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Differing roles of autophagy in
HIV-associated neurocognitive
impairment and encephalitis with
implications for morphine
co-exposure
Seth M. Dever1,2, Myosotys Rodriguez2, Jessica Lapierre2, Blair N. Costin1 and
Nazira El-Hage1,2*

1 Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
2 Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA

We investigated the role of autophagy in HIV-infected subjects with neurocognitive
impairment (NCI) ± HIV encephalitis (HIVE), many of which had a history of
polysubstance abuse/dependence, using post-mortem brain tissues to determine
whether differences in autophagy related factors may be more associated with NCI
or NCI-encephalitis. Using qRT-PCR, we detected significant differences in gene
expression levels with SQSTM1, LAMP1 higher in HIV-infected subjects without NCI
while ATG5, SQSTM1 were then lower in HIV infection/NCI and ATG7, SQSTM1
being higher in NCI-HIVE. Immunohistochemical labeling of these autophagy associated
proteins (also including Beclin 1 and LC3B) in Iba1-positive microglial cells showed
generally higher immunoreactivity in the NCI and NCI-HIVE groups with more focal
vs. diffuse patterns of expression in the NCI-HIVE group. Furthermore, analysis of
microarray data from these same subjects found significantly higher levels of LAMP1
in NCI-HIVE compared to uninfected subjects in the basal ganglia. Finally, we tested the
effect of supernatant from HIV-1-infected microglia and HIV-1 Tat protein in combination
with morphine on neurons in vitro and found opposing events with both significant
inhibition of autophagic flux and reduced dendrite length for morphine and supernatant
treatment while Tat and morphine exposure resulted in lower autophagic activity at an
earlier time point and higher levels in the later. These results suggest autophagy genes
and their corresponding proteins may be differentially regulated at the transcriptional,
translational, and post-translational levels in the brain during various stages of the
HIV disease and that infected individuals exposed to morphine can experience mixed
signaling of autophagic activity which could lead to more severe NCI than those without
opioid use.

Keywords: autophagy, HIV-associated neurocognitive disorders, HIV encephalitis, microarray, microglia, neuron,
morphine
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Introduction

The central nervous system (CNS) is preferentially vulnerable
to human immunodeficiency virus (HIV) infection as chronic
exposure to HIV in the brain can lead to neurocognitve
impairment (NCI) from HIV-associated neurocognitive
disorders (HANDs; Nabha et al., 2013). HAND can range from
asymptomatic neurocognitive impairment (ANI) intermediately
to HIV-associated mild neurocognitive disorder [MND; formerly
referred to as minor cognitive and motor disorder (MCMD)]
to the most severe condition of HIV-associated dementia
(HAD; Antinori et al., 2007; Woods et al., 2009), manifested
pathologically as HIV encephalitis (HIVE; Zink et al., 1999),
through interactive cellular events (Kaul et al., 2005). As
neurons have not generally been found to be infected by HIV
(Kramer-Hammerle et al., 2005; Verma et al., 2010), most of
the HIV-associated neurotoxicity can occur from bystander
effects through the actions of infected/activated glia (Kaul et al.,
2001). Microglia are the primary target of HIV in the brain
(Kramer-Hammerle et al., 2005), and this cell type can release
various toxic and inflammatory factors during the course of
infection resulting in neuronal injury leading to HAD (Anderson
et al., 2002; Garden, 2002; Gonzalez-Scarano and Martin-Garcia,
2005).

Macroautophagy (hereafter referred to as autophagy) is a
critical mechanism to ensure proper homeostasis and functioning
of the cell through removal of unused and damaged cellular
organelles and components. In the process of autophagy,
autophagosomes carrying these contents fuse with lysosomes
creating post-fusion autolysosomes during autophagic flux
in which the contained cellular material is degraded and
recycled (Klionsky and Emr, 2000). Although disruptions
to autophagy in neuronal cells have been implicated in
neurodegenerative diseases (Komatsu et al., 2007a; Cherra
and Chu, 2008), less is known about the role of autophagy
in microglia and how modulation of autophagic processes
in microglial cells may intercellularly lead to alterations
of this and other pathways in bystander cell types such
as neurons, particularly in the context of HIV infection.
While autophagy may be thought of as being a generally
cytoprotective process in response to various factors (Moreau
et al., 2010), it appears to play a complex role in viral
replication with cells permissive to productive HIV infection
being both induced (Wang et al., 2012), and inhibited (Zhou
and Spector, 2008), which may be selectively occurring to
promote virus production at different stages of the viral life
cycle (Espert et al., 2009). However, initial compensatory
higher levels of autophagic activity in bystander cells such as
neurons to remove viral-induced toxins followed by cellular
differences resulting in reduced or defective autophagy may
lead to neurodegeneration and neurocognitive deficits if an
accumulation of protein aggregates results from the process not
being driven to completion (Gelman and Schuenke, 2004; Yu
et al., 2005).

The autophagic machinery consists of a variety of autophagy-
related (ATG) genes and their encoded protein products (ATG;
Klionsky, 2012). Beclin 1 (ATG6) is involved in the initiation

of autophagosome formation (Liang et al., 1999), while the
yeast Atg8 mammalian homolog LC3, of which LC3B is the
most commonly examined isoform (Mizushima et al., 2010),
associates with the autophagosomal membrane to promote its
elongation and maturation following phosphatidylethanolamine
conjugation in the conversion of LC3-I to the lipidated form LC3-
II through ubiquitin-like reactions (Kabeya et al., 2000, 2004).
ATG7 acts as an E1-like enzyme involved in formation of the
ATG12–ATG5 conjugate (Tanida et al., 2001, 2012), which then
acts as an E3-like enzyme in the LC3 lipidation reaction (Hanada
et al., 2007). In addition to components directly involved in
the autophagic process, markers of autophagic activity have
also been identified. Sequestosome 1 (p62/SQSTM1) binds to
Atg8/LC3 and disruptions in autophagy have been found to be
associated with higher p62/SQSTM1 expression levels (Bjorkoy
et al., 2005; Wang et al., 2006; Komatsu et al., 2007b; Pankiv et al.,
2007), while higher lysosomal-associated membrane protein 1
(LAMP1) can indicate the presence of more lysosomes and
autophagosomes during rises in autophagic activity (Klionsky
et al., 2008).

While cellular differences resulting from prolonged HIV
infection can result in NCI, drugs of abuse such as opiates can
exacerbate and accelerate the onset of these deficits (Hauser
et al., 2012). HIV/AIDS and opiate drug abuse are interlinked
epidemics among injection drug users (Leshner, 1998), and
morphine, the main bioactive product of heroin in the brain
(Wright, 1940; Jaffe and Martin, 1985), can enhance HIV-1
replication (Steele et al., 2003), as well as neuronal toxicity
in the presence of HIV-1 Tat and gp120 proteins (Zou et al.,
2011; Podhaizer et al., 2012). However, whether alterations to
autophagymay be a contributing factor in these interactive effects
is largely unknown.

