. 

 

Chapter 8 is an article submitted to the Society of Sedimentary Petrology Special 

Publication (Duque-Botero et al., submitted March 2006), which gives further supporting 

geochemical evidence of the paleoceanographic and paleogeochemical changes that took 

place during the deposition of the Indidura Formation. High values recorded for certain 

elements (Mo, V, and Cr), further concur with the petrographic and SEM analyses that 

the sequence at Parras accumulated under dysoxic to anoxic conditions in which 

microbial communities were predominant. Stable isotope analyses and 

micropaleontologic nannofossil data allow for more accurate biostratigraphic positioning 

of the Parras sequence within the Upper Cenomanian CC10 zone through the Middle 

Turonian CC13 zone. These data thus substantiate that long lasting unusual conditions 
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prevailed in that basin, and that the upper water masses where connected with the open 

ocean. The results show as well that the stable isotopes anomalies found elsewhere during 

the time span of the C/T boundary event are present in the sediments of the Indidura 

Formation at Parras de La Fuente. 

 

Chapter 9 is an article submitted to Earth and Planetarium Science Letters (Duque-

Botero et al., sub. June 2006), which presents evidence on the origin of the paleoclimatic 

variations that acted as controlling mechanism during the deposition of the sedimentary 

sequence of the Indidura Formation. Continuous wavelet analysis (CWA) of laminae 

counts and grayscale of digital images shows that the stratigraphic sequence was affected 

by paleoclimatic forcing related to frequencies in the range of the Schwabe solar-cycles, 

indicating that the alternation of cyanobacterial microspheroid rich and poor laminae 

where the product of perennial blooms related to possible enhanced runoff. CWA of TOC 

and CaCO3 shows that quasi-periodic interbeds of the Indidura Formation formed at a 

periodicity of about 20 ka (Precession cycle). Such variations may imply shift in trends of 

pluviosity that generated conditions favorable to sustained blooms of cyanobacteria-

induced calcareous microspheroids. High bacterial productivity further decreased the 

oxygen levels and helped maintain dysoxic/anoxic waters, as recorded in these sediments 

over more than four million years. 
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CHAPTER II  

GEOGRAPHIC AND GEOLOGIC SETTING 

 

The study area is located in the broad geographic zone commonly referred to as 

northeastern Mexico, which comprises the states of Nuevo Leon, Coahuila de Zaragoza, 

Chihuahua, Tamaulipas (Figure 2- 1). The region is bounded on the north by the United 

States of America, on the south by the Sierra Madre Oriental and the coastal plain of the 

northern Gulf of Mexico, on the east by the Gulf of Mexico, and on the west by the Sierra 

Madre Oriental. 

 

Figure 2- 1. Geographic map of northeastern Mexico. 1=Parras de la Fuente; 2= Torreon; 
3=Saltillo; 4=Monterrey 
 
 
The overall climate is typically arid to semi-arid in the western, northern and central 

parts, while the Sierra Madre Oriental and the Gulf of Mexico are humid to sub-humid. 

Temperature ranges from hot to warm during the summer and warm to cold during the 



 13

winter (Moran-Zenteno, 1994). Overall dry conditions together with summer rains 

created excellent rock exposures along streams and dry gullies (Lopez-Ramos and 

Guerrero, 1981). 

 

The study site is in the Sierra de Parras, which is at the southernmost part of the Mexican 

highland that extends from the Rio Grande south, west of Saltillo and Torreon. These 

mountains extend into the plains creating finger-like structures that are the remnant of 

ancient and active alluvial fans. The plains rise to about 1000 to 1500 meters above sea 

level, whereas the mountains reach from about 500 to 1200 meters above the plains. The 

Sierra de Parras forms the western part of the Sierra Madre Oriental Transverse where 

rock outcrops range from the Paleozoic to the Cenozoic, including a thick Mesozoic 

sedimentary sequence. Some volcanic cones and flows and intrusions are also found in 

these mountains, especially near the area of Las Delicias (INEGI, 1988).  

 

Structurally, the northern portion of the Sierra Madre Oriental forms the Sierra 

Transverse and runs nearly east to west between Monterrey and Torreon. It is the 

northern expression of a thrust and fold belt considered as the southern extension of the 

western North American Cordillera (Tardy et al., 1975; Padilla y Sanchez, 1985; 

Quintero-Legorreta and Aranda-Garcia, 1985). In the Monterrey area the Sierra Madre 

Oriental changes direction toward the southeast (Figure 2.1) toward Tampico. The 

structural development of the Sierra Transverse is related to both salt tectonics and pre-

existing basement structures that appear to have controlled the extent of the Laramide 

deformational styles (Gray and Johnson, 1995; Tardy et al., 1975). 
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Figure 2- 2. Landsat 7 (bands 4-3-2) image of Central Coahuila state. Box marks the area near  
Parras de la Fuente, site of  the present study. Main structural trend runs east-west. Mesozoic 
sediments are exposed in the Southern part of the area. Cenozoic alluvial and lake deposits of the 
Laguna de Mayran and Parras Basin cover most of the central area.  
 

The present study investigates a Cenomanian-Turonian stratigraphic sequence in the 

Sierra de Parras, 2 kilometers west of the town of Parras de La Fuente in Coahuila State 

(Figure 2- 2). The overall structure of the area consists of tight anticlinal folds and thrust 

with vergence toward the NE (Tardy, 1975). The Indidura Formation in this thrust zone is 

limited to the external part of the belt, including recumbent folds in the vicinity of 

Viesca, and usually appears in faulted contact with the Cupido Formation. Some intervals 

of the Indidura show strong shear development “schistosity” and microfolding, all these 

relationships are well observed and particularly well developed toward the Viesca area. 

In the Parras de La Fuente area folds have broader, less recumbent structures, and the 
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contact with other underlying unit is concordant (Tardy et al., 1975; Padilla y Sanchez, 

1982; INEGI, 1988). 
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CHAPTER III  

STRATIGRAPHIC FRAMEWORK 

 

3.1 General Stratigraphy 

The Cretaceous sedimentary sequences of northeastern Mexico have been generally 

grouped as a series of time equivalent stratigraphic units, named from oldest to youngest, 

Coahuilan, Comanchean and Gulfian series (Bishop, 1970). They indicate that the 

opening of the proto-Atlantic allowed the development of open marine connections with 

the Tethys, and epicontinental seas became established in the northeastern areas of 

present Mexico. These epicontinental seas were continually flooded as early as the Late 

Jurassic, and continued through the Cretaceous. This setting permitted the deposition of 

an almost continuous carbonate-rich sequence (Moran-Zenteno, 1994) and the dispersal 

of Tethyan and South American Biota in these areas by the Early Cretaceous 

 

3.1.1 The Coahuilan Series 

The name “Coahuila Group” was originally introduced by Imlay (1940) and referred to 

the Lower Cretaceous units that include the ammonite zone of Dufrenoyia texana sensu 

Imlay (op cit.) In the study area, the Coahuilan series is composed of three 

lithostratigraphic units named as the Taraises Formation, the Lower Tamaulipas 

Formation and the Cupido Formation. Humprey (1949) and Forgotson (1957) redefined 

the Coahuilan-Comanchean boundary to coincide with the onset of the base of La Peña 
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Formation, thus making the boundary to correlate with a definite lithostratigraphic 

change. 

 
 
Figure 3- 1. Schematic generalized stratigraphic section of units outcropping near the Sierra de 
Parras. Nomenclature and ages follow the works of Imlay (1936, 1937, 1940) and Bishop (1970). 
Units are not drawn to scale due to areal thickness variations. 
 

3.1.2 Comanchean Series 

The term was first used by Hill (1887) to define a sequence of Lower Cretaceous strata of 

central Texas, which also correlate with the following northeastern Mexico 

lithostratigraphic units: La Peña, Upper Tamaulipas, Aurora and Cuesta del Cura. Bishop 
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(1970) defined the upper limit as the base of the Gulfian Series beginning on the top of 

the Cuesta del Cura Formation.  

 

3.1.3 Gulfian Series 

The term was introduced by Hill (1887) to all the Cretaceous rocks of Texas that 

unconformably lie above the Comanchean Series. These deposits are the youngest 

sedimentary units of the Cretaceous System of northeastern Mexico (Bishop, 1970). In 

northeastern Mexico, it includes the lithostratigraphic units of the Indidura, the Agua 

Nueva, and the San Felipe Formations, the Mendez and Parras shales, and the Difunta 

Group.  

 

3.2 Brief Nomenclature history of the Cretaceous units outcropping on the 

Sierra de Parras with emphasis on the Indidura Formation 

The stratigraphy of the Sierra de Parras near the town of Parras de la Fuente (Figure 3- 1) 

consists predominately of carbonate-rich units; from older to younger the units are the 

following. 

 

The Valanginian Taraises Formation, is composed of calcareous shales and limestones, 

with levels rich in mollusks (Imlay, 1936). The Capulin Formation, (Humphrey and Diaz 

(2003) formerly referred to as Las Vigas Formation by Imlay (1936) who followed the 

work of Burrows (1910).  The Capulin Formation is composed of fine- to medium-
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grained brown to yellowish brown calcareous sandstones and siliceous shaly, somewhat 

sandy limestones (Humphrey and Diaz, 2003). No diagnostic fossils have been found in 

the formation; nonetheless, based on its stratigraphic position, it may lie between the late 

Hauterivian and the early Barremian (Imlay, 1936; Humphrey and Diaz, 2003).  The 

Cupido Formation (Imlay, 1937; Humphrey, 1949), overlies the Capulin Formation, and 

consists of dark gray to black massive limestones with rudists of Barremian age. During 

the Barremian to Aptian a distinctive facies accumulated toward the western part of the 

platform, and is known as the Tamaulipas Formation (Ross et al., 1981). It is composed 

of limestones and marls with fossils characteristic of deeper-water environments than 

those of the Cupido Formation. The La Peña Formation (Imlay, 1936; Humphrey, 1949) 

overlies the Cupido limestones and comprises marl/shale facies with abundant ammonites 

of Aptian age. The Aurora limestone (Imlay, 1940), overlies the La Peña Formation, and 

is composed of gray limestone beds that grade into thinly-bedded shaly limestones. 

Overlying the Aurora is the Cuesta del Cura Formation (Imlay, 1936, 1937), which is 

composed of gray shales and limestones with numerous chert stringers, and was assigned 

a late Albian age. 

 

Kelly (1936 p. 1028-1029) defined the Indidura Formation, from outcrops at Las Delicias 

area, as composed in its lower part of “…imperfectly consolidated buff shales containing 

many crystals of selenite. A thin transitional zone of intercalated platy limestone and 

shale is included with the Indidura. The highest beds observed are imperfectly stratified 

buff shales containing numerous veinlets of selenite”; and he further added that “…the 
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formation is about 100 feet thick and is divisible in three parts. The lower and upper 

divisions include the shale beds already mentioned. The middle division consists of 

interbedded rubbly, gray, pink and red argillaceous limestones, platy limestones and 

calcareous shale. Some fossils were collected from the lower division, but they are more 

numerous in the middle, where there are some fossiliferous horizons. Echinoidea, 

pelecypoda, and cephalopoda are the best represented classes”.  Shortly thereafter, 

Imlay (1936) applied the name Indidura Formation to rock sequences found in the rest of 

the Sierra Madre Oriental.  Jones (1938) later reported that the fauna is of transitional 

character, and of Cenomanian-Turonian age. 

 

In the Sierra de Parras region Imlay (1936) described the Indidura Formation as being in 

gradational contact with the infrajacent Cuesta del Cura Formation. The lower limit of the 

Indidura Formation in that region is marked by the appearance of gray shale beds 

immediately after the last chert stringer of the Cuesta del Cura Formation. Imlay (1936) 

estimated that the Indidura Formation in the Sierra de Parras had a maximum total 

thickness of about 1,900 ft (578 m). Unlike the stratotype at Las Delicias, however, in 

this area the unit consists of intermittent black and gray shale beds up to 75 cm thick, and 

black to yellowish limestone beds up to 35 cm thick. The lowermost part of the Indidura 

Formation consists of an estimated 243 to 274 meters of powdery, and in places 

laminated, gray calcareous shales, with either lenses or thin intercalations of dark gray 

limestone beds. The middle part consists of an estimated 121 to 152 meters of finely 

laminated “salt and pepper” shales that alternate, particularly in the lower 20 meters, with 

sandy shales that contain lenses of brown selenite up to 80 cm thick. The uppermost part 
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consists of 152 meters of platy, calcareous, gray shales and brown to light-gray shaly 

limestones with some intercalations of sandy shales including abundant selenite crystals. 

The uppermost segment of the Indidura Formation found in the Sierra de Parras area is in 

sharp contact with the overlying Parras Formation and is marked by the last appearance 

of a limestone bed. Imlay (1936, 1937) assigned a Cenomanian-Turonian age to the 

Formation exposed on the western part of the Sierras de Parras and suggested that it 

might range into the Lower Coniacian (Imlay op cit.). The suprajacent Parras Shale 

(Imlay 1936, Figure 3- 1) is composed of black calcareous shale with interbedded dark 

gray siltstones; the scarcity of diagnostic fossils in this unit did not allow a direct 

determination of its age. 

 



 23

3.3 References 

Bishop, B.A., 1970, Stratigraphy of Sierra de Picachos and vicinity, Nuevo Leon, 
Mexico: The American Association of Petroleum Geologists Bulletin, v. 54, p. 
1245-1270. 

Burrows, R.H., 1910, Geology of northern Mexico: Boletin de la Sociedad Geologica 
Mexicana, p. 85-103. 

Forgotson, J.M., Jr., 1957, Stratigraphy of Comanchean Cretaceous Trinity group [Gulf 
Coastal Plain]: Bulletin of the American Association of Petroleum Geologists, v. 
41, p. 2328-2363. 

Hill, R.T., 1887, The topography and geology of the Cross Timbers and surrounding 
regions in the northern Texas: American Journal of Science, v. 33, p. 291-303. 

Humphrey, W.E., 1949, Geology of the Sierra de los Muertos area, Mexico (with 
descriptions of Aptian cephalopods from the La Pena Formation): Geological 
Society of America Bulletin, v. 60, p. 89-176. 

Humphrey, W. E., Diaz, T., 2003, Jurassic and Cretaceous stratigraphy and tectonics of 
northeastern Mexico, Report of Investigation No. 267, Bureau of Economic 
Geology, The University of Texas at Austin, 152 p, + 1 data CD. 

 
Imlay, R.W., 1936, Evolution of the Coahuila Peninsula, Mexico; Part 4, Geology of the 

western part of the Sierra de Parras: Geological Society of America Bulletin, v. 
47, p. 1091-1152. 

Imlay, R.W., 1937, Geology of the middle part of the Sierra de Parras, Coahuila, Mexico: 
Geological Society of America Bulletin, v. 48, p. 587-630. 

Imlay, R.W., 1940, Possible interoceanic connections across Mexico during the Jurassic 
and Cretaceous Periods: Proceedings on the Pacific Sciences Congress, v. 1, p. 
423-427. 

Jones, T.S., 1938, Geology of Sierra de la Pena and paleontology of the Indidura 
Formation, Coahuila, Mexico: Geological Society of America Bulletin, v. 49, p. 
69-149. 

Kelly, W.A., 1936, Evolution of the Coahuila Peninsula, Mexico; Part 2, Geology of the 
mountains bordering the valleys of Acatita and Las Delicias: Geological Society 
of America Bulletin, v. 47, p. 1009-1038. 

Moran-Zenteno, D., 1994, Geology of the Mexican Republic, Tulsa, American 
Association of Petroleum Geologists, 160 p. 



 24

Ross, M.A., Charleston, S., Smith, C.I., and Brown, J.B., 1981, Stratigraphy of the 
Tamaulipas Limestone, Lower Cretaceous, Mexico, in Charleston, S., Smith, C.I., 
and Brown, J.B., eds., Lower Cretaceous stratigraphy and structure, northern 
Mexico; field trip guidebook: Midland, TX, West Texas Geological Society, p. 
43-57. 

 

 

 

 

 

 



 25

CHAPTER IV  

METHODOLOGY 

 

4.1 Field Methods and Data Collection Techniques 

A review of the literature on the geology of the area was carried out in order to determine 

both the principal structural characteristics and the position of the stratigraphic units 

found in the study area. The review was done in combination with field-base 

observations, together with aerial photographs, and Landsat 7 imagery. 

 

4.2 Measurement and Sampling of the Stratigraphic Succession 

The Sierra de Parras section investigated is located 3.23 kilometers west of the city of ,, 

Coahuila state; inside a canyon of an ephemeral stream that runs west of the Hacienda 

Perote. The geographical coordinates of the initial point of the section are 25° 26’ 17.9” 

N; 102° 12’ 54.7” W, at an altitude of about 1580 meters. In order to gather precise field 

measurements of bed thickness the sedimentary sequence was described and measured at 

a centimeter to meter-scale intervals with the help of a Jacob’s staff and measuring tape, 

in order to gather precise field measurements of bed thickness. Field descriptions of 

collected samples followed the guidelines proposed by Folk (1959; 1962, 1980). Position 

of each sample was recorded and numbered for further reference. The field descriptions 

included precise measurement of the different layers, which was an important aspect of 

the field data collection as it was critical to define variations in thicknesses, which was an 
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essential part on showing frequencies or cyclicity patterns of repeated packets that may 

have a causal relationship with cycles that influenced sedimentary conditions.  

 

Indicators of environmental conditions such as type of microfossils and macrofossils 

present, texture, primary structures: biogenic (bioturbation); lamination, marker horizons, 

subaqueous flows (cross-bedding, ripples, graded bed), were collected when present. 

These features, together with the unweathered color of the rock observed from fresh 

chips, were documented to asses the approximate prevalent conditions in the basin related 

to oxygenation levels and water column kinematics.  

 

Secondary structures (compaction, concretions) were precisely recorded on the 

lithostratigraphic columns and photographed. These data gave indications of diagenetic 

patterns that were correlated with original conditions of sedimentation. Post depositional 

kinematic indicators such as joints, microfractures, and displaced layers were collected, 

as well, as they help in the understanding of the overall structural position of the 

sequence relative to the tectonic of the area, as well as providing their relative timing and 

development.  

 

4.3 Petrographic and Scanning Electron Microscope Analyses 

Laboratory descriptions of collected samples were classified following the guidelines 

proposed by Folk (1959; 1962; 1980) for standard microscope, and Folk (1993) for 

electron microscope analysis. These descriptions provided a general idea of the bulk 

mineralogy, and preliminary elemental composition (JEOL 5900-LV Scanning Electron 
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Microscope). These analytical data allowed further constraining of microfacies and 

mineralogical distributions throughout the stratigraphic section. SEM imaging provided 

observations of the intrinsic high-resolution sedimentological characteristics that helped 

to illustrate and confirm uncertainties of the sedimentary microstructures observed in 

standard petrographic microscopes.  

 

4.4 Micropaleontological Preparations 

Nannofossil slide preparation included several steps as follows: a clean sample of a 

milligram or less was obtained by carefully scraping the surface of the rock with a metal 

spatula on clean surfaces in order to avoid cross contamination. Scrapped material was 

then placed on a clean (3 x 1 inch) glass slide with two to three drops of distilled water. 

The scrapped material was then gently smeared over the glass slide in order to avoid 

breaking the fragile microfossils, and then placed over a hot plate at medium heat or 70oC 

(for better adhesion of the Canada Balsam). The slide was heated for about 2 minutes 

until water evaporates, then a cover slip with Canada Balsam was gently placed on top to 

avoid any air bubbles. The slide was then left on the hot plate for 10 minutes to cure. The 

study of nannofossils was conducted in order to improve the biostratigraphic resolution 

obtained from the other paleontological methods. Nannofossil taxa were identified by Dr. 

