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ABSTRACT OF THE DISSERTATION 

ESTIMATION AND PREDICTION OF AVERAGE VEHICLE OCCUPANCIES 

USING TRAFFIC ACCIDENT RECORDS 

by 

Kaiyu Liu 

Florida International University, 2007 

Miami, Florida 

Professor Albert Gan, Major Professor 

As congestion management strategies begin to put more emphasis on person trips 

than vehicle trips, the need for vehicle occupancy data has become more critical.  The 

traditional methods of collecting these data include the roadside windshield method and 

the carousel method.  These methods are labor-intensive and expensive.  An alternative to 

these traditional methods is to make use of the vehicle occupancy information in traffic 

accident records.  This method is cost effective and may provide better spatial and 

temporal coverage than the traditional methods.  However, this method is subject to 

potential biases resulting from under- and over-involvement of certain population sectors 

and certain types of accidents in traffic accident records. 

In this dissertation, three such potential biases, i.e., accident severity, driver’s age, 

and driver’s gender, were investigated and the corresponding bias factors were developed 

as needed.  The results show that although multi-occupant vehicles are involved in higher 

percentages of severe accidents than are single-occupant vehicles, multi-occupant 

vehicles in the whole accident vehicle population were not overrepresented in the 

accident database.  On the other hand, a significant difference was found between the 
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distributions of the ages and genders of drivers involved in accidents and those of the 

general driving population. 

An information system that incorporates adjustments for the potential biases was 

developed to estimate the average vehicle occupancies (AVOs) for different types of 

roadways on the Florida state roadway system.  A reasonableness check of the results 

from the system shows AVO estimates that are highly consistent with expectations.  In 

addition, comparisons of AVOs from accident data with the field estimates show that the 

two data sources produce relatively consistent results. 

While accident records can be used to obtain the historical AVO trends and field 

data can be used to estimate the current AVOs, no known methods have been developed 

to project future AVOs.  Four regression models for the purpose of predicting weekday 

AVOs on different levels of geographic areas and roadway types were developed as part 

of this dissertation.  The models show that such socioeconomic factors as income, vehicle 

ownership, and employment have a significant impact on AVOs. 



 vii 
 

TABLE OF CONTENTS 

CHAPTER                                                                                                                   PAGE 

1.  INTRODUCTION ......................................................................................................... 1 
1.1. Background ............................................................................................................ 1 
1.2. Problem Statement ................................................................................................. 3 
1.3. Objectives and Scope............................................................................................. 5 
1.4. Dissertation Organization ...................................................................................... 6 

2.  LITERATURE REVIEW .............................................................................................. 8 
2.1. Vehicle Occupancy Data Collection Design Issues............................................... 8 

2.1.1. Geographic Coverage.................................................................................. 10 
2.1.2. Temporal Coverage..................................................................................... 10 
2.1.3. Facility Types and Trip Purposes ............................................................... 12 
2.1.4. Locations..................................................................................................... 13 
2.1.5. Vehicle Types ............................................................................................. 14 
2.1.6. Vehicle Percentages .................................................................................... 15 
2.1.7. Sampling Issues .......................................................................................... 16 

2.2. AVO Calculation ................................................................................................. 20 
2.3. Accident Data Extraction Method ....................................................................... 21 

2.3.1. Estimate Procedures.................................................................................... 22 
2.3.2. Bias Issues and Adjustments....................................................................... 24 

2.4. Forecast Issues in Vehicle Occupancy Data Collection ...................................... 26 
2.5. Summary.............................................................................................................. 28 

3.  FACTORS AFFECTING AVO: EVIDENCE FROM ACCIDENT DATA ............... 30 
3.1. Introduction.......................................................................................................... 30 
3.2. Data Preparation................................................................................................... 30 
3.3. Statistical Analysis Methods................................................................................ 32 
3.4. Identification of Factors Affecting AVO............................................................. 36 

3.4.1. Accident Year ............................................................................................. 36 
3.4.2. Accident Month .......................................................................................... 38 
3.4.3. Accident Day-of-Week ............................................................................... 39 
3.4.4. Accident Hour............................................................................................. 40 
3.4.5. County......................................................................................................... 41 
3.4.6. Roadway Type ............................................................................................ 42 
3.4.7. Accident Severity........................................................................................ 43 
3.4.8. Driver’s Age................................................................................................ 44 
3.4.9. Driver’s Gender .......................................................................................... 45 
3.4.10. Driver’s Race ............................................................................................ 45 
3.4.11. Weather Conditions .................................................................................. 46 

4.  ADJUSTMENTS FOR POTENTIAL BIASES IN ACCIDENT DATA.................... 48 
4.1. Introduction.......................................................................................................... 48 
4.2. Data Preparation................................................................................................... 48 



 viii 
 

4.2.1. Field Data Collection Locations ................................................................. 49 
4.2.2. Field Data Collection Methods ................................................................... 52 
4.2.3. Field Data Collection Tool.......................................................................... 53 
4.2.4. Other Data Sets ........................................................................................... 54 

4.3. Examination of Potential Bias Factors................................................................. 54 
4.3.1. Accident Severity........................................................................................ 54 
4.3.2. Driver’s Age................................................................................................ 56 
4.3.3. Driver’s Gender .......................................................................................... 58 
4.3.4. Other Potential Bias Factors ....................................................................... 59 

4.4. Development of Bias Adjustment Factors ........................................................... 60 
4.4.1. Improved Weighting Mean Method............................................................ 60 
4.4.2. Bias Adjustment Factors for Driver’s Age ................................................. 63 
4.4.3. Bias Adjustment Factors for Driver’s Gender ............................................ 65 
4.4.4. Composite Adjustment for Driver’s Age and Gender ................................ 67 

5.  AVO INFORMATION SYSTEM ............................................................................... 68 
5.1. Introduction.......................................................................................................... 68 
5.2. System Implementation ....................................................................................... 68 

5.2.1. System Functionalities ................................................................................ 69 
5.2.2. Incorporation of Bias Adjustment Factors .................................................. 69 
5.2.3. Incorporation of Minimum Sample Size..................................................... 70 

5.3. Input Specifications ............................................................................................. 72 
5.3.1. Accident Data Years ................................................................................... 72 
5.3.2. Location Selection ...................................................................................... 73 

5.4. System Output...................................................................................................... 75 
5.4.1. Table and Chart Display ............................................................................. 75 
5.4.2. GIS Display................................................................................................. 78 

5.5. Variable Re-Categorization ................................................................................. 80 

6.  EVALUATION OF AVO ESTIMATES FROM ACCIDENT DATA ....................... 83 
6.1. Introduction.......................................................................................................... 83 
6.2. Reasonableness Checks ....................................................................................... 83 

6.2.1. AVO Trends by Year and Day of Week..................................................... 83 
6.2.2. AVO Trends by Month ............................................................................... 84 
6.2.3. AVO Trends by Hours ................................................................................ 85 
6.2.4. AVO Trends by Area Type......................................................................... 85 
6.2.5. AVO Trends by Vehicle Type .................................................................... 87 

6.3. Comparisons with Field Data at the County Level.............................................. 88 
6.4. Comparisons with Field Data at the Site-Specific Level ..................................... 88 

7.  VEHICLE OCCUPANCY PREDICTION MODELS................................................. 91 
7.1. Introduction.......................................................................................................... 91 
7.2. Data Sources ........................................................................................................ 91 
7.3. Weekday AVO Models at Area Level ................................................................. 93 

7.3.1. AVO Model at County Level...................................................................... 93 
7.3.2. AVO Model at Census Blockgroup Level .................................................. 94 



 ix 
 

7.4. AVO Model at Corridor Level............................................................................. 96 
7.4.1. Data Preparation.......................................................................................... 98 
7.4.2. AVO Model for Arterials in Large Urban Counties ................................. 100 
7.4.3. AVO Model for Arterials in Medium-Size Urban Counties..................... 104 
7.4.4. AVO Model for Urban Freeways ............................................................. 105 

7.5. Model Validation ............................................................................................... 107 
7.6. Summary of Final Models ................................................................................. 109 

8.  CONCLUSIONS AND RECOMMENDATIONS .................................................... 111 
8.1. Summary of Research Results and Conclusions................................................ 111 
8.2. Recommendations for Future Development ...................................................... 116 

REFERENCES ............................................................................................................... 118 

APPENDICES ................................................................................................................ 122 

VITA............................................................................................................................... 133 
 



 x 
 

LIST OF TABLES 

TABLE                                                                                                                        PAGE 

Table 2-1:  Sources of Variation in Average Occupancy ................................................. 19 

Table 3-1:  Results of ANOVA Test................................................................................. 34 

Table 3-2:  Results of Kruskal–Wallis H-Test.................................................................. 35 

Table 3-3:  Results of Friedman Fr Test ........................................................................... 35 

Table 4-1:  Initial Selected Observation Roadway Segments for Surface Streets............ 50 

Table 4-2:  Selected Observational Roadway Segments for Freeways ............................ 51 

Table 4-3:  Selected Observation Roadway Segments for Toll Facilities ........................ 51 

Table 4-4:  Distribution of Accident Severity by Vehicle Occupancy ............................. 55 

Table 4-5:  Vehicle Occupancy Distributions of Accident and Field Data ...................... 56 

Table 4-6:  Vehicle Frequency Comparisons Between Male and Female Drivers........... 59 

Table 4-7:  Minutes Spent and Miles Driven Daily by Age and Gender Groups............. 62 

Table 4-8:  Weighting Coefficients for Age Groups for Miami-Dade County................. 63 

Table 4-9:  AVOs and Age Adjustment Factors for Some Counties................................ 64 

Table 4-10:  Weighting Coefficients for Gender Groups for Miami-Dade County ......... 65 

Table 4-11:  AVOs and Gender Adjustment Factors for Some Counties......................... 66 

Table 4-12:  AVOs and Composite Adjusted AVOs for Some Counties ......................... 67 

Table 5-1:  Required Number of Accident Vehicles for Miami-Dade County................. 71 

Table 7-1:  Composite Variables ...................................................................................... 92 

Table 7-2a:  AVO Weekday County Model Summary..................................................... 94 

Table 7-2b:  AVO Weekday County Model Coefficients ................................................ 94 

Table 7-3a:  Miami-Dade County AVO Weekday Model Summary ............................... 96 



 xi 
 

Table 7-3b:  Miami-Dade County AVO Weekday Model Coefficients ........................... 96 

Table 7-4:  Urban Roadway Types ................................................................................... 97 

Table 7-5:  Large Urban Counties .................................................................................... 97 

Table 7-6:  Segmentation and Aggregation Results ......................................................... 99 

Table 7-7:  Model Predictors Selected by Stepwise Procedure ...................................... 101 

Table 7-8:  Models for Different Buffer Sizes................................................................ 101 

Table 7-9a:  Summary for AVO Model for Arterials in Large Urban Counties............. 102 

Table 7-9b:  Coefficients for AVO Model for Arterials in Large Urban Counties ........ 102 

Table 7-10a:  Medium-Size County Arterial AVO Weekday Model Summary ............ 105 

Table 7-10b:  Medium-Size County Arterial AVO Weekday Model Coefficients ........ 105 

Table 7-11a:  Freeway Weekday AVO Model Summary............................................... 106 

Table 7-11b:  Freeway Weekday AVO Model Coefficients .......................................... 106 

Table 7-12:  Model Testing Result Summary................................................................. 108 

Table 7-13:  Model Testing Result Summary................................................................. 108 

Table 7-14:  Final Models and Buffer Sizes ................................................................... 109 

Table A-1:  Weighting Coefficients for Different Age Groups...................................... 122 

Table A-1:  Weighting Coefficients for Different Age Groups (continued) .................. 123 

Table A-2:  AVOs Adjusted by Driver’s Age and Age Adjustment Factors.................. 124 

Table A-3:  Weighting Coefficients for Driver’s Gender Groups .................................. 126 

Table A-3:  Weighting Coefficients for Driver’s Gender Groups (continued)............... 127 

Table A-4:  AVOs Adjusted by Gender and Gender Adjustment Factors...................... 128 

Table A-4:  AVOs Adjusted by Gender and Gender Adjustment Factors (continued) .. 129 

Table B-1:  Socioeconomic Attributes at Census Blockgroup Level ............................. 130 



 xii 
 

Table B-1:  Socioeconomic Attributes at Census Blockgroup Level (continued).......... 131 

Table B-1:  Socioeconomic Attributes at Census Blockgroup Level (continued).......... 132 

 



 xiii 
 

LIST OF FIGURES 

FIGURE                                                                                                                       PAGE 

Figure 2-1:  Average Vehicle Occupancy by Age for Chicago Area ............................... 25 

Figure 3-1(a):  Daily AVO Variations by Year ................................................................ 36 

Figure 3-1(b):  Weekday AVO Variations by Year.......................................................... 37 

Figure 3-1(c):  Weekend AVO Variations by Year .......................................................... 37 

Figure 3-2:  AVO Variations by Month............................................................................ 38 

Figure 3-3:  AVO Variations by Day-of-Week ................................................................ 39 

Figure 3-4:  AVO Variations by Hours............................................................................. 40 

Figure 3-5:  AVO Variations by County Group ............................................................... 41 

Figure 3-6:  AVO Variations by Roadway Type .............................................................. 42 

Figure 3-7:  AVO Variations by Accident Severity.......................................................... 43 

Figure 3-8:  AVO Variations by Driver’s Age ................................................................. 44 

Figure 3-9:  AVO Variations by Driver’s Gender ............................................................ 45 

Figure 3-10:  AVO Variations by Driver’s Race .............................................................. 46 

Figure 3-11:  AVO Variations by Weather Type.............................................................. 47 

Figure 4-1:  Data Entry Screen ......................................................................................... 53 

Figure 4-2:  Distributions of Driver’s Age for Miami-Dade County................................ 57 

Figure 4-3:  Average Vehicle Occupancy by Driver’s Age for Miami-Dade County...... 58 

Figure 4-4:  AVO Comparisons between Male and Female Drivers................................ 59 

Figure 4-5:  Distributions of Driver’s Gender from Accident and Census Data .............. 60 

Figure 5-1:  FAVORITE Main Screen.............................................................................. 73 

Figure 5-2:  Select Locations by Map............................................................................... 74 



 xiv 
 

Figure 5-3:  AVOs Cross-Classified Table by FDOT District and Day of Week ............ 76 

Figure 5-4:  AVOs Cross-Classified Chart by FDOT District and Day of Week............. 77 

Figure 5-5:  Automobile AVOs Displayed by County ..................................................... 79 

Figure 5-6:  Automobile AVOs Displayed by Segments.................................................. 80 

Figure 5-7:  GIS Map Print Layout................................................................................... 81 

Figure 5-8:  Screen for Adding a Category....................................................................... 82 

Figure 6-1:  AVO Trend by Year and Day of Week......................................................... 84 

Figure 6-2:  AVO Trend by Month................................................................................... 85 

Figure 6-3:  AVO Trend by Time of Day......................................................................... 86 

Figure 6-4:  AVO Trend by County.................................................................................. 86 

Figure 6-5:  AVO Trend by Vehicle Type........................................................................ 87 

Figure 6-6:  Comparisons of Countywide AVOs for Different Time Periods.................. 89 

Figure 6-7:  Comparisons of Countywide AVOs for Different Facility Types ................ 89 

Figure 6-8:  Comparisons of AVOs from the Field and from Accidents.......................... 90 

Figure 7-1:  Weekday County AVO Model...................................................................... 95 

Figure 7-2:  AVO vs. Industry Employees ..................................................................... 103 

Figure 7-3:  AVO vs. Average House Income Between $75,000 and $100,000............ 103 

Figure 7-4:  AVO vs. Average Household Income......................................................... 104 

Figure 7-5:  Freeway Weekday AVO Model.................................................................. 107 



 1 
 

 

CHAPTER 1 

 INTRODUCTION 

1.1. Background 

Faced with a need to increase the efficiency of transportation systems, 

transportation agencies are making a greater effort to monitor travel trends and measure 

the impacts of plans, policies, and procedures at the regional and local levels.  The 

Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 recognizes the 

importance of these activities by mandating development of six management systems, 

including a congestion management system (CMS).  To measure system performance and 

use systematic procedures to assess alternative congestion mitigation strategies, an 

increasingly recognized key element is vehicle occupancy data. 

Traditionally, vehicle occupancy rates are used to convert person trips to vehicle 

trips in the four-step travel demand forecasting model and to determine the required 

parking spaces for fixed-seat facilities.  The ISTEA expanded this traditional role of 

vehicle occupancy rates by emphasizing person movements rather than vehicle 

movements.  Today, these data are used to formulate transportation strategies, to analyze 

air quality and energy efficiency measures, and to assess such programs as ride-sharing 

and HOV-lane implementation.  Occupancy data are also used to compute person delays 

and person-miles traveled and to set policies for managed lanes (Gan et al., 2005). 

With the increasing need for vehicle occupancy data comes the need to study the 

methods used to collect these data.  Unlike counting vehicles, which can be automatically 

recorded when vehicles run over pneumatic road tubes, counting the number of persons 
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in a vehicle in the field remains largely the task of human observers.  In the face of 

budget reductions, agencies must find better ways and define acceptable practices for 

collecting vehicle occupancy data that not only meet the needed accuracy, but also the 

limits of a restricted budget (Gan et al., 2005). 

Existing vehicle occupancy data collecting methods can be categorized into five 

primary methods: the roadside windshield method, the carousel method, the photographic 

and video surveillance method, the survey method, and the accident data extraction 

method (Gan et al., 2005).  The roadside windshield method has been the most widely 

used method for collecting vehicle occupancy data.  It involves stationing observer(s) 

along the roadside to perform physical counts of vehicles and occupants.   Record 

keeping may be carried out using paper and pencil, or by using an electronic counter.  For 

safety reasons, the observers must stand in a protected area, such as behind a guardrail, 

on an overpass, or at a reasonable distance from the traffic stream, which may limit the 

observer’s view. 

The carousel method positions observers in vehicles traveling on a highway to 

collect vehicle occupancy data on the passing vehicles in the same direction.  During data 

collection, the observer vehicle drives slightly slower than the general traffic, resulting in 

the continuous flow of traffic by the observation vehicle.  This method provides 

additional time for the observer to make a more accurate occupancy count.  However, its 

use is limited to only multilane highways. 

The photographic and video surveillance method uses video cameras to capture 

passing vehicles and then uses a human observer to view the captured videos to extract 

occupancy data.  The extra cost from equipment purchase and setup may be offset by 
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time-savings from sampling or fast-forwarding to skip large vehicle gaps.  Although a 

few researchers have attempted to use computer vision techniques to automatically 

recognize the number of occupants in a vehicle from captured images or videos, an 

operational system does not currently exist. 

Several survey methods have been developed to collect information directly from 

travelers.  They include telephone interviews, travel diaries, parking lot surveys, 

employer surveys, household surveys, and mail-out surveys.  Most of these methods 

require contact with residents to obtain occupancy information.  Once the surveys are 

returned, the data have to be manually entered into a computer. 

The accident data extraction method extracts vehicle occupancy estimates from 

police accident records for a particular road segment, corridor, or metropolitan area for 

specified time periods.  This method relies on police reports concerning vehicles involved 

in traffic accidents and is only applicable when police reports record the total number of 

occupants in each vehicle.  As of 1992, accidents forms in 16 states, including Florida, 

had specific fields for vehicle occupancy data, making it possible for these states to use 

these data to derive vehicle occupancy rates. 

1.2. Problem Statement 

The more traditional methods for vehicle occupancy data collection, including 

surveys, roadside windshield, and carousel, as described above, are labor-intensive and 

expensive.  These procedures also require an advanced survey design to ensure unbiased 

portrayal of the sampled population.  Also, different methods have different limitations.  

The roadside windshield method provides limited time to view and count passengers in a 
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vehicle, and it is especially difficult to count small children or backseat occupants in 

general.  In addition, the observer’s safety, the infeasibility of collecting data on 

highways with inadequate shoulder areas, and the infeasibility of collecting data during 

the night-time or near night-time hours, are other limitations of this method.   The 

carousel observation method requires a continuously moving traffic stream and, as such, 

can only be performed on multilane highways.  It may also obstruct other traffic and 

create unsafe conditions because the survey vehicle travels slower than the surrounding 

traffic.  The photographic and video surveillance methods today still require the use of a 

human observer to view the photos or videos, and the quality of these photos and videos 

may prevent the observer from obtaining an accurate occupancy count. 

Compared to other traditional collection methods, the accident data extraction 

method offers the greatest promise of readily available, low-cost vehicle occupancy data 

(Gan et al., 2007).  It does not require any data collection effort nor any data post-

processing, the latter of which is tedious and time consuming. It provides good regional 

samples, and the new data are regularly updated.  This method can cover all time periods, 

including night hours when field data collection cannot be performed.  However, it is 

known that the average occupancy rates computed from accident records could be 

skewed by over- or under-involvement of drivers of a certain age group such as the over-

representation of younger and older drivers in traffic accidents.  It has also been 

hypothesized that having more occupants in a vehicle may increase the likelihood of an 

accident occurrence due to increased interference from passengers. 

A very limited number of studies can be found in the literature that examined this 

method and its issues as related to the extraction of vehicle occupancy information.  No 
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comprehensive analysis of vehicle occupancy rates based on accident records has been 

conducted to assist users in estimating the average vehicle occupancy (AVO) and select 

the associated geographic, temporal, and vehicle coverage for specific applications.   On 

the other hand, while both accident data and field data can be used to study historical 

trends of occupancy rates and to collect and estimate current vehicle occupancy rates, 

only one existing study has attempted to develop models to predict occupancy rates as a 

function of socioeconomic variables. 