In the present study, we examined the role of autophagy
in HIV-associated NCI using post-mortem brain tissues
from HIV-infected subjects with NCI ± HIVE as well as
unimpaired infected subjects, many of which had a history
of polysubstance abuse/dependence, to determine whether
the differences that we found were more associated with
impairment or encephalitis. We also performed in vitro
studies to examine the effect of HIV-morphine interactions on
autophagy in primary human neurons. The findings suggest
mixed autophagic signals in the HIV-infected brain may
be a mechanism resulting in cellular dysfunction leading
to NCI that is more associated with HIVE than NCI alone.
Additionally, supernatant from HIV-1-infected primary
human microglia and HIV-1 Tat protein in combination with
morphine can modify the autophagic activity of neurons
in opposing ways which could accelerate the onset of these
deficits.

Materials and Methods

Human Brain Tissue
Human brain tissue was obtained from a subset of samples
used in the National NeuroAIDS Tissue Consortium (NNTC)
Gene Array Project (Morgello et al., 2001; Gelman et al., 2012).
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Briefly, the array project consists of four groups of subjects [HIV-
negative (Group A), n = 6; HIV-positive (Group B), n = 6;
HIV-positive with neurocognitive impairment (NCI; Group C),
n = 7; and HIV-positive with combined NCI and HIVE (Group
D), n = 5] with post-mortem tissue samples taken from three
brain regions across the groups [the frontal lobe white matter,
n = 9; frontal cortex, n = 10; and basal ganglia, n = 1
(or combined frontal lobe white matter/frontal cortex tissue,
n = 8), where n = the total number of samples obtained for
all groups combined]. Details on the specific brain regions and
numbers of individual samples analyzed for each subject group
in this study as well as age, neurocognitive diagnosis, brain
pathology, and substance use histories for each subject are listed
in Table 1 and have been described previously (Dever et al., 2012,
2014).

Quantitative Real Time-Polymerase Chain
Reaction
Total RNA was isolated using the miRNeasy Mini Kit (Qiagen;
Valencia, CA, USA) and used to generate cDNA templates by
reverse transcription of 1 µg RNA using the High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems; Carlsbad,
CA, USA) according to the manufacturer’s instructions. PCR
reactions were performed in a total volume of 20 µL containing
SensiMix SYBR qPCR reagents (Bioline; Tauton, MA, USA)
using a Corbett Rotor-Gene 6000 real-time PCR system (Qiagen).
PCR conditions consisted of an initial hold step at 95◦C
for 10 min followed by 40 amplification cycles of 95◦C for
10 s, 58◦C for 30 s, and 72◦C for 30 s. Sequences of the
primer sets used are listed in Table 2. The specificity of
the amplified products was verified by melting curve analysis
and agarose gel electrophoresis. qRT-PCR data were calculated
as relative expression levels by normalization to GAPDH
mRNA using the 2−��Ct method (Livak and Schmittgen,
2001).

Immunohistochemistry
Frozen brain tissue from the NNTC Gene Array Project
subjects was sectioned to 5 micron thickness, fixed in 4%
paraformaldehyde, permeabilized with 0.5% Triton X-100,
blocked in 10% milk/0.1% goat serum, and immunolabeled.
Primary antibodies used were anti-p62/SQSTM1 (catalog
number NBP1-48320) at a 1:100 dilution and anti-Beclin 1
(catalog number NB500-249), anti-LC3B (catalog number
NB600-1384), anti-ATG5 (catalog number NB110-53818),
and anti-LAMP1 (catalog number NB120-19294) at a 1:400
dilution from Novus Biologicals (Littleton, CO, USA); anti-
APG7/ATG7 (Santa Cruz Biotechnology; Santa Cruz, CA,
USA; catalog number sc-33211) at a 1:100 dilution; and anti-
Iba1 (Abcam; Cambridge, MA, USA; catalog number ab5076)
at a 1:100 dilution. Immunoreactivity was visualized with
secondary antibodies from Molecular Probes (Carlsbad, CA,
USA) conjugated to Alexa Fluor 488 dye (catalog number
A11055) for Iba1 and Alexa Fluor 594 dye (catalog number
A11037) for autophagy proteins and related markers, both
used at a 1:200 dilution. DAPI staining was used to label cell
nuclei.

Microarray Data Analysis
National NeuroAIDS Tissue Consortium Gene Array Project
CEL files for individual arrays were retrieved from the NCBI
Gene Expression Omnibus1, GEO accession number GSE35864
(Gelman et al., 2012), and re-analyzed as described previously
(Dever et al., 2014). Briefly, robust multi-array average (RMA)
analysis for probe intensity data normalization (Irizarry et al.,
2003), and multi-class linear models for microarray data
(Limma) analysis to access differential expression between the
subject groups (Smyth, 2004), were performed for each brain
region. Limma output p-values were adjusted by Benjamini and
Hochberg’s (1995) false discovery rate correction for multiple
testing, setting the significance level to 0.05. Heat maps were
constructed from probeset RMA values using MultiExperiment
Viewer 4.92 (Saeed et al., 2003, 2006).

Preparation of Supernatant from
HIV-1-Infected Microglia
Primary human microglia were purchased from ScienCell
Research Laboratories (Carlsbad, CA, USA; catalog number
1900-f1) and cultured according to the manufacturer’s
instructions. Cells were infected with the macrophage-tropic
HIV-1 SF162 strain [obtained through the NIH AIDS Reagent
Program, Division of AIDS, NIAID, NIH: HIV-1 SF162 from
Dr. Jay Levy (Cheng-Mayer and Levy, 1988)] at a concentration
of 50 pg HIV-1 p24/106 cells as performed previously
(El-Hage et al., 2013, 2014, 2015). Seven days post-infection,
the cell culture supernatant was collected and passed through
a 0.20 µm filter. Productive infection was confirmed and
HIV-1 p24 protein levels were measured in supernatants
using the HIV-1 p24 Antigen Capture Assay (Advanced
Bioscience Laboratories; Rockville, MD, USA; catalog number
5421).