Mihaela Melinte at the Geomar Institute of Sciences in Bucharest, Romania.  

 

Samples prepared for coarse residues that include microfossils greater than 38 

micrometer were treated with commercial solvents (e.g. varsol, kerosene), detergents  
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(e.g. Alconox) and hydrogen peroxide (H2O2) or a combination of these methods 

whenever appropriate for better disaggregating results. After the initial break-up, samples 

were thoroughly washed with tap water through a series of sieves (150-38 μm) until the 

coarse residue was free of clay, and both silt particles and microfossils were loose. Dry 

coarse fraction was studied under a binocular microscope and SEM. The study of the 

foraminifera and radiolaria was carried out in an effort to characterize index taxa that 

may be helpful for biostratigraphy, as well as for overall compositional make up of the 

planktonic assemblages. Special attention was given to taxonomic successions and 

turnovers, and their possible correlation with organic carbon accumulation as observed in 

worldwide sections of the same age (Bralower et al., 1994 and references therein). 

 

4.5 Geochemical Analyses 

4.5.1 Inorganic geochemistry 

4.5.1.1 Carbon and Carbonate Content 

Analyses were conducted on all non-weathered samples using a Leco CR-412 analyzer. 

This method uses in general 0.025 - 0.5 g by weight of powdered sample per run. For the 

total carbon content (TC), samples were powdered with a micro-mill, desiccated below 

50°C for 2 hours and stored until analysis is carried out. Each sample was weighed in 

duplicate in a combustion boat and run in the LECO CR-412 analyzer; which provides a 

print-out of the results with the percentage of TC in the sample. To obtain total organic 

carbon (TOC) the procedure is similar to the TC, except that after initial desiccation 

samples were placed in a furnace at 500°C to remove the organic carbon. The differences 

in weight percent obtained for the duplicate sample allowed the calculation of the 
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percentage of organic carbon present in the sample by subtracting from the TC value. To 

obtain the CaCO3 value, the results for were subtracted from the previously obtained 

CaCO3 = TC-(TOC*8.33), the 8.33 factor corresponds to the mass ratio of the C atom per 

molecule of CaCO3. 

 

4.5.1.2 Major Elements and Trace Metals 

Sample preparation to determine trace metals used the EPA method 3050b (USEPA, 

1996), which involves partial digestion of the rock in strong acids that allows extraction 

of the trace metals related to its organic matter. Acids used for the analyses were trace 

metal grade, the water was distilled and deionized, and H2O2 was optima grade. The 

procedure for major and trace element analyses was as follows: 1 gram of sample was 

digested in 10 ml of 1:1 HNO3 at 95o C for 10 minutes, with addition of 5 ml of 1:1 

HNO3 until no more brown fume was released. The treated sample was left on the hot 

plate at 95o C until all liquid acid evaporates; then 2 ml of water and 3 ml of H2O2 were 

added to the dry residue, with continuous addition of 1 ml of H2O2 until bubbling 

subsided. The residue was covered and heated for 2 hours at the same temperature, and 

then 10 ml of 1:1 HCL were added and allowed to reflux for 15 minutes. After this 

process the sample was filtered and diluted to volume (100 cc) with distilled/deionized 

water. The resulting solutions were analyzed with a Jobin Yvon JY 70 Type III 

Inductively Coupled Plasma Atomic Emission Spectrophotometer (ICP-AES) for Na, Ca, 

Fe, Mn, Mg, Mo, V, Cr, Cu, Ni, and Zn) with an estimated precision of ±5% for major 

elements, and ±7% for trace metals.  
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4.5.1.3 Stable Isotopes on C Organic 

Stable isotope analyses of Carbon were carried out on the organic fraction with a 

Finnigan Delta C EA-IRMS (with TC/EA). For the stable isotope analyses, the technique 

used 0.1 – 90 mg of powdered rock per run. Each sample was treated with HCl to remove 

carbonate fraction and sulphur present in the rock. Oxidation was induced at temperatures 

between 850 and 1000°C in a stream of oxygen, or in the presence of a CuO catalyst. 

Ratios obtained were compared repeatedly with a laboratory reference gas under identical 

conditions and values are presented as a deviation of the PDB “Peedee Belemnite” 

standard.  

 

4.5.2 Organic Geochemistry 

4.5.2.1 Biomarkers 

Analyses were conducted on rock samples with at least 100 mg of organic carbon. The 

rock powder was weighed and extracted in dichloromethane for 24 hours in a Soxhlet 

apparatus, where a known quantity of internal standard squalene was added. The extract 

obtained was concentrated through rotary-evaporation under vacuum at 30°C; the extract 

was then saponified with 25ml of 1 N KOH to separate the acids from the neutral lipid 

fractions (Jaffe et al., 2001). After elution with hexane, the hydrocarbon fraction was 

analyzed with a GC/MS on a HP 6890 GC interfaced to an HP 5973 quadrupole scanning 

mass spectrometer. A 5% phenyl methylsilicon bonded phase (J & W DB-5MS) fused 

silica capillary column (30m × 0.25mm i.d. × 0.25um film thickness) was used for the 

separation. The GC oven was programmed to hold initial temperature of 40°C for 1min, 

and then ramped at a rate of 6°C/min to a final temperature of 300°C held for 20min.  
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Chromatograms of the results were analyzed and identified by comparison with the 

Wiley275 mass spectra library. 

 

4.6 Spectral Analyses 

Image methodology used in this dissertation involves image analysis together with time 

series analysis techniques (e.g. wavelet analysis and spectral analysis) in order to 

determine the continuity and periodicities that are tied to two-age frequency domains 

(e.g. decadal, Milankovitch). The program used to analyze the datasets was AutoSignal 

v.1.7 by SYSTAT, which allowed resolving both Fourier analysis and Continuous 

wavelet transforms CWT. I followed Patterson et al., (2004) by using a scaling ratio of 

10, which has shown good resolution in the periodicity domain, as well as “zero padding” 

at the beginning and end of the data series to reduce edge effects. Data were standardized 

to a mean = 0 and detrended. The final representation diagram in the time-frequency 

domain is known as a scalogram. Data is represented in the time series as gray scale 

intensities, thickness and TOC %. 

 

Here a continuous wavelet analysis CWT, and spectral analysis were carried out to the 

datasets to quantify the presence of cyclicity, and bandwidth dependent relations between 

the different time-series. Continuous wavelet transforms CWT as discussed by (Patterson 

et al., 2004) are mathematical correlation functions that break the data into smaller series 

frequency components as functions of time, and then each of the frequencies are 

individually analyzed at a resolution appropriate to its time-scale (Graps, 1995). This 
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approach was originally described and developed by Fourier (1822), where he described 

that any function can be approximated by a superposition of sines and cosines.  

 

However CWT was chosen over the Fourier analysis because CWT transform has the 

advantage of performing analyses to both the time and the frequency domains. The CWT 

uses as well a variable size window, an important characteristic that allows CWT to 

recognize high-frequency changes or cycles present in sedimentary sequences (Patterson 

et al., 2004) and enhances its geological application. The continuous wavelet transforms 

(CWT) process further permits to observe data at different frequency scales, making it 

particularly useful in geosciences (Graps, 1995). 

 

4.6.1 Data for Spectral Analysis of TOC/CaCO3 

Data used for the spectral analysis combined stratigraphic position and bed thickness with 

TOC variation obtained from the total organic carbon analyses performed on the LECO 

CR-412 as discussed previously in section 4.5.1.1. 

 

4.6.2 Data for Spectral Analyses of Thin Sections 

In order to carry out spectral analyses of micro-scale variations in the sediment, images 

were acquired in TIFF-format and then edited with COREL PHOTO PAINT image 

processing software. Thin sections were scanned and digitized at a resolution of 500 

pixel/cm, resulting in about 3000 linear pixel/thin section. Photomicrographs were used 

at a resolution of 1000 pixels/cm on the whole thin section in order to measure individual 

laminae, and to identify mineralogical and compositional variations. ERDAS Image 8.7 
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was then used to generate gray-scale values measured in strips perpendicular to the 

lamination. These values were recorded on a spreadsheet, and by interpolating gray scale 

values from adjacent pixels they were further corrected for extreme gray-values caused 

by small calcite veins, foraminifers and other large particles. 
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CHAPTER V  

LITHOSTRATIGRAPHY 

 

The following field work was carried out in January of 2003, at a locality west of the 

Hacienda de Perote Parras de la Fuente (Coahuila de Zaragoza), NE Mexico. The study 

focused essentially on rocks of the Indidura Formation that crop out along a gully 

adjacent to the hacienda (Figure 5- 1) where an excellent transect of the Formation was 

easily accessible.  Detailed field observations and sampling along that transect provided 

essential data for all the subsequent petrographical, geochemical and cyclicity analyses 

that I used for sedimentological and paleoecological interpretations. The results also 

further our understanding on existing processes during the deposition of the sedimentary 

sequence broadly placed under the name of Indidura Formation in northeastern Mexico. 

 

Figure 5- 1. Panoramic view of the section west of Parras de la Fuente, the Hacienda de Perote is 
in the foreground. 
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5.1 Field-scale description of the unit at the Hacienda de Perote. 

Precise localization of the stratigraphic section at the Hacienda de Perote is given by the 

GPS coordinates of 25° 26’ 17.9” N; 102° 12’ 54.7” W, which is about 3.23 kilometers 

west of town hall of Parras de la Fuente. The study site is accessed through the 

Hacienda’s property into the deep gully situated just north of the main house. The stream 

valley runs north-south, and is characterized by a slope close to 15o, and the stratigraphic 

sequence was measured along 207 meters of a section on the northern limb of an anticline 

just above the plains. The excellent exposure along the gully floor and banks allowed for 

a good observation and description of the sedimentary sequence. Although there are some 

intervals covered with slope wash, no major offsets (e.g. thrust faults) were observed to  

 

Figure 5- 2. Typical intercalations of the middle part of the Indidura Formation, hammer is 33 cm 
long. 
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disrupt the normal succession (Figure 5- 6).  The studied section would correspond to the 

middle part of the Indidura Formation found in the Sierra de Parras sensu Imlay (1936).  

 

Overall, the sedimentary sequence found at the Hacienda de Perote consists of 

interbedded packages of light olive-gray (5Y6/1) and brownish-black to olive-black 

(5YR2/1 - 5Y2/1) marlstone arranged in thin (ca. 5cm) to very thick (ca. 200 cm) beds; 

and brownish-black to olive-black (5YR2/1 - 5Y2/1) marly biocalcilutites arranged in 

thin (ca. 8 cm) to very thick (ca. 100 cm) beds as shown in Figure 5- 2. A salient 

characteristic of the measured section is that the different layers have a greater thickness 

in the lower 100 m of the stratigraphic succession, where the marly biocalcilutites beds 

have an average thickness of 50 cm and the marlstones beds of 1.5 m. The average  

 

Figure 5- 3. Some scarce and small Inoceramus labiatus? are found occasionally in the sequence. 
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thickness decreases in the superjacent 70 m, where the marly biocalcilutite and marlstone 

beds are about 15 cm and 50 cm, respectively. Also, the beds show a highly repetitive 

and regular arrangement.   

 

The uppermost 50 meters of the section shows recurrent thickening of the beds similar to 

the first part of the measured sequence, with an average thickness of 50 cm for the marly 

biocalcilutite and of 1.5 m for the marlstone beds. Thus, the facies succession shows an 

upward bed thinning that extends to about 140 m where the bed thickness decreases to an 

average of 10 cm for both lithologies, and then starts to slowly increase again until the 

end of the measured section. 

 

The sequence at the Hacienda de Perote is monotonous as it contains no apparent 

macrofossils, except for occasuional and very rare Inoceramus labiatus? (Figure 5- 3), 

and ammonites. Primary sedimentary structures related to hydrodynamic conditions are 

well preserved and readily observed at the outcrop scale because the sediment is 

generally not bioturbated, although sporadically some beds do show ichnofossils (Figure 

5- 4). e.g. Thallasinoides. 

 

At the outcrop scale all beds exhibit primary internal sedimentary structures that consist 

of even-parallel to wavy-parallel laminae; curved-parallel laminae are observed at some 

levels, but they never become the predominant type of internal lamination observed in the 

section. Marly biocalcilutites beds, specially the ones that occur above the first 90 m of 

the measured section show better-defined laminae than the marlstones beds, although all 
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units in the measured sequence are internally laminated. Marlstone compromises more 

than 60% of the measured interval with the marly biocalcilutites completing the rest. 

Close observation of contact surfaces between beds shows that most of the contacts are 

rather sharp, although a diagenetic evolution of the carbonate inside the different 

lithologies may have enhanced the bed boundaries as observed in other carbonate-rich 

sequences (Einsele and Ricken, 1991). 

 

Figure 5- 4. Ichnofossils, possibly of the ichnogenus Thallasinoides are found on some of the 
marly biocalcilutites beds. 
 

All together, the most striking characteristic of these beds is the presence of persistent 

dark and light parallel laminae 1 to 2 mm thick. When observed with the hand-lens 

laminae can be easily discerned, and with a thorough observation reveals that laminae are 

continuous over most of the length of the hand samples (ca. 10 cm). The typical 
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arrangement of laminae shows continuous laminasets through the beds, and they have a 

quasi-periodic arrangement (Figure 5- 5). 

 

5.2 Microscopic observations 

Detailed examination under plane and cross-polarized light microscope allowed 

furthering the identification of the microfossils, microstructures of the internal laminae, 

and qualitative composition of the minerals observed in thin sections.  

 

The polarizing microscope reveals even parallel to wavy-parallel micro-laminae 

composed primarily of calcareous objects in the shape of microspheroids that are either 

individual grains, or aggregates of calcite rhombohedra of 1-3 μm. The microspheroids 

range in size between 5 and 100 μm, with a median size of 20 μm, and are discernible as 

multiple-crystal calcite-filled structures. The microscopic structures of the laminae 

further indicate that they are formed of quasi-periodic occurrence of dark and light sub-

units forming couplets reminiscent of deposits described as “varves”, although there is no 

apparent petrogenetic relationship with that type of sediment. Micro-laminae are more 

distinct in the highly laminated marly calcilutite beds than in the marlstone beds, because 

laminae are created by the varying abundances of microspheroids as seen in thin sections 

(Figure 7- 4, Figure 8- 4). Light laminae are composed of greater than 95% of 

“microspheroids” (Figure 8- 4). The groundmass, or finer components, make up less than 

5% in the light laminae, whereas it is dominant in the dark ones where microspheroids 

become less abundant (<10%). Although microspheroids are the dominant carbonate 

components of the sediments, the darker laminae also include scattered planktonic  
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Figure 5- 5. Conspicuous laminae are the primary sedimentary features readily observed in the 
unit, these features are typically arranged in couplets that range from sub-millimeter to millimeter 
scale. 
 

foraminifera (mainly heterohelicids and double keeled forms), and scarce radiolarians 

(spumelarids). Undifferentiated clay-size particles together with organic matter make up 

the rest of the dark laminae. On the whole, dispersive framboidal pyrite occurs as 

aggregates up to 5% of the bulk sediment, while diagenetic pyrite cubes make up less 
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than 2%. Microsparite constitutes the main conspicuous cement, although cementation by 

clay minerals cannot be ruled out and is out of the scope of the research.  

 

Although at the macroscopic scale laminae exhibit an apparent lateral continuity, when 

observed under the microscope it becomes clear that laminae are discontinuous, since 

they occur as uneven discrete units with pinch and swell structures within a fine-grained 

calcareous matrix. 
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Figure 5- 6. Stratigraphic section of the Indidura Formation west of Parras de la Fuente at the 
Hacienda de Perote. 
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Figure 5- 6. Stratigraphic section of the Indidura Formation west of Parras de la Fuente at the 
Hacienda de Perote (continued). 
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Figure 5- 6. Stratigraphic section of the Indidura Formation west of Parras de la Fuente at the 
Hacienda de Perote (continued). 
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Figure 5- 6. Stratigraphic section of the Indidura Formation west of Parras de la Fuente at the 
Hacienda de Perote (continued). 
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6.1 Abstract 

Rock sequences of Cenomanian-Turonian age commonly assigned to the Indidura 

Formation in northeastern Mexico (Coahuila State) show distinct facies indicative of 

significant spatial variability over the carbonate platform. Three stratigraphic sections 

were selected to characterize these differences. 

 

Las Delicias section (stratotype) is composed of 10-30 cm thick beds of very-pale orange 

biocalcirudites, without internal primary structures. Allochems consist of abundant 

echinoderms, pelecypods, ammonites, and fewer planktonic foraminifera. Total carbonate 

(CaCO3) varies between 48% and 94%, and total organic carbon (TOC) between 0.7 % 

and 1.5 %. 

 

La Casita Canyon section, southeast of Las Delicias, consists of 3-30 cm thick interbeds 

of pale yellowish brown biocalcilutites and olive gray shales. Hand specimens show no 
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apparent depositional internal structures, whereas abundant bioturbation appears in thin 

sections. Allochems consist of sparse fragments of planktonic foraminifera and radiolaria 

concentrated in burrows. Total carbonate (CaCO3) varies between 0.8 % and 59.3 %, 

whereas TOC fluctuates between 0.17 % and 5.8 %.  

 

In contrast, the Sierra de Parras section, south of Las Delicias and west of La Casita, 

includes a sequence with well defined rhythms. They consist of 8-200 cm thick beds of 

light olive gray and brownish black, to olive black shales; and 5-100 cm thick marly 

biocalcilutites. Both facies exhibit similar internal structures arranged in nearly even-

parallel “varve-like” dual lamination (<3 mm thick). Microscopically, they include few 

planktonic foraminifera scattered in the dark laminae. Epifaunal remains include only 

sporadic pelecypods (Inoceramus). Total carbonate (CaCO3) content varies from 43% to 

78.3%, while TOC is relatively high between 7.3% and 24.3%, more often higher than 

20%. Microfacies in the Parras area reveal compositional differences in the laminae asso-

ciated with varying abundance of microspheres or “micro-ooids” that we attribute to be 

of cyanobacterial origin. Laminae developed from fluctuating cycles of calcareous 

cyanobacteria blooms, which remained dominant throughout the sequence. Corganic–rich 

black shales and limestones of the Parras region further document unique 

paleoceanographic conditions, which were also characterized by strong dysoxic/anoxic 

bottom conditions and rhythmical production of cyanobacteria. These conditions contrast 

sharply with prevailing paleoenvironments recorded at Las Delicias and La Casita where 

benthic epifauna, planktonic and nektonic organisms were able to thrive. Assuming that 
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these facies are coeval, microfacies and TOC analyses of these rocks further demonstrate 

distinct spatial differences between these areas.  

 

6.2 Introduction 

Evolution of Cretaceous oceans includes several episodes of Oceanic Anoxic Events 

(OAEs) that are particularly well recorded in Corganic–rich sediments around the Tethys 

from the Early Jurassic (Borrego et al., 1996) up to the Cenomanian/Turonian (C/T) 

boundary time (Lamolda, 1978; Lamolda and Mao, 1999). Geochemical studies of 

Cretaceous sediments around the Tethyan realm led to further quantitative interpretations 

of the paleoclimatic and paleoceanographic conditions at that time (Schlanger and 

Jenkyns, 1976; Jenkyns, 1980; Arthur and Premoli-Silva 1982; Arthur et al., 1990). 