1.3. Objectives and Scope 

The goal of this dissertation is to develop procedures and models that make use of 

accident data to estimate and forecast vehicle occupancy rates.  These procedures and 

models will attempt to minimize potential biases associated with the accident data 

extraction method and improve the accuracy of the estimated vehicle occupancy rates.  

The specific objectives of this dissertation are to:  

1) Study the feasibility of accident records as a potential source of vehicle 

occupancy data and analyze the factors affecting average vehicle occupancies. 

2) Investigate potential biases associated with the accident vehicle occupancy data 

and recommend acceptable and detailed procedures for estimating average vehicle 

occupancies using traffic accident data. 

3) Develop tools to facilitate the collection, processing, and analysis of vehicle 

occupancy rates using accident data. 

4) Develop vehicle occupancy prediction models as a function of local socio-

economic data. 
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1.4. Dissertation Organization 

This dissertation consists of the following eight chapters:  

1) Chapter 1 introduces the background of this dissertation research, describes the 

problem to be solved, and sets forth the goal and objectives to be achieved.  

2) Chapter 2 contains a review of the literature.  A review of vehicle occupancy data 

collection method coverage, sampling procedures, and the advantages and 

disadvantages of all existing methods is first presented.  The feasibility of and 

procedures for making use of accident data to estimate vehicle occupancy rates 

are also reviewed, and the biases derived from accident data and the adjustment 

factors for the estimation procedures are then discussed. 

3) Chapter 3 presents the results from both parametric and nonparametric statistical 

tests using the vehicle occupancy data from accident records.  The test results 

identify the contributing factors affecting AVOs in the state of Florida.   

4) Chapter 4 focuses on the adjustment factors to account for potential biases 

stemming from using accident records to estimate AVOs. 

5)  Chapter 5 describes a user-friendly AVO information system developed to 

analyze and generate AVO estimates at the district, county, and corridor levels 

and to monitor statewide, regional, and site-specific vehicle occupancy trends. 

6) Chapter 6 evaluates the AVOs extracted from accident records based on both 

reasonableness checks and comparisons with vehicle occupancy field data.   

7) Chapter 7 presents the method and process of developing weekday AVO 

prediction models that are represented as a function of socioeconomic information.  

Evaluation of the model accuracy using the test data set is also discussed.  
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8) In Chapter 8 the major research results from each chapter are summarized, 

conclusions are drawn, and issues for future research and system improvements 

are recommended.  
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CHAPTER 2 

LITERATURE REVIEW 

While many studies have included reviews of the procedures and issues related to 

vehicle occupancy data collection methods, only a few studies have been carried out 

using the accident data extraction method.  This section provides a review of the 

literature on issues of vehicle occupancy rate estimation and forecast, sampling process, 

and accident data extraction procedures and strategies. 

2.1. Vehicle Occupancy Data Collection Design Issues  

Various studies have been conducted to collect vehicle occupancy data for 

different purposes.  For example, Rutherford et al. (1990) reviewed the methods used by 

agencies for short-term and long-term monitoring of high-occupancy vehicle (HOV) lane 

violations.  Levine and Wachs (1994) presented a methodology for conducting regional 

and corridor-level vehicle occupancy surveys.  Heidtman et al. (1997) compared various 

vehicle occupancy data collection methodologies based on field studies and cost 

consideration.  Most of these studies included the following conditions during data 

collection: 

• Observation locations and days were chosen arbitrarily, rather than sampled 

randomly, to represent vehicle occupancy accurately for a particular purpose.   

• Locations with higher traffic volume are more likely to be chosen to the exclusion 

of lower volume locations.   
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• Sites near central business districts (CBDs) or major trip attraction areas where 

congestion is assumed to be highest were also chosen frequently.   

• Many agencies appear to acquire average vehicle occupancy (AVO) estimates 

using the simple mean calculation procedure.  Vehicle occupancy observations 

taken under these conditions will create biased estimates, and, in turn, unreliable 

and inaccurate findings will be derived.  

The Heidtman et al. (1997) study also provides a chronological summary of 

studies conducted in terms of study objectives, study methodology, and use of temporal 

and spatial coverages.  The study concluded that: 

• The roadside windshield method was the most commonly used method. 

• There was a trend to save data entry time by switching recording from manual 

count boards to laptop computers or electronic counter boards.   

• Measurements were usually taken during either the a.m. or p.m. peak period. 

• Observers generally counted in short periods rather than continuously counting 

for one hour.   

• Observations were typically taken in the middle of the week (Tuesdays, 

Wednesdays, and Thursdays) to avoid unusual conditions of recreational travel 

prevailing on Mondays, Fridays, and weekends. 

The existing literature on vehicle occupancy collection methods shows that almost 

all studies have focused on the following design and implementation issues and 

considerations: geographic and temporal coverage, locations, vehicle types and 

percentages, and sampling methods. 
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2.1.1. Geographic Coverage 

Geographic units used to evaluate vehicle occupancy may include the entire state, 

air quality non-attainment areas, urban areas, subareas, regions, corridors, activity 

centers, functional classes, and external cordon lines (Heidtman et al., 1997; Zakaria, 

1991).  Depending on the specific study objectives, one or more of these units may be 

appropriate.  The traditional emphasis has been on estimating vehicle occupancy at either 

the site-specific (e.g., factory entrance and critical roadway section) or area-wide (e.g., 

metropolitan and county) level.  The more recent focus, however, has been on the 

intermediate level of geographic coverage, which is referred to as the corridor level (e.g., 

at cutlines and Central Business District cordon lines). 

2.1.2. Temporal Coverage 

Temporal variability in AVO is a common issue for all data collection methods.  

Many existing studies show significant variations in vehicle occupancy rates by time-of-

day, day-of-week, month-of-year, and season-of-year (Benke and Sjoberg, 1977; 

Kuzmyak, 1981; Heidtman et al., 1997; Reed et al., 1998; Levine and Wachs, 1998; Liu 

and Desai, 1998). 

Time-of-Day:  These studies show that the AVO during the a.m. peak period tends 

to be lower and heavily dominated by home-based work trips, primarily with single-

occupant vehicles.  As the day progresses, an increasing variety of other trip purposes 

occur that are likely to shift vehicle occupancy upward.  Hence, during the p.m. peak 

period, vehicle occupancy may be higher than that during the a.m. peak period due to a 

multitude of different trip purposes, many of which involve more than one person. 
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Day-of-Week:  Vehicle occupancy rates vary on different days of the same week, 

with Saturday typically having higher rates.  However, studies did not find a consistent 

day-of-week pattern for variations in AVO.  In general, it is a common practice to 

exclude Monday, Friday, and weekend counts because these days are assumed to contain 

atypical and non-recurrent trips.  Measurements were typically taken on Tuesday, 

Wednesday, and Thursday only, as these days are considered most representative of 

average weekday travel behavior and commute conditions (MARC, 2002). 

Month/Season-of-Year:  Vehicle occupancy rates have been found to vary with 

month and season.  It is, thus, important that observations be taken throughout the year 

(and not restricted to any one season) in order to properly represent AVOs (Heidtman et 

al., 1997). 

Temporal Trends:  The following temporal trends in AVO have been observed in 

various studies (Roach and Lester, 1978; URS Corporation, 1997): 

• Weekday a.m. peak AVO is normally lower than weekday midday and p.m. peak 

AVO. 

• Weekend AVO is normally higher than weekday AVO. 

• Off-peak AVO is normally higher than either a.m. or p.m. peak AVO. 

• Summer AVO is higher than winter AVO for northern cities. 

Based on data from Florida, Liu and Desai (1998) made the following general 

recommendations with regard to temporal coverage: 

• The data collection period should ideally be within the period of interest (e.g., 

peak hours, etc.). 
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• Counts of one to two hours should produce data with sufficient accuracy and 

precision for most purposes. 

• Tuesdays and Wednesdays are normally adequate for data collection, and the best 

days for collecting data are Thursdays. 

• Mondays and Fridays should be avoided. 

• Time of day chosen for data collection is important. 

• As a rule of thumb, mid-morning to mid-afternoon counts are adequate for most 

purposes.  However, if the 5-6 p.m. period were chosen for performance 

monitoring, adjustments would be necessary to derive the AVO for the day. 

2.1.3. Facility Types and Trip Purposes 

Different types of roadways typically have different occupancy levels.  Roadways 

of the higher functional hierarchy will typically be expected to have a lower AVO.  

Vehicles traveling on freeways have lower occupancy rates than vehicles traveling on 

arterials and collectors (Barton-Aschman Associates, 1989).  Kuzmyak (1981), in his 

nationwide personal transportation study, compared the AVO rates based on different trip 

purposes.  The result indicated that average vehicle occupancy rate was 1.87, ranging 

from a low of 1.32 persons per vehicle mile for travel related to earning a living to a high 

of 2.44 persons per vehicle mile for social and recreational travel. 

Freeways and major arterials are heavily used for home-based work trips and 

commercial trips, particularly in the a.m. and p.m. peak periods.  These two trip purposes 

tend to have lower AVO.  Conversely, minor arterials, collectors, and local streets are 
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utilized more extensively for trips involving home-based shopping, home-based school, 

and social/recreational purposes, resulting in higher AVO. 

The data collection methods for freeway segments with high occupancy vehicle 

(HOV) lanes have seen improvement.  Rutherford et al. (1990) reviewed different 

technologies used by state agencies for monitoring HOV facilities.  Pavlidis et al. (1999) 

studied wave band and computer vision methods to automatically count vehicle 

occupants in HOV lanes.  However, the team could not achieve the accuracy and 

reliability needed for real-world automated enforcement of HOV lanes. 

2.1.4. Locations 

AVO can differ from one location to another.  Benke (1977) found that significant 

differences occur in occupancy rates at different subareas of a corridor, probably relating 

to trip length, origin/destination density, resident demographics, etc.  This also means that 

the spatial variations of AVO are related to the distribution of household types and work 

places.  A research project in Phoenix examined factors that have influences on AVO.   It 

was found that the lowest vehicle occupancy rates occur in the core area of the region and 

that the highest occupancy rates occur in the outlying suburban areas (Barton-Aschman 

Associates, Inc., 1989). 

Site selection for traffic data collection is dependent on the purposes involved and 

the overall expectations of the study (Liu and Desai, 1998).  To ensure that a 

representative sample of the population will be selected, data collection locations should 

be sampled randomly from all possible highway segments for area-wide studies.  If an 

initial study has been performed, the entire random selection procedure should be 
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repeated again for subsequent studies.  The same sampled locations should not be chosen 

unless they are randomly selected.  In contrast to randomly selected locations for area-

wide studies, locations are often judgmentally selected due to the nature of corridor/site-

specific studies. 

2.1.5. Vehicle Types 

The vehicle types included during data collection are determined by the purpose 

for which the data are to be collected.  Different study purposes may utilize different 

criteria for interpreting AVO.  Different vehicle types have different occupancy rates.  To 

compare vehicle occupancy between household survey data and roadside observation 

data, Grush and Gross (1995) studied the Nationwide Personal Transportation Survey 

(NPTS) survey occupancy data and the National Highway Traffic Safety Administration 

(NHTSA) study data.  It was found that the highest average occupancy rate occurred in 

vans, followed by passenger cars, and then pick-up trucks.  Pamanikabud (2000) also 

analyzed each type (private passenger car, private pick-up, and public taxi) of vehicle’s 

morning occupancy rate entering the city center of Bangkok, Thailand.  From this 

morning peak period analysis, the lowest occupancy rate appeared in passenger cars.  

Pick-ups’ occupancy rate was in the middle of all three types.  Taxis had the highest rate 

of 2.009.  To collect public transportation service data, Demery (2002) listed peak-period 

vehicle occupancy statistics (passengers per vehicle and passengers per meter of vehicle 

length) for U.S. and Canadian rapid bus and rapid rail services. 

In most vehicle occupancy studies, only data from passenger vehicles or light 

vehicles (private passenger automobiles, pick-ups, vans, recreational vehicles, and 
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motorcycles) are usually counted.  Buses are typically excluded or counted separately 

because it is difficult to count all of the occupants using the roadside windshield method 

and carousel method.  Trucks are generally excluded because they are used mainly for 

goods movement and have little to do with human mobility.  Note that the definition of 

vehicle type remains an issue in vehicle occupancy data collection.  There is no 

consistency in definitions across different regions or different transportation models. 

2.1.6. Vehicle Percentages 

Instead of recording data from all vehicles traversing a link during a selected time 

period, a subset of vehicles that is assumed to reflect the same characteristics as the target 

population is generally observed.  Ferlis (1981) recommended a systematic short-count 

procedure, in which observations are made for a fixed interval in each hour of the day.   

This procedure can be used to produce relatively accurate daily estimates while 

conserving manpower resources.  The following three basic types of short-count 

procedures were suggested by Ferlis (1981): 

• Position one or more observers to count all vehicles that pass by during a fixed 

interval within each hour (e.g., count for 45 minutes and rest for 15 minutes, thus 

representing a 75% systematic sample). 

• Position one observer to count vehicles that pass by on each lane during a fixed 

interval within each hour (e.g., count each of three lanes during successive 15-

minute periods and rest for 15 minutes within each hour, thus representing a 25% 

systematic sample). 
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• Position one or more observers to systematically observe two or more locations 

concurrently by counting all vehicles passing a particular location during the same 

time interval within each hour (e.g., count vehicles at one location from 7:00 to 

7:15, 8:00 to 8:15, etc., and at another location from 7:30 to 7:45, 8:30 to 8:45, 

etc., thus representing a 25% systematic sample). 

2.1.7. Sampling Issues 

The sampling process that is conventionally used in vehicle data collection 

methods includes simple collection and stratified collection.  Simple collection involves 

the selection of sample units at random from the entire population so that each sample 

unit has an equal probability of being selected.  Stratified collection, on the other hand, 

begins by dividing the entire sample frame into mutually exclusive strata, then selecting 

sample units from each stratum using simple collection. 

2.1.7.1. Simple Collection 

The highly referenced sampling procedures were developed by Ferlis (1979 and 

1981).  Ferlis’s research showed that a reliable occupancy estimate using statistical 

survey techniques of stratification and sampling could be obtained at a lower cost than 

traditional approaches that used less frequent but longer data collection periods.  Another 

report (FHWA, 1980) complements Ferlis’s work.  Field tests of these methods in Atlanta 

(Fisher et al., 1980) indicated that the sampling techniques were very useful in obtaining 

reliable occupancy estimates and that the methods were cost-effective. 

The sample size estimation formula developed by Ferlis (1981) is as follows: 
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where        

 N  = the number of link-days to be sampled, 

  Z  = the normal variant for the specific level of confidence, 

  T  = the desired tolerance, and 

 σ  = the composite standard deviation of AVO. 

The basic sampling unit is a “link-day,” representing an estimate of the survey 

measures made for a particular link on a particular day for a specified time period.  The 

composite standard deviation of AVO was based on the following formulas: 

Area-wide level:   

( ) 2/1222

WSL σσσσ ++=  

 
Site-specific level:   

( ) 2/1222

WSD σσσσ ++=  

 
where        

σL   = the standard variation of AVO across link-days within a season,  

σD   = the standard variation of AVO from day to day within a season, 

σS   = the standard variation of AVO from season to season, and 

σW  = the standard variation of AVO across time periods within a day. 

Additional sources of variation have been suggested in other studies.  Ulberg and 

McCormack (1988) examined some potential sources of error and concluded that 

observer counting error (σO) should be included.  Accordingly, Ferlis’s formulas for 

composite standard deviation were modified to: 
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Area-wide level:   

( ) 2/12222

OWSL σσσσσ +++=  

 
Site-specific level:   

( ) 2/12222

OWSD σσσσσ +++=  

Depending on the sampling procedure, some of these sources of variance may not 

apply.  The link-day variation, σL, reflects the fact that different AVO measurements can 

vary by measured locations as well as by different days within a season.  For an area-

wide study, σL accounts for a much greater variability than the other terms.  The daily 

variation term, σD, should be included for corridor and site-specific studies because it can 

vary substantially from one day to the next.  The seasonal variation, σS, should be 

included if the estimated occupancy is intended to represent more than one season, and 

the data collection is, therefore, extended throughout this period.  Similarly, the within-

day variation, σW, should be included only if a short-count method is used. 

A study was conducted in 1997 by URS Corporation for the Florida Department 

of Transportation to collect vehicle occupancy data from 21 individual sites throughout 

the state of Florida.  Accordingly, due to the time periods during which the occupancy 

data for private vehicles were collected via the use of short-counts, variations for day of 

week and month of year could be established.  Four seasonal sites were observed twice 

each month over a one-year period to determine the monthly and seasonal variation in 

vehicle occupancy. 

Table 2-1 shows the results computed from local data for different sources of 

variation, along with the suggested values from studies by Ferlis (1981) and Ulberg and 

McCormack (1988). The table shows that the standard deviations observed in the data 
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from the URS study are generally larger than those suggested by Ferlis.  Note that the 

values for the within-day term, σW, are based on an assumed systematic sampling rate of 

25%. 

Table 2-1:  Sources of Variation in Average Occupancy 

Geographic 
Scope 

Standard 
Variation 

Ferlis 
(1981) 

Ulberg and 
McCormack (1988) 

Data from URS 
Study (1997) 

Area-wide σL 

σS 

σW 
σO 

0.063 
0.015 
0.017 

 

 
 
 

0.006 

0.076 
0.068 
0.008 

 

Site-specific 
or Corridor 

σD 

σS 

σW 
σO 

0.015 
0.015 
0.017 

 

 
 
 

0.006 

0.028 
0.068 
0.008 

 

 

2.1.7.2. Stratified Collection 

Agencies often place emphasis on collecting separate AVO estimates for various 

subsets of the area-wide transportation network (e.g., separate estimates for individual 

counties, freeways and arterials, and freeways by HOV and mixed-flow lanes).  In this 

case, the collection population is stratified for separate sampling (Ferlis, 1981; Heidtman 

et al 1997). 

In contrast to the simple estimating method, the composite standard deviation is 

estimated for each stratum as: 

Area-wide Level:  ( ) 2/12222

OhWhShLhh σσσσσ +++=  

 

Corridor Level:  ( ) 2/12222

OhWhShDhh σσσσσ +++=  

 
where    

σh = composite standard deviation of AVO in stratum h, 
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σLh = standard deviation of AVO across link-days within a season in stratum h, 

σDh = standard deviation of AVO across days within a season in stratum h, 

σWh = standard deviation of AVO across time periods within a day in stratum h, 

σSh = standard deviation of AVO across seasons in stratum h, and 

σOh = standard deviation of AVO due to observer error in stratum h. 

The sample size of link-days required to estimate stratum AVO within a desired 

tolerance can be computed as: 

2








 ×
=

hT

hZ
hN

σ
      (2-2) 

 
where        

  Nh  = number of link-days required for stratum h,  

   Th  = desired tolerance for stratum h, and 

   σh  = composite standard deviation of AVO in stratum h. 

Instead of determining the sample size to be collected, traffic accident records are 

used to determine if the database contains a sufficient number of records to make the 

required estimation.  The sampling unit is the vehicle(s) involving in an accident.  In 

Heidtman’s report, the above formula was used to calculate the sample size for Chicago 

accident data vehicle occupancy analysis.   

2.2. AVO Calculation 

Heidtman et al. (1997) listed all AVO calculating methods, which include those 

for field observational methods and the mail-out questionnaire method.  The most 

common method of deriving an AVO from accident data is to use a method similar to the 
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observational method’s way of deriving AVO.  This method simply divides the total 

number of occupants by the total number of vehicles for a specified geographic area and 

the time period.  This calculation assumes that the traffic volumes observed at each 

location is proportional to the actual traffic flow at the corresponding location.   The 

simple estimate of AVO and its corresponding composite standard deviation can be 

computed as follows: 
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where Pi is number of persons counted in session i and Vi is number of vehicles counted 

in session i.  These formulas can also be applied to data collected for each stratum of a 

stratified data collection to compute the AVO and its composite standard deviation σh.  

This method is not applicable given the fact that accident data are likely to reflect a 

biased sample of the population.  To accommodate these biases, some adjustments and 

filtering of the data, as well as a weighted means procedure, are required to remove 

biases inherent in these types of data. 

2.3. Accident Data Extraction Method 

The number of passengers in a vehicle involved in an accident is routinely 

recorded in many states by police officers at the site of the accident.  Because of the 
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accessibility and low cost associated with obtaining accident data, several states have 

shown interest in extracting vehicle occupancy estimates from police accident reports 

(Ahuja and Hanscom, 1996; Asante et al., 1996; Gaulin, 1991).  Past studies on this 

method have focused on estimation procedures and the potential biases existent in this 

method. 

2.3.1. Estimate Procedures 

 A Connecticut DOT report (Gaulin, 1991) provides what has served as the basic 

method of calculating vehicle occupancy from traffic accident data.  In Gaulin’s report, 

estimates from roadside windshield surveys, which were conducted in 1982 and 1984, 

were compared to estimates obtained from accident data.  The results indicated a relative 

difference in estimates of less than 2.4% over comparable time periods.  Several factors 

that can influence accident estimates were identified in the report as part of the 

verification process for using this new accident data procedure.  For example, the impact 

of male versus female drivers, good versus bad weather, and alcohol/drug-related 

accidents were considered.  In addition, sample size requirements for different tolerance 

levels were discussed.  This report illustrates how this procedure can be used for 

assessing the viability and performance of facility-specific projects.  It also shows that it 

is feasible to calculate vehicle occupancy rates from accident data.  