Neuronal Cell Treatment and
Immunocytochemistry
Primary human neurons were purchased from ScienCell
Research Laboratories (catalog number 1520) and cultured
according to the manufacturer’s instructions. Cells were treated
with supernatants from uninfected or HIV-1-infected (30 pg/mL
HIV-1 p24) microglia and 500 nM morphine sulfate (Sigma-
Aldrich; St. Louis, MO, USA; catalog number M8777) alone or
in combination for 24 h and fixed in 4% paraformaldehyde,
permeabilized with 0.5% Triton X-100, blocked in 10%milk/0.1%
goat serum, and immunolabeled. Primary antibodies were anti-
p62/SQSTM1 (Novus Biologicals; catalog number NBP1-48320)
and anti-MAP2 (Abcam; catalog number ab5392), both used at a
1:100 dilution. Immunoreactivity was visualized with secondary
antibodies from Molecular Probes conjugated to Alexa Fluor
594 dye (catalog number A11037) for p62/SQSTM1 and Alexa
Fluor 488 dye (catalog number A11039) for MAP2, both used
at a 1:500 dilution. DAPI staining was used to label cell
nuclei.

1http://www.ncbi.nlm.nih.gov/geo/
2http://www.tm4.org/mev.html
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TABLE 1 | Sample origins, neurocognitive diagnoses, and substance use histories of subjects.

IDa Age Sample origin Neurocognitive
diagnosisb

Brain pathologyc PRISM/CIDI substance use historyd

A1 44 Frontal lobe white matter Normal No path Not assessed

A2 53 Frontal lobe white matter Normal No path Not assessed

A3 63 Frontal lobe white matter Normal No path Not assessed

A4 58 Combined frontal lobe white
matter/frontal cortex

Normal No path Not assessed

A5 34 Combined frontal lobe white
matter/frontal cortex

Normal No path Not assessed

A6 48 Frontal cortex Normal No path Not assessed

B1 49 Frontal lobe white matter Normal No path Cannabis dependence, opiate dependence

B2 47 Combined frontal lobe white
matter/frontal cortex

Normal No path Alcohol abuse/dependence, cannabis
abuse/dependence, cocaine abuse, hallucinogen
abuse, opiate abuse, sedative abuse, stimulant
abuse

B3 44 Combined frontal lobe white
matter/frontal cortex

Normal No path No history reported

B4 59 Frontal cortex Subsyndromic No path Alcohol abuse

B5 60 Frontal cortex Normal No path Cannabis abuse, cocaine abuse/dependence,
hallucinogen abuse, stimulant abuse/dependence,
other drug abuse/dependence

B6 39 Frontal lobe white matter
Frontal cortex

Normal Minimal non-diagnostic abnormalities No history reported

C1 33 Frontal lobe white matter “Possible HAD” Minimal non-diagnostic abnormalities Cannabis dependence, cocaine dependence

C2 35 Combined frontal lobe white
matter/frontal cortex

MCMD Alzheimer’s type 2 gliosis, focal infarct No history reported

C3 57 Combined frontal lobe white
matter/frontal cortex

“Possible HAD” Atherosclerosis of brain Alcohol abuse/dependence, stimulant
abuse/dependence

C4 36 Frontal cortex MCMD Lymphoma Not assessed

C5 52 Frontal cortex MCMD No path Alcohol abuse/dependence

C6 41 Frontal lobe white matter
Frontal cortex

“Probable HAD” Minimal non-diagnostic abnormalities Not assessed

C7 52 Frontal lobe white matter
Frontal cortex
Basal ganglia

HAD Other non-infectious path Alcohol abuse/dependence, hallucinogen abuse,
sedative abuse, stimulant abuse/dependence,
other drug abuse

D1 48 Frontal lobe white matter “Probable MCMD” HIVE Cocaine dependence, sedative dependence

D2 32 Combined frontal lobe white
matter/frontal cortex

HAD HIVE, microglial nodule encephalitis Alcohol abuse/dependence, opiate
abuse/dependence, sedative abuse/dependence

D3 39 Combined frontal lobe white
matter/frontal cortex

HAD No path No history reported

D4 55 Frontal cortex HAD HIVE Not assessed

D5 41 Frontal cortex “Probable HAD” CMV encephalitis, HIVE, lymphoma,
microglial nodule encephalitis, other
infections, PML

Not assessed

aGroup A subjects, HIV-negative; Group B, HIV-positive; Group C, HIV-positive/neurocognitively impaired; Group D, HIV-positive/neurocognitively impaired with HIV
encephalitis (HIVE).
bSubsyndromic, mildy abnormal test performance without symptoms of impairment; HAD, HIV-associated dementia; MCMD, minor cognitive and motor disorder.
cFollowing subject selection, D5 was reported to have brain co-infection with cytomegalovirus and papovavirus but had array results similar to the other subjects in Group
D on a principal components analysis and therefore remained included in this and the original study (Gelman et al., 2012).
dPRISM, Psychiatric Research Interview for Substance and Mental Disorders; CIDI, Composite International Diagnostic Interview.

Neuronal Cell Transfection and Treatment
Neurons were transfected with the mRFP-GFP-LC3 tandem
fluorescently tagged LC3 plasmid ptfLC3 [Addgene; Cambridge,
MA, USA; catalog number 21074 (Kimura et al., 2007)] using
Lipofectamine 2000 reagent (Invitrogen; Carlsbad, CA, USA).
Fourty-eight hours post-transfection, cells were treated with
100 nM HIV-1 IIIB recombinant Tat1−86 protein (ImmunoDX;
Woburn, MA, USA; catalog number 1002-2) and 500 nM

morphine alone or in combination for 8 h. Cells were fixed
in 3.7% paraformaldehyde and stained with DAPI to label cell
nuclei.

Confocal Microscopy and Image Analysis
A Zeiss LSM 700 confocal laser scanning microscope (Carl
Zeiss; Thornwood, NY, USA) was used to image tissue
sections with a 63x oil immersion objective and transfected
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TABLE 2 | Primer sets used for qRT-PCR.

Gene Forward primer Reverse primer

BECN1 5’- GCTGAGAGACTGGATCAGGA -3’ 5’- ATTGTGCCAAACTGTCCACT -3’

MAP1LC3B 5’- GAATTCTCCCACACCAAGTG -3’ 5’- AAATAGTGAACCCCATGCAA -3’

ATG7 5’- TGTGTTGGAGATTGGTTCCT -3’ 5’- GAGATCTTGGCATTGTCCAC -3’

ATG5 5’- ATGCAGGGAACACTAAGCTG -3’ 5’- TCTAGGGCATTGTAGGCTTG -3’

SQSTM1 5’- GAGTTCCAGCACAGAGGAGA -3’ 5’- AAGACAGATGGGTCCAGTCA -3’

LAMP1 5’- AGTGTCTGCTGGACGAGAAC -3’ 5’- GACCCTAAGCCCAGAGAAAG -3’

GAPDH 5’- CATGGCACCGTCAAGGCTGAGAA -3’ 5’- CAGTGGACTCCACGACGTACTCA -3’

neurons at 20x magnification. Neurons treated with microglial
supernatants were imaged using a Zeiss LSM 710 confocal
laser scanning microscope (Carl Zeiss) at 20x magnification.
Images were collected using ZEN 2011 (blue edition) software
(Carl Zeiss) and edited with Adobe Photoshop CS3 Extended
10.0 (Adobe Systems; San Jose, CA, USA). Relative levels
of immunofluorescent intensity were quantified using plugin
algorithm software for ImageJ [National Institutes of Health
(NIH); Bethesda, MD, USA]. Dendrite length was measured
by tracing along individual neurons fluorescently labeled with
MAP2 antibody using the broken line tool in ImageJ (Smith et al.,
2009).