Oceanic Anoxic Events (OAEs) are characterized by extensive preservation of organic 

carbon associated with widespread accumulation of “black shales” (Jenkyns, 1980; 

Bralower et al., 2002). The C/T interval is not only widely associated with deposition of 

black shales during the Oceanic Anoxic Event designated as OAE2, also known as the 

“Bonarelli Event”, but it is also characterized by the extinction of numerous taxa (Harries 

and Kauffman, 1990).  

 

As recorded elsewhere, sediments deposited in the shallow epicontinental seas that 

extended over northeastern Mexico also indicate that general conditions of sedimentation 

favored the preservation of organic carbon from the Jurassic to the Cretaceous. As for 

plausible causes of such unusual preservation of Corganic–rich compounds in the lower 

Aptian (OAE 1b) of the La Peña Formation of northeastern Mexico, Barragan (2000) and 
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Barragan and Maurrasse (2000) proposed that oxygen depletion caused an enhancement 

of the oxygen minimum zone due to an increase in oceanic water temperature related to 

tectonovolcanic effects associated with the Pacific super-plume events, which produced 

excess heat flux at that time. Their interpretation is compatible with Tatsumi et al., (1998) 

inference that elevated temperatures, as well as changes in ocean chemistry, oceanic 

circulation and sea level, were all factors that played a major role in oxygen depletion 

events during the mid-Cretaceous hypoxic conditions. Hence, the net result of the 

superplume events associated with the lower Aptian (OAE 1b) is distinguished by a 

general enhancement of the oxygen minimum level in the Tethyan realm and 

epicontinental seas where there was an increase in TOC, (up to 20+%), in the La Peña 

Formation, for instance. The patterns of occurrence/disappearance of the benthic fauna 

(Barragan, 2000; Barragan and Maurrasse, 2000) further corroborate the anoxic 

conditions coincident with OAE 1b.  

 

In the present work we discuss the different facies commonly assigned to the Indidura 

Formation, and focus special attention to sediments in the Parras Mountains, a rock 

sequence from northeastern Mexico (Figure 6 - 1), which covers the C/T boundary, a 

time also known to include a significant Oceanic Anoxic Event. With still many 

unanswered questions concerning the Corg-rich Cretaceous sediments of that time, the 

present work presents geochemical and petrographic analyses that will shed further light 

on our understanding of the sedimentary cycles and Corg-rich events of the Indidura 

Formation (Duque-Botero and Maurrasse, 2002a,b). We also present evidence of the role 

played by cyanobacteria in the biological-sedimentological processes that were 
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significant in the formation of Corg-rich deposits in northeastern Mexico, and perhaps 

similar processes may be applicable elsewhere in the geological record  

 

Figure 6 - 1. Map of Mexico showing the location of the study region in relation to northeastern 
Mexico. Close up of the region with localization of the three stratigraphic sections. 
 

6.3 Physical Stratigraphy of the Study Area 

It has long been recognized that Cretaceous rocks of northeastern Mexico indicate that 

complex and lasting shallow-platform environments were established over the area since 

at least the Valanginian (Imlay, 1936). The general stratigraphy (Figure 6 - 2) includes 

the following predominately calcareous units: The Taraises Formation composed of 

calcareous shales and fossiliferous limestones with intervals rich in mollusks (Imlay, 

1936). The type locality may include Berriasian to lower Hauterivian strata (Humphrey 

and Diaz, 2003). The Capulin Formation (Humphrey and Diaz, 2003), formerly referred 

to as Las Vigas Formation by Imlay (1936) following the work of Burrows (1910). The 

formation is composed “principally of fine- to medium-grained brown to yellowish 

brown calcareous sandstones and siliceous, shaly somewhat sandy limestones” 
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(Humphrey and Diaz, 2003). According to Humphrey and Diaz (2003) the formation 

does not include diagnostic fossil to allow its time stratigraphic correlation. Nonetheless, 

based on its stratigraphic position, they suggest that it may lie between the late  

 
 
Figure 6 - 2. Generalized stratigraphic section (not drawn to scale due to lateral variations in 
thickness) of northeastern Mexico showing the main units present in the western part of the Sierra 
de Parras; data compiled from Imlay (1936, 1937). 
 

Hauterivian and the early Barremian. The Cupido Formation (Imlay, 1937; Humphrey, 

1949), overlies the Capulin Formation, and consists of dark gray to black limestones with 

rudists assigned to the Barremian. Deeper-water limestones and marls of Barremian to 

Aptian ages occur westward of the platform, and are commonly referred to as the 

Tamaulipas Formation (Ross et al., 1981). The La Peña Formation (Imlay, 1936, sensu 

Humphrey, 1949) overlies the Cupido limestones and comprises marl/shale facies with 

ammonites of Aptian age. They are succeeded by gray Aurora limestones (Imlay, 1940), 

grading into thinly-bedded, shaly limestones, gray shales and numerous chert stringers 

described as the Cuesta del Cura Limestone (Imlay, 1936, 1937) of late Albian age. The 
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latter is overlain by the sedimentary sequence of the Indidura Formation, named and 

described by Kelly (1936) in the Las Delicias area of western Coahuila State.  

Kelly (1936, p. 1028-1029) defined the Indidura Formation as composed in its lower part 

of “…imperfectly consolidated buff shales containing many crystals of selenite. A thin 

transitional zone of intercalated platy limestone and shale is included with the Indidura. 

The highest beds observed are imperfectly stratified buff shales containing numerous 

veinlets of selenite”; he further added that “…the formation is about 100 feet thick and is 

divisible in three parts. The lower and upper divisions include the shale beds already 

mentioned. The middle division consists of interbedded rubbly, gray, pink and red 

argillaceous limestones, platy limestones and calcareous shale. Some fossils were 

collected from the lower division, but they are more numerous in the middle, where there 

are some fossiliferous horizons. Echinoidea, pelecypoda, and cephalopoda are the best 

represented classes”.  Shortly thereafter, Imlay (1936) further expanded the name Indi-

dura Formation to rock sequences in the rest of the Sierra Madre Oriental.  Jones (1938) 

later reported the fauna as of transitional character, and of Cenomanian-Turonian age.  

 

According to Imlay (1936), the Indidura Formation of the Parras area is in gradational 

contact with the Cuesta del Cura Formation, and is marked by the appearance of gray 

shale beds. In that area, the Indidura Formation was estimated to reach a maximum 

thickness of 1,900 ft (578 m), and consists of interbedded black and gray shale  (up to 75 

cm), with black to yellowish limestone (up to 35 cm). The lowermost part of the Indidura 

Formation consists of an estimated 243 to 274 meters of powdery, and in places 

laminated, gray calcareous shales, with thin intercalations of dark gray limestones beds 
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that are either lenticular or continuous. The middle part consists of an estimated 121 to 

152 meters of finely laminated “salt and pepper” shales that alternate, particularly in the 

lower 20 meters, with sandy shales that contain lenses of brown selenite up to 80 cm 

thick. The uppermost part consists of 152 meters of platy, gray calcareous shales and 

brown to light-gray shaly limestones with some intercalations of sandy shales that contain 

abundant selenite crystals. The uppermost section of the rocks assigned to the Indidura 

Formation in the Sierra de Parras area is in sharp contact with the overlying Parras 

Formation. Based on its fossil content, Imlay (1936, 1937) assigned a Cenomanian-

Turonian age to the Indidura Formation in the western part of the Sierras de Parras, and 

suggested that it might include Lower Coniacian. The Parras Shale (Imlay 1936,1937)  is 

composed of black calcareous shale with interbedded dark gray siltstone, its age is 

uncertain due to the scarcity of diagnostic fossils.  

 

6.4 Samples and Laboratory Methods 

Samples of rock sequences attributed to the Indidura Formation were collected from three 

sections in the Sierra Madre Oriental, NE Mexico. These sites are found 1) in the Sierra 

de Las Delicias “the stratotype area” (Kelly, 1936); 2) in the canyon la Casita (Imlay 

1936); and 3) near the town of Parras de la Fuente, Coahuila (Duque-Botero and 

Maurrasse, 2002b), see Figure 6 - 2 for localities. Thin sections were prepared, described, 

and characterized with the help of a polarized light microscope using Folk’s (1980) 

classification scheme. Polished rock slabs and thin sections were acid etched following 

the technique described by Folk (1993), and were analyzed for imaging and 

semiquantitave chemical analysis with a SEM JSM-5900-LV. Samples were later 
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described for intrinsic sedimentological characteristics and microstructures that are not 

observable with standard petrographic microscopes. Analyses for carbon/carbonate 

content were conducted on fresh samples using a LECO CR-412 analyzer, and results are 

presented as carbon percent C (%) for dry weight bulk sample. 

 

6.5 Data and Results 

6.5.1 Sedimentary and petrographic descriptions 

6.5.1.1 Las Delicias (type locality area) 

As observed at the type locality selected by Kelly (1936), at the field scale the Indidura 

Formation is composed of interbeds of very-pale orange (10YR8/2) biocalcirudites and 

marls 10-30 cm thick. Macrofossils include abundant ammonites, echinoderms and 

pelecypods. The beds are rather stuctureless (Figure 6 - 3 A,B), both at the macroscopic 

as well as the microscopic scales.  Total obliteration of kinematically produced aqueous 

primary structures is consistent with high aerobic levels in the water column and within 

the upper part of the sedimentary column as attested by the rich epifauna (Brenchley and 

Harper, 1998).  

 

Petrographically, calcite makes up an average of 80% of the main constituent with values 

as high as 93%. Other minor constituents include pyrite cubes (<8%), and rounded 

glauconite grains. Microsparite is the chief cement with less than 10% of the total rock 

groundmass recrystallized into sparry calcite. Benthic and planktonic foraminifera 

comprise no more than 5% of the total fossil assemblage. Most macrofossils and 

microfossils are filled with recrystallized sparry calcite (Figure 6 - 3 B,C). 
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Figure 6 - 3. A) Petrographic thin section from Las Delicias: showing no primary sedimentary 
structures. Abundant fragments of echinoderms, gastropods and pelecypods molds are observed 
(scale bar = 1.5 cm). B and C) Biocalcirudite microphotographs (plain light). Microsparite is the 
predominant cement, recrystallized echinoderm and gastropod molds make up most of the rock. 
Arrow in (B) points to pyrite grains, in (C) to glauconite grains (B and C scale bar = 500 µm). 
 

6.5.1.2 La Casita Canyon 

Rocks assigned to the Indidura Formation at the La Casita canyon are composed of 3 to 

30 cm-thick interbeds of pale yellowish brown (10YR6/2) biocalcilutites and olive gray 

(5Y3/2) shales. Macroscopically the beds exhibit no internal lamination. Closer 

observation reveals extensive burrowing (Figure 6 - 4 A) that may have obliterated any 

primary subaqueous structures that could have been associated with sedimentation. 

Although no benthic fossils were found, such biogenically induced isotropic fabric is 

consistent with aerobic bottom waters (Brenchley and Harper, 1998) that allowed 

epibenthos and inbenthos colonization with subsequent destruction of initial laminae. 
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Petrographically, clay minerals are the dominant constituents, with an average of 68% 

and a maximum of 98%. Carbonate components can reach values up to 50% of the rock, 

as recrystallized foraminifera and calcitized radiolarians, which are concentrated in 

burrow-filling structures (Figure 6 - 4 B,C), and micrite is the main cement. 

 
 
Figure 6 - 4. A) Petrographic thin section from La Casita: no laminations or original internal 
features are observed, small burrows < 2 mm in diameter are seen (scale bar = 1.5 cm). B and C) 
Biocalcilutite microphotographs (plain light). Filled burrows contain planktonic foraminifera and 
few radiolarians. Some microfossils are scattered outside burrows (B and C scale bar = 500 µm). 
 

6.5.1.3 Parras de la Fuente area 

At a locality west of the town of Parras de la Fuente, in the northwestern flank of the 

Sierra de Parras (GPS coordinates; 25° 26’ 17.9” N; 102° 12’ 54.7” W); the sequence 

referred to as the Indidura Formation consists of interbedded light olive gray (5Y6/1) and 

brownish black to olive black (5YR2/1 - 5Y2/1) calcareous shales (5-200 cm thick), and 

marly biocalcilutites (8-100 cm thick). At the field-scale, the sequence is monotonous and 
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contains only scarce inoceramids and few ammonites, and both types of rocks reveal the 

presence of continuous and persistent 1-2 mm thick fine laminae (Figure 6 - 5A). At the 

microscopic scale, petrographic studies of the thin sections reveal that laminae are 

formed by intercalation of even-parallel to wavy-parallel, light and dark sub-units that 

resemble varve deposits. Light laminae are mainly composed of calcite-filled “micro-

ooids” or “microspheres” between 5 and 100 μm with a median size of 40 μm (Figure 6 - 

5 B, C). These granular components are less abundant in the dark laminae that also 

include few scattered planktonic foraminifera, and scarce radiolarians. In addition to the 

microspheres, the main components of the matrix include 30 to 50% undifferentiated 

 

 
 
Figure 6 - 5. A) Petrographic thin section from Parras area: conspicuous parallel laminations 
clearly form couplets that resemble ‘varves’. Laminae are even-parallel and are classified as very 
thin laminae <3 mm (scale bar = 1.5 cm). B and C) Biocalcilutite microphotographs (plain light), 
laminations at this magnification when compared with the macro level are not continuous, but 
instead they form a wavy pattern that is characterized by lower to higher concentration of 
‘microspheres’ (B and C scale bar = 500 µm). 
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clay-size particles, up to 5% scattered framboidal pyrite aggregates, and microsparite is 

the main cement, although microsparite is found in microfractures.  

 

Microscopic observations also reveal that the conspicuous laminae observed at the 

macroscopic scale are in fact not continuous; they occur as uneven discrete units with 

pinch and swell structures. The types of structures associated with the “microspheres” are 

similar to those shown by Kazmierczak and Kempe (1992), Kazmierczak et al. (1996), 

Tribovillard (1998), Kazmierczak and Altermann (2002), and Tribovillard et al. (2000) 

that have been interpreted to be of bacterial origin.  

 

6.5.2 Scanning Electron Microscope (SEM) descriptions 

Backscatter and secondary electron imaging of samples from Parras de la Fuente 

corroborate and further define the microstructures observed in the petrographic analyses. 

As stated previously, lamination does not occur in samples of either Las Delicias or the 

La Casita sites. The shales and biocalcilutites from the Parras area are predominately 

composed of distinct microspheres that are consistently spherical, semi-spherical and 

ovoid in shapes (Figure 6 - 6 H - M). They occur as scattered individuals, and in 

aggregate strings of microspheres (Figure 6 - 6 B, F). Most of the microspheres regularly 

exhibit a 3 to 5 μm-thick rim of microcrystalline calcite reminiscent of a “test”.  

 

Microspheres are made up of single or multiple crystals of sparry calcite aggregates that 

are analogous to the internal structures of strings of attached cells described by Gobulic 

and Campbell (1981), and to cell-like structures (Kazmierczak and Krumbein, 1983; 
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Figure 6 - 6.  Scanning Electron Microscope images. High magnification allows us to show that 
microspheres have spherical (A, C, D, G, H, I, J, L), semispherical and ovoid shapes (B, C, E), 
and consistently exhibit a 3 to 5 µm rim of microcrystalline calcite that is reminiscent of a test. 
Microspheres are made up of single (C, H, I, L) or multiple crystals of sparry calcite (A, B, D, E, 
F, G, J) and are found isolated (H, I, J, L) or as aggregates that resemble strings of attached cells 
(A, B, C, D, E, F, G). K and M are pyrite framboids. K is a close up of a pyrite framboid found 
inside L (arrow), and M is a framboid in the matrix.  
 

Kazmierczak and Altermann, 2002) interpreted to be the result of the calcification of 

living cyanobacteria. Some of these strings may resemble heterohelicid planktonic 

foraminifera in edge view, but we rule out this possibility because the shell structure is 

different, and it is unlikely that biserial foraminifers would consistently orientate in such 

a way as to have only the edge view exhibited in both SEM and petrographic images. 
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SEM semi-quantitative EDS analyses of samples from Parras de la Fuente and Canyon la 

Casita supports the petrographic observation of a high clay content of these sites. Data for 

the Canyon la Casita shows a high silica and aluminum content in the matrix  

(Figure 6 - 7). The observed pattern is characteristic of minerals of clastic origin and most 

probably of the clay group, consistent with the EDS analysis of high silica and aluminum. 

The matrix at Parras de la Fuente is composed mainly of microcrystalline calcite and  

minor amounts of framboidal pyrite (Figure 6 – 8). 

 

 
Figure 6 - 7. SEM-EDS image and semi-quantitative chemical analysis from Parras de la Fuente. 
Matrix (A) analysis shows higher abundance of silica, aluminum, potassium and iron when 
compared to ‘microspheres’ (B). 
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Figure 6 - 8. SEM-EDS image from Canyon la Casita. Foramifer (A) analysis shows high 
abundance of silica indicating silicification. Matrix (B) shows silica, aluminum and iron being 
abundant in the matrix; the latter two are not present inside microfossils. 
 

6.5.3 Carbon/Carbonate analysis 

Samples from the three sections were analyzed for their relative percentages of organic 

and inorganic carbon, and the results are presented as percentage (%) of total dry weight 

of the bulk sample (Table 6- 1). The data clearly show strong and marked differences in 

the carbon/carbonate contents between the three areas (Figure 6 - 9). 

 

Results from Las Delicias (stratotype area) yield carbonate percentages that vary between 

48 and 90%, and TOC between 0.73 and 1.9 %, while the non-carbonate fraction ranges 

from 4.5 to 50% (Figure 6 - 9, Table 6- 1). These values are consistent with the 

petrographic observation of high carbonate content. Relatively low TOC is also in 



 64

agreement with our previous inference of a well-oxygenated bottom that not only 

sustained a rich benthic fauna that homogenized the sediments, but also caused oxidation 

of organic matter and enhanced  microbial degradation (Andersen and Kristensen 1992).  

 

Figure 6 - 9. Total Organic Carbon (TOC) and Total Carbonate (CaCO3) contents. Samples from 
the three sections show distinct proportions indicating that environmental conditions greatly 
differed over the accumulation area.  High TOC values correlate with low bioturbation as see in 
Figure 6.5, while lower values are associated with distorted primary sedimentary structures and 
burrowing (Figs. 6.3 and 6.4).  
 

Results from Canyon la Casita yield carbonate percentages that vary between 0.8 and 

59.3%, and TOC between 0.1 to 5.8%, but most consistently below 2%. As deduced from 

the TC values shown in Table 6- 1, the non-carbonate fraction ranges from 34.8 to 

98.9%. Since TOC values vary independently from total non-carbonate fraction, they 

imply that the influx of terrigenous supply did not control the preservation of the organic 

matter (Canfield, 1992). Although total carbonate has been affected by diagenesis, as 

shown by the calcified radiolarian tests, TOC values being weakly covariant with the 

carbonate content suggest that the triggering factors that controlled carbonate producers 
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also affected the total biomass production that caused enhanced organic carbon 

accumulation and/or preservation.  