To provide system-level average automobile occupancy (AAO) data, the New 

York State Department of Transportation (NYSDOT) built upon Gaulin’s procedure and 

tailored the algorithm (Asante et al., 1996).  In the NYSDOT procedure, accident data 

were classified and cross-classified by year, time-of-day interval, day of week, month, 
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and county.  New York’s 62 counties were classified into three urban-size groups for 

AAO analysis: 1) large urban counties with populations over 1 million; 2) large urban 

counties with county populations under 1 million but more than 100,000; and 3) rural 

counties with populations under 100,000.  The ANOVA test indicated that most of the 

variations in the means of accident-based automobile occupancy observations could be 

explained by two main effects: the day-of-week groups and time-of-day intervals.  Two 

other effects are the seasonal groups for months and population-size groups for counties. 

Because the AAOs calculated from accident data were significantly higher than 

multiple-station roadside-observed AAOs, a simple linear regression model was 

developed to adjust the accident-based AAO estimate, AAO(accident), so that it would be 

comparable to roadside observer-based AAOs.  The adjusted AAO, AAO(adjusted), from the 

fitted regression model was (Asante et al.,1996): 

AAO(adjusted) = 0.30 + 0.69 ×  AAO(accident)     (2-5)        

 

Based on the statistical analyses reported, NYSDOT decided that accident-based 

AAO was adequate for purposes of network-level, area-wide CMS analysis processes.  

The NYSDOT analysis of accident-based AAO shows that these data accurately reflect 

the distribution of automobile occupancy during various periods of the day.  Calculated 

occupancy rates were found to be the lowest during the morning peak and highest in the 

evening period.  The weekday rates were lower than weekend rates.  These findings were 

consistently observed across all counties and urban-area-size groups and were supported 

by other studies and data sources (Heidtman et al., 1997; Barton-Aschman Associates, 

1989; FHWA, 1980). 
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2.3.2. Bias Issues and Adjustments 

A major problem associated with the use of accident data for vehicle occupancy 

has been the potential biases resulting from the over-representation of younger drivers, 

alcohol- and drug-related accidents, and fatal accidents. 

2.3.2.1. Age Bias 

Heidtman et al. (1997) studied this problem by using Chicago region accident 

data (years 1993 and 1994).  It was found in this study that occupancy rates vary by the 

age of the driver for the Chicago area.  AVO is clearly highest for the youngest drivers, 

dropping sharply by the age of 20, with slight increases during childbearing years and 

retirement (Figure 2-1).  To adjust for this bias, a weighted mean procedure using the 

census data was used in this evaluation.  To obtain the overall AVO estimate, the 

weighted mean procedure would weight each age group’s AVO in proportion to its age 

group’s contribution to the overall driving population, as defined by the census data. 

Although there were substantial differences in the AVO estimates for various 

times of the week, the Chicago accident data set did not show significant differences 

between the unadjusted and census-weighted estimates.  This lack of difference may be 

an anomaly peculiar to this one data set.  Over-representation of vehicles driven by 

younger drivers may have been offset by the under-representation of vehicles driven by 

older drivers. 

2.3.2.2. Vehicle At-Fault Bias 

Heidtman et al. (1997) also investigated the impact of another potential biasing 

factor: unsafe drivers, such as those that are fatigued or under the influence of drugs or 
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alcohol.  The AVO for vehicles “more likely at-fault” was found to be significantly lower 

than that of the additional vehicles involved in the accident.  However, the vehicle at-

fault for the accident was judged personally by the reporting officer, and this information 

does not reflect the court’s opinion of the vehicle at-fault or responsible for the accident. 
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Figure 2-1:  Average Vehicle Occupancy by Age for Chicago Area 

2.3.2.3. Accident Severity Bias 

The Asante et al. study (1996) has shown that accident records significantly 

overestimate vehicle occupancy.  One primary explanation is that high-occupancy 

vehicles are more likely to be involved in severe accidents and are, thus, more likely to be 

reported in the accident database.  This relationship arises from the fact that an increase 

in the number of people in the vehicle increases the likelihood of injury and fatality 

because the number of occupants exposed to the risk of being injured or killed increases 
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with higher occupancies, while in vehicles with lower occupancies, unoccupied seat 

space provides protection from intrusion.  A study by Chang and Mannering (1998) 

resulted in similar findings.  In their study, a database containing all reported traffic 

accidents occurring on principal arterials, state highways, and interstate highways in King 

County (in Washington State) during 1994 compared the average vehicle occupancies for 

accidents with different severity levels.  It was found that multi-occupant vehicles were 

more likely to be involved in severe accidents.   

Based on studies that examined variables that significantly influence accident 

severity probabilities (Lui et al., 1988; Shankar et al., 1996; O’Donnell and Connor, 

1996), Chang and Mannering also developed a nested logit model to estimate the 

probability of different occupancies and the probability of different accident severities.  

Estimated results from the model were then compared with actual observations for the 

same roadways to determine the appropriate adjustment factors to be applied in the 

model. 

2.4. Forecast Issues in Vehicle Occupancy Data Collection 

The literature on studies of vehicle occupancy data forecasting has been very 

limited in recent years.  The Federal Highway Administration (1972) sponsored a study 

to review four methods used in developing vehicle occupancy models: average factor 

method, curve fitting, cross classification, and regression analysis.  Examples of studies 

that have used these methods were listed in this report.  Forbord (1966) used regression 

techniques to relate vehicle occupancy to socio-economic variables using data from Twin 
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Cities, Minnesota.  The following vehicle occupancy models were developed to predict 

the auto occupancy rates using socioeconomic data: 

Work trip auto occupancy: 

AVO = [1.411 – 0.202 ×  10-4 (Income)] ×  [0.972 + 5.878 
                          ×  10-4 (Employment_Density)]                                               (2-6) 

Other trip auto occupancy: 

AVO = )(1016.075.1 4 Income−×−                                     (2-7) 

It was also pointed out that there were similarities and relationships between the 

development of a modal split model and the development of an auto occupancy model.  

The characteristics or variables considered in the development of both models are the 

same and include the characteristics of the trip (purpose and length), the trip maker (auto 

ownership, income, residential density), land use type (residential, manufacturing, 

commercial, etc.), employment density, and the transportation system (travel time and 

parking costs). 

To forecast the potential use of highway facilities, Ulberg (1994) attempted to 

incorporate the best of previous transportation models with new information on 

psychological and demographic determinants of mode choice into a model that could 

forecast the vehicle occupancy for a specific highway facility.  The research began with 

Tybout and Hauser’s (1981) “integrated model of consumer choice” as a basis.  Four 

survey data sets were then analyzed.  However, the results and findings in this study were 

related mode choice models only.  Also, the results concerning the impact of 

socioeconomic variables on mode choices were mixed. 
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2.5. Summary 

In this chapter, a comprehensive literature search and review has been performed 

to investigate and assess vehicle occupancy data collection practices.  The major findings 

of the review are summarized as follows: 

• Study Coverage:  Most vehicle occupancy data collection studies were one-time, 

special studies undertaken as part of a large project, typically the development of 

a travel demand model system.  Regular monitoring of vehicle occupancies on a 

predefined periodic basis is much less common. 

• Accident Extraction Method:  Collection of vehicle occupancy data has been 

primarily conducted by using traditional collection methods such as windshield 

surveys and mail-out trip diaries or postcards.  Because of the readily availability 

and low cost of accident data, the accident extraction method holds great potential 

as a rich and economical source of vehicle occupancy data.  Past studies on this 

method have focused on the estimation procedures and potential biases associated 

with this method.  The feasibility of this method was verified, and some states 

have already used this method to collect vehicle occupancy data for their 

transportation planning projects.  However, comprehensive analysis of variables 

that affect vehicle occupancy estimates from accident data has been very limited, 

and a system tool that can ease data collection, processing, and analysis has been 

conspicuously absent. 

• Geographic Coverage:  Geographic units used to evaluate vehicle occupancy may 

include the entire state, air quality non-attainment areas, urban areas, subareas, 

regions, corridors, activity centers, functional classes, and external cordon lines.  
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Depending on the specific study objectives, one or more of these units may be 

appropriate. 

• Variations:  Temporal variability in AVO is a common issue across all data 

collection methods.  Existing studies show significant variations in vehicle 

occupancy rates by time-of-day, day-of-week, and season-of-year.  Different 

types of roads typically have different occupancy levels.  For example, roadways 

of the higher functional hierarchy will typically be expected to have lower AVO.  

It is, thus, important to sample all roadway types to generate a representative 

estimate of regional vehicle occupancy.  AVOs can also differ from one location 

to another.  The spatial variations of AVO are related to the distribution of 

household types and work places. 

• Sampling Procedure and AVO Calculation:  Most research and studies have 

focused on sampling procedures and AVO calculation methods used in different 

vehicle occupancy data collection methods.  These procedures and formulas can 

be used to obtain reliable and accurate vehicle occupancy data at the regional, 

corridor, and site levels.  Although these procedures and formulas were provided 

over 20 years ago, the recommended stratified sampling techniques and weighted 

average procedures have seldom been used.  Many states appear to use the simple 

mean calculation procedure. 

• AVO Prediction Model:  Few studies on AVO prediction models have been 

carried out in recent years.  Only one existing study attempted to develop models 

to predict occupancy rates as a function of socioeconomic variables.   
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CHAPTER 3 

FACTORS AFFECTING AVO: EVIDENCE FROM ACCIDENT DATA 

3.1. Introduction 

The number of passengers in a vehicle involved in an accident is routinely 

recorded in many states by police officers at the site of the accident.  The use of this data 

source for vehicle occupancy data offers greater benefits over the traditional field data 

collection methods.  This chapter describes an effort to apply the vehicle occupancy data 

in Florida’s accident records to examine the impacts the following factors may have on 

vehicle occupancy: accident year, accident month, accident day of week, accident time-

of-day, county location, roadway type, accident severity, driver’s age group, driver’s 

gender, driver’s race, and weather conditions. 

3.2. Data Preparation 

A total of 16 years (1990–2005) of accident records for Florida’s state roadway 

system were used in the analysis presented in this chapter.  The data were obtained from 

the Florida Department of Transportation (FDOT) and integrated into a single database.  

Only passenger vehicles (i.e., cars, SUVs, pick-up trucks, and vans) were included in the 

analysis.  The AVO for a specific category was calculated as follows: 

j

i

ij

j
V

P

AVO

∑
=                                                  (3-1) 

 
where Pij is the number of persons in vehicle i in category j and V is the total number of 

vehicles in category j. 
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One issue in the data preparation process was to determine the data intervals for 

some of the factors considered.  The use of too few intervals can mask the differences in 

AVO.  On the other hand, the use of too many intervals will result in sample sizes being 

too small to achieve the desired confidence in the AVO estimates.  Based on these 

considerations, the original data intervals for some of the variables considered were re-

classified for this analysis as follows: 

• The original data include the specific hour during which the accident occurred.  

The hours were re-classified into the following intervals: 1) 6:00 a.m. – 6:59 a.m., 

morning period; 2) 7:00 a.m. – 8:59 a.m., morning peak period; 3) 9:00 a.m. – 

3:59 p.m., off-peak period; 4) 4:00 p.m. – 5:59 p.m., afternoon peak period; 5) 

6:00 p.m. – 10:59 p.m., evening period; and 6) 11:00 p.m. – 5:59 a.m., late night 

and early morning.  The purpose of the 6:00 a.m. – 6:59 a.m. morning period was 

to evaluate the transition from the late-night period to the morning peak. 

• Florida’s counties were classified into three urban-size groups: 1) large urban 

counties with county populations over 500,000; 2) medium-size counties with 

county populations under 500,000 and over 100,000; and 3) rural counties with 

populations under 100,000. 

• The original data included the specific age of each driver, which was re-classified 

into one of the following nine groups: 16-19, 20-24, 25-29, 30-39, 40-49, 50-59, 

60-69, 70-79, and ≥80.   

• Roadway functional classifications were re-classified from their original classes 

in FDOT’s Roadway Characteristics Inventory (RCI) to the following four major 

groups: collectors, minor arterial, major arterial, and freeways. 
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3.3. Statistical Analysis Methods 

Both parametric analyses of variance (ANOVA) test and non-parametric analyses 

of variance test were used to determine if there are significant differences in AVO among 

the different categories of independent variables (i.e., the factors being examined for their 

impact on the AVO).   The general parametric ANOVA model used for the AVO 

variance analysis is defined as follows: 

Yij = µi+ εij                                                           (3-2) 

 
where 

Yij = the number of occupants in an observed vehicle j for group i, 

µi = the group mean, and 

εij = the random error associated with individual observations. 

Parametric tests require the assumptions of stabilized variance and normally 

distributed data, which usually affect the F-test and t-test.  In this dissertation study, 

nonparametric tests were used essentially to check the conclusions of the parametric 

ANOVA tests. 

The Kruskal–Wallis H-test (McClave and Benson, 1988) is often viewed as the 

nonparametric equivalent of the parametric one-way analysis of variance (one-way 

ANOVA).  The advantage of the Kruskal–Wallis H-test is that no assumptions about the 

nature of the sampled populations are needed.  The H-test statistic is given by: 

)1(3

1

2

)1(
12 +−∑

=+
= n

k

i in
iR

nn
H                                      (3-3)                                         

 
where 

 ni  = the number of measurements in the ith sample, 
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 n  = the total sample size (n=n1+n2+…+nk), and  

 Ri = the rank sum of the ith sample. 

Another nonparametric test called the Friedman Fr test (McClave and Benson, 

1988) was also used to test for significant AVO differences across different factor groups, 

such as time-of-day interval.  The Friedman Fr test is defined as follows: 

)1(3

1

2
)1(

12 +−∑
=+

= pb
p

i
iR

pbprF               (3-4)  

where 

 b   =  the number of blocks (i.e., counties), 

 p   =  the number of treatments (i.e., time-of-day intervals), and 

Ri  = the rank sum of the ith treatment, where the rank of each measurement is 

computed relative to its position within its own block. 

The ANOVA test results are summarized in Table 3-1, which includes the factor 

results and contrast results.  The top section of Table 3-1 lists the 12 factors with 

ANOVA results for each.  The F value associated with each factor is used to test the null 

hypothesis that the treatment (or level or group) means are equal.  Pr > F gives the level 

of significance associated with the F value.  The F-test results for all 12 factors shown at 

this section indicate that these factors significantly affect AVO data at the 95% 

significance level. 

The contrast section listed in the bottom of Table 3-1 shows ANOVA results for 

selected treatment levels.  Contrasts compare treatment means to determine significant 

differences among the levels.  For example, given that there were significant differences 
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in AVO data among the time-of-day intervals, contrasts were used to test if the a.m. peak 

AVO data are significantly different from the p.m. peak AVO data. 

Table 3-1:  Results of ANOVA Test 
 

      Factors                 DF     Type I SS        Mean Square   F Value    Pr > F 

      

      Severity                 2     1513.879176      756.939588    1167.75    <.0001 

      Year                    15     8199.115310      546.608091     659.73    <.0001 

      Weekday_Group            3     2446.706441      815.568814    1258.20    <.0001 

      Month_Group              3       26.786878        8.928959      13.77    <.0001 

      Hour_Group               6      821.791828      136.965305     211.30    <.0001 

      County_Group             2      333.004620      166.502310     256.87    <.0001  

      Functional Class        10      328.088703       32.808870      50.62    <.0001 

      Driver Age_Group         8      959.839016      119.979877     185.10    <.0001 

      Driver Race              3      510.087734      170.029245     262.31    <.0001 

      Driver Gender            1      100.919664      100.919664     155.69    <.0001 

      Weekday                  6       65.164458       10.860743      16.76    <.0001 

      Weather                  4       13.655780        3.413945       5.27    0.0003 

 

       

      Contrast                DF     Contrast SS     Mean Square    F Value    Pr > F 

   

  Fall vs Summer               1     32.11088607     32.11088607      47.66    <.0001 

  Fall vs Winter               1     16.64394871     16.64394871      24.70    <.0001 

  Spring vs Winter             1      0.08336151      0.08336151       0.12    0.7250 

  Summer vs Winter             1      5.79238464      5.79238464       8.60    0.0034    

  Morning Period vs AM Peak    1       5.6275180       5.6275180       8.68    0.0032 

  AM Peak vs PM Peak           1     270.7720362     270.7720362     417.73    <.0001 

  PM Peak vs Early Evening     1      12.8135720      12.8135720      19.77    <.0001 

  PM Peak vs Late Evening      1      87.6609210      87.6609210     135.24    <.0001 

  Mon. vs Tue.&Thr.            1       3.5400978       3.5400978       5.33    0.0210 

  Tue.&Th.r vs Fri.            1     106.9256005     106.9256005     160.98    <.0001 

  Fri. vs Weekends             1     938.3923881     938.3923881    1412.76    <.0001 

  Thr. vs Fri.                 1      46.1432708      46.1432708      69.48    <.0001 

  Fri. vs Sat.                 1     565.2579437     565.2579437     851.19    <.0001 

  Sat. vs Sun.                 1      34.1376941      34.1376941      51.41    <.0001 

  Mon. vs Tue.                 1       3.5921517       3.5921517       5.41    0.0200 

  Tue. vs Wed.                 1       0.6033771       0.6033771       0.91    0.3405 

  Wed. vs Thu.                 1       6.7420803       6.7420803      10.15    0.0014 

  Mon. vs Fri.                 1      43.1139781      43.1139781      64.91    <.0001 

 

 

The Kruskal–Wallis H-test results are also summarized in Table 3-2, which 

includes the factor test results.  The chi-square value associated with each factor is used 

to test the null hypothesis that the treatment (or level or group) means are equal.  Pr > 
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chi-square gives the level of significance associated with the chi-square value.  Table 3-3 

lists the Friedman Fr test output in the Statistical Package for the Social Sciences (SPSS) 

statistical software.  The Row Mean Scores Differ value is the same as the Friedman's 

chi-square value.  The detailed discussions of all factor test results are described in the 

next section. 

Table 3-2:  Results of Kruskal–Wallis H-Test 

Factors                 DF     Chi-Square Value    Pr > Chi-Square 

      
      Severity                 2       3122.1043               <.0001 

      Year                    15       1802.5280               <.0001 

      Weekday_Group            3       3995.1749               <.0001 

      Month_Group              3         44.0005               <.0001 

      Hour_Group               6       2195.6960               <.0001 

      County_Group             2       1636.5245               <.0001  

      Functional Class        10       1074.2189               <.0001 

      Driver Age_Group         8       1559.6965               <.0001 

      Driver Race              3       4437.6859               <.0001 

      Driver Gender            1        110.2614               <.0001 

      Weekday                  6       4051.6560               <.0001 

      Weather                  4        437.6859               <.0001 

 

 

Table 3-3:  Results of Friedman Fr Test   
 

Summary Statistics for Hour_Group by AvgOfOccupants 

Controlling for COUNTY 

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores) 

Statistic    Alternative Hypothesis    DF       Value      Prob 

--------------------------------------------------------------------------------- 

1             Nonzero Correlation          1      11.4307       0.0007 

2        Row Mean Scores Differ        6     190.4363      <.0001 

 

Total Sample Size = 468 
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3.4. Identification of Factors Affecting AVO 

3.4.1. Accident Year 

Figures 3-1(a), 3-1(b), and 3-1(c) show the AVO trends by year (from 1990 to 

2005) based on all accidents, weekday accidents, and weekend accidents, respectively.  It 

can be seen from all three figures that AVOs have continued to drop over the period.  The 

AVOs remained relatively stable during the second half of the 1990s, but started to drop 

again from the year 2001 onward.   The ANOVA test results (F value=659.73, Pr>F < 

0.0001) indicated that there were significant differences in AVOs from the different years, 

which means that the decrease in AVO over the years has been significant overall.  The 

chi-square statistics (chi-square = 1802.528, Pr>chi-square < 0.0001) for the Kruskal–

Wallis H-test confirmed this conclusion.  Figures 3-1(b) and 3-1(c) also show that the 

weekend AVOs are consistently higher than the weekday AVOs.   
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Figure 3-1(a):  Daily AVO Variations by Year 
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Figure 3-1(b):  Weekday AVO Variations by Year 

1.74 1.76 1.76
1.71 1.72

1.68 1.67
1.63 1.65 1.65 1.65 1.65 1.63 1.62 1.61 1.59

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Year

A
v

er
ag

e 
V

eh
ic

le
 O

cc
u

p
an

cy
 

 

Figure 3-1(c):  Weekend AVO Variations by Year 
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3.4.2. Accident Month 

Figure 3-2 shows the AVO trend by accident month based on the 2005 statewide 

accident data.  The figure shows that the month of July experienced the highest AVO, 

while the months of August, September, and November experienced the lowest AVOs.  