Western Blotting
Cell lysates were prepared in RIPA buffer supplemented with a
mixture of protease and phosphatase inhibitors following 24 h
treatment and separated by SDS-PAGE for immunoblotting.
Primary antibodies used were anti-LAMP1 (catalog number
NB120-19294) at a 1:100 dilution, anti-Beclin 1 (catalog number
NB500-249) and anti-ATG5 (catalog number NB110-53818) at
a 1:500 dilution, and anti-LC3B (catalog number NB600-1384)
and anti-p62/SQSTM1 (catalog number NBP1-48320) at a
1:1000 dilution from Novus Biologicals (Littleton, CO, USA);
anti-APG7/ATG7 (Santa Cruz Biotechnology; Santa Cruz,
CA, USA; catalog number sc-33211) at a 1:50 dilution; and
anti-GAPDH (Sigma-Aldrich; St. Louis, MO, USA; catalog
number G9545) at a 1:1000 dilution. Primary antibodies were
followed by incubation a secondary antibody conjugated to
horseradish peroxidase (Cell Signaling Technology; Danvers,
MA, USA; catalog number 7074) used at a 1:1000 dilution.
Immunoblots were exposed to SuperSignal West Femto
Substrate (Thermo Scientific; Waltham, MA, USA) and
visualized using a ChemiDoc imaging system (Bio-Rad;
Hercules, CA, USA).

Statistics
Data were analyzed by one-way ANOVA followed with Student
Neuman-Keuls post hoc test for multiple comparisons using
GraphPad Prism 5 (GraphPad Software; La Jolla, CA, USA).
A value of p < 0.05 was considered significant. Outliers were
removed from the qRT-PCR analysis and identified with Grubbs’
test using the QuickCalc outlier calculator (GraphPad Software),
setting the alpha level to 0.05.

Results

Differential Expression of Autophagy
Associated Genes in HIV-Infected Subjects
with Two Types of Neurocognitive Impairment
To begin to determine which autophagy associated genes might
play a role in HIV-infected subjects with varying levels of
NCI, qRT-PCR was used to examine differences in mRNA
expression of common genes involved in various stages of the
autophagy pathway (BECN1, MAP1LC3B, ATG7, and ATG5)
and those marking autophagic activity (SQSTM1 and LAMP1)
from post-mortem brain tissues of the four subject groups
[HIV-negative (Group A), HIV-positive (Group B), HIV-positive
with NCI (Group C), and HIV-positive with combined NCI
and HIVE; Group D)] included in the NNTC Gene Array
Project (Gelman et al., 2012). It should be noted that although
the Gene Array Project describes samples collected from three
brain regions (the frontal lobe white matter, frontal cortex, and
basal ganglia), the tissue sample subset that we obtained to
analyze consisted almost exclusively of samples from the frontal
lobe white matter and frontal cortex (Table 1). Coincidently,
many of the HIV-infected Gene Array Project subjects had
reported histories of polysubstance abuse/dependence (Table 1),
suggesting that our findings may, in part, be reflective of drug-
using populations of infected individuals who could have altered
cellular responses from interactive HIV-drug effects occurring in
the CNS compared to infected non-substance users (Hauser et al.,
2007). Although we did not detect any differences for BECN1
and MAP1LC3B (Figures 1A,B), and also for ATG12 (data not
shown), we were able to detect significant differences in ATG7,
ATG5, SQSTM1, and LAMP1 expression levels among the subject
groups (Figures 1C–F). ATG7 levels were significantly higher in
NCI-HIVE subjects compared to all the other groups while ATG5
levels were significantly lower in HIV-infected subjects with NCI
compared to infected subjects without neurocognitive deficits.
On the other hand, SQSTM1 levels had multiple significant
differences between the various subject groups including lower
expression in HIV-infected subjects that were impaired without
HIVE compared to higher expression in NCI-HIVE. Also,
LAMP1 expression levels were significantly higher in HIV-
infected subjects that were unimpaired compared to uninfected
subjects. Overall, these results suggest that at the transcriptional
level while some autophagy-related genes may show differences
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FIGURE 1 | Expression of mRNAs from autophagy associated genes in
HIV-infected subjects with varying levels of neurocognitive impairment.
Expression levels of the autophagy genes (A) BECN1, (B) MAP1LC3B,
(C) ATG7, and (D) ATG5, and autophagic activity markers (E) SQSTM1 and
(F) LAMP1 were measured by qRT-PCR across the indicated subject groups.

Data are presented relative to HIV-negative subjects which was set to a value
of 1. BECN1: F (3,24) = 0.7201, p = 0.5498; MAP1LC3B: F (3,23) = 1.974,
p = 0.1461; ATG7: F (3,24) = 11.97, p = < 0.0001; ATG5: F (3,22) = 4.350,
p = 0.0150; SQSTM1: F (3,23) = 4.958, p = 0.0085; LAMP1: F (3,24) = 3.429,
p = 0.0331; ∗p < 0.05. Error bars show the SEM.

in expression at various states of HIV infection, the level of
autophagic activity may be lower during NCI-HIVE in the frontal
lobe white matter and frontal cortex regions of the brain while
mixed signaling of activity may occur during HIV infection
leading up to NCI.