 Sample Total Carbon (wt%) Total Carbonate     (wt% CaCO
3
) TOC (wt%) 

MXF-1      27.40 43.08 22.23 
MXF-2A    15.95 71.55 7.36 
MXF-2C    26.18 44.60 20.83 
MXF-3      21.55 65.90 13.64 
MXF-4A    22.78 78.29 13.38 
MXF-4B    21.27 69.92 12.88 
MXF-5      29.95 46.32 24.39 
MXF-6      25.41 69.82 17.03 
MXF-7      25.73 65.96 17.81 
MXF-8      30.30 73.80 21.44 
MXF-N-14  27.64 73.48 18.82 
MXF-N-15  26.19 63.16 18.61 
MXF-N-16  26.64 49.94 20.65 

Parras de la Fuente 
 

 

MXF-N-18  29.68 57.87 22.74 
MXF-N-1   7.98 51.97 1.74 
MXF-N-2   4.73 26.04 1.61 
MXF-N-3   4.94 15.69 3.06 
MXF-N-4   0.28 0.84 0.18 
MXF-N-5   1.95 9.37 0.83 
MXF-N-7   6.11 36.63 1.71 
MXF-N-8   4.70 30.74 1.01 
MXF-N-9   4.74 25.00 1.74 
MXF-N-10  3.02 17.61 0.91 
MXF-N-11  5.87 30.73 2.18 
MXF-N-12  12.98 59.31 5.86 

Canyon La Casita 

MXF-N-13  5.13 37.38 0.64 
MXF-N-20 10.30 78.89 0.83 
MXF-N-21  7.68 48.08 1.91 
MXF-N-24  12.98 93.74 1.73 
MXF-N-25  11.39 88.73 0.74 

Las Delicias 

MXF-N-26  12.51 90.97 1.59 
 
Table 6- 1. Carbon analysis values are expressed as carbon percent C (%) for dry weight bulk 
sample, except in the central column where carbonate percentages of each sample are indicated 
(TOC=Total organic carbon).  
 

Results from Parras de la Fuente area yield high carbonate percentages with values 

varying between 43% and 78.3%, a much higher range than those observed at Canyon la 

Casita,   but within the range of values observed at Las Delicias. TOC values are also the 



 66

highest out of the three areas, with values between 7.3 and 24.9%, and commonly higher 

than 20%. The non-carbonate fraction varies between 4.7 and 34.6% (Figure 6 - 9,  

Table 6- 1) and independently from the TOC values, as discussed for the site at la Casita. 

The high TOC values coincide with sedimentary facies with minimum bioturbation, and 

therefore where laminae and original fabric are preserved.  

 

6.6 Discussion and Conclusions 

Assuming coevality of the facies between the different sites at Las Delicias (type area), 

Canyon la Casita and Parras de la Fuente, their high variability in sediment type, faunal 

content and TOC, underscores non-uniform environmental conditions over the Mexican 

Platform.  

 

Comparison of the TOC values versus all other constituents from the areas studied shows 

great variation in the Corganic contents (7.3% to 24.9% at Parras) that can be interpreted 

to be the result of differences in oxygenation level, productivity and preservation of the 

organic matter. Based on the macrofaunal composition of the facies that occurs at Las 

Delicias, it is evident that waters at that site remained more oxygenated. Thus, the lower 

TOC values (0.73 – 1.9 %) in that area may be indicative of higher oxic level and faster 

degradation of organic matter that may have been produced. Although we cannot 

preclude that organic production was effectively lower, conditions conducive to 

degradation of organic matter may have been further enhanced by metazoan benthos 

bioturbation, which can stimulate microbially mediated decomposition reactions 

(Andersen and Kristensen, 1992). 
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The sedimentary sequence studied at Parras has been commonly assigned to the Indidura 

Formation, but our study provides further evidence to corroborate previous suggestions 

(Imlay, 1938) that lateral correlation with the stratotype at La Delicias remains unclear 

because the two types of facies are quite different. In fact, their lateral continuity is 

undocumented in either area, and this issue was raised by Imlay (1938, p. 1692) who 

noted that “…Comparing the highly fossiliferous Indidura formation in central Coahuila 

with the un-fossiliferous so-called Indidura formation in areas off-shore from the 

Coahuila Peninsula, the question arises as to whether they should be recognized by the 

same name.” This discrepancy between the facies is further supported by the results of 

our work showing that various parameters such as field-scale observable rock 

characteristics, microfacies, as well as organic carbon, and carbonate contents show 

fundamental dissimilarities usually associated with lithostratigraphic units of next higher 

rank to formation (NACSN, 1983). Thus, as compared to the type area, usage of the term 

“Indidura Formation” in the Parras Mountains is for practical purpose, and is therefore in 

a broad sense (sensu lato) based on precedence, until the issue is further addressed in our 

ongoing investigation. By analogy with structures previously reported to be bacterially 

generated, microgranules that make up the main constituents of the laminae in the 

sequence at Parras are interpreted to represent deposits produced by bacterial activities 

that accumulated as bacterial mats. In fact, the laminae are identical to sedimentary 

laminae described by Schieber (1986), O’Brien and Slatt (1990) and O’Brien (1996) in 

Paleozoic shales, and associated rocks. The presence of very few inoceramids, the 

absence of other benthic organisms, and low level of bioturbation throughout the 

sequence at the Parras site are corroborative evidence that dysoxic to anoxic bottom 
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water prevailed within the time interval studied. Differences between the sites are 

interpreted to be related to paleogeophysiographic irregularities of the Mexican Platform, 

and associated differences in paleoceanographic conditions that controlled variabilities in 

the sedimentary record. 

 

In fact, sedimentary and fossil structures similar to those identified in the Parras 

sediments can be equated to fossilized counterparts of present cyanobacterial and 

microbial communities (Tribovillard, 1998; Tribovillard et al., 2000).  Similarly, 

differential accumulation rates of the bacterial masses gave rise to pinch and swell 

structures (Schieber, 1986). The scarcity or consistent absence of both planktonic and 

benthic fauna also indicates competitive exclusion caused by perennial dominance of 

bacterial colonies throughout the water column.  

 

Perhaps, in addition to special local physiographic factors inherent to the Mexican 

Platform, upward flux of nutrients that sustained high cyanobacterial productivity for 

such extended period may have been influenced by global forcing factors associated with 

the overall warm and equable climates that prevailed at these times. Warmer global 

temperatures would certainly increase evaporation, and given the proper regional 

physiographic conditions would consequently induce generation of thermohaline warm 

saline bottom water (WSBW), which in turn increased upwelling. Such mechanism can 

enhance higher productivity, and maximize the storage of mass quantities of organic 

matter in worldwide events (Jenkyns et al., 1994; Norris et al., 2001). 
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We conclude that close analogs to such microbial production are those of planktonic 

blooms of calcifying cyanobacteria (Robbins and Blackwelder, 1992; Robbins et al., 

1997; Yates and Robbins 1998, 2001), and non-calcifying cyanobacteria (Carpenter and 

Romans, 1976; Carpenter, 1983) reported as common occurrences in present oceans.  In 

the Indian Ocean, for instance, differences in stratification of the near-surface waters 

caused by the monsoon periods control the alternant of nitrate-limited cyanobacterial 

blooms versus normal phytoplankton productivity (Devassy et al., 1978; Sen Gupta and 

Naqvi, 1984).  When phytoplanktons are able to thrive they limit bacterial colonies, 

which then become more dispersed. We believe that a similar cyclic production of 

picoplankters may explain the presence of dark laminae ‘cyanobacterial rich’ (anoxic 

conditions) and light laminae ‘cyanobacterial poor’ (dysoxic conditions). In addition, 

unusually high bacterial productivity may explain enhanced oxygen depletion recorded in 

the depositional environment of the Parras area, where relatively low-oxygen 

concentrations that existed in the “Mid” Cretaceous oceans (Tatsumi et al. 1998) would 

further exacerbate the conditions in that area as compared to the other sites.   

 

Another factor to consider is the possible role played by iron in these environments, as 

experiments by Coale et al. (1996) have demonstrated that primary productivity can be 

highly affected by the introduction of even small quantities of Fe into the upper water 

column, causing oceanic phytoplankton blooms. The pattern of TOC fluctuation in the 

area studied suggests that a similar influence may have played an important role during 

the accumulation of the Corganic-rich sediments on the northeastern Mexican basin at 

that time.  Several scenarios can be considered to provide likely sources for Fe, e.g. wind-
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blown particles, enhanced hydrothermal activity, and riverine input. We believe that a 

wind-blown provenance is less likely, because of the limited areal extent of deserts 

during the Cretaceous, as attest only few occurrences of eolian deposits (China, Canada, 

Africa and Brazil). Such record is compatible with expected global response to warm and 

equable climates during “green house conditions” (Loope et al., 1998; Bird, 1984). 

 

Enhanced hydrothermal activity can be a relevant factor at that time, which corresponds 

to increased sea floor spreading activity, as well as emplacement of the latest stages of 

Large Igneous Provinces (LIP’s) such as the Ontong Java and Caribbean plateaus (Sinton 

and Duncan, 1997; Kerr, 1998). Thus, increasing flux of iron in the ocean waters may 

have permitted large-scale phytoplankton blooms in areas where Fe acted as a bio-

limiting nutrient. In such cases, intensified supply of organic matters and decomposition 

through the water column would also intensify oxygen consumption, hence reducing 

available O2, conditions that will be optimum for generation of Corg-rich deposits. 

Although this is a likely process that may have contributed to the cyanobacterial blooms, 

it does not explain the cyclical lamination and larger-scale interbeds observed in the 

Indidura Formation (s.l). 

 

Riverine input that may reflect a seasonal component seems the most likely triggering 

mechanism to explain the high frequency of changes recorded by the laminae. As 

observed in present environments, periodic influx of fresh water rich in clays, dissolved 

iron and other nutrients, could have induced conditions in the “Mid Cretaceous” where 

cyanobacteria were able to thrive almost at the exclusion of all other organisms. In 
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particular, the situation of the basin associated with the facies at Parras would have been 

comparable to patterns of riverine iron influx and its critical role in the accumulation of 

sapropels in the Mediterranean Sea. In the latter case, the pattern fluctuated as the head 

and catchments areas of the Nile shifted due to changes in the position of the Intertropical 

Convergence Zone (Krom et al., 2002). By analogy, paleogeographic conditions in the 

Gulf of Mexico/ Northeastern Mexico region may have been conducive to similar 

periodic incursions of iron-rich or iron-poor riverine waters in the existing basin associ-

ated with the Mexican Platform. In combination with a fortuitous nitrogen limitation, 

these fluctuating iron supplies could have created favorable conditions for periodically 

enhanced cyanobacterial blooms that produced high concentrations of Corg-rich detritus. 

Consequently, low dissolved O2 further allowed alternating accumulation of Corganic-

rich sediments in a recurrent mode that generated the sedimentary features or varve-like 

laminae and beds couplets observed in the succession of the Indidura Formation (s.l) at 

Parras. 
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7.1 Abstract  

We present evidence of accumulation of calcareous cyanobacterial 

“microspheroids” as predominant components of the Cenomanian-Turonian Indidura 

Formation of northeastern Mexico. The unit at Parras de la Fuente includes a sequence of 

limestones and marls with well-defined light-dark rhythms at the decimetric to 

millimetric scale, in which CaCO3 and total organic carbon vary between 43-78% and 

0.3-3.6%, respectively.  

 

A distinctive feature of the section is the presence of abundant millimeter-scale 

microlaminae arranged in nearly even-parallel white and dark gray “varve like” dual 

lamination less than 3 mm thick, in which the darker units contain scattered planktonic 

foraminifera and radiolaria, whereas the lighter microlaminae are dominated by calcitic 

microspheroids (20-40 μm). The white laminae are evidently the result of recurring 

cycles of calcareous cyanobacterial blooms, possibly associated with fluvial dilution of 

surface waters.  
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The organic carbon-rich laminated marlstones and laminated biocalcilutites of the 

Indidura Formation document paleoceanographic conditions favorable to unusual 

cyanobacterial productivity cycles that were also characterized by strong dysoxic/anoxic 

bottom conditions. 

 

7.2 Introduction 

Recent studies of the Jurassic (Tribovillard, 1998) and Cretaceous (Kenig et al., 2001) 

systems from the Jura Mountains (France) and Cretaceous Western Interior Seaway 

(USA), and northeastern Mexico (Duque-Botero and Maurrasse, 2005) have shown that 

cyanobacteria can account for large proportions of marine organic matter. Arguments in 

favor of cyanobacteria as the main contributors to the Precambrian and Paleozoic rocks 

are also presented by Pratt (1984, 2001), Kazmierczak et al. (1996), Arp et al. (2001). 

Riding (2002) further argued that benthic cyanobacterial communities are the main 

constituents of calcium carbonate of Paleozoic and Precambrian carbonate sediments, 

while Ehrlich (1998) emphasized the idea that grazing pressure may explain the absence 

of cyanobacterial and bacterial deposits (micrite mud suppliers) in sedimentary sequences 

younger than Paleozoic, thereby causing a reduction in the preservation of calcium 

carbonate (CaCO3) as a byproduct of photosynthesis.  On the other hand, Arp et al. 

(2001) believed that the decrease in preservation of bacterial deposits during the 

Phanerozoic was directly controlled by changing concentrations of dissolved CO2 and 

Ca+ ions in the ocean, and argued that precipitation is recorded only in restricted 

environments.  
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In present-day marine environment, structures such as cyanobacterial S-layer are 

identified as nucleation sites for CaCO3 development (Schultze-Lam et al., 1992). 

Robbins and Blackwelder (1992) also demonstrated that the formation of whitings 

offshore Bahamas is related to cyanobacteria-induced precipitation of carbonate. Induced 

precipitation of calcite by aerobic and anaerobic bacteria, and cyanobacteria has been 

noted in both aquatic and terrestrial environments (Krumbein, 1974; Morita, 1980; 

Thompson and Ferris, 1990; Merz-Priess, 1992; Braissant et al., 2003). 

 

Studies of Cretaceous sediments around the Tethys realm revealed that the mid 

Cretaceous was a time when unique paleoclimatic and paleoceanographic conditions 

(Schlanger and Jenkyns, 1976; Jenkyns, 1980; Arthur et al., 1990) favored unusual 

blooms of these prokaryotes. It is also known from the geological record that multiple 

and large igneous provinces (LIP’s) formed from the outpouring of millions of cubic 

kilometers of basaltic magmas into the Cretaceous oceans (Larson, 1991; Sinton and 

Duncan, 1997; Kerr, 1998). Thus, emplacement of LIP’s enhanced these conditions by 

their effects on both atmospheric and oceanic circulations due to increase in water 

volume by thermal expansion, and increased green house gases into the atmosphere 

(Brumsack, 2006). Indeed, the consequences of these major disturbances left their 

hallmarks in the geochemical, paleontological and sedimentological records in both deep-

ocean and epicontinental-sea deposits of that time. Some of these major disruptions 

named “Oceanic Anoxic Events” (OAE’s) are characterized by extensive preservation of 

organic carbon associated with widespread accumulation of “black shales” (Jenkyns, 

1980). The Cenomanian/Turonian boundary interval was specifically influenced by such 
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an event, termed the “Bonarelli Event” or OAE2 (Harries and Kauffman, 1990; Leckie et 

al. 2002). 

 

Of special interest are the results of biomarker studies of Cretaceous OAE’s that indicate 

a change in the type of organic matter produced and preserved during the anoxic intervals 

characterized by an increase or expansion of Bacteria-Archea-Cyanobacteria compounds 

(Kuypers et al., 2004; Dumitrescu and Brassell, 2005). We provide further 

sedimentological and petrographic evidence of cyanobacteria as the main constituents of 

the carbonate fraction in the Cenomanian/Turonian deposits of the Sierra Madre Oriental, 

Coahuila State, NE Mexico (Figure 7- 1). Sedimentary cycles of the Indidura Formation 

also allow a better understanding of the role that cyanobacteria played in the 

sedimentological processes that led to significant formation of Corg-rich deposits in that 

region.  

 

 

 
Figure 7- 1. Map showing location of the study area. 
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7.3 Stratigraphic Framework 

Cretaceous rocks of northeastern Mexico indicate that complex and lasting platform 

environments were established over the area since at least the Valanginian.  As reviewed 

by Imlay (1936), who studied the stratigraphy of the Sierra Madre Oriental in the area of 

Saltillo-Torreon, the sedimentary sequence known as Indidura Formation was named and 

described by Kelly (1936) in the Las Delicias area of western Coahuila State  

(Figure 7- 1). Imlay (1936) expanded the name Indidura Formation (Figure 7- 2) to rock 

sequences in the rest of the Sierra Madre Oriental, including the Parras area where the 

site studied is located. The Indidura Formation in the Parras area (Imlay, 1936) shows a 

transitional contact with the subjacent Cuesta del Cura Formation, which includes chert  

 

Figure 7- 2. Generalized stratigraphic section near Parras de la Fuente. The stars indicate the 
intervals where samples illustrated in the thin sections and SEM images come from. 
 



 83

beds. It is also gradational with the superjacent Parras Shale (Figure 7- 2) marked by the 

last appearance of limestone beds (Imlay, 1936). 

 

Rocks referred to as the Indidura Formation in the study area consist of about 580 meters 

of distinctive interbeds of black and gray shale, up to 75 cm thick, with yellowish black 

limestone, up to 35 cm thick (Figure 7- 3). The lower part consists of 278 meters of 

laminated, gray, friable calcareous shales, interbedded with thick, dark-gray lenticular 

calcilutite. The middle part of the unit consists of 152 meters of finely laminated shales 

intercalated with sandy shales, with occasional secondary lenses of brown selenite up to 

80 cm thick. The uppermost part consists of 150 meters of platy, gray calcareous shales 

and brown to light-gray shaly calcilutites with some intercalations of sandy shales that 

may also contain abundant selenite crystals. A Cenomanian-Turonian age has been 

assigned to the series based on ammonites (Jones, 1938) and planktonic foraminifers 

(Caron and Tardy, 1971). 

 

7.4 Samples and Laboratory Methods 

Samples were collected from sites at Sierra de Las Parras near the town of Parras de la 

Fuente, Coahuila (Figure 7- 1), GPS coordinates of 25° 26’ 17.9” N; 102° 12’ 54.7” W. 

We analyzed thin sections for standard petrographic studies, including microstructures 

and intrinsic sedimentological characteristics. Polished rock slabs, and thin sections were 

acid etched for imaging analyses with a SEM JSM-5900-LV to determine semi-

quantitative chemical composition. Organic Carbon/Carbonate contents were measured 

on fresh samples using a LECO CR-412 analyzer, and results are presented as carbon  
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Figure 7- 3. Photograph showing typical intercalations of fine laminated calcilutites (L) and 
laminated marlstones (S) from the middle part of the Indidura Formation, scale bar = 33 cm. 
 

percent C (%) of dry bulk weight. Color codes follow the Geological Society of America 

Rock Color Chart. 