Two other months that also experienced a higher AVO are March, which experienced 

traffic from spring breakers, and December, which experienced traffic from holiday 

shoppers and vacationers.  Both the nonparametric and ANOVA tests indicate significant 

differences in AVO among the months of the year.  The pair test result (F value=0.121, 

Pr>F = 0.7250) in Table 3-1 shows that there is no significant difference between the 

winter months (December through March) and the spring months (April through June). 
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Figure 3-2:  AVO Variations by Month 
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3.4.3. Accident Day-of-Week 

Figure 3-3 shows the AVO trend by the accident day-of-week, also based on the 

year 2005 statewide accident data.  It is clear from the distribution that the weekday 

AVOs tend to be significantly lower than the weekend AVOs.  The figure also shows that 

Sundays experienced the highest AVO, followed by Saturdays and Fridays.  While 

Mondays and Fridays are generally excluded from data collection that aims to obtain data 

that are representative of typical weekdays, the distribution from Figure 3-3 shows that, 

for the purposes of vehicle occupancy data collection, Mondays may not be that different 

from Tuesdays, Wednesdays, and Thursdays, which are typically days used for data 

collection.   The AVO on Fridays is normally higher than that on other weekdays, but 

remains significantly lower than the AVO for weekends. The ANOVA pair test result (F 

value=0.91, Pr>F = 0.3405) indicates that AVOs on Tuesdays and Wednesdays are 

similar and are generally lower than other days of the week.   
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Figure 3-3:  AVO Variations by Day-of-Week 
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3.4.4. Accident Hour 

Figure 3-4 shows that the AVOs are generally low in the early morning, increase 

after the morning peak period, remain level during the middle of the day, and reach a 

high point in the evening.  The figure also shows that more vehicles involved home-based 

work trips during the a.m. peak than during the p.m. peak, and that vehicles have the 

highest occupancy on average during the evening hours. The ANOVA test result 

confirmed significant differences in AVOs among the time-of-day intervals at a 95% 

significance level.  The nonparametric Friedman Fr test was also used to test for 

significant AVO differences across time-of-day intervals.  Each county was treated as a 

block, AVOs for time-of-day intervals were ranked within each block, and rank sums of 

each of the seven levels (time-of-day intervals) were computed.  The Friedman Fr test 

result (Row Mean Scores Differ value = 190.4363 and p-value <0.0001) in Table 3-3 also 

confirms the distributions of the AVO for hour groups are significantly different. 
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Figure 3-4:  AVO Variations by Hours 
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3.4.5. County 

In this analysis, all 67 counties in Florida were classified into three urban-size 

groups: 1) large urban counties with county populations over 500,000; 2) medium-size 

counties with county populations under 500,000 and over 100,000; and 3) rural counties 

with populations under 100,000.  Figure 3-5 shows that the highest AVOs are present in 

small rural counties, and that the lowest AVOs are present in large urban counties, with 

medium-size urban counties ranked in the middle.  The ANOVA test result (F value for 

this factor is 256.87, Pr>F < 0.0001) in Table 3-1 and the Kruskal–Wallis H-test result 

(chi-square = 1636.5245, Pr>chi-square < 0.0001) in Table 3-2 both showed that the 

differences of AVOs for large urban counties, medium urban counties, and rural counties 

are significant. 
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Figure 3-5:  AVO Variations by County Group 
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3.4.6. Roadway Type 

Figure 3-6 shows the AVOs for four roadway functional classifications for rural 

and urban areas separately.  In general, urban roadways with higher functional 

classifications experienced lower AVO, as these roadways serve a higher proportion of 

single-occupant work trips. Interestingly, the trend is generally reversed in the case of 

rural roadways, as rural roadways with higher functional classifications in Florida serve a 

high proportion of tourists and visitors who tend to travel in groups.  The ANOVA test 

result (F value for this factor is 50.62, Pr>F < 0.0001) in Table 3-1 and the Kruskal–

Wallis H-test result (chi-square = 1074.2189, Pr>chi-square < 0.0001) in Table 3-2 

confirmed that the differences among the AVOs are significant. 
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Figure 3-6:  AVO Variations by Roadway Type 
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3.4.7. Accident Severity 

Each accident can be classified into one of three categories: property damage only 

(PDO), injury, and fatality.  Figure 3-7 shows that fatality accident vehicles have the 

highest AVOs by a significant margin and that PDO accident vehicles have the lowest 

vehicle occupancy rates.  The statistical tests also indicated that these differences are 

significant.  These results were expected because multiple-occupant vehicles have a 

higher likelihood of injury and fatality than single-occupant vehicles in a given accident. 

The results from both the ANOVA test (F value for this factor is 1167.75, Pr>F < 

0.0001) in Table 3-1 and the Kruskal–Wallis H-test (chi-square = 3122.1043, Pr>chi-

square < 0.0001) in Table 3-2 confirmed that the differences among the AVOs are 

significant. 
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Figure 3-7:  AVO Variations by Accident Severity 
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3.4.8. Driver’s Age 

Figure 3-8 shows that the AVOs vary between different age groups.  In general, 

the younger driver groups tend to have higher AVOs than the older driver groups, with 

the youngest driver group (16-19 years old) having the highest AVO.  This is followed by 

the 30-39 and 25-29 driver age groups, respectively, which is likely due to a higher 

percentage of active parents with children in these age groups.  The AVO dropped 

significantly for drivers in the 50-59 age group (i.e., the “empty nest” group) and then 

increased again in the 60-69 and 70-79 retired age groups.  The ANOVA test result (F 

value for this factor is 185.10, Pr>F < 0.0001) and the Kruskal–Wallis H-test result (chi-

square = 1559.6965, Pr>chi-square < 0.0001) confirmed that the AVOs for different 

driver age groups are significantly different. 
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Figure 3-8:  AVO Variations by Driver’s Age 
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3.4.9. Driver’s Gender 

Figure 3-9 shows that female drivers tend to have more passengers in their 

vehicles than male drivers.  This observation was consistent throughout the different days 

of a week.   One explanation for this travel behavior is that female drivers are more likely 

to be the ones to take their children to and from schools, daycare centers, doctor offices, 

etc.  The ANOVA test result in Table 3-1 and the Kruskal–Wallis H-test result (chi-

square = 110.2614, Pr>chi-square < 0.0001) confirmed that AVOs for vehicles driven by 

female drivers are significantly higher than AVOs for vehicles driven by male drivers. 
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Figure 3-9:  AVO Variations by Driver’s Gender 

3.4.10. Driver’s Race 

Figure 3-10 shows the AVOs based on the driver’s race.   It shows that white 

drivers are more likely to be in a single-occupant vehicle than others, while blacks and 

Hispanics are more likely to carpool.  This travel behavior is likely a direct result of the 
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generally better economic well-being of the white population, which contributes to a 

higher vehicle ownership level and, thus, lowers their AVO.  The ANOVA test showed 

that the difference is significant (Pr>F < 0.0001) at the 95% confidence level.  
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Figure 3-10:  AVO Variations by Driver’s Race 

3.4.11. Weather Conditions 

Figure 3-11 shows the AVO trend by weather conditions. This figure shows that 

the vehicles involved in accidents that occurred during rain had a slightly higher AVO 

than vehicles involved in accidents during clear or cloudy conditions.  The Kruskal–

Wallis H-test result (chi-square = 437.6859, Pr>chi-square < 0.0001) indicated that the 

AVO difference between different weather conditions is significant.  Also, these vehicles 

occupy about 10% of the total vehicle population.    
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Figure 3-11:  AVO Variations by Weather Type 
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CHAPTER 4 

ADJUSTMENTS FOR POTENTIAL BIASES IN ACCIDENT DATA 

4.1. Introduction  

As mentioned in Chapter 1, a major problem associated with the use of accident 

data for vehicle occupancy has been the potential biases resulting from over-

representation of younger drivers, alcohol- and drug-related accidents, and fatal accidents 

(Heidtman et al., 1997; Ahuja and Hanscom, 1996; Chang and Mannering, 1998). The 

premise is that these types of accidents tend to involve vehicles with higher occupancies, 

thus causing the AVO to be overestimated.  This chapter examines three potential factors, 

namely, accident severity, driver’s age, and driver’s gender; develops the corresponding 

adjustment factors as needed; and discusses other potential factors that may affect the 

estimates of AVO from accident data.  While other potential factors such as driver’s race 

and weather conditions are likely to also contribute to similar biases, adjustment for these 

factors cannot currently be performed due to the lack of exposure data needed to derive 

the adjustment factors. 

4.2. Data Preparation 

The Vehicle Occupancy Collection Methods research (Phases I and II) were 

funded by the Research and Development Center of the Florida Department of 

Transportation (FDOT).  In the Phase I study, the different methods available to estimate 

vehicle occupancy were reviewed and summarized, and the procedural guidelines based 

on a statistical sampling technique were established for the manual counting methods 
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(Gan et al., 2005).  The Phase II study demonstrates the entire process of determining the 

sample size, selecting the survey locations, performing the actual data collection, and 

applying rigorous statistical methods to analyze the field collected data and accident 

vehicle data (Gan et al., 2007).   The field vehicle occupancy data collected during the 

Phase II study are used to examine the potential bias factors in this chapter.  These data 

are also used in this study to compare with those extracted from traffic accident records 

in Chapter 6.  In addition to the field collection data, the census demographic data were 

also used to examine the potential bias factors associated with a driver’s age, race, and 

gender. 

4.2.1. Field Data Collection Locations 

To establish a statistically sound baseline from which future vehicle occupancy 

evaluations can be performed, an initial area-wide study was conducted in Phase II.  

Miami-Dade County was selected as the study area for field data collection.  For this 

study, the target collection population was divided into strata by roadway facility, 

including surface streets, freeways, and toll facilities.   

 Based on the standard deviation values derived from the data collected by URS 

(1997), as well as the sampling scheme developed by Ferlis (1981) that was discussed in 

Chapter 2, to attain a 95% confidence level within a precision level of ±0.03 for the area-

wide study, a minimum sample size of 44 was required for the area-wide study.  To 

facilitate the arrangement of data collection tasks, the sample size was increased to 48.  

The 48 observation locations were further divided into 24 sites on surface streets, 12 sites 
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on freeways, and 12 sites at toll facilities.  The detailed addresses of these locations can 

be seen in Tables 4-1, 4-2, and 4-3. 

Table 4-1:  Initial Selected Observation Roadway Segments for Surface Streets 

Index 
2000 

Census 
Tract ID 

Survey Roadway 
Intersecting Roadways 

1 116 NW 72nd Ave NW 36th St and NW 31st St 

2   34 NW 116th Way NW South River Dr and NW 100th Rd 

3   53 Douglas Rd Et Langley Rd and Alibaba Ave 

4 238 S Dixie Hwy SW 24th Ave and SW 22nd Ave 

5 317 SW 184th St SW 132nd Ave and SW 127th Ave 

6   45 NW 57th Ave NW 165th Te and NW 159th St 

7 309 SW 152nd St SW 152nd Ave and SW 148th Ct 

8   52 NW 151st St NW 27th Ave and NW 24th Ave 

9 247 SW 37th Ave SW 28th St and Bird Rd 

10 288 SW 88th St SW 79th Ave and SW 77th Ave 

11 307 SW 112th St SW 97th Ave and SW 94th Ave 

12 192 NW 37th Ave NW 3rd St and W Flagler St 

13 314 Old Cutler Rd SW 157th Te and SW 168th St 

14   97 NW 17th Ave NW 103rd St and NW 95th St 

15 220 Granada Bd. SW 8th St and Venetia Te. 

16   91 NW 103rd St NW 35th Ave and NW 32nd Ave 

17 241 SW 82nd Ave SW 24th St and SW 28th St 

18 356 S Dixie Hwy SW 380th St and SW 384th St 

19 283 SW 127th Ave SW 76th St and SW 80th St 

20   22 NE 190th St NE 29th Ave and Country Club Dr 

21   76 NE 2nd Ave NE 117th St and NE 114th St 

22    8 NW 215th St Florida TP and NW 7th Ave 

23 134 N Miami Ave NE 57th St and NE 54th St 

24 269 SW 117th Ave SW 64th St and SW 72nd St 
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Table 4-2:  Selected Observational Roadway Segments for Freeways 

Index 
Survey 

Roadway 
Crossing Roadways 

1 Julia Tuttle CY Biscayne Blvd. and N Bay Rd 

2 SR 826 EX W 63rd St and W 52nd St 

3 SR 826 EX NW 17th St and NW 15th St 

4 SR 826 EX NW 48th St and NW 43rd St 

5 SR 836 EX NW 36th Ave and NW 31st Ave. 

6 SR 826 EX NW 12th St and NW 7th St 

7 SR 826 EX SW 75th St and SW 85th St 

8 SR 836 EX NW 57th Ave and Perimeter Rd. 

9 SR 826 EX NW 41st St and NW 36th St 

10 SR 836 EX NW 111th Pl. and NW 107th Ave(Ramps) 

11 SR 826 EX NW 35th Te and NW 34th St (Ramps) 

12 I-95 NW 5th Ct and SR 836 EX 

 

Table 4-3:  Selected Observation Roadway Segments for Toll Facilities 

Index 
Survey 

Roadway 
Crossing Roadways 

1 SR 821 EX SW 154th St and SW 180th St 

2 SR 821 ET SW 134th St and Louis St 

3 SR 821 HY SW 24th St and SW 35th Te 

4 SR 874 EX SW 56th St and SW 66th St 

5 Florida TP NW 183rd St and NW 170th St 

6 Florida TP NW 202nd St and W 194th St 

7 SR 821 ET SW 106th Ave and SW 112th Te 

8 SR 874 EX SW 117th St and SW 120th St 

9 Florida TP NW 194th St and NW 186th St 

10 Opa Locka EX NW 135th St and NW128th St 

11 Florida TP NW 186th Te and NW 183rd St 

12 Florida TP Near NW 27th Ave 
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4.2.2. Field Data Collection Methods 

It was initially determined that the roadside windshield method would be used for 

the entire data collection effort.  However, it was later determined that this method would 

have presented safety concerns were the survey crew stationed on high-speed freeways, 

and so the carousel method was used on some freeways.  It was also determined that, 

where toll facilities are concerned, the observers would have the option of locating 

themselves near toll plazas; thus, the windshield method could be used in these instances. 

To conserve manpower resources, a systematic short-count procedure was 

applied.  Observations were made of multiple lanes at a time for a fixed interval during 

each hour.  This involved scheduled shifts from direction to direction.  One observer for 

each observation session was preliminarily assigned.  To examine the feasibility of this 

arrangement, a field data collection test was conducted on one of the selected segments 

for surface streets.  The heavy traffic during peak periods not only placed an intensive 

workload on the observer, but also increased the chances of the observer recording data 

incorrectly.  The observers worked in two-person teams, and each observer collected data 

for one travel direction.  Observations were made of multiple lanes in each direction for 

20- or 40-minute intervals during each hour.  A 20-minute interval was reserved for 

reviewing the counts taken and for rest.  Observations were made from 7:00 a.m. to 6:00 

p.m. Data were collected only for passenger vehicles (including pick-up trucks).  Data 

were collected on Tuesdays, Wednesdays, and Thursdays only. 
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4.2.3. Field Data Collection Tool 

 To facilitate field data collection, a Pocket PC application tool was developed.  

The tool attempts to eliminate the need for manual data post-processing by allowing the 

user to make use of the touch-screen interface on a Pocket PC to record the number of 

occupants and time for vehicles.  This Pocket PC application tool is a typical Windows 

installation designed to run on the Microsoft Windows CE operating system.  The system 

can work with any Pocket PC that has a minimum viewing screen of at least 3.5". 

Figure 4-1 shows the data entry screen.  The screen provides buttons to enter up to 

seven occupants in a vehicle.  In the case when a vehicle has more than seven occupants, 

which is extremely rare for passenger cars, the user may record seven occupants for the 

current vehicle and add the difference to the total occupants of the next vehicle.   

 

Figure 4-1:  Data Entry Screen 
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4.2.4. Other Data Sets 

The 2000 census demographic data, which were categorized or cross-categorized 

into age, race, and gender groups, were used to identify and adjust potential biases.  Only 

the population with an age greater than 15 is used in this analysis.  The years 2000 and 

2005 Miami-Dade County accident data are also used in this chapter. 

4.3. Examination of Potential Bias Factors 

4.3.1. Accident Severity 

The accident data from Miami-Dade County during the year 2005 were used to 

test the potential bias in AVO estimation due to accident severity.  Miami-Dade County 

was used due to the availability of field vehicle occupancy data, which were collected as 

part of this study.  Table 4-4 lists the distribution of accident severity by vehicle 

occupancy.  Of the 54,026 vehicles involved in accidents, the data show that multi-

occupant vehicles have a tendency to produce more severe accidents than single-occupant 

vehicles.  For example, injury and fatal accidents account for over 55% and 0.56%, 

respectively, of all multi-occupant vehicle accidents.  In contrast, the total accident count 

(single- and multi-occupant accidents) shows that, overall, only about 46% of all 

accidents involved injury and only 0.41% of all accidents involved fatality.  These 

statistics support the argument that vehicle occupancy affects accident severity.  The data 

show that the AVOs of vehicles involved in accidents involving fatalities and injuries are 

significantly higher than those of vehicles involved in PDO accidents.   There are two 

possible reasons for this relationship, the first of which is fairly obvious: an increase in 

the number of people in a vehicle increases the likelihood of injury and fatality because 
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the number of occupants exposed to the risk of being injured or killed increases with 

higher occupancies. Also, in vehicles with lower occupancies, unoccupied seat space 

provides protection from intrusion. 

Table 4-4:  Distribution of Accident Severity by Vehicle Occupancy 

No. of Occupants PDO Injury Fatality 

1 occupant 23,379 (55.87%) 18,315 (43.77%) 148 (0.35%) 

2 occupants 3,400 (43.40%) 4,390 (56.04%) 44 (0.56%) 

3 occupants   1,167 (43.03%)   1,527 (56.31%)   18 (0.66%) 

3+ occupants   711 (43.46%)   912 (55.75%)   13 (0.79%) 

All 28,657 (53.04%) 25,146 (46.54%) 223 (0.41%) 

 

Awareness of the relationship between occupancy and accident severity is the key 

to being able to use occupancy data from accident reports to estimate occupancy rates.  

As mentioned, some past studies have shown that accident records significantly 

overestimate vehicle occupancy (Asante et al., 1996).  This occurs if the accident data 

over-represent multi-occupant vehicles.  However, a problem also arises if the field 

vehicle data used for comparison with the accident vehicle data under-represent multi-

occupant vehicles because observers in the field have unclear sight and/or limited time to 

count the number of occupants in moving vehicles.  To examine this problem, Miami-

Dade County 2006 vehicle occupancy field data were compared with vehicle occupancy 

data derived from Miami-Dade County 2005 accident vehicles. 

Table 4-5 shows a comparison of vehicle occupancy distribution between accident 

data and field data.  It can be seen from the table that, for a single occupant/driver, the 

vehicle percentages for both data sets are very close.  This suggests that single-occupant 

vehicles did not under-represent nor over-represent the vehicle population in accident 
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data.  In other words, although multi-occupant (two and more than two occupants) 

vehicles were involved in higher percentages in severe accidents (injury and fatality) than 

were single-occupant vehicles (see Table 4-4), the number of multi-occupant vehicles 

involved in accidents in general occupied almost the same percentage as that in the field 

data set.  This suggests that multi-occupant vehicles are not over-represented in the 

accident database.  However, high-occupancy (three and more than three) vehicles do 

appear with higher frequency in accident data than in field data.  Obviously, there are 

other potential explanations for this difference, one of which might be that observers 

using the windshield method missed children and infants, who were difficult to see. 

Table 4-5:  Vehicle Occupancy Distributions of Accident and Field Data 

Roadway Type Number of Occupants Accident Data (%) Field Data (%) 

1 80.62 80.52 

2 13.32 16.57 

3   4.08   1.25 
Urban Arterials 

3+   1.98   1.65 

1 84.56 83.70 

2   11.0 14.55 

3   3.21   1.21 

Freeways and 
Expressways 

3+   1.23   0.54 

1 81.75 81.74 

2 12.57 15.80 

3   3.83   1.23 
All 

3+   1.85   1.23 

 

4.3.2. Driver’s Age 

To detect potential bias resulting from driver’s age, the year 2000 Miami-Dade 

County accident data were used to determine if the age distribution of drivers in the 
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accident database was different from the age distribution for the entire driving population 

in Miami-Dade County.  This can be analyzed by comparison with the 2000 census data 

for the same area.  In this analysis, the driving population is defined as persons 16 years 

of age or older.  A comparison of the distribution of ages obtained from both accident and 

census data was conducted and is shown in Figure 4-2.  This figure indicates a significant 

difference between the ages of drivers involved in accidents and the ages of the general 

driving population in Miami-Dade County.  Specifically, younger drivers were more 

likely to be involved in accidents than older drivers.  Figure 4-3 shows that the AVOs 

vary significantly with the ages of drivers in the Miami-Dade County area.  The figure 

shows that the AVOs for the youngest drivers are the highest and continue to drop over 

the age 20-50 groups.  The AVOs are lower for drivers over 50 years old than they are for 

other groups. 
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Figure 4-2:  Distributions of Driver’s Age for Miami-Dade County 
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Figure 4-3:  Average Vehicle Occupancy by Driver’s Age for Miami-Dade County 

4.3.3. Driver’s Gender 

Figure 4-4, reproduced from Figure 3-8 of Subsection 3.4.9, shows that female 

drivers tend to have more occupants in their vehicles than male drivers and that this 

observation is consistent throughout the different days of the week. 