Expression Patterns of Autophagy Associated
Proteins in HIV-Infected Brain Tissue
To determine whether there might be differences in protein
expression of autophagy associated factors in relation to
the qRT-PCR data, we performed immunohistochemistry on
representative tissue that was from the same subject samples
used in the PCR analysis. White matter sections were used
due to the limited amounts of samples available from other
brain regions. Autophagy associated protein expression was
examined in Iba1-immunolabeled microglia to address whether
the differences that we observed might be contributing to
microglial-mediated neuroinflammation. Autophagy proteins
and related markers were found to co-localize mostly with Iba1-
positive microglial cells but were also observed in Iba1-negative
cell types (Figure 2A). Also, more Iba1-immunoreactive cells
were observed in sections from subjects with NCI compared
to the unimpaired groups (Figure 2A; arrow heads). However,
when the overall immunofluorescent intensity was quantified,
Iba1 expression levels were found to be higher in the NCI
group without HIVE (Figure 2B). Furthermore, within the Iba1-
positive cells from the NCI groups, autophagy associated protein
immunoreactivity on individual cells appeared to be higher
(Figure 2A). When the overall immunofluorescent intensities
were quantified for individual autophagy associated proteins, we
were able to find significant differences in Beclin 1, APG7/ATG7,

ATG5, p62/SQSTM1, and LAMP1 expression levels among the
subject groups (Figure 2C). Although HIV infection resulted in
generally higher expression of LAMP1, and also for Beclin 1
with lower expression in the NCI-HIVE group compared to the
other infected groups, higher expression in only the impaired
groups was found for APG7/ATG7, ATG5, and p62/SQSTM1.
While ATG5 expression was higher only in the NCI-HIVE
group, the highest relative levels of expression among the subject
groups were found for APG7/ATG7 in the NCI group without
HIVE and p62/SQSTM1 in the NCI-HIVE group. Interestingly,
more focal rather than diffuse patterns of immunoreactivity
were observed among the proteins in the NCI-HIVE group
(Figure 2A; arrows). Although all of these observations did not
necessarily correlate with what we detected at the mRNA level,
possibly due to post-translational modifications/stability and/or
differences occuring specifically in the frontal lobe white matter
and/ormicroglial cell type we examined, these results suggest that
at the protein level while higher immunoreactivity may occur
in the context of HIV infection and NCI, NCI-HIVE results in
the accumulation of autophagy associated proteins in microglial
cellular inclusion bodies which could be indicative of altered
protein turnover and disruptions to autophagic flux in this cell
type and is consistent with what we found for SQSTM1 by
qRT-PCR.

Examination of Autophagy Associated Genes
Differentially Expressed in Various Brain
Regions of HIV-Infected Subjects from
Microarray Data
Having assayed the subset of brain tissue samples that we
had acquired for differences in autophagy associated factors at
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FIGURE 2 | Autophagy associated protein immunoreactivity in
HIV-infected brain tissue. (A) Representative images from five randomly
selected fields of cells each examined in duplicate frontal lobe white matter
sections for the indicated subject groups. The indicated proteins were labeled
red and microglia with the cell-type-specific marker Iba1 (green). Blue staining
indicates cell nuclei. Arrow heads indicate examples of higher Iba1
immunoreactivity whereas arrows indicate more focal (punctal) vs. diffuse
(filamentous) patterns of autophagy associated protein expression. Scale
bar = 10 µm. (B) Quantification of relative Iba1 immunoreactivity from (A).
F (3,20) = 6.450, p = 0.0031; ∗p < 0.05 when compared to all other subject

groups. Error bars show the SEM for the average values of 2–6 regions from
each subject group across the six autophagy associated proteins examined.
(C) Quantification of the indicated autophagy associated protein relative
immunoreactivity from (A). Beclin 1: F (3,12) = 11.29, p = 0.0008; LC3B:
F (3,12) = 1.994, p = 0.1687; APG7/ATG7: F (3,12) = 84.20, p = < 0.0001;
ATG5: F (3,12) = 6.218, p = 0.0086; p62/SQSTM1: F (3,12) = 87.04,
p = < 0.0001; LAMP1: F (3,12) = 8.317, p = 0.0029. ∗p < 0.05 when
compared to HIV-negative; #p < 0.05 when compared to HIV-positive; and
�p < 0.05 when compared to HIV-positive/NCI subjects. Error bars show the
SEM for four regions from each subject group.

the mRNA and protein levels by standard methods, we next
examined if expression of the genes that were measured by
qRT-PCR, as well as whether other autophagy associated genes,

might differ among the subject groups in a brain region-specific
manner using microarray data that was retrieved and re-analyzed
from the same set of subjects used in our study (Gelman et al.,
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2012; Dever et al., 2014). Microarray data was used for this
analysis as all of the tissue samples from individual brain regions
included in the Gene Array Project for each subject were not
available for qRT-PCR validation experiments, particularly those
from the basal ganglia (Table 1). Heat maps were generated
to display the expression pattern within individual probesets
for the genes examined by qRT-PCR across the subject groups
from the three brain regions where samples were collected:
the frontal lobe white matter, frontal cortex, and basal ganglia
(Figures 3A–C), and we used a multi-class linear models for
microarray data (Limma; parametric) analysis of the microarray
data to access differential expression between the subject groups
(Smyth, 2004). Out of these genes, only LAMP1 levels were
found to be statistically significant when comparing uninfected
and NCI-HIVE subjects in the basal ganglia, which was detected
with a particular probeset (201553_s_at; Figure 3D), as opposed
to the higher levels in HIV-infected subjects without NCI that
were detected using qRT-PCR with samples almost exclusively

from the frontal lobe white matter and frontal cortex (Table 1).
This result for LAMP1 in the basal ganglia was also found in
the original microarray analysis of this data set using local-
pooled-error (non-parametric) tests for statistical comparisons
(Gelman et al., 2012). Although the microarray and qRT-PCR
data did not correlate for the genes we had examined up to this
point, most likely due to the particular tissue sample subset we
used, at the transcriptional level the combined results suggest
that autophagic processes may differ in a brain region-specific
manner during HIV infection, more closely associated with the
NCI-HIVE condition, with higher activity in the basal ganglia
as indicated by LAMP1 levels from the microarray data and
lower activity in the frontal lobe white matter and frontal cortex
as indicated by SQSTM1 levels using qRT-PCR. Furthermore,
the results from comparison of the genes and corresponding
proteins suggest another level of complexity whereby differences
in mRNA and protein expression may not necessarily correlate
due tomodifications/stability at the post-translational level which

FIGURE 3 | Autophagy associated gene expression from microarrays
in three brain regions of HIV-infected subjects. Heat maps are
shown for the indicated genes from (A) frontal lobe white matter,
(B) frontal cortex, and (C) basal ganglia of subjects that were
HIV-negative (A1–A6), HIV-positive (B1–B6), HIV-positive with
neurocognitive impairment (NCI; C1–C7), and HIV-positive with

combined NCI and HIV encephalitis (HIVE; D1–D5). IDs of individual
probesets included in the array for each gene are given in parenthesis.
(D) A significant difference of RMA probeset intensity values from the
microarray data analyses was found in the basal ganglia for LAMP1
(201553_s_at) between HIV-negative (Group A) and NCI-HIVE (Group D)
subjects; ∗p < 0.05. Error bars show the SEM.
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may also be occurring a brain region- and/or cell-type-specific
manner.