 

7.5 Localities and Petrographic Description 

At close examination of the field scale, the sequence consists of interbedded light olive-

gray (5Y6/1) and brownish-black to olive-black (5YR2/1 - 5Y2/1) marlstone (thin to very 

thick ca. 5 to 200 cm), and shaly calcilutite (thin to very thick, ca. 8 to 100 cm). Overall, 

the sequence is monotonous, containing no apparent macrofossils except for very rare 

Inoceramus labiatus? and ammonites. Shaly calcilutite beds make up more than 70% of 

the sequence, while the marlstone layers comprise only about 30%. The most striking 

characteristic of these beds is the presence of persistent dark and light parallel laminae   

(1 to 2 mm-thick). Microscopically, the laminae are formed of quasi-periodic occurrence 

of even parallel to wavy-parallel, dark and light sub-units forming couplets reminiscent 
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of deposits described as “varves”, although they have no petrogenetic relationship. These 

micro-laminae are more distinct in the highly laminated calcilutite beds than in the shaly 

marlstone.  These differences can be related to the abundance of microspheroids as seen 

in thin sections (Figure 7- 4). Light laminae are composed of (>95%) single- or multiple-

crystal calcite-filled “microspheroids” either as individual grains or in aggregates (calcite 

rhombohedra of 1-3 μm) ranging in size between 5 and 100 μm, with a median size of 20 

μm (Figure 7- 5). The groundmass, or the finer components, is less than 5% in the light 

laminae, whereas it is dominant in the dark ones where microspheroids become less 

abundant (<10%). Dark laminae also include scattered planktonic foraminifera (mainly 

heterohelicids and double keeled forms), and scarce radiolarians (spumelarids); they 

include 30 to 50% undifferentiated clay size particles together with organic matter. On 

the whole, dispersive framboidal pyrite occurs as aggregates up to 5% of the bulk 

sediment, while diagenetic pyrite cubes are found in less than 2%. The main conspicuous 

cement throughout is composed of microsparite, although cementation by clay minerals 

cannot be ruled out. The thin section analysis reveals that the laminae that are apparently 

continuous at the macroscopic scale are in fact discontinuous, because they occur as 

uneven discrete units with pinch and swell structures within a fine grained calcareous 

matrix, including clay size particles and organic matter (Figure 7- 4). 

 

7.6 SEM Analyses 

Scanning electron microscopy of samples from Parras de la Fuente further characterizes 

the microstructures observed in the petrographic analyses. Both shaly calcilutite and  
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Figure 7- 4.  Thin sections (A, D) of highly laminated calcilutite: conspicuous parallel 
laminations clearly form couplets that resemble “varves”. These are even-parallel very thin 
laminae <3 mm, with pinch and swell structures. B and E correspond to magnifications of A, D 
respectively, microspheroids from a close framework with some pockets of organic matter in 
between.  C and F are close-ups of B and E respectively, all microspheroids have a size between 
20-40 μm, but are consistently around 25 μm; note that in most microspheroids have a coating 
and shape that resemble Precambrian cyanophyte. All scales inside figures. 
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marlstone layers are predominately composed of unequivocal microspheroids with 

consistent spherical, semi-spherical, and ovoid shapes, with a size range of ca. to 20-

50μm (Figure 7- 5 A-L). These forms can occur as scattered spheroids, or in aggregates 

of microspheroid strings (Figure 7- 5 L), and consistently exhibit a 3 to 5 μm-thick rim of 

microcrystalline calcite, comparable to a “test”. However, the absence of a true organized 

microcrystalline structure even in the largest of the microspheroids rules out any 

relationship to the tests of other fossil groups (e.g., foraminifera, calcareous 

dinoflagelates, calcispheres, etc.). Furthermore, although some of the strings may 

resemble cross-section of the peripheral view of biserial planktonic foraminifera (e.g., 

heterohelicids), the wall structure observed in planktonic foraminifera always shows an 

orderly array of the crystals, while the “microspheroids” observed in SEM images show a 

random wall structure. In addition, the morphology presented by the orientation of the 

strings is consistently the same, it is highly unlikely that all biserial foraminifera found in 

multiple samples would uniformly orientate in such a way as to have only the peripheral 

view exhibited in both SEM and petrographic images. The microspheroid tests are 

composed of multiple crystals of calcite and are analogous to the internal structures 

revealed by strings of attached cells described by Golubic and Campbell (1981) and to 

cyanobacterial structures (Kazmierczak and Krumbein, 1983; Kazmierczak and 

Altermann, 2002; Braissant et al. 2003; Brehm et al. 2004). Some of the microspheroids 

(Figure 7- 5 A, B, D, F) show original micro-calcite crystals (<2 μm), while others have 

been recrystallized (Figure 7- 5 C).  Furthermore, EDS analysis of the microcrystalline 

rim shows an excess of carbon, which is attributed to the organic-rich extracellular 

polymeric secretion (EPS) rich membranes that act as a nucleation center for  
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Figure 7- 5. SEM images showing different shapes of microspheroids : spherical (all images), 
semispherical and ovoid (I,K,L). Only those on (C and L) exhibit a 3 to 5 μm rim of 
microcrystalline calcite that is reminiscent of a test. Microspheroids are made up of single crystal 
(A,D,E,I,L) or multiple crystals of sparry calcite (B,C,E,F,H,J,K,L); they  are found isolated 
(A,B,D,E,F,G,H,J,K) or as aggregates that resemble strings of attached cells (C,E,H,I,L). All 
scales inside the figures. 
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the precipitation of carbonate minerals. This feature is also observed under the 

petrographic microscope as a dark envelope covering the microspheroids (Figure 7- 4).  

SEM semi-quantitative EDS analyses of samples from the Indidura Formation supports 

the petrographic observation indicating high clay content in sediments where the matrix 

is composed mainly of microcrystalline calcite and minor amounts of framboidal pyrite.  

 

7.7 TOC/TIC 

Results of the carbon/carbonate analyses are presented as percentages (%) of total dry 

weight of organic and inorganic carbon in the bulk sample. As shown in Figure 7- 6, 

there is a strong contrast, and marked tendency between the different lithologies. 

 

The samples yield high carbonate values that vary between 43% and 78.3%, and TOC 

content that fluctuates between 0.3% and 3.6%, most commonly higher than 1.6%. The 

non-carbonate fraction varies between 4.7% and 34.6% (Figure 7- 6) TOC and CaCO3 

values from the different facies show that these organic-rich sediments vary in both 

organic carbon and carbonate contents. Higher TOC (%) and lower CaCO3 (%) are 

consistently found in the less laminated shaly marlstone beds, while a reverse trend is 

observed for the highly laminated biocalcilutite layers where microspheroids are 

prevalent.  

 

The maximum carbonate and organic carbon fractions show an increasing trend toward 

the middle of the section, which corresponds to the level where microspheroids increase 

to more than 50% of the laminated calcilutites, and about 20% of the marls. Subtraction 
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of the carbonate content from the total carbon percentage shows that the laminated 

biocalcilutites have more organic matter than the marls, which suggests a dilution of the 

organic matter by the cyanobacterial microspheroids. 

 

Figure 7- 6. TOC and Total Carbonate vs. stratigraphic distance. High values of TOC correlate 
with samples where “microspheroids” were found. In addition, these correspond to zones with 
low bioperturbation and laminated marls Fig. 8.3c and highly laminated calcilutites see Fig. 8.3b. 
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7.8 Discussion and Conclusions 

Sedimentary structures associated with microspheroids that dominate the Parras deposits 

(Figure 7- 3) assigned to the Indidura Formation are here identified as fossilized 

counterparts of present-day cyanobacterial and microbial communities (Tribovillard, 

1998; Tribovillard et al., 2000). Indeed, structures associated with these types of 

“microspheroids” in fine-grained sediments have been previously shown by Kazmierczak 

and Kempe (1992), Kazmierczak et al. (1996), Tribovillard (1998), Kazmierczak and 

Altermann (2002), Tribovillard, et al. (2000), Giralt et al. (2001) and Braissant et al. 

(2003) to represent the product of bacterial/cyanobacterial-induced precipitates. 

Similarly, the laminae in Figure 7- 4 represent deposits related to bacterial activities that 

formed mats like those described by Schieber (1986), and O’brien (1996) in Paleozoic 

shales and associated rocks. Alternation of laminated sediments described here is also 

comparable with the organic rich and microspheroid/mucilaginous sheath intercalations 

found in sediments of the black sea and other oxygen-depleted basins. In such 

environments the water/sediment interphase is depleted in oxygen due to oxidation of 

organic mater through the water column (Pilskan and Pike, 2001; Chang et al., 2003). By 

analogy, the light laminae (>95 % of microspheroids) in our samples represent remnants 

of calcifying cyanobacteria blooms that dominated the Parras Basin environment under 

stressed conditions, like those described by Dumitrescu and Brassell (2005), and Kuypers 

et al. (2004). Excessive proliferation of the prokaryotes excluded other microplankton, 

hence the absence of planktonic foraminifera and radiolaria in the microspheroid-rich 

laminae (Figure 7- 4). In contrast, the couplets of dark laminae imply periods of non-

stressful conditions that allowed incursion of other microplankton groups and a reduction 
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of calcifying cyanobacteria.  Consistent absence of benthic fauna in either type of facies 

indicates perennial anoxic/dysoxic bottom conditions, whereas periodic disappearances 

of planktonic organisms (foraminifera, radiolaria) further indicate recurrent competitive 

exclusion in the upper part of the water column when bacterial explosive blooms 

dominated, much as observed in certain areas of the modern oceans like the Indian Ocean 

(Devassy et al., 1978; Sen Gupta and Naqvi, 1984), mid-Atlantic and Pacific Oceans 

(Capone et al., 1997. Recurrence of enhanced production of calcifying cyanobacteria that 

resulted in dual “varve-like” lamination is compatible with periodic changes in the 

surface water conditions, such as fresh water input by rivers due to, for instance, seasonal 

melting of snow, as proposed for coeval deposits of the Cretaceous Western Interior 

Seaway (Pratt, 1985; Floegel et al., 2005. As it is known, inputs of fresh waters in 

relatively closed basins can adversely affect productivity of stenohaline organisms, thus 

allowing cyanobacteria to dominate the environment due to the lack of overturning of 

subsurface waters. The black laminae represent normal conditions when regular 

productivity took place. Perhaps, equivalent analogs to such bacterial production are 

those shown by blooms of planktonic calcifying cyanobacteria (Robbins and 

Blackwelder, 1992; Robbins et al., 1997; Yates and Robbins 1998, 2001); bacterially 

induced dolomite in anoxic cultures (Warthmann et al., 2000), and non-calcifying 

cyanobacteria (Carpenter, 1983; Carpenter and Romans, 1976) reported as common 

seasonal occurrences in present oceans. 

 

High TOC content observed in the deposits at Parras de La Fuente further indicates that 

depleted oxygen conditions remained prevalent in that area throughout the whole section, 
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as corroborated by scarce inoceramids, the absence of other benthic organisms, and low 

level of bioturbation. Thus, anoxic to dysoxic bottom water prevailed in this part of the 

platform, while in other areas, at La Delicias for instance, bottom conditions remained 

well ventilated as shown by total obliteration of primary sedimentary structures and rich 

epifauna.  

 

The cause of widespread anoxia is still uncertain, but Mid-Cretaceous enhanced 

hydrothermal activity (Larson, 1991; Caldeira and Rampino, 1991) may have been an 

important factor favorable to the development of Corg-rich deposits. Indeed, the geologic 

record indicates that it was a time of increased sea floor spreading, as well as 

emplacement of the latest stages of the large igneous provinces (LIP’s): Ontong-Java and 

Caribbean plateaus (Sinton and Duncan, 1997; Kerr, 1998). Since hydrothermal activities 

increased iron flux in ocean waters, it will in turn tend to produce large-scale 

phytoplankton blooms in areas where Fe acted as the biolimiting nutrient. In such cases, 

increased supply of organic matter and decomposition through the water column would 

intensify oxygen consumption and reduce available O2, conditions that will be optimum 

for generation of black shales. However, under present oceanic conditions, it is observed 

that hydrothermally produced Fe2+ is readily precipitated as iron sulfides in black 

smokers (Jickells et al., 2005). Therefore, if iron from LIP’s had a role in enhanced 

productivity, the mid-Cretaceous widespread anoxia must have delayed or prevented any 

precipitation of iron sulfides (e.g. pyrite) formed by hydrothermal activity. Although 

geochemical changes in the ocean waters may have contributed to the cyanobacterial 

blooms, the exact controlling mechanism of cyclical lamination and bedding observed in 
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the Indidura Formation remains uncertain. Considering the paleogeography of the area, 

however, we invoke a situation analogous to those observed for the accumulation of 

sapropels in the Mediterranean Sea (Krom et al., 2002) and related to regional climatic 

influences. Further enhancement by iron-rich or iron-poor riverine waters, in combination 

with nitrogen limitation, would have created ideal conditions where periodic 

cyanobacterial blooms produced alternating levels of high concentrations of 

microspheroids and/or high organic productivity from non-calcifying bacteria. 

Furthermore, elevated mid-Cretaceous pCO2 from enhanced hydrothermal and volcanic 

activity helped to elevate Mesozoic global climate temperatures with maximum levels 

reached during the Turonian, and should have contributed to intensify continental runoff 

and chemical weathering (Bice and Norris, 2002), therefore, increasing nutrients fluxes to 

oceanic waters. Continuous overall high productivity also caused permanent conditions 

of low dissolved O2 in the lower part of the water column that allowed the preservation 

and accumulation of Corg-rich sediments throughout. The recurrent process of alternating 

dominance of different types of prokaryotes generated the varve-like laminae and bed 

couplets observed in the succession of the Indidura Formation at Parras. Thus, unusually 

high bacterial productivity throughout the accumulation of the Cenomanian/Turonian 

deposits at Parras indicates unique conditions of prolonged oxygen depletion in that area. 

The unusual depositional environment of the Parras basin, was further enhanced by 

worldwide relatively low-oxygen concentrations that existed in the “Mid” Cretaceous 

oceans. 
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8.1 Abstract 

Cyanobacteria/bacteria are a major part of the biomass, although their recognition as 

significant constituents of the sedimentary record has been mainly overlooked in rocks 

other than Precambrian and Paleozoic stromatolites. Their extremely small size has been 

one of the major obstacles in the recognition of such constituents that can be properly 

observed only at high resolution SEM imaging. Here we present evidence of 

accumulation of cyanobacterial “microspheroids” as predominant components of 

sediments of the Cenomanian/Turonian deposits in the “Sierra de Parras”, northeastern 

Mexico, during an interval of predominately dysoxic to anoxic conditions. 

 

The stratigraphic section includes a sequence of limestones and marls with well-defined 

rhythms at the decimeter to millimeter scales. This facies shows internal structures that 

are arranged in nearly even-parallel “varve-like” dual lamination less than 3 mm thick. 
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Few scattered planktonic foraminifera and radiolaria occur in the dark laminae, while the 

light laminae are composed almost entirely of microspheroids. Total carbonate (CaCO3) 

content varies from 43.0 % to 78.3 %, and TOC is relatively high, between 0.3 % and  

3.6 %, consistently higher than 1.6 %, suggesting a favorable environment for 

preservation of organic matter. Inorganic geochemical proxies for paleo-oxygen levels 

e.g. Mo, V, Cr, further concur that the sequence at Parras accumulated in a dysoxic to 

anoxic environment in which microbial communities were predominant, as revealed by 

petrographic and SEM analyses. 

 

Microfacies reveal that compositional differences in the laminae are associated with 

varying abundance of cyanobacterial “microspheroids”. The distinctive laminae are the 

result of recurring cycles of calcareous cyanobacteria blooms, which remained dominant 

throughout the sedimentary sequence. 

 

Corg-rich black shales and limestones of the Parras region further document unique 

paleoceanographic situations during the early Late Cretaceous, when strong intermittent 

dysoxic/anoxic bottom conditions developed, and were associated with rhythmical 

production of cyanobacteria. 

 

8.2 Introduction 

Precambrian and Paleozoic rocks contain a rich spectrum of cyanobacterial and microbial 

components interpreted to be the main sediment contributors in the shallow water 

environments (Pratt, 1984, 2001; Kazmierczak et al., 1996; Arp et al., 2001). Riding 
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(2002) further argued that cyanobacterial communities are the main carbonate 

constituents of Precambrian and Paleozoic sediments. Ehrlich (1998) emphasized that 

grazing pressure may explain the absence of cyanobacterial and bacterial deposits 

(micrite mud suppliers) in calcareous sedimentary sequences younger than Paleozoic, 

thereby causing a reduction in the preservation of calcium carbonate (CaCO3) as a 

byproduct of photosynthesis. On the other hand, Arp et al. (2001) pointed out that the 

decrease in preservation of bacterial deposits during the Phanerozoic was directly 

controlled by changing concentrations of dissolved CO2 and Ca+ ions in the ocean, and 

argued that precipitation is recorded only in restricted environments. Recent studies of 

Jurassic (Tribovillard, 1998) and Cretaceous (Kenig et al., 2001) systems from the Jura 

Mountains (France) and the Cretaceous Western Interior Seaway (USA), and 

northeastern Mexico (Duque-Botero and Maurrasse, 2005) have shown that 

cyanobacteria can account for large proportions of marine organic matter and carbonate 

mud. 

 

Induced precipitation of calcite by aerobic and anaerobic bacteria, and cyanobacteria has 

been observed for both aquatic and terrestrial environments (Krumbein, 1974; Morita, 

1980; Thompson et al., 1990; Merz-Priess, 1992; Braissant et al., 2003), and biological 

structures such as the cyanobacterial S-layer are identified in present day environments as 

nucleation sites for CaCO3 development (Schultze-Lam et al., 1992). Robbins and 

Blackwelder (1992) also demonstrated that the formation of whitings offshore Bahamas 

is related to cyanobacteria-induced carbonate precipitation. 
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Studies of mid-Cretaceous rocks have shown that bacteria, archaea and cyanobacteria 

were major contributors of the organic detritus in different marine environments (Kenig 

et al., 2001; Kuypers et al. 2001, 2002; Dumitrescu and Brassell, 2005). Their importance 

became particularly evident during Oceanic Anoxic Events (OAE’s), which are 

characterized by extensive preservation of organic carbon associated with worldwide 

accumulation of organic rich mudstones or “black shales” (Jenkyns, 1980). The 

Cenomanian/Turonian boundary event, also known as the “Livello Bonarelli Event” or 

Oceanic Anoxic Event 2 (OAE2), is of special interest as it coincides with intense warm 

periods (Leckie et al., 2002), and includes major extinctions of marine fossils e.g. 

planktonic foraminifera (Leckie et al., 2002), rudists and inoceramids (Harries and 

Kauffman, 1990). Recent studies (Lamolda et al, 1997; Premoli-Silva et al., 1999; Erba, 

2004) indicate that, within the Cenomanian/Turonian boundary interval, a major and 

floral turnover, related to the new paleophysiographic conditions, took place. Deposits 

associated with OAE2 show considerable increase in organic carbon that has been related 

to the expansion of certain groups like bacteria, archaea, cyanobacteria, which must have 

played a dominant role as primary producers (Kuypers et al., 2004; Dumitrescu and 

Brassell, 2005). 

 

Here, we provide a multi-proxy approach to further demonstrate that cyanobacteria 

remained as main constituents of the carbonate fraction in the Cenomanian/Turonian 

deposits of the Sierra Madre Oriental, Coahuila State, NE Mexico (Figure 8- 1). 
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8.3 Stratigraphic Characteristics and Age of the Indidura Formation 

The Indidura Formation, as described by Kelly (1936), accumulated on the northern part 

of the Mesozoic Mexican carbonate platform during the maximum global sea level stand 

of the Cenomanian/Turonian (Hancock, 1993; Gale et al., 2002). The Formation crops 

out in the Sierra Madre Oriental, in between the cities of Monterrey and Torreon, and the 

area of interest for this work covers outcrops close to the town of Parras de la Fuente, 

Coahuila, Mexico (Figure 8- 1). The youngest Cretaceous unit in the area is the Parras 

shale (Imlay, 1936), which is composed of black calcareous shales with interbedded dark 

gray siltstones, the lower boundary of this unit is defined by the last appearance of a 

limestone layer of the Indidura Formation. Figure 8- 2 shows a schematic section for the 

middle Cretaceous.  

 
 
Figure 8- 1. Map showing location of the study area. 
 