Table 4-6 lists year 2000 accident vehicle frequency comparisons between male 

drivers and female drivers in the state of Florida.  On the whole, male drivers get in 

accidents more frequently than female drivers, especially during weekends.  Based on 

2000 Census demographic data, the male population percentage in the state of Florida is 

48.21%, and the female population percentage is 51.79% (see Figure 4-5).  Hence, if the 

vehicles driven by male drivers are over-represented in the whole accident vehicle 

population, the overall AVO value estimated from the accident records would have a bias. 
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Figure 4-4:  AVO Comparisons between Male and Female Drivers 

Table 4-6:  Vehicle Frequency Comparisons Between Male and Female Drivers 

Male Driver Female Driver 
Weekday Type 

Number Percentage Number Percentage 

Monday 19,472  58.43% 13,856  41.57% 

Tuesday through Thursday 58,467 57.83% 42,637  42.17% 

Friday 24,633  59.44% 16,811  40.56% 

Weekends 36,268  63.54% 20,813  36.46% 

All 138,840  59.60% 94,117  40.40% 

 

4.3.4. Other Potential Bias Factors 

Other potential factors, including the driver’s race and weather conditions, have 

been shown to have an impact on AVO.  Over-representation of one of these subgroups 

in traffic accidents may distort the AVO estimates from accident data.  However, the lack 

of detailed racial data and detailed weather information for different sub-groups prevents 

the adjustment factors from being developed. 
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Figure 4-5:  Distributions of Driver’s Gender from Accident and Census Data 

4.4. Development of Bias Adjustment Factors 

While it is important to obtain adjusted AVOs to correct for potential biases for 

such applications as converting person trips to vehicle trips in the traditional demand 

forecasting process, it may not be as important for such adjustments to be made for the 

purpose of monitoring AVO trends in a study area. This is because, for the latter, it is the 

relative values of AVOs, rather than absolute AVOs, that are important.  This assumes 

that the bias factors do not change over time or the range of variables considered. 

4.4.1. Improved Weighting Mean Method 

Heidtman et al. (1997) used a weighted mean procedure using the  census data to 

adjust for the driver’s age bias in the Chicago area.  This procedure would weight each 

age group’s AVO in proportion to its age group’s contribution to the overall driving 
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population.  During this weighting procedure, the census population data for the Chicago 

area are grouped and calculated for each age group.  The ratio of each age group’s 

population to the whole driving population is then obtained as a weighting coefficient.  

To obtain the overall AVO estimate, the weighted mean procedure will weight each age 

group’s AVO by using that group’s weighting coefficient.  Hence, the sum of each age 

group’s weighted AVO is the overall adjusted AVO.  This procedure can be represented 

using the following formulas: 

( )∑ ×=
i

iiadj AVOWAVO                                                      (4-1) 

∑
=

k

k

i

i
P

P
W                                                                             (4-2) 

where   

AVOadj  = the overall adjusted AVO, 

Wi  = the weighting coefficient for driver age group i, 

AVOi  = the unweighted AVO for driver age group i, and 

Pi  = the driving population for driver age group i. 

The assumptions for this procedure include: 1) that each age group has a uniform 

percentage of vehicle driving activity and 2) that each age group has a uniform accident 

rate in terms of vehicle miles driven and driving population.  However, the driving 

activity for each age group’s drivers was different (U.S. DOT, 2001).  Based on U.S. 

DOT 2001 national household travel survey result, Table 4-7 lists the travel minutes and 

miles differences based on adult demographic characteristics for age and gender. 

Overall, for all adults, including nondrivers and those who may not have driven 

on a given day, 55 minutes are spent behind the wheel driving 29 miles a day.  Usually 
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men drive further (38 vs. 21 miles) and longer (67 vs. 44 minutes).  Teenagers drive the 

least on an average day (about 25 minutes and 12 miles).  Adults over the age of 65 also 

drive less on an average day compared to other adult age groups (20 to 64 years). 

Table 4-7:  Minutes Spent and Miles Driven Daily by Age and Gender Groups 

 Minutes Miles 

Male 67.3 37.6 

Female 43.8 21.2 

15-19 years 24.6 12.2 

20-24 years 51.7 28.9 

25-54 years 64.1 35.0 

55-65 years 57.7 29.7 

65 years and older 39.3 17.0 

All 55.1 29.1 

 

To reflect these travel characteristic differences on driver’s ages and genders, 

equation 4-2 is revised to the following formula: 

∑
=

k

kk
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MP
W                                                                      (4-3) 

where 

Pi  = the driving population for driver age group i, and  

Mi  = the average miles driving by age group i. 

This improved weighting method will be used not only for the driver’s age bias 

adjustment, but also for the driver’s gender bias adjustment, in which the AVOs are 

grouped by driver’s gender instead of driver’s age. 
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4.4.2. Bias Adjustment Factors for Driver’s Age 

Because of the drivers’ age bias in the accident data, estimates of AVO derived 

from accident data should be adjusted to minimize the effect of this bias on AVO 

calculations.  During this weighting procedure, the census population data for each 

county in Florida are grouped and calculated for each age group.  Because the Florida 

2001 household travel survey data are not available, the 2001 national household travel 

survey data are used in this research.  Table 4-8 lists each age group’s weighting 

coefficient, the unadjusted AVO, and the weighted AVO for each age group for Miami-

Dade County.  This table also lists the final overall adjusted AVO, which is 1.39.  (See 

Appendix A.1 for driver’s age group weighting coefficients for all counties.) 

Table 4-8:  Weighting Coefficients for Age Groups for Miami-Dade County 

Age Group 
Weighting Coefficient (Wi) 

(a) 
Unadjusted AVOi 

(b) 
Weighted AVOi 

(a) x (b) 

16-19 0.0294 1.591 0.0468 

20-24 0.0817 1.465 0.1197 

25-29 0.1120 1.430 0.1602 

30-39 0.2586 1.439 0.3597 

40-49 0.2195 1.384 0.3039 

50-59 0.1526 1.308 0.1996 

60-69 0.0832 1.294 0.1076 

70-79 0.0457 1.291 0.0590 

≥80 0.0261 1.283 0.0334 

Overall 1.0 1.408 1.390 

 

Table 4-9 lists the adjusted AVOs for some counties based on the obtained 

weighting coefficients. (See Appendix A.2 for the AVOs adjusted by age group 

weighting coefficients for all counties.)  Although these differences appear small, most 
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AVO values are adjusted lower.  The paired-samples T test indicates that the differences 

between unadjusted AVOs and census weighted AVOs are significant (T = 12.439, P 

value < 0.0001) at the 95% confidence level.   

Table 4-9 also lists the driver’s age adjustment factor (Fage) for each county, 

which was calculated as follows: 

unadjAVO

adjAVO
ageF =                                                                (4-4) 

Table 4-9:  AVOs and Age Adjustment Factors for Some Counties 

County 
No. 

County Name Unadjusted 
AVO (AVOunadj) 

AVO Adjusted by 
Age (AVOadj) 

Age Adjustment 
Factor (Fage) 

3 Collier 1.567 1.539 0.982 

12 Lee 1.517 1.482 0.977 

13 Manatee 1.475 1.450 0.983 

54 Jefferson 1.664 1.695 1.018 

56 Liberty 1.648 1.563 0.948 

86 Broward 1.446 1.424 0.985 

87 Miami-Dade 1.408 1.390 0.987 

89 Martin 1.518 1.478 0.974 

93 Palm Beach 1.443 1.426 0.988 

94 St. Lucie 1.555 1.520 0.977 

 

Assuming that the age composition will not change from year to year, this average 

adjustment factor can be used in lieu of the weighting coefficients described above.  Both 

should lead to the same adjustment if the composition of different subgroups does not 

change.  To obtain the AVO adjusted for driver’s age bias, simply multiply the 

unadjusted AVO by the corresponding Fage for the respective county.  In most cases, the 
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Fage is a value below 1.0, which reduces the AVO to adjust for the overall over-

representation of subgroups with higher AVOs in traffic accidents. 

4.4.3. Bias Adjustment Factors for Driver’s Gender  

Because the AVOs between male drivers and female drivers are significantly 

different, the improved census weighting mean method is also used to minimize the effect 

of the bias derived from the over-representation of male drivers or female drivers in the 

accident vehicle data.  During this weighting procedure, the census population data for 

each county in Florida are grouped and calculated for both male and female groups.  

Table 4-10 lists weighting coefficients, the unadjusted AVO, and the weighted AVO for 

each gender group for Miami-Dade County.  This table also lists the final overall adjusted 

AVO, which is 1.403.  (See Appendix A.3 for driver’s gender weighting coefficients for 

all counties.) 

Table 4-10:  Weighting Coefficients for Gender Groups for Miami-Dade County 

Gender Group 
Weighting Coefficient (Wi) 

(a) 
Unadjusted AVOi 

(b) 
Weighted AVOi 

(a) x (b) 

Male 0.6171 1.386 0.8553 

Female 0.3829 1.430 0.5475 

Overall 1.0 1.408 1.403 

 

Table 4-11 lists the adjusted AVOs for some counties based on the obtained 

weighting coefficients.  (See Appendix A.4 for the AVOs adjusted by gender weighting 

coefficients for all counties.)  Overall, the adjustment scale is very small, perhaps because 

the accident vehicle population already reflects the travel characteristic differences for 

male and female drivers.  The paired-samples T test result (T = 8.751, P value < 0.0001) 
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indicates that the differences between unadjusted AVOs and census weighted AVOs in 

some counties are significant at the 95% confidence level.   

Table 4-11:  AVOs and Gender Adjustment Factors for Some Counties 

County 
No. 

County Name Unadjusted 
AVO (AVOunadj) 

AVO Adjusted by 
Gender (AVOadj) 

Gender Adjustment 
Factor (Fgender) 

3 Collier 1.567 1.561 0.996 

12 Lee 1.517 1.512 0.997 

13 Manatee 1.475 1.468 0.995 

54 Jefferson 1.664 1.664 1.000 

56 Liberty 1.648 1.588 0.994 

86 Broward 1.446 1.439 0.995 

87 Miami-Dade 1.408 1.403 0.997 

89 Martin 1.518 1.505 0.992 

93 Palm Beach 1.443 1.436 0.995 

94 St. Lucie 1.555 1.546 0.994 

 

Table 4-11 also lists the driver’s gender adjustment factor (Fgender) for these 

counties, which was calculated as follows: 

unadjAVO

adjAVO
genderF =                                                           (4-5) 

 
Assuming that the gender composition will not change from year to year, this 

adjustment factor can be used to obtain the AVO adjusted for driver’s gender bias.  In 

most cases, the Fgender is a value below 1.0, which reduces the AVO to adjust for the 

overall over-representation of the female group with higher AVOs in traffic accidents. 
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4.4.4. Composite Adjustment for Driver’s Age and Gender 

The age adjustment factor Fage and the gender adjustment factor Fgender obtained 

in Subsections 4.4.2 and 4.4.3 can be used to adjust the overall AVO values separately.  

To avoid both potential driver’s age and gender biases and reflect the travel characteristic 

differences in terms of both driver’s age and gender, the following formula is used to 

estimate composite adjusted AVOs: 

genderFageFunadjAVOadjAVO ××=                               (4-6)            

Based on the above formula, Table 4-12 lists the final composite adjusted AVO 

values for some counties.  Assuming that the gender and age compositions will not 

change from year to year, both adjustment factors can be used in this formula to obtain 

the composite adjusted AVO values simply and quickly.  

 Table 4-12:  AVOs and Composite Adjusted AVOs for Some Counties 

County Name Unadjusted 
AVO 

(AVOunadj) 

Age  
Adjustment 
Factor (Fage) 

Gender 
Adjustment 

Factor (Fgender) 

Composite 
Adjusted AVO 

(AVOadj) 

Collier 1.567 0.982 0.996 1.533 

Lee 1.517 0.977 0.997 1.477 

Manatee 1.475 0.983 0.995 1.443 

Jefferson 1.664 1.018 1.000 1.674 

Liberty 1.648 0.948 0.994 1.505 

Broward 1.446 0.985 0.995 1.417 

Miami-Dade 1.408 0.987 0.997 1.385 

Martin 1.518 0.974 0.992 1.466 

Palm Beach 1.443 0.988 0.995 1.419 

St. Lucie 1.555 0.977 0.994 1.510 
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CHAPTER 5 

AVO INFORMATION SYSTEM 

5.1. Introduction 

This chapter describes a user-friendly system that makes use of Florida accident 

records to derive AVO estimates.  The system, called the Florida Accident Vehicle 

Occupancy Rate Information Estimator, or FAVORITE, can estimate AVOs for selected 

roadway segments, corridors, or counties for specific time periods.  Because the system 

makes use of a comprehensive statewide database, it can potentially be a highly cost-

effective means for monitoring statewide, county, and possibly site-specific vehicle 

occupancy trends.  The current system not only provides rich data analysis functions, but 

also incorporates bias adjustment factors and sampling issues. 

5.2. System Implementation 

The information system was developed using a combination of Visual Basic, 

Microsoft Access, and the ESRI MapObjects Developer Library.  The current database 

includes the 1990-2005 accident data for the entire Florida state roadway system.  The 

accident data include the number of passengers of each accident vehicle.  In addition, the 

database also includes a number of variables that can be used for analysis, including 

district, county, hour of day, day of week, month of year, vehicle type, facility type, area 

type, and accident severity.  These variables allow accident records to be filtered to 

include only certain types of records for specific analysis needs. 
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5.2.1. System Functionalities 

The major functionalities of the system include:  

• Applying filters for time of day, day of week, month of year, type of vehicle, 

type of road, type of area, and accident severity.  These filters allow AVOs to 

be analyzed for their sensitivity with respect to location, roadway, time, 

vehicle, etc. 

• Defining a new variable by grouping the available categories of a variable. 

• Calculating and displaying AVOs in a cross table of two variables, for 

example, the AVO for different days of a week for different FDOT districts.  

The total AVOs are also provided for all rows and columns of the cross table. 

• Calculating and displaying AVOs on line, bar, or pie charts. 

• Calculating and displaying AVOs on a GIS map at the district, county, and 

corridor levels.   

• Exporting tables and charts to Excel. 

5.2.2. Incorporation of Bias Adjustment Factors 

Because of the drivers’ age bias and drivers’ gender bias found in the accident 

data, any estimates of AVO derived from accident data should be adjusted to minimize 

the effect of both biases on AVO calculations.  To adjust for these biases, a census 

weighting procedure as discussed in Chapter 4 was implemented in FAVORITE.  The 

user may choose whether or not to apply bias adjustment factors.  As noted in Section 4.3, 

it is not necessary that the adjustment factor be applied for AVO monitoring for trends in 
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one area, as it is the relative values of AVOs, rather than the absolute AVOs, that are 

important in this case. 

5.2.3. Incorporation of Minimum Sample Size 

A second major design issue in the development of the AVO information system 

was to consider the minimum number of accident records needed to provide an AVO 

estimate that will meet the desired accuracy.  Unlike other vehicle occupancy data 

collection methods, the sampling plan for the accident method is not used to determine 

the number of sample points to be collected.  Instead, it is used to determine if the 

existing accident database contains a sufficient number of accident records to make the 

required estimation within a specified level of precision.  The sampling unit is the 

vehicle(s) involved in an accident.  Based on the defined population of interest in terms 

of geographic scope and temporal coverage, the number of vehicles required to estimate 

AVO within a specified precision level at a certain confidence level can be computed for 

each stratum by using the following formula (Ferlis, 1981): 

2
2/1








 ×−=
hT

hZ
hN

σα                                                          (5-1) 

where   

Nh  = the number of vehicles required for stratum h, 

Z1-α/2 = the upper 1-α/2 percentile of the standard normal distribution,  

σh   = the composite standard deviation for stratum h, and 

Th   = the desired tolerance for stratum h. 

The standard deviation estimates of vehicle occupancy for different strata of 

accidents can be obtained from existing studies.  To use the data, the population of 
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interest in terms of geographic coverage and temporal conditions has to be clearly 

defined.  Within each selected subpopulation, the variability in occupancy rates will 

dictate the number of vehicles needed, for which estimates can be obtained to achieve a 

specified precision level.  For example, the required number of vehicles needed to derive 

an AVO estimate within 0.1, with 95% confidence, is: 

2

1.0

96.1







 ×
= h

hN
σ

=384.16 2
hσ×  

Table 5-1 provides estimates of the standard deviation, σh, of passenger vehicle 

occupancy for several strata, as well as the number of reported vehicles that will be 

needed to estimate AVO.  The results calculated are based on three years’ (1999, 2000, 

and 2001) total number of accidents occurring in Miami-Dade county, are restricted to 

drivers 16 years and older, and are restricted to passenger vehicles with fewer than seven 

occupants. 

Table 5-1:  Required Number of Accident Vehicles for Miami-Dade County 

 
Actual # of Vehicles 

in Database 
Standard 

Deviation (σh) 
Minimum Required # 

of Vehicles 

All accidents 154,152 0.810 253 

Weekday 115,549 0.733 207 

Weekend 38,603 0.982 371 

Weekday a.m. rush 14,252 0.584 132 

Weekday midday 45,980 0.689 182 

Weekday p.m. rush 19,791 0.747 215 

Weekend a.m. rush 1,757 0.722 201 

Weekend midday 14,823 0.941 341 

Weekend p.m. rush 4,667 1.047 422 

Notes:   
Midday: 9:00 a.m.–4:00 p.m.; a.m. rush: 7:00 a.m.–9:00 a.m.; and p.m. rush: 4: 00 p.m.–6:00 p.m. 
Required number of vehicles involved in accidents reflects ±0.1 precision level. 
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5.3. Input Specifications 

Figure 5-1 shows the main input interface of the system.  The screen allows the 

user to make the following three major selections: 

1) Accident data years: The user can select any number of years of accident data to 

include in his/her analysis. 

2) Analysis locations: Location selection can be made at three different levels: 

district, county, and corridor.  

3) Variable filters: The system includes filters for accident severity, hour of day, 

month of year, day of week, vehicle type, area type, and roadway type.  This 

allows the user to include only a subset of accident records in the AVO estimates. 

For example, the user may be interested in only the occupancy from passenger 

cars.  In this case, only “Automobile” should be selected.  The user can further 

constrain the accident record set to, for example, weekday traffic, by not selecting 

the “Sat” and “Sun” categories.  

The program also allows the user to group the different categories of a variable.  

A re-categorized variable can be saved as a new variable that can then be used just like 

any other existing variable.  This feature is particularly useful because the existing 

categories of a variable may not suit a particular analysis need. 

5.3.1. Accident Data Years 

The FAVORITE system includes the complete 1990–2005 accident records for 

Florida’s state roadway system.  The user can select any number of years of data within 
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this timeframe to include in the analysis using the “From” and “To” dropdown lists on 

the main screen. 

 

Figure 5-1:  FAVORITE Main Screen 

5.3.2. Location Selection 

Location selection can be made at three different levels: district, county, and 

corridor.  More than one item in each level can be selected.  For example, one can select 

Districts 4 and 6 to cover the Southeast Florida counties.  When a district is selected, all 

of the counties in it will be listed under the “County” list box.  The selection of counties 

is optional.  If no counties are selected, the selection is considered to have been made at 
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the district level only, such that all counties in a selected district will be included.  When 

a county is selected, only data for that county are included. 

The selection of districts or counties is made by checking the appropriate 

checkboxes.  Alternatively, one can click the “Map” button beside the “District” or 

“County” list box to select by map.  Selection by map is convenient when the user wants 

to select a contiguous area such as selecting two adjacent counties.  Figure 5-2 shows a 

map screen in which Miami-Dade and Broward counties are selected.   

 

Figure 5-2:  Select Locations by Map 

To select a specific corridor, the user can either enter the standard roadway ID, 

which is county/section/subsection, and the beginning and ending mileposts, or the user 
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can click the adjacent “Map” button to select a particular roadway by pointing and 

clicking on the map. 

5.4. System Output 

Once the input specifications described in the preceding section are completed, 

the user can click on the “Table,” “Chart,” or “GIS” button at the bottom of the input 

screen to start computing, analyzing, and displaying AVOs.    

5.4.1. Table and Chart Display 

The “Table” and “Chart” output options are similar, and they share the same input 

interface.  Figure 5-3 shows a table that is cross-classified by district and day of week.  

As Figure 5-4 shows, the “Chart” option simply displays the same AVOs, but on a chart.  

For both tables and charts, the user is given the following display options: 

• Select any one or two variables from the two dropdown menus at the top of the 

screen to classify AVOs. 

• Display occupancy rates, total number of vehicles, or total number of occupants 

by clicking one of the three corresponding radio buttons at the top of the screen. 

• Select whether or not to show the overall AVOs across each row and each column.  

For example, in Figure 5-3, the overall AVO for District 1 is 1.49 (shown under 

the “Total” column) and the overall AVO for Monday is 1.37.  The table also 

gives an overall AVO of 1.44, which is shown in the bottom-right cell.  

• The user can choose whether or not to display AVOs that do not meet the 

minimum sample sizes, which are computed by the system based on the sample 



 76 
 

 

size formula (see Section 5.2.3) for each user-selected cross-class.  Thus, if a user 

chooses to require the minimum sample size, the corresponding cell will be 

displayed only if the number of vehicles (note: not the number of accidents) 

involved in the accidents used to calculate the AVO meets a minimal sample size. 

• Select Adjust by census weighting factors to avoid age and gender biases found in 

the accident vehicle data. 

 

 
 

Figure 5-3:  AVOs Cross-Classified Table by FDOT District and Day of Week 

The following functions are available from the table and chart screens: 

• The user is allowed to select up to two variables by which to cross classify the 

AVO estimates.  By default, AVO estimates are displayed when the table is first 

displayed.   
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• The corresponding cross tables for the number of vehicles and number of 

occupants, respectively, can be displayed by clicking the appropriate radio buttons. 

• The user can export the current view to Excel. 

• The user can swap the rows and columns of the cross table. 

• Different options may be checked or unchecked to customize and trim the output 

result, such as showing total AVO values, enabling the bias adjustment feature, 

and considering minimum sample size. 