In addition to the genes examined thus far, we also wanted
to determine whether our Limma analysis found differences
with probesets for other autophagy associated genes as well.
The analysis found that the autophagy-related gene ATG4D, as
well as other genes involved in autophagy including DRAM1
and KIAA0226, had significantly differential expression between
uninfected and NCI-HIVE subjects in the basal ganglia, and
ATG12 and ATG13 as well as CTSB, TM9SF1, and WIPI1
levels significantly differed when all the subject groups were
compared in this same brain region, although no significant pair-
wise differences were found between any two particular groups
(data not shown). Also, ATG3 and ATG4D as well as C12orf44
(ATG101), AMBRA1, DRAM1, KIAA0226, RAB24, and ULK1
in the frontal lobe white matter and DAP and DRAM1 in the
frontal cortex were found to have significant differences across
all groups (data not shown). The differential expression of these
other genes that we did not examine by qRT-PCRmight represent
interesting targets for future validation studies on the differences
that occur in autophagy during various states of HIV infection,
and, in particular, NCI-HIVE. Furthermore, these results suggest
that the basal ganglia, where most of the microarray differences
were found, may be a key brain region to evaluate the impact of
differing autophagic processes on the neurocognitive function of
HIV-infected patients.

Effect of Supernatant from HIV-1-Infected
Microglia on Neuronal Autophagic Activity in
the Presence of Morphine
As disruptions to the autophagic activity of primary rodent
neurons have been reported to result with treatment of
supernatant from SIV-infected microglia cultured ex vivo
(Alirezaei et al., 2008), and HIV-1-infected primary human
microglia exposed to morphine in vitro can affect autophagy
which may influence the downstream neurotoxic activities of
this cell type (El-Hage et al., 2015), we next tested whether
in vitro exposure of primary human neurons to supernatant
from HIV-1-infected primary human microglia in the presence
of morphine might also modify autophagic processes in a
manner that could result in altered neuronal function leading
to NCI. Although many of the HIV-infected Gene Array Project
subjects had substance use histories with various drugs of abuse
(Table 1), we chose to examine the interactive effects of HIV
and morphine on neurons as opiates with abuse liability that
preferentially activate the µ-opioid receptor (MOR) such as
morphine can exacerbate the neuropathogenesis of HIV by
mechanisms which are not fully understood (Hauser et al., 2005).
However, it is generally believed glia play a central role in
mediating opiate drug-HIV interactions on neurons through
bystander events via neurotoxic signaling molecules and viral
proteins released from infected and activated cells such as
microglia and that opiates such as morphine can potentiate
these effects (Hauser et al., 2012). Interestingly, while the
supernatant from HIV-1-infected microglia alone did not result
in differences to autophagic activity as determined by measuring
p62/SQSTM1 immunoreactivity in exposed neurons, supernatant

from infected microglia in the presence of morphine resulted
in significantly higher p62/SQSTM1 expression (Figures 4A,B),
suggesting inhibition of autophagy as we found for NCI-HIVE
subjects in vivo. In support of these observations, when whole-
cell lysates were examined by western blotting analysis, we found
that p62/SQSTM1 expression levels were highest for infected
supernatant and combined morphine treatment compared to
the other supernatant treatments, and which corresponded with
concomitantly lower LAMP1 levels (Figure 4C). Also, when the
length of neuronal dendrites was examined under these same
conditions, we observed that morphine alone was able to reduce
dendritic length which was further enhanced in the combined
presence of supernatant from uninfected microglia, and even
more so in combination with supernatant from HIV-1-infected
microglia, demonstrating an additive trend in response to the
supernatant and morphine treatments (Figure 4D). These results
suggest that differences in dendritic length can occur in response
to morphine and HIV-1-infected microglial supernatant alone
rather than as a consequence of inhibited autophagic activity
which was only observed with co-treatment. Furthermore,
anatomical variations might occur in a transient/reversible
manner to initial exposure possibly resulting in milder forms of
NCI, while severe NCI may correlate with structural differences
coupled to mechanistic alterations in cellular function through
inhibition of autophagic activity that could lead to more
permanent neurocognitive deficits and dementia as with NCI-
HIVE subjects.

Influence of HIV-1 Tat and Morphine Treatment
on Autophagy in Neurons
Since the HIV-1 Tat protein can mediate neuronal toxicity which
can be enhanced in the combined presence of morphine (Zou
et al., 2011), we then tested if treatment of primary human
neurons with HIV-1 Tat and morphine would have similar effects
to what we found with the supernatant from HIV-1-infected
microglia and morphine to further delineate whether various
cellular-oriented factors such as inflammatory molecules released
by infected microglia or viral proteins shed from these cells
may be responsible for the interactive effects by first using a
fluorescent reporter system to monitor autophagic flux. Neurons
were transfected with a plasmid encoding a mRFP-GFP-LC3
tandem fluorescently-tagged LC3 reporter with which green
(GFP) and yellow (GFP+mRFP) fluorescence are observed prior
to the fusion of autophagosomes with lysosomes whereas only
red (mRFP) fluorescence is present in post-fusion autolysosomes
(Kimura et al., 2007). Following transfection, neurons were
treated with HIV-1 Tat [an initial concentration of 100 nM was
tested which can elicit functional deficits in neurons and glia
similar to those occurring in HIV infection and is considered
to reflect levels seen pathophysiologically (Nath et al., 1999;
Singh et al., 2004; El-Hage et al., 2005, 2008)] and morphine
[500 nM was chosen for the ability of this concentration to
fully activate MOR and synergistically enhance Tat-mediated
neurotoxicity (Gurwell et al., 2001; Zou et al., 2011)] alone
or in combination for 8 h and the differential patterns of
fluorescence were observed (Figure 5A). When the number of
red fluorescent signals (puncta) occurring in autolysosomes were
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FIGURE 4 | Effects on autophagic activity and dendritic length of
neurons exposed to supernatant from HIV-1-infected microglia in
combination with morphine. (A) Representative images of neurons with
the indicated treatments. Sup, supernatant from uninfected [HIV(−)] and
HIV-1-infected [HIV(+)] microglia. Cells were immunolabeled with antibodies
to the autophagic activity marker p62/SQSTM1 (red) and the neuronal
cell-type-specific marker MAP2 (green). DAPI (blue) staining indicates cell
nuclei. (B) Quantification of p62/SQSTM1 immunoreactivity from (A). Data
are presented as the percentage of control cells which was set at 100;
F (5,24) = 5.882, p = 0.0011; ∗p < 0.05 when compared to HIV(+)Sup +

morphine treatment. (C) Western blotting analysis of p62/SQSTM1
and LAMP1 expression levels for the indicated treatments. GAPDH
was used as a loading control. Blots are representative of three
independent experiments. (D) Measurement of dendrite length from
(A). F (5,24) = 26.15, p = < 0.0001; �p < 0.05 when compared to
morphine; �p < 0.05 when compared to HIV(−)Sup; �p < 0.05 when
compared to HIV(−)Sup + morphine; #p < 0.05 when compared to
HIV(+)Sup; and ∗p < 0.05 when compared to HIV(+)Sup + morphine
treatment. Error bars show the SEM for five randomly selected fields
totaling at least 100 cells from each group.