At Parras de la Fuente the Indidura Formation consists of a monotonous sequence of over 

200 meters of prominent interbeds of light olive gray (5Y6/1) and brownish black to olive 

black (5YR2/1 - 5Y2/1) marls of 5 to 200 cm thick, and clayey calcilutites of 8 to 100 cm  
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Figure 8- 2. Schematic stratigraphic position of the Indidura Formation near Parras de la Fuente. 
The stars indicate the intervals of samples illustrated in the thin sections and SEM images. 
 

thick (Duque-Botero and Maurrasse, 2005). The bed sets form remarkable intercalations 

in a cyclical arrangement that give the Indidura Formation (Figure 8- 3 A) a very 

characteristic feature at the field scale that readily differentiates it from infrajacent and 

superjacent rocks. Closer examination reveals persistent parallel laminations that are 1 to 

2 mm in thickness, which at the outcrop level appeared as a banding (Figure 8- 3 B,C). 

Macrofossils are very rare and consist of occasional inoceramids and ammonites (Duque-

Botero and Maurrasse, 2005). 

 

Previous studies (Imlay, 1936; Jones, 1938; Caron and Tardy, 1971) dated the Indidura 

Formation as Cenomanian to Coniacian age, based mainly on inoceramids and scarce  
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Figure 8- 3. A) Photograph of the Indidura Formation at Parras de la Fuente area showing typical 
intercalation of highly consolidated limestones and partly indurated marls, scale bar 33 cm. B) 
Thin section of highly laminated calcilutite: conspicuous parallel laminae clearly form couplets 
that resemble “varves”. These are even-parallel very thin laminae <3 mm, with pinch and swell 
structures (arrows), scale bar 0.5 cm. C) Thin section from marl, scale bar 0.5 cm. 
 

planktonic foraminifera. Our nannofossil analyses indicate that the first occurrence (FO) 

of Quadrum gartneri Prins and Perch-Nielsen in Manivit et al., 1977 (= the base of the 

CC11 Calcareous Nannoplankton Zone of Sissingh, 1977) is placed within the lower part 

of the section. The nannofossils Lucianorhabdus maleformis Reinhardt, 1966 and 

Lithastrinus septenarius Forchheimer 1972, which indicate the CC12 and respectively 

CC13 calcareous nannoplankton zones of Sissingh (1977), successively first occur 

towards the upper part of the studied sequence. 

 

Notably, the FO of Quadrum gartneri is a nannofloral event, which globally 

approximates the Cenomanian/Turonian boundary, as identified in many regions (N 

Spain –Lamolda et al., 1997; Eastbourne, UK – Paul et al., 1999; Pueblo, Colorado, USA 

– Tsikos et al., 2004) within the earliest Turonian, at the top of OAE2. In the Gubbio 

section (Italy) the FO of Quadrum gartneri is placed also towards the top of OAE2, but 

within the latest Cenomanian (Premoli Silva et al., 1999; Tsikos et al., 2004). Concerning 
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the FO of the nannofossil Lucianorhabdus maleformis, this is an Early Turonian event, 

while the FO and Lithastrinus septenarius took place within the Middle Turonian 

(Burnett, 1999). 

 

Based on these microfossil data, we can more accurately constrain the Indidura 

Formation cropping out in the Parras section between the Cenomanian/Turonian 

boundary interval (CC11 Calcareous Nannoplankton Zone) and the Middle Turonian 

(CC13 Calcareous Nannoplankton Zone).  

 

8.4 Methodology 

Samples were collected from Sierra de Las Parras near the town of Parras de la Fuente, 

Coahuila (Figure 8- 1), GPS coordinates of 25° 26’ 17.9” N; 102° 12’ 54.7” W. We 

analyzed thin sections for standard petrographic studies, including microstructures and 

intrinsic sedimentological characteristics. Polished rock slabs, and thin sections were acid 

etched for imaging analyses and for semi-quantitative chemical composition with a SEM 

JSM-5900-LV. Color codes follow the Geological Society of America Rock Color Chart 

(Goddard et al., 1948).  

 

Samples for geochemical analyses were selected throughout the section. They were 

powdered and homogenized with a micromill and subsequently treated for different 

geochemical analyses. Carbon/Carbonate contents were measured for all samples on a 

LECO CR-412 analyzer, with an accuracy of ±1%, and results are presented as carbon 

percent C (%) of dry bulk weight of the carbon present determined by infrared detection.  
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Samples analyzed for major and trace elements were treated by the EPA 3050b (USEPA, 

1996) partial digestion method. It involves 1 gram of sample, which is acid attacked in 10 

ml of 1:1 HNO3 at 95o C for 10 minutes, with addition of 5 ml of HNO3 to dissolve and 

oxidize acid soluble minerals. After evaporation and complete desiccation, 2 ml of water 

and 3 ml of H2O2 were added, with continuous addition of 1 ml of H2O2 to complete 

oxidation of organometallic compounds. The residue was heated for 2 hours, and then 10 

ml of HCL was added and allowed to reflux for 15 minutes. After cooling and filtration, 

dilution to volume was completed. Trace metal grade reagent and water was used 

throughout. Solutions were analyzed with a Jobin Yvon JY 70 Type III Inductively 

Coupled Plasma Atomic Emission Spectrophotometer (ICP-AES) for Na, Ca, Fe, Mn, 

Mg, Mo, V, Cr, Cu, Ni, Zn and Sr with a precision of ±5% for major elements, and ±7% 

for trace metals.  

 

Stable isotope analyses of Carbon were carried out on the organic fraction with a 

Finnigan Delta C EA-IRMS (with TC/EA). For the stable isotope analyses, we utilized a 

technique that uses 0.1 – 90 mg of powdered rock per run. Each sample was treated with 

HCl to remove carbonate fraction and sulphur present in the rock. Oxidation was induced 

between 850-1000°C in a stream of oxygen, or in the presence of a CuO catalyst. Ratios 

obtained were compared repeatedly with a laboratory reference gas under identical 

conditions and values are presented as a deviation of the PDB “Peedee Belemnite” 

standard.  
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Biomarker analyses were conducted for rock samples with at least 100 mg of organic 

carbon. The rock powder was weighed and extracted in dichloromethane for 24 hours in a 

Soxhlet apparatus, where a known quantity of internal standard squalene was added. The 

extract obtained was concentrated through rotary-evaporation under vacuum at 30°C; the 

extract was then saponified with 25ml of 1 N KOH to separate the acids from the neutral 

lipid fractions (Jaffe et al., 2001). After elution with hexane, the hydrocarbon fraction 

was run on a GC/MS on a HP 6890 GC interfaced to an HP 5973 quadrupole scanning 

mass spectrometer. A 5% phenyl methylsilicon bonded phase (J & W DB-5MS) fused 

silica capillary column (30m × 0.25mm i.d. × 0.25μm film thickness) was used for the 

separation. The GC oven was programmed to hold initial temperature of 40°C for 1min, 

and then ramped at a rate of 6°C/min to a final temperature of 300°C held for 20min.  

Chromatograms of the results were analyzed and identified by comparison with the 

Wiley275 mass spectra library. 

 

8.5 Results 

8.5.1 Petrography and SEM Descriptions 

Microfacies observations of the finely laminated rocks of the Indidura Formation reveals 

the presence of persistent 1 to 2 mm-thick, dark, and light parallel laminae (Figure 8- 3 

B,C). They are arranged in quasi-periodic intercalations of even parallel to wavy-parallel, 

light and dark bundles that resemble those found in varve deposits. The later is observed 

more readily in the highly laminated calcilutites, where individual laminae can be 

followed laterally for several decimeters.  Indeed, the conspicuous laminae seen at the 

macroscopic scale are in fact not continuous; they occur as uneven discrete units with 
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pinch and swell structures (Figure 8- 4). Close observation of the light laminae shows 

that they are almost entirely (>90%) composed of calcite-filled “microspheroids”  

 

 

Figure 8- 4. A, D Thin sections microphotographs of highly laminated calcilutite: Parallel to even 
parallel laminae very thin laminae <3 mm., that show pinch and swell structures. Laminae forms 
couplets that resemble “varves”. B and E correspond to magnifications of A, D respectively, 
microspheroids from a close framework with some pockets of organic matter in between.  C and 
F are close-ups of B and E respectively; all microspheroids have a size between 20-40 μm, but 
are consistently around 25 μm; note that in most cases microspheroids have a coating and shape 
that similar to those of Precambrian cyanophyte. All scales inside figures. 
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between 5 - 100 μm, with a predominant size range of 20 to 40 μm, and a median size of 

20 μm (Figure 8- 4). The granular components or “microspheroids” are less abundant in 

the dark laminae, which also include scattered planktonic foraminifera (mainly 

heterohelicids), and scarce radiolarians. The darker laminae are usually made of 30 to  

50% of undifferentiated clay-size particles, and up to 5% scattered framboidal pyrite 

aggregates. They also include microsparite as the main cement, although sparry calcite 

may be found indiscriminately in microfractures.  

 

Further characterization of the microscopic components of the Indidura Formation at 

Parras was accomplished by scanning electron microscopy (SEM) analysis carried out in 

marlstones and shaly calcilutites. At higher magnification, it becomes clear that both rock 

types are unequivocally composed of microspheroids with spherical, semi-spherical, and 

ovoidal shapes that range in size from 20-50 μm (Figure 8- 5). These images also reveal 

that the microspheroids are mainly scattered in the dark laminae and marlstones where 

they make up a lesser proportion of the sediment components. In comparison, images 

from the shaly calcilutites show the same microspheroid components as the marls, but 

additionally show a complex framework that binds together microspheroids as aggregates 

or strings of spheroids (Figure 8- 5 F,L). Higher magnification images disclose that most 

of these structures consistently have a 3 to 5 μm rim of microcrystalline calcite that is 

reminiscent of a test; however, further examination of these ultrastructures shows no 

organized microcrystalline arrangement (Figure 8- 5 C,E).  
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Figure 8- 5. SEM images showing different shapes of microspheroids: spherical (all images), semispherical and ovoid (J,K,L). Those on 
(C,E,F) exhibit a 3 to 5 μm rim of microcrystalline calcite that is reminiscent of a test. Microspheroids are made up of single crystal (C,E,F,L) 
or multiple crystals of sparry calcite (A,B,D,G,H,I,J,K); they  are found isolated (A,B,D,E,F,G,H,J,K) or as aggregates that resemble strings of 
attached cells (C,F,L). All scales inside the figures.
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8.5.2 Geochemistry 

8.5.2.1 Organic Matter and Inorganic Carbon 

The total organic carbon (TOC) and carbonate (CaCO3) varies in a rhythmic pattern 

concurrent with the different contrasting lithologies (Figure 8- 6). Thus carbonate values 

vary from 27% to 91% with a median of 70%, and TOC content fluctuates between 0.3% 

and 3.6%, most commonly higher than 1.6%. Temporal TOC and CaCO3 changes in the 

sequence show an overall increase in the organic matter content toward the middle 

Turonian (L. maleformis), where the maximum values are reached for both marlstones 

and clayey biocalcilutites. Higher TOC and lower CaCO3 values are consistently found in 

the less laminated shaly marlstone beds, while a reverse trend is observed for the highly 

laminated biocalcilutite layers where microspheroids are prevalent. Also, a marked 

increase in TOC corresponds to the stratigraphic level where microspheroids increase to 

more than 50% in the laminated calcilutites, and about 20% of the marls. Although the 

laminated biocalcilutites show relatively lower carbonate values than the marls, their 

absolute values are higher once correction is made for the TIC dilution factor. 

 

8.5.2.2 Biomarkers and Stable Isotopes 

Biomarker analyses reveal that the composition of the organic matter present in the rocks 

of the Indidura Formation has a predominant presence of algae and other marine 

plankton. Chromatographs (Figure 8- 7) show bimodal distributions in the n-alkanes 

where the major proportions are represented by C12 to C17 n-alkanes, which are 

characteristic of marine plankton, and more specifically bacterial origin (Peters et al., 

2005). Minor abundances of C27 to C34 n-alkanes indicate some predominance of land- 
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Figure 8- 6. TOC shows a marked increase toward the top of the L. maleformis (CC12 zone), 
where values become consistently higher for both TOC and CaCO3. This zone also corresponds 
with the higher abundances of microspheroids.  
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Figure 8- 7. Gas chromatograph of ion 57. arrows indicate the n-alkanes present in the samples 
MX-212 and MX-410. Lower molecular carbon chains are predominant in both of samples. MX-
212 shows more of a normal distribution while, MX-410 is bimodal.  Both samples are dominated 
by low molecular n-alkanes. 
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derived detritus. All of the pristane/phytane ratios (Table 8- 1) are below the value of 1.0 

which separates anoxic from dysoxic conditions (Didyck et al., 1978; Rowland, 1990). 

Sample 
# Pristane/Phytane 

TOC 
(wt%) 

MX-410 0.93 0.9 
MX-394 0.76 0.3 
MX-392 0.86 0.6 
MX-292 0.83 0.9 
MX-296 0.72 1.4 
MX-212 0.86 1.7 
MX-211 0.88 0.5 
MX-40 0.76 1.1 

 
Table 8- 1. Pristane/Phytane ratios and total organic content. 
 

Stable isotopes on the C-org fraction (Figure 8- 8) show values that are well within those 

reported for marine organic matter, with values ranging from about -26.6‰ to -25.7‰ for 

the upper of the Upper Cenomanian (the CC10 Calcareous Nannoplankton Zone). The  

Cenomanian/Turonian boundary interval (the CC11 Calcareous Nannoplankton Zone), 

includes values that range from -26.7‰ to -24.7‰ and correspond to the more enriched 

samples in δ13Corg. For the low-mid Turonian interval (the CC12 Calcareous 

Nannofossil Zone), δ13C values return to background values close to -26.5‰, although 

there is a second increase close to the upper part of this zone with values close to -25.7‰. 

For the middle Turonian (the CC13 Calcareous Nannoplankton Zone) isotope values 

return to background values close to -27‰. One distinctive feature of the δ13C is the 

depletion of ≈2‰ in values toward the upper part of the stratigraphic section, with firm 

positive excursions during the Lower Turonian and a second less pronounced excursion 

during the low- to mid-Turonian (Figure 8- 8). 
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Figure 8- 8. δ13C anomalies of Indidura Formation, the record shows a major positive excursion 
just above the lower part of the Q. gartneri zone CC11 (Cenomanian/Turonian boundary). A 
second less pronounced anomaly is found in the upper part of the L. maleformis zone CC12.  
δ13C (CaCO3) record after Voigt (2000) curve for Western Europe C/T record. 
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8.5.2.3 Trace elements 

The organic-rich sedimentary rocks of the Indidura Formation at Parras are relatively 

enriched in trace metals (V, Mo, Ni, Cu, Zn, Cr), Table 8.2. For most of the section, there 

is a relationship between the Mo, V, Cr, Cu, Mn, and to a less extent Fe, where the lowest 

concentration of these trace elements occurs in the low-organic carbon intervals, and the 

highest in the high-organic levels (Table 8.2). Trace element indices of V/Cr and 

V/(V+Ni) ratios were compared to evaluate the  paleoredox  conditions  as  done by 

Hatch and Leventhal (1992) and Jones and Manning (1994). The latter authors suggest 

V/Cr ratios of <2.0 to infer oxic conditions, 2.0 to 4.25 for dysoxic conditions and >4.25 

for suboxic to anoxic conditions. Lewan (1984) argues that V/(V+Ni) ratio >0.5 indicate 

that the organic matter accumulated under euxinic conditions; while Hatch and Leventhal 

(1992) suggest that water conditions were euxinic for ratios >0.84, anoxic for ratios 

between  0.54 and  0.84, and dysoxic for ratios of 0.46 to 0.54.  Overall, most of the 

stratigraphic section (Table 8.2 and Figure 8- 9) has V/(V+Ni) ratios >0.5 and V/Cr ratios 

>2.2, that concur  with the ratios indicated by Hatch and Leventhal (1992) for sediments 

that accumulated under low-oxygen conditions. Enriched and depleted zones for Mo, V, 

and Cr and indices for low oxygen content show good agreement within the zones where 

there is no discernible bioturbation. 

 

8.6 Discussion 

The microspheroids are consistently found throughout the stratigraphic section, but they 

start to become an important constituent of the rock already within the Lower Turonian 

(above the base of CC11 Calcareous Nannoplankton Zone), where the first finely  
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Figure 8- 9. Indidura Formation trace metals anomalies with respect to biostratigraphic position. 
Dashed line correspond to literature values of known anoxia indices of V/(V+Ni) from Hatch and 
Leventhal (1992); and V/Cr from Jones and Manning (1994). The C/T boundary is placed in the 
bottom of the Q. gartneri zone. 
 

laminated marly calcilutites appear. Before that level, the microspheroids are found 

primarily as blobs floating in the matrix fraction of the marls. Above that level, 

microspheroids make up as much as 50% of the rock and 100% in some laminae. 

Microspheroid size, shape, and type in the rocks can be properly observed under the 

electron microscope. This intrinsical difficulty to observe and therefore to identify such
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Table 8-2. Indidura Formation, sample stratigraphic assignment, stable isotopes and elemental concentrations. 
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Table 8-2. Indidura Formation, sample stratigraphic assignment, stable isotopes and elemental concentrations (continued). 
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Table 8-2. Indidura Formation, sample stratigraphic assignment, stable isotopes and elemental concentrations (continued). 
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Table 8-2. Indidura Formation, sample stratigraphic assignment, stable isotopes and elemental concentrations (continued). 
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Table 8-2. Indidura Formation, sample stratigraphic assignment, stable isotopes and elemental concentrations (continued). 
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Table 8- 2. Indidura Formation, sample stratigraphic assignment, stable isotopes and elemental concentrations (Continued). Average C/T Shale 
from Brumsack (2006); average shale from Wedepohl (1971, 1991); Low and High black shale from (Quinby-Hunt et al. 1989). 
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components may be the reason for them being overlooked and led to other interpretations. 

Indeed, previous research in the Sierra Madre Oriental (Kelly, 1936; Imlay, 1936, Caron 

and Tardy 1971, Longoria, 1999) interpreted the fine laminae formed by the 

microspheres as broken fragments of foraminifera, calcareous dinoflagelates and 

calcispheres. Nevertheless, close observation of the ultrastructure reveal a 3 to 5 μm-

thick rim of microcrystalline calcite that is not comparable to a “test”, of any of the 

microfossil groups mentioned (Duque-Botero and Maurrasse, 2005).  

 

Microspheroids can occur as scattered spheroids, or aggregates of microspheroid strings 

(Figure 8- 5 G,F,J,L), and are composed of multiple crystals of calcite. Such structures 

are similar to the internal structures revealed by strings of attached cells described by 

Golubic and Campbell (1981), and to cyanobacterial structures (Kazmierczak and 

Krumbein, 1983; Tribovillard, 1998; Tribovillard, et al., 2000; Giralt et al. 2001, 

Kazmierczak and Altermann, 2002; Braissant et al. 2003; Brehm et al. 2004). Further 

evidence is found inside some of the microspheroids (Figure 8- 5 A,B,D,I) that show 

original micro-calcite crystals (<2 μm), while others have been recrystallized (Figure 8- 5 

C,E). In addition, EDS analysis (Duque-Botero and Maurrasse, 2005) of the 

microcrystalline rim shows an excess of Carbon, which is attributed to the organic-rich 

extracellular polymeric secretion (EPS) rich membranes that act as a nucleation center for 

the precipitation of carbonate minerals. This feature is also observed under the 

petrographic microscope as a dark envelope covering the microspheroids (Figure 8- 4). 

SEM semi-quantitative EDS analyses of samples from the Indidura Formation supports 

the petrographic observation indicating high clay content in sediments where the matrixis 
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composed mainly of microcrystalline calcite and minor amounts of framboidal pyrite 

(Duque-Botero and Maurrasse, 2005). 