 

Figure 5-4:  AVOs Cross-Classified Chart by FDOT District and Day of Week 
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5.4.2. GIS Display 

While tables and charts are able to display AVOs that are cross classified by 

variables, they cannot show the AVOs spatially.  FAVORITE provides a geographic 

information system (GIS) interface that can display AVOs by district, county, and 

segment.  Figure 5-5 shows the main interface of the GIS display.  The left side of the 

screen allows the user to make various selections, while the right side of the screen 

displays a map view of the state.  The top-left corner lists the GIS layers and the 

corresponding colors used for display.  Below this layer box is a “Variable” dropdown 

box that allows the user to specify the variable options to include in the calculation and 

analysis of AVOs.  Once a variable is selected, all options will be displayed in the box 

below it.  The user can select the options to include by checking the appropriate 

checkboxes. 

Once a variable option is selected, the six specification boxes below the option list 

box will become active.  The first of these boxes allows the user to select a theme to 

display by county, district, or segment.  Figure 5-5 shows an example of AVOs displayed 

by county.  Figure 5-6 shows another example of AVOs displayed by segments. 

The “Class” dropdown list box allows the user to select the number of classes for 

the theme.  The default number of classes is seven.  The first class is always assigned to 

0.00 to 0.99, which normally includes features that have no accidents.  The last class 

includes any number above a certain threshold.  All classes between these two boundary 

classes are divided based on the increment specified to the right.  By default, the 

increment is 0.1. 
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The “Style” option allows the user to specify whether to show themes by color, 

line width, or a combination of both.  The default option displays by different colors.  

Obviously, the line width option applies only to the segment theme. The “Color” option 

allows the user to select a color scheme.  By default, random colors are used.  The user 

may choose to use the “Blue” and “Red” color schemes, which display features from 

gradual light to dark colors to indicate low to high AVOs.  The GIS display is 

automatically refreshed as soon as any one of these specifications is changed.   

 

Figure 5-5:  Automobile AVOs Displayed by County 
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Figure 5-6:  Automobile AVOs Displayed by Segments 

A number of tool buttons are available on the GIS screen.  These buttons can be 

used to operate map functions, such as zoom in, zoom out, print map, and identify 

segment information.  Figure 5-7 shows the GIS map print layout screen which allows 

users to enter a title or a footnote, copy the print layout to the clipboard, or print the map 

to the default printer. 

5.5. Variable Re-Categorization 

FAVORITE allows the user to re-categorize the options of each variable.  This 

function is very useful for AVO category analysis.  Users can add re-categorized 

variables based on the original raw variables.  Figure 5-8 shows a newly re-categorized 
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variable, “Season,” that is based on the original accident month.  If the user is not 

familiar with the code numbers, he or she should click the cell for which codes are to be 

entered, and then press the F2 function key.  This will invoke a new window that lists all 

of the codes and option names for the selected variable. 

 

Figure 5-7:  GIS Map Print Layout 
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Figure 5-8:  Screen for Adding a Category 
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CHAPTER 6 

EVALUATION OF AVO ESTIMATES FROM ACCIDENT DATA 

6.1. Introduction 

In this chapter, the accuracy of AVO estimates from accident data are evaluated 

based on two approaches.  The first is used to determine if the AVO trends from the 

accident data are as expected.  The second is used to compare the AVOs from accident 

data with those collected from the field at the same locations.  A description of the field 

data source is already given in Chapter 4. 

6.2. Reasonableness Checks 

Reasonableness checks involve examining the AVO estimates to determine if they 

match the expected trends. 

6.2.1. AVO Trends by Year and Day of Week  

Figure 6-1 shows that, as expected, weekend AVOs for passenger vehicles are 

higher than weekday AVOs, with Sunday having the highest AVOs, followed by 

Saturdays and Fridays.  Furthermore, Fridays tend to have slightly higher AVOs than the 

other weekdays, which tend to have similar AVOs.  These observations were consistent 

over each of the four years of data shown. 
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Figure 6-1:  AVO Trend by Year and Day of Week 

6.2.2. AVO Trends by Month 

Figure 6-2 shows that, as expected, the month of July tends to have the highest 

AVO, followed by the month of March, which coincides with Spring Break traffic in 

Florida, and the month of December, which coincides with Christmas holiday traffic.   
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Figure 6-2:  AVO Trend by Month 

6.2.3. AVO Trends by Hours 

Figure 6-3 shows that, as expected, AVOs during the morning peak hours are 

lower than those of the afternoon peak hours and that daytime AVOs are lower than 

night-time AVOs.   

6.2.4. AVO Trends by Area Type 

 
Figure 6-4 shows a GIS thematic map of AVO distribution by county.  The darker 

the color, the higher the AVO.  The map shows that, as expected, rural counties generally 

have higher AVOs than do urbanized counties. 



 86 
 

 

 
 

Figure 6-3:  AVO Trend by Time of Day 

 
 

Figure 6-4:  AVO Trend by County 
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6.2.5. AVO Trends by Vehicle Type 

Figure 6-5 shows the AVOs for different types of vehicles.  The AVOs obtained 

appear reasonable compared to the expected AVOs for different vehicle types.  Some 

observations include: 

• AVOs of passenger vans are higher than those of passenger vehicles. 

• Buses have a significantly higher AVO than any other vehicle types. 

• Bicycles have the lowest AVOs. 

These observations were consistent throughout the four years of data used. 

 
 

Figure 6-5:  AVO Trend by Vehicle Type 
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6.3. Comparisons with Field Data at the County Level 

To compare the AVOs obtained by the two data sources, the Miami-Dade County 

year 2005 accident data were tailored to match the field data collection time (7:00 a.m. to 

6:00 p.m.) and days of the week (Tuesday through Thursday) of a 2006 field collection 

study.  Given that vehicle occupancy rates vary by time of day, critical time periods 

during the aforementioned 7:00 a.m. to 6:00 p.m. time span were selected for separate 

analysis.  The time periods of interest included the a.m. peak period (7:00 to 9:00 a.m.), 

midday period (11:00 a.m. to 1:00 p.m.), p.m. peak period (4:00 to 6:00 p.m.), and off-

peak period (9:00 to 11:00 a.m. and 1:00 to 4:00 p.m.).  Also, the locations of interest 

were classified into three facility types: surface streets, toll facilities, and freeways.   

Figure 6-6 shows that the AVOs from accident records are consistently slightly 

higher for all time periods.  Figure 6-7 shows that the estimates are very close for 

freeway facilities, but are slightly higher for those from accident records for the surface 

street and toll facility locations.  These results are expected because small children are 

difficult to see using the windshield method.  On the other hand, in the carousel method 

that was used to collect freeway data, because the observer vehicle moves in parallel with 

the observed vehicles, the observers had more time to observe the occupants, including 

younger children, hence the closer results for the freeway AVOs. 

6.4. Comparisons with Field Data at the Site-Specific Level 

To compare the field and accident AVOs gathered at the same survey points, 

accident data from one mile upstream and one mile downstream of the survey point were 

included.  Figure 6-8 shows that a positive relationship exists between the two data 
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sources.  However, the AVO estimates from the accident data tend to be higher than the 

field estimates. Again, this is likely due to infants and small children being missed by 

observers using the windshield method. 
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Figure 6-6:  Comparisons of Countywide AVOs for Different Time Periods 
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Figure 6-7:  Comparisons of Countywide AVOs for Different Facility Types 
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Figure 6-8:  Comparisons of AVOs from the Field and from Accidents 
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CHAPTER 7 

VEHICLE OCCUPANCY PREDICTION MODELS 

7.1. Introduction 

While historical occupancy information can be obtained from accident records, 

and the current occupancy information can be collected using the field collection method, 

there have been no known methods developed to predict future occupancy rates.  This 

chapter describes an effort to explore the feasibility of developing prediction models that 

can be used to estimate the expected vehicle occupancy rates given the future 

socioeconomic conditions of the study areas. 

7.2. Data Sources 

The Census 2000 demographic data from Summary Tape File #1 (STF #1) and 

Summary Tape File #3 (STF #3) were the main source of data for this study.  The 

demographic data include age, gender, race and ethnic origin, household income level, 

vehicle ownership, families, and housing units, etc.  The data by age are generally limited 

to persons of working age, defined as 16 years and older.   

The 2002 Info USA employment data were also used in this study.  The 

employment data were categorized into industry, service, and commerce types.  The 2002 

employment data were the closest to the 2000 Census that were available for this study.  

Both census demographic and employment data were aggregated into the census 

blockgroup GIS layer for model regression analysis.  Appendix B.1 lists the variable 

attributes, together with their definitions, from the two data sources.  Except for 
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MEDIAN_AGE, AV_HH_SIZE, and AVG_HH_INC, all other variables were converted 

to density (i.e., divided by the total area) in the analysis.  Also three employment 

variables and some household variables were converted to percentage (i.e., divided by the 

total number of employees, or divided by the total household units) during modeling 

procedures. 

In addition, the variables listed in Table 7-1 were calculated from two or more of 

the attributes from the 2000 Census demographic data.  These composite variables were 

also used to investigate the impacts on the AVOs in the analysis. 

Table 7-1:  Composite Variables 

Variable Name Description 

YOUNG_AGE Density of population with age in the range of 0–14 years 

YOUNG_AGE_PER Percentage of population with age in the range of 0–14 years 

OLD_AGE Density of population with age equal to or greater than 70 

OLD_AGE_PER Percentage of population with age equal to or greater than 70 

TOTAL_VEH Density of household vehicles 

HH_GT_1VEH Density of household units with two or more vehicles 

HH_GT_1VEH_PER Percentage of household units with two or more vehicles 

HH_GT_2VEH Density of household units with three or more vehicles 

HH_GT_2VEH_PER Percentage of household units with three or more vehicles 

PERPVEH Average persons per vehicle 

 

The vehicle occupancy data were only derived from years 1999 and 2000 accident 

data to maintain compatibility with the census year.  These accident data were filtered by 

vehicle type and weekday type, leaving only passenger vehicles involved in weekday 

accidents. 
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7.3. Weekday AVO Models at Area Level 

AVO can differ from one location to another.  The statistical analysis in Chapter 3 

indicated that the AVOs for different counties were significantly different from each 

other.  To model the relationship between an area’s AVO and the associated 

socioeconomic characteristics, the AVO for the area was calculated from vehicles 

involved in accidents that occurred inside the area.  The census blockgroup data were 

aggregated at the area level.  In this study, only two area levels are analyzed: county level 

and census blockgroup level. 

1) County level: The AVOs for all 67 counties in the state of Florida were calculated 

from vehicles involved in accidents, and the census blockgroup data were 

aggregated into the county level.   

2) Census blockgroup level: All vehicles involved in accidents that were located 

inside each census blockgroup were counted.  A 0.25-mile buffer size was applied 

to each census blockgroup to extend the influence of the areas to include vehicles 

involved in accidents that occurred on the roadway between two or more census 

blockgroups.  Also, the AVO for each blockgroup was calculated to model the 

relationship between the AVO and socioeconomic variables at the census 

blockgroup level. 

7.3.1. AVO Model at County Level 

Tables 7-2a and 7-2b list the SPSS output for this model.  The stepwise method in 

the SPSS statistical analysis package selected two predictors: HH_GT_1VEH (i.e., 

household density with more than one vehicle) and TT_30_59M (i.e., worker density 
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with travel time to work in the range of 30–59 minutes).  However, the variance inflation 

factor (VIF) value for each of these two predictors is 19.125.  This is obviously much 

larger than four, indicating that there is a high correlation between the two predictors.  

Hence, TT_30_59M was deselected in the final model refinement procedure because it 

contributes a very small part to R2 (0.059).   

Table 7-2a:  AVO Weekday County Model Summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Change Statistics 
Durbin-
Watson 

          F Change df1 df2 
Sig. F 

Change 
  

1 0.663 0.439 0.430 0.05970 53.660 1 65 0.000 2.429 

 

Table 7-2b:  AVO Weekday County Model Coefficients 

Model 
 Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. Collinearity Statistics 

   B Std. Error Beta     Tolerance VIF 

(Constant) 1.556 0.007   210.341 0.000     

LOG_VEH_GT_1VEH -0.043 0.006 -0.672 -7.325 0.000 1.000 1.000 

 

The final weekday AVO model at the county level (R2/adjusted R2 = 0.439/0.430) 

has the following form: 

                                       AVO = 1.667 - 0.040× ln(HH_GT_1VEH)                            (7-1) 

In this model, the negative sign of the coefficient of predictor HH_GT_1VEH is 

also meaningful.  It indicates that a higher household density with more than one vehicle 

will decrease AVO.   Figure 7-1 shows the fit of this model for the given data.   

7.3.2. AVO Model at Census Blockgroup Level 

For this modeling, Miami-Dade County census blockgroup data and vehicle 

occupancy data were used. The stepwise method involved the selection of many more 
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variables: HH_0_VEH, HH_2_VEH, VACANT_HU, MEDIAN_AGE, AV_HH_SIZE, 

BLACK, AVG_HH_INC, IND_EMP, and COM_EMP.  Tables 7-3a and 7-3b list the 

SPSS output for this model.  They indicate that the AVO in each census blockgroup is 

related to average household size, average household income, industry and commercial 

employee density, vacant household unit density, and household density without a 

vehicle and with two vehicles. 

AVO =1.667 -0.040 x ln (HH_GT_1VEH) 

R2 = 0.439
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Figure 7-1:  Weekday County AVO Model 

In this model, the signs of the coefficients are as expected.  For instance, the 

negative sign for AVG_HH_INC indicates a higher average household income with 

lower average vehicle occupancy because of a higher possibility of multiple vehicle 

ownership.  The positive sign for HH_0_VEH indicates that the higher density of a 
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household with no vehicles will increase the possibility of carpooling, which will result in 

a higher occupancy rate.  However, the R2 in this model is low, at 0.088. 

Table 7-3a:  Miami-Dade County AVO Weekday Model Summary 

Model R 
R 

Square 
Adjusted 
R Square 

Std. Error of the 
Estimate 

Change Statistics 
Durbin-
Watson 

    
      F Change df1 df2 

Sig. F 
Change 

  

1 0.297 0.088 0.080 0.07745 11.050 8 913 0.000 1.370 

 

Table 7-3b:  Miami-Dade County AVO Weekday Model Coefficients 

Model 
Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. Collinearity Statistics 

  
  

B 

Std. 
Error 

Beta     Tolerance VIF 

(Constant) 1.342 0.020   66.284 0.000     

IND_EMP -0.004 0.001 -0.105 -3.206 0.001 0.923 1.084 

COM_EMP 0.003 0.001 0.096 2.766 0.006 0.834 1.200 

AVG_HH_INC -2.88E-007 0.000 -0.079 -2.227 0.026 0.793 1.261 

AV_HH_SIZE 0.018 0.004 0.147 4.035 0.000 0.751 1.331 

MEDIAN_AGE -0.001 0.000 -0.074 -2.146 0.032 0.837 1.194 

VACANT_HU 0.006 0.001 0.155 4.052 0.000 0.686 1.458 

HH_0_VEH 0.004 0.001 0.116 2.902 0.004 0.628 1.592 

HH_2_VEH -0.012 0.003 -0.169 -4.728 0.000 0.782 1.278 

 

7.4. AVO Model at Corridor Level 

Different roadway types serve different people for different trip purposes.  The 

federal roadway functional classification system defines the five urban roadway types as 

given in Table 7-4.  In this study, these roadway types were regrouped into two major 

groups for analysis: urban freeways, consisting of those with class codes 11 and 12, and 

urban arterials, consisting of those with class codes 14 and 16.  Codes 17 and 19 are not 

modeled in this study. 
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Table 7-4:  Urban Roadway Types 

Functional 
Classification Code 

Definition 

11 Principal Arterial - Interstate 

12 Principal Arterial - Other Freeways and Expressways 

14 Principal Arterial - Other 

16 Minor Arterial 

17 Collector 

19 Local 

 

 For urban arterials, all urban counties are also classified into two categories: large 

urban counties with populations over 500,000 and medium-size urban counties with 

populations over 100,000 but less than or equal to 500,000.  Table 7-5 lists all large urban 

counties in the state of Florida. 

Table 7-5:  Large Urban Counties 

County Number County Name Total Population 

87 Miami-Dade 2,253,362 

86 Broward 1,623,018 

93 Palm Beach 1,131,184 

10 Hillsborough    998,948 

15 Pinellas    921,482 

75 Orange    896,344 

72 Duval    778,879 
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7.4.1. Data Preparation 

The data preparation for the AVO model at the corridor level includes four 

considerations: roadway segmentation strategy, AVO calculation for roadway segments, 

buffer size definition, and predictor selection rules. 

7.4.1.1. Segmentation 

In Florida, traffic and geometric information for the state roadway system is 

stored in the Roadway Characteristics Inventory (RCI) system, which includes more than 

200 roadway features (e.g., functional classification, annual average daily traffic , number 

of lanes, median width, etc.).  Three basic fields (i.e., RoadwayID, BeginMilepost, and 

EndMilepost), were used to identify segments with special geometric characteristics.  To 

model the relationship between the AVO in each corridor and the socioeconomic 

characteristics along the corridors, each state roadway is divided into segments based on 

the roadway functional class type, defined in the field FUNCLASS.   Each of these 

segments has a unique functional class, and all have different lengths. 

In the preliminary experiments, to achieve the best possible modeling results, 

each urban arterial was divided into 1-, 2- and 4-mile segments.  Also, each of these 

segments had a unique roadway functional class.  However, this fixed-length 

segmentation method did not provide good results.  It was found that models based on 

this fixed-length segmentation method generally had much smaller R2 values than those 

models that were based only on roadway function class types.  Hence, only the roadway 

function class type is used to split up the urban arterials. 
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7.4.1.2. Aggregation 

The key fields in the accident database are Roadway ID and Milepost.  Both field 

values for each accident record are referred to as this accident location spatially.  Each 

roadway segment has three fields to represent unique segment: Roadway ID, Begin 

Milepost, and End Milepost.  Vehicles involved in accidents located inside each segment 

are aggregated, and the corresponding vehicle occupants and vehicle numbers are 

counted.  Table 7-6 shows a sample of how the AVO for each segment was calculated. 

Table 7-6:  Segmentation and Aggregation Results 

Roadway ID 
Begin 

Milepost 
End 

Milepost 
FUNCLASS Occupants Vehicles AVO 

88010000 0 10.13 14 879 633 1.39 

88010000 17.131 17.681 14   22   14 1.57 

88010000 18.581 20.981 14 111   84 1.32 

88060000 21.82 32.142 14 825 583 1.42 

88060000 32.142 33.592 16   70   50 1.40 

88060001 0 1.364 14 104   79 1.32 

 

7.4.1.3. Buffer Sizes 

The GIS buffer analysis technique has been widely used in transportation 

modeling procedures to estimate traffic data, such as annual average daily traffic (Zhao 

and Chung, 1999).  This technique, combined with the regression method, is also used in 

the analysis of weekday AVO models for the corridor level.  During the compilation of 

the socioeconomic data around each roadway segment, the GIS buffer function was used 

to create buffers around roadway segments to compile data for regression analysis.  

Buffer sizes of 0.5, 0.75, 1, 1.25, 1.50, and 2 mile(s) were used. 
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7.4.1.4. Predictor Selection 

In the preliminary procedures, all independent variables and the dependent 

variable AVO for each buffer data set were loaded into the SPSS system.  By using a 

linear regression stepwise method, all significant predictors for each buffer size data set 

were selected based on the following rules: 

1) Each predictor must be significant at the 0.05 confidence level. 

2) Variance inflation factors (VIF) must be less than four to avoid a high correlation 

between independent variables. 

7.4.2. AVO Model for Arterials in Large Urban Counties  

Large urban counties, in which there were a total of 277 urban arterial segments, 

possess different socioeconomic characteristics than medium-size urban counties.  Along 

these arterial segments, different buffers with different buffer sizes were created for 

model selection.  Table 7-7 lists the initial results of the preliminary procedures. [Note: 

All independent variables are explained by density (per acre) except average variables, 

such as AVG_HH_INC.]  In this table, a buffer size of 1.50 miles gives the highest R2 

value.  For all of these initial models, three predictors were chosen: INC75_100K (i.e., 

household density with household income from $75,000 to $99,999), IND_EMP (i.e., 

industry employee density), and AVG_HH_INC (i.e., average household income).  In 

other words, these predictors are more representative than others. 

The next steps involve making curve estimations for selected predictors, as well 

as filtering out some predictors that contribute a very small part of R2.  Also, abnormal 

predictors were deleted from the models.  Table 7-8 lists the final refined models for 
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different buffer sizes.  At 1.5 miles, the model reaches the highest R2 value (0.357) and 

adjusted R2 value (0.351).  