manually quantified, we found that HIV-1 Tat and morphine
treatment in combination resulted in significantly lower numbers
of autophagosomal–lysosomal fusion events compared to all
the other treatments (Figure 5B). However, when whole-cell
lysates were next examined by western blotting analysis for
expression levels of various autophagy associated proteins at
a later time point (24 h), autophagic activity appeared to be
higher. While LC3B levels remained relatively constant across
the treatment conditions and LAMP1 levels were higher for a
lower concentration of Tat (1 nM) which was sustained using
higher concentrations of Tat (10 and 100 nM) in the presence
of morphine, Beclin 1, APG7/ATG7, and ATG5 exhibited
higher levels of expression coinciding with combined Tat and
morphine exposure, that were mostly associated with the highest
concentration of Tat used (100 nM), when p62/SQSTM1 levels

were concomitantly lower (Figure 5C). We also observed that
dendritic beading, which is indicative of excitotoxic stress and/or
injury (Ellis et al., 2007), was significantly higher with HIV-1
Tat treatment and Tat treatment in combination with morphine
compared to control cells (Figure 5D). All combined, our in vitro
results suggest that while HIV infection can result in bystander
effects on neuronal morphology, disruptions to specific cellular
mechanisms such as autophagy may occur more readily from
the interactive effects of HIV and associated viral proteins with
substances of abuse/dependence such as morphine. Furthermore,
when morphine is present, the consequences of neurotoxic and
inflammatory factors released by infected cells on neuronal
autophagic processes may be different than that of viral proteins
which could in themselves have differing effects in a time-
dependent manner.
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FIGURE 5 | Differences in neuronal autophagy and dendrite varicosity
following HIV-1 Tat protein and morphine treatment.
(A) Representative images of neurons transfected with a fluorescent
reporter plasmid to monitor autophagic flux at 8 h following the indicated
treatments. GFP (green) and GFP + mRFP (yellow) fluorescence are
observed prior to the fusion of autophagosomes with lysosomes whereas
only mRFP (red) fluorescence is present in post-fusion autolysosomes. DIC,
differential interference contrast microscopy image. DAPI (blue) staining

indicates cell nuclei. (B) Quantification of autolysosomes (red puncta)
from (A). F (3,13) = 8.756, p = 0.0019; ∗p < 0.05 when compared to all
other groups. (C) Western blotting analysis of the indicated autophagy
associated protein levels at 24 h following the indicated treatments.
GAPDH was used as a loading control. Blots are representative of three
independent experiments. (D) Quantification of dendrite beading from (A).
F (3,77) = 6.429, p = 0.0006; ∗p < 0.05 when compared to control cells.
Error bars show the SEM.

Discussion

In the present study, we investigated the role of autophagy
in the brains of HIV-infected subjects with NCI with and
without combined HIVE. These findings are unique in that our
subject group categories allowed us to determine whether the
differences we detected in autophagy may be more associated
with encephalitis than NCI. For instance, this seemed to be the
case when we examined SQSTM1 expression using qRT-PCR,
and our results were in agreement with a previous report that
found higher mRNA levels of this gene in the frontal lobe of
SIV encephalitic (SIVE) monkeys and frontal cortex of human
subjects with HAD (Alirezaei et al., 2008). It should be noted
that most of our subjects with NCI had neurocognitive diagnoses
of MCMD and possible HAD, while those with NCI-HIVE were
diagnosed with HAD and probable HAD (Table 1).

We began our search for differences in autophagy associated
factors by performing qRT-PCR and immunohistochemical

analyses on brain tissue samples obtained from various categories
of HIV-infected subjects, followed by examining microarray
data generated from these same subjects within three brain
regions. Interestingly, out of several genes commonly examined
in autophagy studies that we also investigated, the microarray
data only revealed a significant difference in expression for
the autophagic activity marker LAMP1 which was detected
with a particular probeset in the basal ganglia. However, we
were able to detect significant expression differences among
the subject groups for other genes involved in autophagy as
well using qRT-PCR. In addition, the difference found for
LAMP1 in the microarray data was between uninfected and NCI-
HIVE subjects whereas the difference detected by qRT-PCR was
between uninfected and HIV-infected subjects without NCI. The
discrepancy in these results could be at least partially explained
by the particular tissue sample subset provided to us which
consisted almost exclusively of samples from the frontal lobe
white matter and frontal cortex (Table 1), as all of the samples
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used in the arrays were not available. This limitation points to the
importance and need for brain banking and availability of well-
matched samples from different anatomical regions and disease
state categories of HIV-infected subjects for future validation
studies.

Furthermore, we found differences with our
immunohistochemical analysis of autophagy associated
proteins in microglia that were not reflected in the qRT-
PCR data suggesting differential regulation at the transcriptional,
translational, and post-translational levels. For example, the
immunoreactivity of proteins that we examined was generally
higher in the impaired groups. However, our results for
p62/SQSTM1 were fairly consistent by both qRT-PCR and
immunohistochemistry with higher expression in the NCI-HIVE
group. Overall, our findings of immunoreactivity were mostly in
agreement with a previous report that found higher expression
levels for autophagy associated proteins in the frontal cortex of
HIVE individuals by western blotting analysis (Zhou et al., 2011).
Interestingly, Zhou et al. (2011) reported that no differences in
the protein expression levels were found between HIVE-positive
individuals with and without HAD. Combined with our findings,
the data again suggest that encephalitis more than NCI alone may
be responsible for some of the observed differences. Although we
were able to observe differences in immunoreactivity using tissue
sections, we were unable to perform other assays to confirm
these findings due to the limited amount of tissue available. The
availability of larger tissue sample sizes from the categories of
subjects that we examined will be useful to further evaluate our
findings at the protein level by more quantitative methods such
as western blotting.