 

8.6.1 The OAE II at Parras de la Fuente 

Isotopic changes related to the Cenomanian/Turonian boundary event or OAE2 are 

usually explained to be a consequence of a global change that affected the carbon budget, 

and permitted widespread accumulation of organic matter and concurrent increase of 12C 

sequestered by marine OM (Jenkyns, 1980; Arthur et al. 1987). Such changes produced 

the typical isotopic records of the OAE2, and are marked by the inception of a positive 

δ13C excursion. The timing of the event itself appears to be diachronous because both the 

anoxia peak and isotopic excursion have different expressions and timing from section to 

section (Tsikos et al, 2004). Carbon sequestration and enrichment process continued 

throughout the time interval of the event, which ended with the return to pre- OAE2 

isotopic values (Snow et al., 2005). The duration and timing of OAE2 at the Global 

Boundary Stratotype Section Point (GSSP) for the base of the Turonian stage, at Pueblo 

Viejo, Colorado (Sageman et al., 2006), shows that the time from the onset to the 

conclusion of the OAE2 is about 563 to 601 k.y. (5.5. m thick) to about 847 to 885 k.y. 

(7.5m thick). The duration observed in the Indidura Formation is similar to that of the 

GSSP, but with a difference in the timing of the event. In this Mexican section the 

positive isotopic excursion has its maximum -24.7‰, within the CC11 Nannofossil Zone. 

Although the Parras section is relatively close to the Pueblo Viejo GSSP, perhaps the 

observed difference in timing may be attributed to better biochronology, and sampling 

resolution, which is greater at the GSSP section. Nonetheless, the record in the Parras de 
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la Fuente section not only shows the rapid onset of the positive excursion of about 2‰, 

but it also shows subsequent return to pre OAE2 conditions, as well a second minor 

excursion of about 1.5% that correlates with the anomaly described by Leckie et al. 

(2002). 

 

Comparison of samples from the Indidura Formation with the average trace metals in 

shale shows enrichment in (V, Mo, Ni, Cu, Cr), but lower values for Mn and Fe. Elevated 

values like those observed in the samples studied from the Parras section are interpreted 

as expressing a depositional environment with strong reducing conditions. The very low 

contents of Fe and Mn, together with high values of V (Table 8.2) are suggestive of an 

environment associated with low ph and Eh conditions (Quinby-Hunt and Wilde, 1994). 

The V/(V+Ni) >0.5  and V/Cr  >2.2 indices of Hatch and Leventhal (1992) further concur 

that most of the sedimentary rocks of the Indidura Formation at Parras de la Fuente were 

deposited under low-oxygen conditions. In general enriched and depleted zones in Mo, 

V, as well as Cr, and high and low for oxygen indices (V/(V+Ni); V/Cr) corroborate the 

field and petrographic observations that show intervals of the stratigraphic section where 

macro and microfossils were absent because they were unable to either live on the bottom 

or near the water surface interface for long periods of time due to severe oxygen 

depletion of the full water column in the Parras Basin. The elevated trace metal values 

and the organic mater content, together with the abundance of microspheroids points out 

to a depositional setting where intense primary productivity dominated by cyanobacteria 

and bacteria as depicted from the petrographic, SEM and biomarker analysis, depleted the 
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water oxygen levels, and promoted the expansion of anoxic waters throughout the water 

column. 

 

When comparing the maximum value of the trace metals and δ13Corg, Snow et al. (2005), 

surmised that the proximity of the Pueblo Viejo section to the Caribbean Plateau as a 

reason for the diachronous occurrence of the OAE2 between the Cretaceous Western 

Interior Seaway and the Tethyan sections. This idea is supported by the major 

perturbations that are shown by radiolarians and calcareous nannofossils (Bralower, 

1988; Premoli Silva et al. 1999) as well as deep-dwelling foraminifera. Perturbations in 

these microfossil records are interpreted to be related major shifts in temperatures, in the 

structure of the water column and resulting accelerated oxygen depletion (Leckie, 1985, 

1989). We propose that the onset of the Large Igneous Provinces (LIP) volcanism 

(Larson, 1991; Caldeira and Rampino, 1991) and specially the adjacent Caribbean 

Plateau (Sinton and Duncan, 1997; Kerr, 1998) that is coeval with the event observed 

may have had a profound effect in the sedimentation history of the Mesozoic Mexican 

platform. The expansion of archaea and other types of bacteria was also proposed by 

Kuypers et al. (2004), and Dumitrescu and Brassell (2005) to explain the abundance of 

specific type of biomarkers. Although specific biomarkers were not found in our samples, 

the presence of low molecular n-alkanes is suggestive of such presence (Peters et al., 

2005). However, the different proxies used in the present work concur with the 

prevalence of prokaryotic organisms throughout the deposition of the Indidura Formation 

of the Parras Basin. Competitive exclusion (Duque-Botero and Maurrasse, 2005), and 

oxygen depletion led to conditions unfavorable to other organisms throughout the water 



 131

column, except at intermittent intervals when planktonic foraminifera and radiolarians 

were able to thrive at the surface. 

 

8.7 Summary 

Petrographic, SEM imaging, sediments of the Indidura Formation show the record of 

long lasting anoxic conditions of an epicontinental sea from the uppermost Cenomanian 

up to the Middle Turonian. This time interval was associated with the deposition of finely 

laminated sediments composed of calcareous cyanobacterial microspheroids. 

 

The stable isotope of C-org in the Sierra de Parras shows that maximum positive 

excursion of the OAE2 excursion developed at a slightly younger level than observed at 

the GSSP. The discrepancy is probably related either to sampling resolution or to local 

conditions that generated different circulation patterns on the Mexican platform. 

Nevertheless, the 2‰ positive isotopic excursion is of the same magnitude as that of the 

OAE2 found in sections elsewhere. Trace metal enrichments follows the same trend as 

that of the isotopic excursions, suggesting similar origin for the two events. 

 

The sedimentary record of the Indidura Formation thus shows the accumulation of 

organic-rich deposits on an epicontinental sea, together with an abundance of calcareous 

microspheroids of cyanobacterial origin during a time dominated by severe oxygen 

depletion in the water column. 
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9.1 Abstract 

Sediments attributed to the Indidura Formation in the Parras Mountains, NE Mexico, 

show conspicuous bedding and laminae that are related to varying abundances of 

microspheroids of cyanobacterial origin. At Parras de la Fuente the sedimentary sequence 

shows a monotonous series of intercalations of highly laminated black marly calcilutites 

and marlstones. At the microscopic scale the sediments also exhibit intercalation patterns 

where light laminae are related to higher concentration of microspheroids, whereas dark 

laminae contain less. In order to distinguish different degrees of cyclic changes we use 

wavelet transform and time series analysis for TOC% and CaCO3%, which reflect the 

outcrop-scale variability, and gray-scale values line scans at the microscopic scale 

obtained from thin sections. These fluctuations mirror compositional changes due to 

varying climatic cycles and other variations that affected sedimentation patterns. We use 

calcareous nannofossils to constrain the age of the unit and determine sedimentation 

rates. 
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Variability at the field scale can be correlated with Milankovitch precession cycles of 

about 23 ka associated with changes in CaCO3 productivity controlled by  variations in 

microspheroid content. At the microscopic scale the laminae register much shorter-term 

climatic variability in response to external forcing factors such as solar cycles as suggest 

their 10-15 year pulses similar to known solar activity. 

 

We interpret the periodicity in the CaCO3 and TOC record as the result of fluctuating 

productivity of cyanobacteria, which increased during peak precession periods when low 

sediment supply to the basin (e.g. clays) and poor recycling of nutrients created long-term 

conditions for cyanobacteria to predominate. Similar situation existed at the millimetric 

scale, which we surmise resulted from variations in nutrient content controlled by 

periodic increased in pluviosity at the decadal scale. In this case enhanced supply of 

runoff would have generated the ligth laminae and under enhanced productivity 

conditions and cyanobacterial blooms, by contrast when the conditons returned to regular 

nutrient levels would have allowed the presence of other plankton (e.g. Foraminifera, 

radiolaria). 

 

9.2 Introduction 

The area near Parras de la Fuente, Coahuila, Mexico (Figure 9 - 1), GPS coordinates of 

25° 26’ 17.9” N; 102° 12’ 54.7” W, offers a setting where the middle Cretaceous 

sedimentary sequence attributed to the Indidura Formation (Kelly, 1936) is well exposed 

over large distances.  These rocks are characterized by distinctly rhythmical interbeds of 

dark, highly laminated biocalcilutites, and dark laminated marls.  
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Figure 9- 1. Localization map, the star in the south central part of the Coahuila State marks the 
study area. 
 

Benthic organisms are mostly absent, represented only by very rare specimens of 

Inoceramus labiatus?. Bioturbation is unusual, and only primary hydrodynamic 

sedimentary structures are readily discernible. The main difference between the 

calcilutites and the marls is due to varying abundance of the cyanobacterial 

microspheroid and clays (Duque-Botero and Maurrasse, 2005). Since previous studies of 

the sequence indicate that the original sediments accumulated in an environment 

alternately under anoxic (oxygen-free) and dysoxic (low oxygen) conditions throughout 

most of the succession (Duque-Botero and Maurrasse, 2005),  the continuous alternation 

of undisturbed laminae and beds must provide information regarding high- and low-

frequency paleoenvironmental changes (e.g. decadal – millennial scales).These 

continuous outcrops thus offer a unique opportunity for high-resolution stratigraphic and 

clyclostratigraphic analyses. In the present work we investigate the cyclic pattern of the 

Indidura Formation at Parras de La Fuente, which was deposited during the Upper 
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Cenomanian through the Middle Turonian (Kelly, 1936; Duque-Botero and Maurrasse, 

2005), an interval of time known to have recorded one of the highest sea level stand 

(Gale et al., 2002). Concurrently, it was also a time of low oceanic oxygen conditions in 

both epicontinental seas and open waters (Jenkyns, 1980).  

 

Here we present two data sets that compile a large time-series to which wavelet and 

spectral techniques were carried out. One set is composed of digitized laminae thickness 

and gray-color scale variation that is seem to be related to annual to decadal productivity 

changes of cyanobacterial microspheroids (Duque-Botero and Maurrasse, 2005). The 

other set uses the vertical variations of percentages in organic carbon in the bulk rock that 

larger-scale modulation in the overall productivity-preservation over millennial scales. 

We show evidence for a link between sedimentation patterns of marine Cretaceous 

sedimentary rocks to probably regional and global climatic patterns that appear to be 

related to solar irradiation and Milankovitch cycles. 

 

9.3 Background 

Sequences of laminated sediments (e.g. varves), and regular interbeds of limestone-marl, 

as well as calcareous-siliceous oozes have been commonly used to understand 

paleoclimatic variations throughout the geological record (Kemp, 2003; Pearson et al., 

2004; Anderson, 1996; Hays et al., 1976; Einsele and Ricken, 1991). Several causal 

mechanisms have been proponed to explain the formation of such types of sedimentary 

patterns that range from high frequency solar cycles (Patterson et al., 2004b), to low 

frequency Milankovitch  cycles (Schwarzacher, 1993). The common denominator of 
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these cycles of varying frequencies is that external factors of oscillatory nature are 

intrinsically controlling and influencing condition of sedimentation in the basin 

(Schwarzacher, 1993). Nonetheless, in many cases a precise duration of the cycles may 

be conjectural because of uncertainties that arise from biases introduced in the record by 

synsedimentary perturbations due to burrowing, as well as possible diastems, and by 

overlapping cycles (Weedon, 2003).  

 

Most recently there is an increasing literature that addresses the external factors 

responsible for small (daily-yearly) and larger (annually-millennia) climatic variability 

(Carslaw et al., 2002; Friis-Christensen and Lassen, 1991; Kemp, 2003). Observational 

records of high frequency cycles found in sediment deposits show good agreement with 

forcing factors that imply both the influence of cosmic ray and solar irradiance, which are 

well confined at frequencies close to the 9 – 12 year  Schwabe sunspot cycle (Friis-

Christensen and Lassen, 1991), and the 20-22 year Hale cycle. Furthermore, the 72-90 

year Gleissberg sunspot cycles (Gleissberg, 1958; Garcia and Mouradin, 1998) are 

modulations of the Schwabe cycle. Arguably variability of solar irradiation can therefore 

be a major factor to influence fluctuations of global sea-surface temperatures (Jones et 

al., 2001). Hence, increase in solar activity that affects net flux of cosmic rays can 

directly enhance the overall earth’s energy budget (Carslaw et al., 2002). 

 

9.4 Data and Methods 

The data sets used in this work to carry out the time series calculation consist of the 

results obtained for Total Organic Carbon % (TOC), total carbonate % (TIC or CaCO3), 
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and digitized images. The scanned images of thin sections were analyzed for two signals, 

sediment gray-scale values, and laminae thickness. TOC % and TIC % were measured as 

weight % with a LECO CR-412, and to obtain bed thickness the image analysis signals 

were transformed from thin section or stratigraphic distance into a time-scale by using the 

sediment ages provided by the nannofossils. The time series analysis techniques involves 

wavelet analysis and spectral analysis in order to determine the continuity, and 

periodicities that are tied to two-age frequency domains (decadal and Milankovitch).  

Images were acquired in TIFF-format and then edited with the COREL PHOTO-PAINT 

image processing software. Thin sections were scanned and digitized at a resolution of 

500 pixel/cm2, resulting in about 3000 linear pixel/thin section. We used as well 

microscope images at a resolution of 1000 pixels/ cm2 of the whole thin section in order 

to measure individual laminae and to identify mineralogical and compositional variations. 

Images were acquired in 256 gray-scale intensity, where 0 is given to black and 255 to 

white. We used ERDAS Image 8.7 to generate gray-scale values, which were measured 

in strips perpendicular to the laminae, and recorded on a spreadsheet. Interpolating gray 

scale values from adjacent pixels further allowed to correct the data obtained for extreme 

gray-values caused by small calcite veins, foraminifers and other large particles. 

 

9.4.1 Time Series and Spectral Analysis 

We applied a continuous wavelet transform (CWT) analysis and spectral analysis to our 

datasets to quantify the presence of cyclicity and bandwidth dependent relations between 

the different time-series. Continuous wavelet transforms (CWT) are mathematical 

correlation functions that break the data into smaller series frequency components as 
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functions of time (Patterson et al., 2004a), then each of the frequencies are individually 

analyzed at a resolution appropriate to its time-scale (Graps, 1995). This approach was 

originally described and developed by Fourier (1822), where he described that any 

function can be approximated by a superposition of sines and cosines.  

 

A similar approach is used here following the Continuous wavelet transform (CWT) that 

has the advantage of performing analyses to both the time and the frequency domain. The 

CWT also uses a variable size window, enhancing its geological application. This 

characteristic permits CWT to delineate high-frequency changes or cycles present in 

sedimentary sequences (Patterson et al., 2004a). Another benefit of the CWT process is to 

let observe data at different frequency scales, making it particularly useful in geosciences 

(Graps, 1995). 

 

We used the program Autosignal 1.7 by SYSTAT to analyze the datasets, and used a 

scaling ratio of 10, which has shown good resolution in the periodicity domain (Patterson 

et al., 2004a). We used “zero padding” at the beginning and end of the data series to 

reduce the edge effect; the data were standardized to a mean = 0 and detrended. The final 

representation diagram in the time-frequency domain is known as a scalogram in which 

the data are represented in gray scale intensities. 

 

9.5 Results 

9.5.1 Age of the Indidura Formation and sedimentation rate 

Biostratigraphy of the calcareous nannofossils indicates that the lower part of the  
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sedimentary sequence includes the first occurrence (FO) of Quadrum gartneri Prins and 

Perch-Nielsen in Manivit et al., (1977). This taxon characterizes the base of CC11 

Calcareous Nannoplankton Zone established by Sissingh, (1977) (abs.age 93.5 + 0.8 Ma). 

Similarly, nannofossil taxa such as Lucianorhabdus maleformis Reinhardt (1966), and 

Lithastrinus septenarius Forchheimer (1972), which appear in succession toward the 

upper part of the sequence are indicative of zones CC12 and CC13, respectively 

(Sissingh, 1977). Based on these occurrences, we can accurately constrain the Indidura 

Formation at the Parras section between the Cenomanian/Turonian boundary interval 

(CC11 Calcareous Nannoplankton Zone) and the Middle Turonian (CC13 Calcareous 

Nannoplankton Zone, around a minimum age of 89.0 Ma). Thus, we calculated that the 

mean compacted sedimentation rates for the intervals analyzed are 6.2 cm/ka (CC11) and 

10.1 cm/ka (CC12).  

 

9.5.2 Stratification patterns from field observation and geochemical (TOC/TIC) 

trends from samples of the Indidura Formation 

Interbeds of indurated (marlstones) and friable calcareous shale (highly laminated marly 

biocalcilutites) bedsets are readily identified at the outcrop scale, where their weathered 

surfaces show a light orange to a light gray color, respectively. Fresh surfaces of these 

rocks show their actual color from light olive gray (5Y6/1) for the marlstones, and 

brownish black to olive black (5YR2/1 - 5Y2/1) for the laminated marly biocalcilutites.  

On the overall, the friable calcareous shale intervals vary in thickness between 5 to 200 

cm, and the marlstone beds fluctuate in thickness between 8 and 100 cm. The 

interbedding pattern becomes more persistent and layer thickness decreases toward the 
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middle of the upper part of the section where the different lithologic units reach only 

between about 12 and 15 cm in the section studied at Parras de la Fuente. TOC/TIC 

values reflect the recurrent stratification pattern that is produced mainly by periodic 

variation of carbonate-rich and carbonate-poor lithologies with CaCO3 ranging from  

27 % to 89 % with an average of 68 %. TOC ranges from 0.3 % to 3.6 %, and is 

consistently above 1.3 %. A pattern of high TOC % that correlates with low CaCO3 

corresponds to the marlstone beds, while the inverse relationship is observed in the highly 

laminated marly biocalcilutites, which consist predominately of calcareous 

microspheroids of cyanobacterial origin (Duque-Botero and Maurrasse, 2005). 

 

9.5.3 Stratification patterns observed from digital images, and microscopic 

composition of samples from the Indidura Formation 

Major compositional differences are readily observed with the naked eye in the thin 

sections, where counting can be done directly. However, because of the extreme thinness 

of some laminae that might escape the measurement, we chose instead 

microphotographic techniques at higher magnification. The higher resolution of 

observation thus permitted to clearly observe that laminae are composed of discrete units 

10 to 500+ micrometer thick. They vary regularly from dark lamina, rich in clay and 

organic matter (gray-scale value < 100) to light and bright lamina, rich in microspheroids 

(gray-scale value >100). On the whole, dark laminae account for more areal extent than 

the light laminae, both of which create lamina sets of several millimeters thick. Laminae 

are arranged as even-parallel to wavy-parallel, although some were observed in curved 

non-parallel arrangement, implying occasional low-energy hydrodynamic processes 
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during sedimentation. Although laminae at both the outcrop and thin section levels 

appear to be fairly continuous (Figure 9-2A), under higher magnification it can be 

observed that the rocks have a characteristic pinch and swell lamination (Figure 9 - 2A) 

pattern that is more evident in the light laminae where micrite, clays, and possible organic 

matter are found in small concentrations or as envelopes surrounding microspheroids 

(Figure 9 - 2B). Lamina sets show no apparent evidence of micro boring or bioturbation, 

 

 

Figure 9- 2. Thin sections microphotographs of highly laminated calcilutites that exhibit parallel 
to even parallel laminae very thin laminae <3 mm., and show pinch and swell structures. B) Close 
up view of C, arrow shows a calcareous microspheroid that exhibits an organic matter coating. B) 
Calcareous microspheroids are commonly found forming parallel to even parallel laminae and 
can account for up to 95% of the material found in the laminae. All scales inside figures. 
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hence they seem to be the record of original existing hydrodynamic conditions at the time 

of deposition.  