Table 7-7:  Model Predictors Selected by Stepwise Procedure 

Buffer Size 
(miles) 

Model Predictors R
2 /Adjusted R2 

0.50 
INC75_100K, IND_EMP, PERPVEH, 
AVG_HH_INC 

0.299/0.289 

0.75 
INC75_100K, IND_EMP, AVG_HH_INC, 
OTHER_ENG, WORKATHOME 

0.335/0.320 

1.00 
INC75_100K, IND_EMP, AVG_HH_INC, 
OTHER_RACE 

0.340/0.327 

1.25 
INC75_100K, IND_EMP, AVG_HH_INC, 
TT_GT_60M, OTHER_ENG 

0.343/0.331 

1.50 
INC75_100K, IND_EMP, AVG_HH_INC, 
TT_GT_60M, OTHER_ENG, MENTL_DISB 

0.360/0.346 

2.00 
INC75_100K, IND_EMP, AVG_HH_INC, 
MENTL_DISB, COM_EMP 

0.335/0.326 

 

Table 7-8:  Models for Different Buffer Sizes 

Buffer Size 
(miles) 

Model R
2 /Adjusted R2 

0.50 
AVO = 1.363-0.039× ln(INC75_100K)-
0.032× ln(IND_EMP) -1.66E-006 ×AVG_HH_INC 

0.293/0.285 

0.75 
AVO = 1.362-0.042× ln(INC75_100K)-
0.032× ln(IND_EMP) -1.79E-006 ×AVG_HH_INC 

0.316/0.309 

1.00 
AVO = 1.361-0.045× ln(INC75_100K)-
0.032× ln(IND_EMP) -1.87E-006 ×AVG_HH_INC 

0.336/0.328 

1.25 
AVO = 1.354-0.047× ln(INC75_100K)-
0.031× ln(IND_EMP) -1.81E-006 ×AVG_HH_INC 

0.351/0.344 

1.50 
AVO = 1.349-0.049× ln(INC75_100K)-
0.030× ln(IND_EMP) -1.75E-006 ×AVG_HH_INC 

0.357/0.351 

2.00 
AVO = 1.348-0.047× ln(INC75_100K)-
0.031× ln(IND_EMP) -1.68E-006 ×AVG_HH_INC 

0.350/0.344 
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During the buffer analysis process, different buffer sizes were applied for urban 

major arterial and minor arterial subgroups.  When mixed arterial buffer sizes (1.5 miles 

for major arterials and 1.0 mile for minor arterials) were applied to all urban county 

arterials, the R2 (0.360) for the final model did not improve significantly compared to a 

uniform buffer size for all urban arterials.  Hence, the following model created using a 

buffer size of 1.50 miles was selected: 

AVO = 1.349 - 0.049 ×  ln(INC75_100K) - 0.03 ×  ln(IND_EMP) - 1.75E-006  ×           
AVG_HH_INC                                                                                         (7-2) 

Tables 7-9a and 9-9b give the SPSS output for this model, and Figures 7-2, 7-3, 

and 7-4 plot the scatter charts for each of the three predictors, respectively. 

Table 7-9a:  Summary for AVO Model for Arterials in Large Urban Counties 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Durbin-Watson 

1 0.597 0.357 0.351 0.08027 1.906 

 

Table 7-9b:  Coefficients for AVO Model for Arterials in Large Urban Counties  

Model 
  

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 
Collinearity 

Statistics 

  
  

B 

Std. 
Error 

Beta     Tolerance VIF 

(Constant) 1.342 0.020   66.284 0.000     

 LOG_INC75_100K -0.049 0.008 -0.368 -6.067 0.000 0.639 1.564 

 LOG_IND_EMP -0.030 0.007 -0.289 -4.584 0.000 0.591 1.692 

 AVG_HH_INC -1.75E-006 0.000 -0.212 -3.824 0.000 0.763 1.311 
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Figure 7-2:  AVO vs. Industry Employees 

Households Per Acre with Income between $75,000 and $100,000
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Figure 7-3:  AVO vs. Average House Income Between $75,000 and $100,000 
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Figure 7-4:  AVO vs. Average Household Income 

7.4.3. AVO Model for Arterials in Medium-Size Urban Counties 

Counties with populations under 500,000 and above 100,000 were grouped into 

the medium-size urban county group.  The urban arterials in these counties were 

aggregated to model the relationship between average vehicle occupancy and 

socioeconomic characteristics.  The same buffering processes used earlier for large urban 

county arterial models were applied.  For different buffer sizes, each model includes 

some common predictors: HH_2_VEH (i.e., household density with two vehicles), 

VACANT_HU (i.e., vacant household density), HH_W6_PERS (i.e., household density 

with six family members), and IND_EMP (i.e., industry employee density).  Some other 

abnormal predictors, such as SPAN_ONLY (i.e., density of population speaking only 
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Spanish), were also deselected from the final model.  At a buffer size of 1.0 mile, the R2 

value and adjusted R2 value reach 0.182 and 0.169, respectively. The final model is given 

as follows: 

AVO = 1.461 + 3.332×HH_W6_PERS - 0.376×HH_2_VEH - 0.131× IND_EMP  
             + 0.151×VACANT_HU + 0.101×COM_EMP                                   (7-2) 

The SPSS output for this model is listed in Tables 7-10a and 7-10b.  In this model, 

the signs of the coefficients for all predictors are significant.  For instance, the negative 

sign for IND_EMP indicates that a higher industry employee density will decrease the 

AVO due to more work-based trips. 

Table 7-10a:  Medium-Size County Arterial AVO Weekday Model Summary 

Model R R Square 
Adjusted R 
Square 

Std. Error of 
the Estimate 

Durbin-Watson 

1 0.427
a
 0.182 0.169 0.08941 1.671 

 

Table 7-10b:  Medium-Size County Arterial AVO Weekday Model Coefficients 

Model 

  
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. Collinearity Statistics 

  
  

B 

Std. 
Error Beta     Tolerance VIF 

(Constant) 1.461 0.011   134.249 0.000     

 HH_2_VEH -0.376 0.051 -0.611 -7.427 0.000 0.381 2.621 

VACANT_HU 0.151 0.053 0.169 2.857 0.005 0.735 1.361 

HH_W6_PERS 3.332 0.739 0.354 4.508 0.000 0.418 2.391 

IND_EMP -0.131 0.036 -0.287 -3.600 0.000 0.406 2.464 

 COM_EMP 0.101 0.035 0.257 2.932 0.004 0.337 2.970 

 

7.4.4. AVO Model for Urban Freeways 

Because freeways are fully access-controlled, the AVOs for freeways reflect 

vehicle occupancy over a much larger area.  The common predictor selected for this 
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facility by the stepwise method is HH_2_VEH (i.e., household density with two vehicles), 

and, at a buffer size of 2 miles, the initial model has the highest R2 value.  This initial 

model selected has two predictors: HH_2_VEH and CARPOOLED (i.e., carpooling 

population density).  However, the VIF for each predictor is 5.505, which is greater than 

four, and, because predictor CARPOOLED contributes a very small part to R
2, it was 

deleted.  Tables 7-11a and 7-12b list the SPSS output for the final model, given as 

follows: 

 AVO = 1.29 - 0.119 ×  ln(HH_2_VEH)                                    (7-3) 

This model has an R2 value of 0.386 and an adjusted R2 value of 0.379. Figure 7-5 shows 

the scattered plot of this model. 

Table 7-11a:  Freeway Weekday AVO Model Summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Durbin-Watson 

1 0.622 0.386 0.379 0.12384 2.001 

 

Table 7-11b:  Freeway Weekday AVO Model Coefficients 

Model 
  

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. Collinearity Statistics 

   B 
Std. 

Error 
Beta     Tolerance VIF 

(Constant) 1.290 0.022   57.692 0.000     

LOG_HH_2_VEH -0.119 0.016 -0.622 -7.315 0.000 1.000 1.000 
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Figure 7-5:  Freeway Weekday AVO Model 

7.5. Model Validation 

A test of the developed models’ predictive capability involves using the models to 

predict the AVOs for counties, large and medium size urban county arterials, and 

freeways and then comparing the predicted AVO values with the actual AVO values 

derived from the accident records.  At the beginning of the analysis, each data set for 

county area, urban arterials, and freeways is divided into two groups, one used for model 

calibration, and the other for model validation.  Tables 7-12 and 7-13 summarize the test 

results and the accumulative percent errors for four models including the countywide 

weekday AVO prediction model, urban freeway weekday AVO prediction model, large-

size urban county arterial weekday AVO prediction model, and medium-size urban 

county arterial weekday AVO prediction model.  These four models are represented as 
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models A, B, C, and D separately in both tables.  The mean square of error (MSE) is the 

sum of the squared differences between actual AVO values and predicted AVO values 

divided by the sample size minus the number of model parameters.  The total error is the 

error in percentage for the entire testing data set, which is under 1% for all models.  Table 

7-13 gives the cumulative percent errors for the four models.  For instance, for Model A 

(AVO Model at County Level), 57.14% of the testing counties have an error less than 5%.  

The maximum error for each model is also given in the last row of Table 7-13. 

Table 7-12:  Model Testing Result Summary 

Model Model A Model B Model C Model D 

R-square 0.439 0.386 0.357 0.182 

Adj. R-square 0.43 0.379 0.351 0.169 

MSE 0.004 0.015 0.006 0.008 

Total Error (%) -0.06 0.08 0.07 0.08 

Note: Total Error=(Sum of Predict AVO – Sum of AVO)/Sum of AVO * 100 
 

Table 7-13:  Model Testing Result Summary 

Cumulative Percentage of Testing Samples Error Range 
(%) 

 Model A Model B Model C Model D 

Sample Size 7 9 28 32 

5 57.14 55.55 64.29 62.50 

10 71.43 77.77 78.57 75.00 

15 100.00 77.77 82.14 84.38 

20 100.00 88.88 82.14 96.88 

25 100.00 88.88 100.00 100.00 

30 100.00 100.00 100.00 100.00 

Max Error (%) 13.80 23.00 21.24 20.58 
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7.6. Summary of Final Models 

All final weekday AVO models recommended are listed in Table 7-14.  These 

models include those for countywide weekday AVO, large urban county arterial weekday 

AVO, medium-size urban county arterial weekday AVO, and urban freeway weekday 

AVO.  The model for census blockgroup level weekday AVO is not included as one of 

the recommended models in the table because of its low R2 value. 

Table 7-14:  Final Models and Buffer Sizes 

Type Model Form 
R

2 / 
Adjusted R2 

Buffer 
Size 

(miles) 

County Area 
Level 

AVO = 1.667 - 0.04 ×  ln(HH_GT_1VEH) 0.439/0.430 N/A 

Large-size 
Urban 
County 
Arterial 

AVO = 1.349-0.049× ln(INC75_100K)-
0.03× ln(IND_EMP) -1.75E-006 
×AVG_HH_INC 

0.357/0.351 1.5 

Medium-size 
Urban 
County 
Arterial 

AVO = 1.461+3.332 ×  HH_W6_PERS -
0.376 ×  HH_2_VEH - 0.131 ×  IND_EMP 
+0.151 ×  VACANT_HU + 0.101 ×  
COM_EMP 

0.182/0.169 1.0 

Urban 
Freeway 

AVO = 1.29 - 0.119 ×  ln(HH_2_VEH) 0.386/0.379 2.0 

 

The R2 values for these models are not high.  Because accident vehicle occupancy 

data do not explicitly represent the context in which accident vehicle trips were made, 

these data do not deal explicitly with choices people make about how many automobiles 

to own, where to live, or where to work.  Particularly for smaller areas, the vehicles 

involved in accidents inside these areas may not have much to do with the socioeconomic 

factors specific to these areas.   This is also the reason that the AVO model based on 

census blockgroup level has a small R2 value.   For large areas, however, such as those at 
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the county level, higher R
2 values were achieved because large-scale trends in travel 

patterns can often be accounted for by changing demographics. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

This dissertation study has accomplished the following major research objectives: 

(1) performed an extensive literature review of vehicle occupancy data collection 

methods, including the accident data extraction method and the feasibility of accident 

data as a potential source of vehicle occupancy data; (2) performed statistical analysis of 

vehicle occupancy rates using the accident data with respect to their geographic, 

temporal, and vehicle coverage design; (3) investigated and identified potential biases 

associated with the accident vehicle occupancy data as well as a improved procedure 

used to minimize the existing biases; (4) developed tools to facilitate the collection, 

processing, analysis, and estimating of vehicle occupancy; (5) used the multiple linear 

regression analysis method to develop vehicle occupancy forecasting models as a 

function of local socio-economic data.   

The accomplished research tasks and major conclusions are stated in detail below.  

In addition, recommendations for future studies are also discussed. 

8.1. Summary of Research Results and Conclusions 

The results and conclusions from each task described above are summarized as 

follows: 

(1) Literature Review 

A comprehensive literature search and review has been performed to investigate 

and assess vehicle occupancy data collection practices.  The main review tasks included: 
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1) the study of vehicle occupancy data collection method coverage, advantages, and 

disadvantages of all existing methods; 2) the identification of factors that affect vehicle 

occupancy data collection; 3) the feasibility of making use of accident data to estimate 

the vehicle occupancy rates, as well as the feasibility of estimation procedures associated 

with the accident extraction method; 4) an examination of the biases existent in the 

accident vehicle population, as well as corresponding adjustment methods; 5) a 

description of the issues associated with the AVO forecasting models.  Through the 

literature review, the feasibility of deriving vehicle occupancy rates from accident data 

was confirmed, and the research goal and objectives of this project were further 

determined and explained. 

(2) Factors Affecting Vehicle Occupancies 

Parametric and nonparametric statistical tests were applied to examine the 

contributing factors affecting AVOs in the state of Florida.  The following factors were 

analyzed: year, month, day-of-week, time periods, county, driver’s age, driver’s gender, 

driver’s race, accident severity, facility type, and weather conditions.  Both parametric 

and non-parametric analyses of variance (ANOVA) were applied, and it was found that 

AVOs were affected by all of the factors examined to various degrees.  Despite continued 

efforts over the past decades to encourage people to carpool, the data show that the 

overall AVO in Florida has continued to decline over the years, from a high of 1.58 

occupants per vehicle in 1990 down to 1.42 occupants per vehicle in 2005, or a 10% 

decrease.  This study also found that a.m. peaks tend to have the lowest AVO in a day 

and that weekend AVOs were significantly higher than weekday AVOs.  In addition, 
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younger drivers were found to have higher AVOs than older drivers, female drivers tend 

to have more occupants in their vehicles than male drivers, black and Hispanic 

Americans tend to have higher AVOs than white Americans, and rural AVOs are 

significantly higher than urban AVOs.  

(3) Potential Biases and Adjustment Factors 

As a potential source of vehicle occupancy data, accident data has met with some 

doubt due to its possible biases.  Based on findings from past studies, three possible 

biases were analyzed and discussed in detail: accident severity, driver’s age, and driver’s 

gender.  By comparing accident vehicle data with field data, however, analysis results 

showed that although multi-occupant (two and more than two) vehicles occupy higher 

percentages of severe accidents (injury and fatality) than do single-occupant vehicles, 

multi-occupant vehicles in the whole accident vehicle population were not over-

represented in the accident database.  However, a driver’s age bias was found in the 

accident data.  By comparing the year 2000 Miami-Dade County accident data and the 

2000 census demographic data, it was found that there is a significant difference between 

the distribution of the ages of drivers involved in accidents and the ages of the general 

driving population in the county.  A driver’s gender bias was also identified.  An 

improved census weighting method was used to adjust for this bias in the AVO estimates. 

Other potential bias factors may include driver’s race and weather conditions.  However, 

adjustment factors for these potential biases cannot currently be developed because of the 

lack of driving exposure data associated with their population subgroups. 
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(4) FAVORITE Information System 

FAVORITE is a user-friendly information system capable of estimating average 

vehicle occupancies from multiple years of accident records for Florida’s state roadway 

system.  As a powerful integrated information system, the potential biases resulting from 

accident severity and driver’s age were examined and the corresponding adjustment 

factors for driver’s age were developed and implemented in the system.  Also 

incorporated in the system was consideration given to the minimum required number of 

accident records necessary to meet the desired accuracy in the AVO estimates. 

The current version of the system includes the 1990-2005 accident data that are 

cross classified by year, month, day, and hours, making it possible to perform temporal 

monitoring. The database also includes district, county, roadway section, and area types 

that can be used for spatial comparisons and monitoring.  Comparisons can also be made 

by vehicle type, facility type, and accident severity.  Because the system makes use of a 

comprehensive, statewide database, it can potentially be a highly cost-effective means of 

monitoring statewide, regional, and site-specific vehicle occupancy trends.  

(5) Evaluation of AVO Estimates from Accident Data 

A reasonableness check of the results from the FAVORITE system shows AVO 

estimates that are consistent with expectations.  In addition, comparisons of AVOs from 

accident data with field estimates show that the two data sources produce results that are 

generally consistent.   The comparisons also show that the AVO estimates from accident 

data tend to be slightly higher, most likely because accident records are able to include 

infants and small children who are often difficult to see during field observation.  



 115 
 

 

(6) AVO Prediction Models 

Regression models for the purpose of predicting weekday AVOs were developed 

in this study using census demographic data integrated with 2002 InfoUSA employment 

data.  Four regression models were developed: a weekday county area level model, a 

weekday large urban county arterial level model, a medium urban county arterial level 

model, and a weekday urban freeway model.  Essentially, these models expressed the 

average occupancy rate for arterials and areas as a function of several statistically 

significant socioeconomic variables.   

For the weekday county area level AVO model, the R2 value is 0.452, which is 

considered acceptable.  During the model development, a weekday model for the census 

blockgroup level was also developed.  However, the R2 value for this model is relatively 

low.  Hence, this model was not recommended.  The R
2 values for the three 

recommended arterial models are 0.357 for the large urban county arterial level model, 

0.386 for the urban freeway model, and 0.182 for the medium-size urban county arterial 

level model.  These models show that such socioeconomic factors as income, vehicle 

ownership, and employment play a part in vehicle occupancy forecasting models. 

Although the AVO prediction models developed were statistically significant, 

their R
2 values are not high.  The accident vehicle occupancy data do not explicitly 

represent the context in which accident vehicle trips were made.  As more accident 

vehicle trip information and driver and passenger information become available, an 

update of the model parameters and predictors may be conducted to produce more 

accurate predictions.  Consequently, one of the main future studies could involve 
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developing a survey data method to obtain the needed data and a procedure for 

automatically integrating these survey data into the current accident database. 

8.2. Recommendations for Future Development 

 Although this study has achieved the proposed goal and objectives, there remains 

a need for further study.  Some major points for the future research are summarized 

below. 

(1) Potential Biases and Adjustment Factors 

One major objective of this study is to identify potential biases and develop 

adjustment factors.  The driver’s age bias and driver’s gender bias, identified in this study, 

can be adjusted by using the improved census weighting method, or an adjustment factor.   

If more detailed travel information for the state of Florida, or even for each county, is 

available, the adjustment factors need to be recalculated to achieve greater accuracy.   

While it is not necessary that AVOs derived from accident records be adjusted for 

potential biases for continuous AVO monitoring, further research may address other 

potential biases, such as weather conditions and driver’s races, and possibly develop the 

corresponding adjustment factors for the benefit of applications that require absolute 

AVO estimates. 

(2) FAVORITE Information System 

Although FAVORITE is already freely available through web download, it is 

recommended that a web version be developed using ArcGIS Server as the software 

platform to take advantage of the instant accessibility of web applications.  Additional 
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functionalities can also be developed, for example, the ability to automatically upload 

new accident records as they become available. 