In addition to differences in immunoreactivity, we also
found qualitative differences in the expression of autophagy
associated proteins with more focal rather than diffuse patterns
in microglia from the NCI-HIVE group. This finding suggests
that in the HIVE condition, accumulation of proteins associated
with autophagy in cellular inclusion bodies may be indicative
of altered protein turnover, which could be related to what
we observed as higher levels of immunoreactivity, and is
manifested by disruptions in autophagic activity/flux. Our results
are supported by a previous report that found more focal
patterns of p62/SQSTM1 expression in the hippocampus of
monkeys with SIVE and HIV-infected individuals with HAD
(Alirezaei et al., 2008). Indeed, such formations have been
described in patients with a variety of neurodegenerative diseases
(Zatloukal et al., 2002). Furthermore, SQSTM1 transcription
can be higher as part of inclusion body formation (Nakaso
et al., 2004), which supports our qualitative and quantitative
(p62/SQSTM1) immunohistochemical results with the qRT-
PCR data for this gene that we detected in the NCI-HIVE
group. Overall, our findings with the human brain tissues
suggest HIVE, rather than NCI alone, is more associated with
differences to autophagic processes in microglia which may then
through altered intercellular transmission of released factors
result in similar differences within neuronal cells that could
lead to neurodegeneration, and p62/SQSTM1 is a responsive
marker in this regard. Future in vitro studies will be needed
to systematically explore the connections between disrupted

autophagy in microglia and the implications for autophagic and
other cellular processes in bystander cell types such as neurons.

While our human brain tissue data was fairly consistent with
the findings of both Alirezaei et al. (2008) and Zhou et al.
(2011), the combined results from these and our study seem
somewhat contradictory suggesting that autophagy levels are
both higher and lower during HAD/HIVE. However, it may be
possible to reconcile these findings in that induced or suppressed
autophagic activity in response to prolonged HIV infection to, for
example, clear toxic factors and affect viral replication, followed
by compensatory differences to offset these effects itself suggests
a mechanism whereby mixed signals and dysregulation in an
attempt for cell survival is manifested as cellular dysfunction
which could lead to NCI. Interestingly, a more recent study
found that non-progressor HIV-infected patients have higher
autophagy compared to normal progressors when peripheral
blood mononuclear cells (PBMCs) were examined (Nardacci
et al., 2014). This finding suggests that, at least in the periphery,
higher autophagy levels may be critical for controlling the initial
spread of HIV infection to the CNS, preventing the formation
of viral reservoirs in the brain which could eventually lead to
HAD and HIVE. Future studies will be needed to evaluate the
connections between the higher and lower autophagic activity
to identify targets which could possibly be used to offset and/or
coordinate the opposing events.

In conjunction with our human in vivo data, we also found
that morphine can interact with the supernatant from HIV-1-
infected microglia and HIV-1 Tat protein in opposing ways to
cause differences of neuronal autophagy in vitro. These results
suggest that opioid exposure may uniquely activate some of the
in vivo effects of HIV through modulation of the autophagic
pathway in this cell type which could accelerate NCI compared
to bystander events from HIV infection alone. Furthermore,
these mechanistic differences resulting from interactive effects
could potentially result in more permanent alterations to cellular
function compared to the morphological differences that we
observed in dendritic length and beading, which may be
reversible (Ellis et al., 2007), with individual treatments. However,
as a common route of HIV infection in substance-abusing
individuals is following injection drug use (Leshner, 1998), the
consequences of preexisting and irreversible dendrite differences
from chronic drug exposure that can itself result in NCI may be
exacerbated upon the onset and duration of HIV infection with
more additive rather than interactive effects in this sequence of
events leading to further neuronal injury and death.

Interestingly, while our in vivo human brain tissue data
correlated with that of both Alirezaei et al. (2008) and Zhou
et al. (2011), our in vitro results did not as a significant effect
of supernatant from HIV-1-infected primary human microglia
and Tat treatment alone on autophagy in primary human
neurons was not found for the most part. Alirezaei et al. (2008)
demonstrated that supernatant from SIV-infected microglia
cultured ex vivo inhibited autophagy in primary rodent neurons,
whereas Zhou et al. (2011) showedHIV-1 gp120 protein exposure
resulted in higher autophagic activity of SK-N-SH neuroblastoma
cells. However, our results in conjunction with morphine on
autophagy did agree with both Alirezaei et al. (2008) and
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Zhou et al. (2011) showing induction with viral protein and
inhibition for infected microglial supernatant following 24 h
of treatment, while the interactive effect with Tat appeared to
be dynamic with lower autophagic activity at 8 h co-exposure.
Although the effects on autophagy that we were able to find
compared to Alirezaei et al. (2008) and Zhou et al. (2011) may
have resulted from exacerbation by morphine and could also
be attributed to variations in the species, SIV/HIV strains, HIV
proteins, cell systems, etc. used between all three studies, future
characterization of supernatant from infected microglial cells
and testing the effect of individual components on autophagic
processes in neurons will be necessary for understanding the
underlying differences.

Furthermore, recently published in vitro data from our lab
supports the in vivo findings of this study that showed HIV-1
infection can affect autophagy in primary human microglia and
morphine can modulate these differences which could influence
viral replication, cytokine/chemokine production and release,
and potentially other factors involved in mediating neurotoxicity
(El-Hage et al., 2015). Therefore, future evaluation of the in vitro
effects from morphine and other drugs of abuse on autophagy
in the context of HIV infection examining individual CNS
cell types may provide new insights for particular therapeutics
directed toward the autophagic pathway and which target an
individual type of cell. However, at present, the interactions
between HIV and autophagy are largely unknown in astrocytes
(Dinkins et al., 2015), and other CNS cell types such as pericytes
and brain microvascular endothelial cells involved in blood-
brain barrier integrity. Elucidation of the basic mechanisms by
which HIV infection affects autophagy in these cells will be
necessary before detailed studies on the impact of drugs in
these processes can be systematically explored. As astrocytes
are thought to be important for driving HIV-opiate interactions
through intercellular feedback loops with microglia (Hauser
et al., 2012), their role in autophagy during HIV infection may
represent a potential therapeutic strategy targeting the bystander
effects of glial responses on neurons and worth intense future
investigation. In addition, detailed studies on a single drug may
not be feasible using in vivo human samples, and particularly
with our tissues, as many of the infected subjects from our
study had a history of polysubstance abuse/dependence (Table 1).
This constraint further underscores the notion that availability of
tissue samples from HIV-infected subjects with well-documented
patient histories of a particular substance use, as well as those with
no reported use history, will be necessary for future evaluation
when using in vivo human samples to examine an individual
drug and also highlights the need for more in vitro studies on the
interactive effects from exposure to multiple drugs of abuse in the
context of HIV infection.

Conclusion

Our findings demonstrating differences of autophagy in
microglial cells from NCI-HIVE subjects are one of the few

reports that suggest microglia may represent a better upstream
therapeutic target to modulate autophagy in the context of HIV
infection to ameliorate neurodegeneration rather than neuronal
cells themselves. However, for HIV-infected individuals exposed
to morphine, direct neuronal targeting may be as important
as targeting glia. Therefore, substance-abusing individuals
may require more aggressive and multifaceted treatment
regimens targeting the direct and indirect cellular causes of
neurocomplications from HIV infection than non-substance
users.
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