 

Intervals composed of black laminated marly calcilutites show internal compositional 

differences between the light and dark laminae as observed in Figure 9 - 2 A and C, as 

compared to the marlstone beds, which display a less organized arrangement of 

individual laminae that are harder to delineate.  

 

The main constituents of the different lithologies are microspheroids ranging in size 

between 5 and 100 μm, with a predominant size range of 20 to 40 μm, and a median size 

of 20 μm. SEM and petrographic analyses (Duque-Botero and Maurrasse, 2005) of the 

Parras de la Fuente sequence also show that all microspheroids originated from calcified 

cyanobacterial microspheroids of varying abundance throughout. Light laminae are 

composed almost entirely (>95%) of microspheroids (Figure 9 - 2C), and up to about  

50 % in the dark laminae, which may also include scarce foraminifera and radiolaria 

(Figure 9 - 3). 

 

9.6 Spectral and time series analyses 

9.6.1 TOC and CaCO3 

The wavelet analysis carried out here covers the geochemical analyses of the middle part 

of the Indidura Formation at Parras de la Fuente (Duque-Botero, 2006) in the interval 

between 149 and 163 meters. The data indicate that strong cyclicity bands are present at  

27, 50, 100 and 200 cm, respectively (Figure 9 - 4 A, B), which correspond to different 
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Figure 9- 3. Scatter microfossils like the ones seen in A (Radiolaria) and B (Foraminifera) are 
found in the dark laminae and in the marlstones. 
 

intervals in the stratigraphic section with elevated values in TOC and CaCO3. By 

converting these results to calendar years, according to a mean compacted sedimentation  

rate of 10.1 cm/ka, we obtain an observed cyclicity roughly equal to 2,700, 5,000, 10,000 

and 20,000 years, respectively (Figure 9 - 4 A, B). Further observation shows that the 

stronger signal for the interval is around the 2,800 years band, although such cycle has a 

patch nature. Similar signal is associated with the time interval close to 5,000 years 

showing the same patchy nature (Figure 9 - 4 A,B). On the other hand, although the 

signals found around 10,000 and 20,000 years show less power, the continuity over the 

sample interval is more pronounced. Overall the signal at the 20 ka band has less power 

than the other signals found in the interval (Figure 9 - 4 A,B). 

 

9.6.2 Thin sections 

Wavelet analysis of the gray-value from thin section microphotographs displays recurrent 

areas with low color variation in contrast with areas of strong high-frequency cyclicity 

bands appearing at different levels of the stratigraphic succession. Detailed wavelet  
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Figure 9- 4. Wavelet analysis (using Morlet wavelength with a window size of 10) of: A) total 
organic carbon (TOC wt %) and B) total carbonate (CaCO3 wt %). Gray scales indicate the 
magnitude of the wavelet in 24 tones. Numbers in the scalogram indicate the wavelengths that are 
representative for the variability within the data sample. The more continuous wavelengths are 
close to 10 ka and 20 ka; while the ones with more spectral power are those close to 2,700 and 
5,000 years. 
 

analysis were carried out in three thin sections from different intervals of the Indidura 

Formation applying compacted sedimentation rates of 6.2 ka for sample MX-239, and 
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10.1 ka for samples MX-01 and MX-08, respectively. The results shown here correspond 

to gray scale intensity (GSI) and lamina counting (LC). GSI analysis for MX-01 (Figure 

9 - 5B) shows a cyclicity band between 10 to 13 years that is more prominent toward the  

 

Figure 9- 5. Wavelet analysis of sample MX-01 (using Morlet wavelength with a window 
size of 10). A) Lamina counting (LC) and B) gray scale intensity (GSI) of laminae. Gray 
scales indicate the magnitude of the wavelet in 24 tones. Numbers in the scalogram 
indicate the wavelengths that are representative for the variability within the data sample. 
Only one prominent wavelength in the LC (A) is found close to the 9 to 10 years 
periodicity, while the GSI (B) reveals other wavelengths at 20, 35 and 83 years. 
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middle part of the thin section analyzed; there is also a strong peak cycle around 20 years 

in the lower part of the thin section. These cycles are concurrent with an attenuated signal 

peak close to 35 years followed by a continuous and strong cycle near 83 years  

 

Figure 9- 6. Wavelet analysis of sample MX-08 (using Morlet wavelength with a window size of 
10). A) Lamina counting (LC) and B) gray scale intensity (GSI) of laminae. Gray scales indicate 
the magnitude of the wavelet in 24 tones. Numbers in the scalogram indicate the wavelengths that 
are representative for the variability within the data sample. Only one prominent wavelength in 
the LC (A) is found close to the 9 to 10 years periodicity, while the GSI (B) reveals other 
wavelengths at 20, 30 to 35 and 70 to 83 years. 
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throughout the sample analyzed. In contrast to the GSI, the LC (Figure 9 - 5A) analysis 

signal is centered, and focus on a small but continuous cyclicity interval approximately 9 

to 10 years, which exhibits stronger amplitude toward the upper part of MX-01. 

 

Figure 9- 7. Wavelet analysis of sample MX-239 (using Morlet wavelength with a window size of 
10). A) Lamina counting (LC) and B) gray scale intensity (GSI) of laminae. Gray scales indicate 
the magnitude of the wavelet in 24 tones. Numbers in the scalogram indicate the wavelengths that 
are representative for the variability within the data sample. Only one prominent wavelength in 
the LC (A) is found close to the 10 to 12 years periodicity, while the GSI (B) reveals other 
wavelengths at 20, 35 to 40 and 70 years. 
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MX-08 GSI analysis (Figure 9 - 6B) shows a strong cyclicity concentrated close to 9 –10 

and 13 years, although manifested only in the lower and upper parts of the thin section. A 

continuous cyclicity band is also observed around 30 to 35 years, followed by another 

one closest to 80 years; both signals extend throughout the sample. In contrast to the 

distribution pattern of the GSI, the LC analysis (Figure 9 - 6A) shows a solid cyclicity 

band near 9 to 10 years. 

 

Sample MX-239 shows the most variation in the GSI (Figure 9 - 7B), with an ample band 

that has cycles with peaks from around 8 to 13 years, with the latter showing an almost 

continuous band. The succeeding peak is centered at about 20 year cycles with strong 

amplitude in the middle part of the sample. The next order cycle is a continuous band 

between 35 and 40 years. Another cyclicity band is observed from 70 to 80 years. LC 

analysis for MX-239 (Figure 9 - 7A) shows a strong and continuous signal that centers 

near 10-12 year cycle. 

 

9.7 Discussion of results 

Continuous wavelet analysis (CWA) of laminae count (LC) based on sediment color or 

gray scale intensity values (GSI), integrated with total organic carbon (TOC) and 

carbonate (CaCO3) derived from field samples and thin sections of the Upper 

Cenomanian/Middle Turonian Indidura Formation of NE Mexico shows a wide and 

variable spectrum of both stationary and non-stationary cycles that range from decadal to 

millennial scales. 
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9.7.1 Millennial Scale 

At the field scale centimeter to decimeter-thick interbeds in the middle part of the 

stratigraphic section of the Indidura Formation at Parras de la Fuente are compatible to 

regional and global climatic changes with periodicity around 20 ka (Figure 9 - 4). The 

CWA results also show signals at 2.7, 5 and 10 ka (Figure 9 - 4), which are below the 

resolution of the Milankovitch cycles, and are harmonics of the precession cycle. The 20 

ka cycle is exhibited in both the CWA for TOC and CaCO3, which implies that common 

forcing factors contributed to the preservation of the organic matter as well as the 

carbonate components, thus leading to the formation of intervals either rich or poor in 

TOC/CaCO3.  

 

Similar cyclicity has been demonstrated in other Tethyan and peri-Tethyan 

Cenomanian/Turonian sequences (Meyers et al., 2001; Sageman et al., 2006; Negri et al., 

2003). Computer simulations for the Cretaceous Western Interior Seaway (KWIS) and 

Africa for the Cenomanian/Turonian time interval (Floegel et al., 2005; Floegel and 

Wagner, 2006) show that earth’s precessional cycles with an approximate period of  

21 ka were the controlling factors in the formation of bedding couplets. Such models are 

in agreement with the results of our analyses of the sedimentary sequence of the Indidura 

Formation, which further corroborate similar studies (Meyers et al., 2001; Pratt, 1984) on 

rock sequences deposited in the KWIS during the Cenomanian/Turonian. One marked 

difference between our dataset and these studies (Meyers et al., 2001; Pratt, 1984) is that 

the Parras sequence does not show higher-order eccentricity and obliquity cycles. The 

discrepancy may be related to the expanded section at Parras de La Fuente where 
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sedimentation rates were higher. Although results from climate system modeling (Floegel 

et al., 2005) indicate that couplets related to precession cycles should be less likely in 

sequences near Texas and Mexico, but results based on field studies and direct sample 

analyses (Zhou and Longoria, 1996) show that a periodicity of approximately 20 ka is 

recorded in northeastern Mexico. Our data further suggest a greater similarity with the 

Cretaceous Western Interior Seaway than previously predicted. Thus, comparable 

environmental conditions must have prevailed long enough in the northeastern Mexico 

basin to allow the formation of similar sedimentary patterns as the result of global 

climatic perturbations induced by earth’s precession. These cyclic fluctuations are indeed 

recorded in the preservation and productivity of TOC and CaCO3 in the Indidura and 

Agua Nueva Formations of NE Mexico.  

 

The sedimentary cycles of the Indidura Formation show that layers rich in carbonate are 

devoid of regular planktonic microfossils (planktonic foraminifera, radiolaria) and 

enriched in cyanobacterial microspheroids (Duque-Botero and Maurrasse, 2005); 

whereas carbonate poor beds show regular planktonic microfossils and less 

cyanobacterial microspheroids. Periodic dominance of cyanobacteria at the exclusion of 

other microorganisms is compatible with previous models (Pratt, 1984; Floegel et al., 

2005) that imply overall climatic conditions conducive to the development of a stratified 

water column with a thin layer of fresh water at the surface. Such conditions would 

exclude regular plankton while benefiting cyanobacterial blooms, and cause oxygen 

depletion of the bottom waters. 
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9.7.2 Decadal Scale 

Continuous wavelet analysis (CWA) of individual beds (Lamina counting) of laminated 

sediments from the Indidura Formation show the presence of very fine laminae (Figure 5, 

6, 7) that are found regularly at a periodicity of 9 to 10 years, and their harmonics at 

approximately 20, 30 and 70 to 90 years (Figures 5, 6, 7), which are known in the present 

as modulations of the Schwabe sunspot cycle. Comparable high-frequency records have 

been described in modern marine sequences with conditions of deposition characterized 

by oxygen deficiency or anoxia that have allowed the preservation of yearly fluctuations 

in productivity (Pilskaln and Pike, 2001; Patterson et al., 2004b; Cotillon et al., 2000). 

Such record in the hemipelagic sediments of the Indidura Formation at Parras de la 

Fuente was enhanced because of the elevated rate of sedimentation (6.2 to 10.1 cm/ka of 

compacted sedimentation rate).  

 

Similar laminated pattern has also been documented in Jurassic marine sediments of the 

white stone band of the Kimmeridge Clay Formation, where micrometer scale laminae 

are believed to be the result of interannual changes in the productivity of calcareous 

nannofossils (Pearson et al., 2004). The La Luna Formation (Cenomanian/Turonian) in 

northeastern South America also includes micrometer scale laminae interpreted to be the 

result of 6, 10-12 and 20-24 year cycles (Cotillon et al., 2000). Likewise, our dataset 

derived from petrological observations is indicative of significant yearly paleo-

productivity variations controlled by decadal cycles that correlate with solar activity.  
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Thus, microlaminae of the Indidura Formation at Parras de La Fuente were generated by 

rhythmical variation in the abundance of calcareous cyanobacterial microspheroids, 

following a decadal cycle analogous to the processes suggested for the coeval Cretaceous 

Interior Seaway (Floegel et al., 2005; Floegel and Wagner, 2006) where the main 

controlling mechanism is related to solar Schwabe cycles that affected atmospheric 

pressure cells and precipitation patterns and intensities, as documented in stable isotopes 

and clays in the KWIS area (Pratt, 1984; Arthur et al., 1985), and strontium isotopes in 

the Mediterranean sapropels (Krom et al., 2002). In addition to low surface water salinity 

that enhanced stratification in the water column, the overall greenhouse conditions in the 

Cretaceous must have further exacerbated oxygen depletion and intensified anoxia in 

subsurface waters of the oceans. In fact, an important feature of the sedimentary record of 

the Indidura Formation at Parras de la Fuente is that despite evidence of oxygenic 

primary productivity in the upper water column (nannoplanktons, rare planktonic 

foraminifera and radiolaria), the absence of macro and micro bioturbation indicates 

dysoxic / anoxic conditions at the bottom. However, a few intervals show macroscopic 

trace fossils.  

 

The fact that laminae commonly occur in an even-parallel to wavy-parallel arrangement 

also implies extremely low-energy hydrodynamic conditions remained constant during 

sedimentation. Intermittent absence of planktonic organisms such as planktonic 

foraminifera and radiolaria further supports our interpretation that periodical freshwater 

input affected surface waters by excluding the stenohaline groups, while enhancing 

cyanobacteria/bacterial productivity. Such mechanism explains why microspheroid-rich 
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laminae are devoid of eukaryotic microfossils, and the opposite occurs in microspheroid-

poor laminae. 

 

9.8 Conclusions 

Stratification patterns of the Indidura Formation near Parras de la Fuente in northeastern 

Mexico show meter-scale to micrometer-scale recurrent variations attributable to global 

climatic forcing factors recorded as microspheroid rich/poor sediments throughout the 

Upper Cenomanian to the Middle Turonian.  

 

Large-scale fluctuations are correlated with global climatic changes related to astronomic 

forcing of precession cycles with a periodicity around 20 ka. Such variations shifted 

trends of pluviosity that generated perennial conditions favorable to sustained blooms of 

cyanobacteria-induced calcareous microspheroids. High bacterial productivity further 

decreased the oxygen levels and helped maintain dysoxic/anoxic waters, as recorded in 

these sediments over more than four million years.  

 

High-frequency fluctuations recorded at the micrometer scale are characterized by 

microspheroid-rich/poor laminae, which developed in response to short-term global 

climatic variations that correlate with Schwabe solar cycles that created decadal periods 

of increased pluviosity. 

 

The net effect of global climatic forcing in Cenomanian-Turonian deposits in the Parras 

de la Fuente area was the creation of an environmental setting where at least the 
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sediment/water interphase was anoxic during most of that time. These conditions further 

contributed to periodic exclusion of stenohaline eukaryotic microorganisms while 

allowing almost continuous production of calcareous cyanobacterial microspheroids. 
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CHAPTER X  

GENERAL CONCLUSIONS 

 

The major objective of this work was to understand the stratigraphy of the Indidura 

Formation through the use of petrography, geochemistry and biostratigraphy. The results 

also contribute to further our understanding of the controlling mechanisms of the various 

orders of sedimentary cycles in the sequence, as well as the paleoenvironmental 

conditions conducive to Corg-rich events. 

 

Thus, the present work includes the following achievements: 

• I have demonstrated for the first time that cyanobacterial induced microspheroids are 

major contributors to a sedimentary sequence of the Cenomanian/Turonian at Parras 

de la Fuente, in northeastern Mexico. I described and characterized the morphology 

of these bacterial remains thru the use of Scanning Electron Microscopy (SEM) and 

standard petrographic techniques. 

 

• In addition, I have also correlated the primary sedimentary structures found in the 

highly laminated marly calcilutites of the Indidura Formation with recurring perennial 

blooms of calcifying cyanobacteria that prevailed throughout the sequence over a 

period of about 4 million years. Furthermore, biomarker analysis indicates that low 

molecular weight n-alkanes are the predominant compounds found in the organic 

matter, which implies that the bulk of the organic matter had a prokaryotic origin. 
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• A net lithological difference exists between the sedimentary sequence of the Indidura 

Formation at the Sierra de Parras and the facies present at the stratotype section of 

Las Delicias and the Mexican type section of the Cañon La Casita. Large 

compositional differences thus indicate marked paleoenvironmental differences even 

though the sediments accumulated in a relatively stable carbonate platform, hence the 

prevailing conditions were far from uniform. 

 

• Biostratigraphic nannofossil zonation of Indidura Formation at Parras de la Fuente 

further permits a better resolution of the studied stratigraphic sequence. The lithologic 

interval here described corresponds to the uppermost part of the Upper Cenomanian 

through the Middle Turonian, and to the calcareous nannofossil zones CC10 thru 

CC13 respectively. 

 

• Rocks of the Indidura Formation were deposited in a paleoenvironmental setting that 

allowed accumulation and preservation of organic matter. Sediments have an average 

TOC of about 1.6 % with values ranging from 0.1 to 3.6%. TOC enrichment, together 

with the absence of benthic macro and microfossils, no apparent bioperturbation, and 

almost complete preservation of primary sedimentary structures denotes deposits of 

the Indidura Formation at Parras de la Fuente under constant low oxygen conditions 

(anoxic/dysoxic) that prevailed during most of the deposition of the unit. 

Pristane/Phytane ratios <1 further corroborate this interpretation. 
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• Geochemical analyses (δ13C, major-minor and trace elements, TOC/CaCO3 and 

Biomarkers) confirm that rocks of the Indidura Formation at Parras accumulated at 

times of worldwide perturbations on the carbon cycle as seen in the ≈2‰ changes of 

δ13C, enrichment of V, Cr, and Mo, compared with typical marlstones and limestones. 

I interpret such anomalies as being related to the major paleoceanographic and 

paleoclimatic changes that took place before, during and after OAE2. These changes 

coincide with times of emplacement of Large Igneous Provinces (LIP’s), and 

increased continental runoff during greenhouse conditions, both of which increased 

nutrients in the world oceans. The changes consequently caused enhanced 

paleoproductivity, which in turn further reduced the oxygen content in the oceans.  

The net effect of such paleoenvironmental perturbations on the paleo-Parras de la 

Fuente basin was to favor perennial blooms of calcifying cyanobacteria almost at the 

exclusion of other organisms. 

 

• Decadal and millennial scales variations characterize the temporal patterns of the 

Indidura Formation at Parras de la Fuente. The large-scale sedimentary patterns 

observed in the field can be correlated with Milankovitch precession cycles of ca. 20 

ka. Despite significant temporal variations, the productivity of cyanobacteria-induced 

calcareous microspheroids remained prevalent because of low sediment supply to the 

basin and poor exchange of nutrients through the water column. At the microscopic-

scale, laminae represent shorter-term climatic variability. I correlate such variations 

with the 10 to 15 year pulses of sun activity, and I further interpret the situation to be 

comparable to periods of increased pluviosity at the decadal scale. Large supply of 
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nutrients coming from riverine runoff generated periods of normal productivity 

responsible for the accumulation of black laminae that also include protists such as 

foraminifera and radiolaria. By contrast, when conditions returned to low nutrients, 

productivity of calcareous cyanobacteria took over the environment again and light 

laminae rich in microspheroids were accumulated. 
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