 
(3) Parameter Adjustments of the Developed Prediction Models 

The quality of the AVO prediction models developed in this study still needs to be 

improved.  The accident vehicle occupancy data do not explicitly represent the context in 

which accident vehicle trips were made.  As more accident vehicle trip, driver, and 

passenger information become available, an update of the model parameters and 

predictors may also be conducted to produce more accurate predictions.  Consequently, 

one of the main future studies could involve developing a survey data structure to obtain 

appropriate information, as well as a procedure for automatically integrating these survey 

data into the current accident database. 
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APPENDICES 

A.1. Weighting Coefficients for Age Groups 

Table A-1:  Weighting Coefficients for Different Age Groups 
County 
Name 

16-19 20-24 25-29 30-39 40-49 50-59 60-69 70-79 >=80 

Charlotte 0.0186 0.0385 0.0535 0.1498 0.1813 0.1864 0.1765 0.1307 0.0645 

Citrus 0.0205 0.0389 0.0547 0.1524 0.1873 0.1924 0.1735 0.1223 0.0580 

Collier 0.0228 0.0597 0.0825 0.1980 0.1916 0.1730 0.1412 0.0918 0.0394 

DeSoto 0.0335 0.1024 0.1213 0.2029 0.1802 0.1456 0.1108 0.0714 0.0317 

Glades 0.0256 0.0688 0.1008 0.2075 0.1981 0.1727 0.1339 0.0673 0.0253 

Hardee 0.0372 0.1028 0.1247 0.2299 0.1964 0.1445 0.0852 0.0572 0.0222 

Hendry 0.0433 0.1279 0.1235 0.2399 0.1946 0.1391 0.0765 0.0384 0.0169 

Hernando 0.0226 0.0483 0.0608 0.1652 0.1922 0.1797 0.1520 0.1252 0.0540 

Highlands 0.0253 0.0568 0.0687 0.1580 0.1742 0.1601 0.1582 0.1354 0.0633 

Hillsborough 0.0289 0.0840 0.1129 0.2500 0.2320 0.1552 0.0721 0.0422 0.0225 

Lake 0.0223 0.0513 0.0736 0.1952 0.1996 0.1671 0.1434 0.1005 0.0471 

Lee 0.0219 0.0548 0.0769 0.1911 0.2013 0.1772 0.1362 0.0955 0.0452 

Manatee 0.0231 0.0585 0.0810 0.1981 0.2080 0.1670 0.1198 0.0934 0.0511 

Pasco 0.0226 0.0511 0.0734 0.2005 0.2031 0.1681 0.1226 0.1007 0.0578 

Pinellas 0.0214 0.0560 0.0829 0.2108 0.2284 0.1721 0.1005 0.0764 0.0515 

Polk 0.0297 0.0741 0.0947 0.2140 0.2125 0.1655 0.1064 0.0695 0.0335 

Sarasota 0.0186 0.0437 0.0624 0.1697 0.2023 0.1805 0.1410 0.1148 0.0670 

Sumter 0.0191 0.0530 0.0786 0.1796 0.1743 0.1760 0.1921 0.0951 0.0322 

Alachua 0.0470 0.2029 0.1205 0.1915 0.1979 0.1335 0.0561 0.0322 0.0184 

Baker 0.0356 0.0862 0.1059 0.2469 0.2415 0.1627 0.0759 0.0310 0.0143 

Bradford 0.0277 0.0835 0.1066 0.2390 0.2371 0.1596 0.0808 0.0432 0.0225 

Columbia 0.0324 0.0798 0.0927 0.2153 0.2354 0.1758 0.0950 0.0507 0.0229 

Dixie 0.0276 0.0705 0.0891 0.2017 0.2164 0.1864 0.1241 0.0618 0.0222 

Gilchrist 0.0355 0.1390 0.0822 0.1932 0.2145 0.1687 0.0955 0.0485 0.0230 

Hamilton 0.0282 0.1016 0.1120 0.2431 0.2295 0.1538 0.0774 0.0346 0.0198 

Lafayette 0.0286 0.0947 0.1345 0.2555 0.1969 0.1459 0.0842 0.0393 0.0204 

Levy 0.0291 0.0586 0.0798 0.1988 0.2218 0.1941 0.1221 0.0671 0.0288 

Madison 0.0341 0.0838 0.1093 0.2211 0.2195 0.1597 0.0917 0.0502 0.0307 

Marion 0.0259 0.0553 0.0756 0.1921 0.2068 0.1720 0.1349 0.0963 0.0410 

Suwannee 0.0329 0.0724 0.0861 0.1957 0.2203 0.1875 0.1126 0.0603 0.0321 

Taylor 0.0304 0.0711 0.1026 0.2160 0.2317 0.1820 0.0942 0.0488 0.0231 

Union 0.0264 0.0710 0.1157 0.3000 0.2599 0.1396 0.0550 0.0228 0.0095 

Bay 0.0288 0.0760 0.0993 0.2332 0.2367 0.1678 0.0901 0.0479 0.0201 

Calhoun 0.0279 0.0826 0.1193 0.2384 0.2193 0.1536 0.0840 0.0462 0.0288 

Escambia 0.0369 0.1014 0.1069 0.2218 0.2209 0.1582 0.0827 0.0470 0.0242 

Franklin 0.0207 0.0653 0.0998 0.2249 0.2229 0.1836 0.1068 0.0488 0.0273 

Gadsden 0.0345 0.0820 0.1034 0.2262 0.2439 0.1630 0.0819 0.0414 0.0237 

Gulf 0.0249 0.0582 0.0927 0.2223 0.2350 0.1781 0.1088 0.0552 0.0249 

Holmes 0.0291 0.0777 0.1050 0.2333 0.2067 0.1732 0.0973 0.0480 0.0297 

Jackson 0.0317 0.0831 0.1029 0.2259 0.2271 0.1660 0.0872 0.0472 0.0289 

Jefferson 0.0285 0.0707 0.0880 0.2136 0.2516 0.1884 0.0831 0.0493 0.0268 

Leon 0.0469 0.1823 0.1203 0.2035 0.2115 0.1407 0.0511 0.0276 0.0160 
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Table A-1:  Weighting Coefficients for Different Age Groups (continued) 
County 
Name 

16-19 20-24 25-29 30-39 40-49 50-59 60-69 70-79 >=80 

Liberty 0.0258 0.0833 0.1375 0.2711 0.2236 0.1385 0.0722 0.0343 0.0137 

Okaloosa 0.0299 0.0874 0.1048 0.2414 0.2326 0.1572 0.0887 0.0416 0.0166 

Santa Rosa 0.0300 0.0610 0.0906 0.2516 0.2562 0.1697 0.0872 0.0388 0.0149 

Wakulla 0.0311 0.0624 0.0917 0.2480 0.2624 0.1743 0.0798 0.0359 0.0145 

Walton 0.0250 0.0607 0.0896 0.2147 0.2348 0.1868 0.1107 0.0552 0.0226 

Washington 0.0278 0.0684 0.0921 0.2257 0.2206 0.1833 0.0997 0.0509 0.0315 

Brevard 0.0260 0.0575 0.0736 0.2158 0.2368 0.1702 0.1134 0.0725 0.0342 

Clay 0.0330 0.0675 0.0909 0.2490 0.2559 0.1781 0.0746 0.0342 0.0169 

Duval 0.0299 0.0872 0.1181 0.2543 0.2368 0.1517 0.0653 0.0372 0.0196 

Flagler 0.0212 0.0401 0.0548 0.1602 0.2013 0.1984 0.1741 0.1119 0.0381 

Nassau 0.0275 0.0627 0.0869 0.2274 0.2461 0.1912 0.0966 0.0442 0.0173 

Orange 0.0303 0.0990 0.1252 0.2632 0.2279 0.1391 0.0628 0.0346 0.0179 

Putnam 0.0302 0.0669 0.0797 0.1917 0.2228 0.1881 0.1208 0.0712 0.0286 

Seminole 0.0283 0.0738 0.1006 0.2494 0.2547 0.1695 0.0684 0.0368 0.0185 

St. Johns 0.0271 0.0578 0.0742 0.2132 0.2596 0.1899 0.0934 0.0579 0.0269 

Volusia 0.0269 0.0709 0.0791 0.1969 0.2190 0.1714 0.1123 0.0799 0.0434 

Broward 0.0246 0.0645 0.0998 0.2533 0.2364 0.1537 0.0741 0.0533 0.0402 

Miami-
Dade 

0.0294 0.0817 0.1120 0.2499 0.2195 0.1526 0.0832 0.0457 0.0261 

Indian 
River 

0.0245 0.0513 0.0673 0.1777 0.2064 0.1675 0.1336 0.1125 0.0591 

Martin 0.0205 0.0469 0.0613 0.1824 0.2154 0.1791 0.1326 0.1062 0.0556 

Monroe 0.0178 0.0525 0.0813 0.2189 0.2628 0.2060 0.0924 0.0477 0.0208 

Okeechobee 0.0346 0.0853 0.1015 0.2178 0.2049 0.1596 0.1076 0.0631 0.0257 

Osceola 0.0312 0.0846 0.1105 0.2495 0.2294 0.1579 0.0768 0.0402 0.0201 

Palm Beach 0.0235 0.0584 0.0835 0.2192 0.2204 0.1577 0.0998 0.0850 0.0524 

St. Lucie 0.0261 0.0579 0.0767 0.2064 0.2182 0.1643 0.1217 0.0888 0.0399 
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A.2. AVOs Adjusted by Driver’s Age and Age Adjustment Factors 

Table A-2:  AVOs Adjusted by Driver’s Age and Age Adjustment Factors 

County 
No. 

County Name Unadjusted 
AVO (AVOunadj) 

AVO Adjusted by 
Age (AVOadj) 

Age Adjustment 
Factor (Fage) 

1 Charlotte 1.526 1.507 0.987 

2 Citrus 1.481 1.455 0.983 

3 Collier 1.567 1.539 0.982 

4 DeSoto 1.653 1.638 0.991 

5 Glades 1.660 1.654 0.997 

6 Hardee 1.642 1.621 0.988 

7 Hendry 1.535 1.540 1.003 

8 Hernando 1.559 1.543 0.990 

9 Highlands 1.577 1.545 0.980 

10 Hillsborough 1.487 1.465 0.985 

11 Lake 1.517 1.501 0.989 

12 Lee 1.517 1.482 0.977 

13 Manatee 1.475 1.450 0.983 

14 Pasco 1.521 1.498 0.985 

15 Pinellas 1.444 1.418 0.982 

16 Polk 1.553 1.529 0.985 

17 Sarasota 1.462 1.434 0.981 

18 Sumter 1.702 1.684 0.989 

26 Alachua 1.462 1.456 0.996 

27 Baker 1.656 1.672 1.009 

28 Bradford 1.533 1.512 0.986 

29 Columbia 1.610 1.598 0.993 

30 Dixie 1.572 1.566 0.996 

31 Gilchrist 1.504 1.452 0.966 

32 Hamilton 1.753 1.783 1.017 

33 Lafayette 1.448 1.361 0.940 

34 Levy 1.594 1.574 0.987 

35 Madison 1.645 1.626 0.989 

36 Marion 1.586 1.567 0.988 

37 Suwannee 1.586 1.577 0.994 

38 Taylor 1.515 1.504 0.992 

39 Union 1.492 1.477 0.990 

46 Bay 1.551 1.502 0.968 

47 Calhoun 1.514 1.510 0.998 

48 Escambia 1.414 1.400 0.990 

49 Franklin 1.573 1.566 0.996 

50 Gadsden 1.594 1.569 0.984 

51 Gulf 1.497 1.417 0.946 
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Table A-2:  AVOs Adjusted by Driver’s Age and Age Adjustment Factors (continued) 

County 
No. 

County Name Unadjusted 
AVO (AVOunadj) 

AVO Adjusted by 
Age (AVOadj) 

Age Adjustment 
Factor (Fage) 

52 Holmes 1.648 1.634 0.991 

53 Jackson 1.605 1.604 0.999 

54 Jefferson 1.664 1.695 1.018 

55 Leon 1.450 1.436 0.990 

56 Liberty 1.648 1.563 0.948 

57 Okaloosa 1.496 1.478 0.988 

58 Santa Rosa 1.479 1.465 0.991 

59 Wakulla 1.611 1.594 0.990 

60 Walton 1.618 1.605 0.992 

61 Washington 1.638 1.647 1.006 

70 Brevard 1.456 1.435 0.986 

71 Clay 1.514 1.489 0.983 

72 Duval 1.492 1.467 0.983 

73 Flagler 1.580 1.525 0.965 

74 Nassau 1.545 1.525 0.987 

75 Orange 1.453 1.442 0.992 

76 Putnam 1.538 1.499 0.974 

77 Seminole 1.354 1.336 0.987 

78 St. Johns 1.555 1.530 0.984 

79 Volusia 1.502 1.474 0.981 

86 Broward 1.446 1.424 0.985 

87 Miami-Dade 1.408 1.390 0.987 

88 Indian River 1.519 1.492 0.983 

89 Martin 1.518 1.478 0.974 

90 Monroe 1.634 1.608 0.984 

91 Okeechobee 1.665 1.651 0.991 

92 Osceola 1.658 1.664 1.003 

93 Palm Beach 1.443 1.426 0.988 

94 St. Lucie 1.555 1.520 0.977 
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A.3. Weighting Coefficients for Gender Groups 

Table A-3:  Weighting Coefficients for Driver’s Gender Groups 

County No. County Name Male Female 

1 Charlotte 0.6148 0.3852 

2 Citrus 0.6153 0.3847 

3 Collier 0.6385 0.3615 

4 DeSoto 0.7032 0.2968 

5 Glades 0.6882 0.3118 

6 Hardee 0.6854 0.3146 

7 Hendry 0.7003 0.2997 

8 Hernando 0.6101 0.3899 

9 Highlands 0.6230 0.3770 

10 Hillsborough 0.6238 0.3762 

11 Lake 0.6193 0.3807 

12 Lee 0.6244 0.3756 

13 Manatee 0.6180 0.3820 

14 Pasco 0.6141 0.3859 

15 Pinellas 0.6106 0.3894 

16 Polk 0.6248 0.3752 

17 Sarasota 0.6091 0.3909 

18 Sumter 0.6689 0.3311 

26 Alachua 0.6242 0.3758 

27 Baker 0.6662 0.3338 

28 Bradford 0.6995 0.3005 

29 Columbia 0.6432 0.3568 

30 Dixie 0.6737 0.3263 

31 Gilchrist 0.6711 0.3289 

32 Hamilton 0.7190 0.2810 

33 Lafayette 0.7352 0.2648 

34 Levy 0.6186 0.3814 

35 Madison 0.6572 0.3428 

36 Marion 0.6167 0.3833 

37 Suwannee 0.6239 0.3761 

38 Taylor 0.6495 0.3505 

39 Union 0.7856 0.2144 

46 Bay 0.6307 0.3693 

47 Calhoun 0.6797 0.3203 

48 Escambia 0.6334 0.3666 

49 Franklin 0.7049 0.2951 

50 Gadsden 0.6075 0.3925 

51 Gulf 0.6738 0.3262 
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Table A-3:  Weighting Coefficients for Driver’s Gender Groups (continued) 

County No. County Name Male Female 

52 Holmes 0.6692 0.3308 

53 Jackson 0.6651 0.3349 

54 Jefferson 0.6511 0.3489 

55 Leon 0.6109 0.3891 

56 Liberty 0.7340 0.2660 

57 Okaloosa 0.6436 0.3564 

58 Santa Rosa 0.6363 0.3637 

59 Wakulla 0.6554 0.3446 

60 Walton 0.6503 0.3497 

61 Washington 0.6518 0.3482 

70 Brevard 0.6253 0.3747 

71 Clay 0.6268 0.3732 

72 Duval 0.6188 0.3812 

73 Flagler 0.6154 0.3846 

74 Nassau 0.6289 0.3711 

75 Orange 0.6304 0.3696 

76 Putnam 0.6266 0.3734 

77 Seminole 0.6238 0.3762 

78 St. Johns 0.6208 0.3792 

79 Volusia 0.6211 0.3789 

86 Broward 0.6160 0.3840 

87 Miami-Dade 0.6171 0.3829 

88 Indian River 0.6192 0.3808 

89 Martin 0.6267 0.3733 

90 Monroe 0.6707 0.3293 

91 Okeechobee 0.6749 0.3251 

92 Osceola 0.6272 0.3728 

93 Palm Beach 0.6177 0.3823 

94 St. Lucie 0.6235 0.3765 
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A.4. AVOs Adjusted by Gender and Gender Adjustment Factors 

Table A-4:  AVOs Adjusted by Gender and Gender Adjustment Factors 

County 
No. 

County Name 
Unadjusted 

AVO (AVOunadj) 
AVO Adjusted by 
Gender (AVOadj) 

Gender 
Adjustment 

Factor (Fgender) 

1 Charlotte 1.526 1.520 0.996 

2 Citrus 1.481 1.476 0.997 

3 Collier 1.567 1.561 0.996 

4 DeSoto 1.653 1.630 0.986 

5 Glades 1.660 1.662 1.001 

6 Hardee 1.642 1.624 0.989 

7 Hendry 1.535 1.522 0.991 

8 Hernando 1.559 1.552 0.996 

9 Highlands 1.577 1.575 0.999 

10 Hillsborough 1.487 1.477 0.993 

11 Lake 1.517 1.507 0.993 

12 Lee 1.517 1.512 0.997 

13 Manatee 1.475 1.468 0.995 

14 Pasco 1.521 1.517 0.997 

15 Pinellas 1.444 1.440 0.997 

16 Polk 1.553 1.540 0.992 

17 Sarasota 1.462 1.459 0.998 

18 Sumter 1.702 1.693 0.994 

26 Alachua 1.462 1.455 0.995 

27 Baker 1.656 1.654 0.999 

28 Bradford 1.533 1.508 0.984 

29 Columbia 1.610 1.593 0.989 

30 Dixie 1.572 1.568 0.997 

31 Gilchrist 1.504 1.478 0.983 

32 Hamilton 1.753 1.726 0.985 

33 Lafayette 1.448 1.434 0.990 

34 Levy 1.594 1.590 0.997 

35 Madison 1.645 1.630 0.991 

36 Marion 1.586 1.573 0.992 

37 Suwannee 1.586 1.572 0.991 

38 Taylor 1.515 1.495 0.986 

39 Union 1.492 1.453 0.974 

46 Bay 1.551 1.542 0.994 

47 Calhoun 1.514 1.514 1.000 

48 Escambia 1.414 1.404 0.993 

49 Franklin 1.573 1.573 1.000 

50 Gadsden 1.594 1.584 0.993 
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Table A-4:  AVOs Adjusted by Gender and Gender Adjustment Factors (continued) 

County 
No. 

County Name 
Unadjusted 

AVO (AVOunadj) 
AVO Adjusted by 
Gender (AVOadj) 

Gender 
Adjustment 

Factor (Fgender) 

51 Gulf 1.497 1.454 0.971 

52 Holmes 1.648 1.619 0.982 

53 Jackson 1.605 1.581 0.985 

54 Jefferson 1.664 1.664 1.000 

55 Leon 1.450 1.441 0.994 

56 Liberty 1.648 1.588 0.964 

57 Okaloosa 1.496 1.490 0.996 

58 Santa Rosa 1.479 1.474 0.997 

59 Wakulla 1.611 1.606 0.997 

60 Walton 1.618 1.614 0.998 

61 Washington 1.638 1.612 0.984 

70 Brevard 1.456 1.449 0.995 

71 Clay 1.514 1.507 0.995 

72 Duval 1.492 1.481 0.992 

73 Flagler 1.580 1.574 0.996 

74 Nassau 1.545 1.539 0.996 

75 Orange 1.453 1.445 0.994 

76 Putnam 1.538 1.530 0.995 

77 Seminole 1.354 1.349 0.997 

78 St. Johns 1.555 1.547 0.995 

79 Volusia 1.502 1.495 0.995 

86 Broward 1.446 1.439 0.995 

87 Miami-Dade 1.408 1.403 0.997 

88 Indian River 1.519 1.512 0.996 

89 Martin 1.518 1.505 0.992 

90 Monroe 1.634 1.625 0.995 

91 Okeechobee 1.665 1.657 0.995 

92 Osceola 1.658 1.640 0.989 

93 Palm Beach 1.443 1.436 0.995 

94 St. Lucie 1.555 1.546 0.994 
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B.1.  Socioeconomic Attributes at Census Blockgroup Level 

Table B-1:  Socioeconomic Attributes at Census Blockgroup Level 

Attribute Name Description 

TOTAL_POP Total population 

WHITE Total White population 

BLACK Total Black or African-American population 

INDI_ALASK Total American Indian and Alaska Native population 

ASIAN Total Asian population 

PACIFIC Total Native Hawaiian and Other Pacific Islander population 

OTHER_RACE Total population of some other race 

MIXED_RACE Population of two or more races 

HISPANIC Total population of Hispanic or Latino origin 

MALE Total male population 

FEMALE Total female population 

AGE_0_4 Number of persons between 0 and 4 years old 

AGE_5_9 Number of persons between 5 and 9 years old 

AGE_10_14 Number of persons between 10 and 14 years old 

AGE_15_17 Number of persons between 15 and 17 years old 

AGE_18_19 Number of persons between 18 and 19 years old 

AGE_20_24 Number of persons between 20 and 24 years old 

AGE_25_29 Number of persons between 25 and 29 years old 

AGE_30_39 Number of persons between 30 and 39 years old 

AGE_40_49 Number of persons between 40 and 49 years old 

AGE_50_59 Number of persons between 50 and 59 years old 

AGE_60_69 Number of persons between 60 and 69 years old 

AGE_70_79 Number of persons between 70 and 79 years old 

AGE80_OVER Number of persons 80 or above years old 

MEDIAN_AGE Median age 

HOUSE_UNIT Total number of housing units 

OCPIED_HU Number of occupied housing units 

VACENT_HU Number of vacant housing units 

OWNER_HU Number of housing units occupied by owners 

RENTER_HU Number of housing units occupied by renters 

TOTAL_HH Total number of households 

HH_W1_PERS Households with one person 

HH_W2_PERS Households with two persons 

HH_W3_PERS Households with three persons 

HH_W4_PERS Households with four persons 

HH_W5_PERS Households with five persons 

HH_W6_PERS Households with six persons 

HH_W7_PERS Households with seven or more persons 

AV_HH_SIZE Average household size 
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Table B-1:  Socioeconomic Attributes at Census Blockgroup Level (continued) 

Attribute Name Description 

TOTAL_EMP Total employees (source: InfoUSA employment data) 

IND_EMP Total industry employees (source: InfoUSA employment data) 

COM_EMP Total commercial employees (source: InfoUSA employment 
data) 

SER_EMP Total service employees (source: InfoUSA employment data) 

FORGN_BORN Foreign-born population 

DRIVEALONE Drive alone to work for workers 16 years or over 

CARPOOLED Carpooled to work for workers 16 years or over 

TRANSIT Take transit to work for workers 16 years or over 

OTHR_MODES Use other modes to work for workers 16 years or over 

WORKATHOME Work at home for workers 16 years or over 

TT_LT_15M Travel time to work less than 14 min for workers 16 years or 
over 

TT_15_29M Travel time to work is 15-29 min for workers 16 years or over 

TT_30_59M Travel time to work is 30-59 min for workers 16 years or over 

TT_GT_60M Travel time to work is 1 hour or more for workers 16 years or 
over 

TTT_LT_30M Transit travel time to work is less than 30 min for workers 16 
years or over 

TTT_30_44M Transit travel time to work is 30-44 min for workers 16 years or 
over 

TTT_45_59M Transit travel time to work is 45-59 min for workers 16 years or 
over 

TTT_GT_59M Transit travel time to work is 1 hour or more for workers 16 
years or over 

TOTAL_DISB Total population 5 years and over with disabilities 

SENSO_DISB Total population 5 years and over with sensory disabilities 

PHY_DISB Total population 5 years and over with physical disabilities 

MENTL_DISB Total population 5 years and over with mental disabilities 

EMPLY_DISB Total population 5 years and over with employment disabilities 

OTHER_DISB Total population 5 years and over with other disabilities 

EMPLOYED Employed population 16 years or over 

UNEMPLOYED Unemployed population 16 years or over 

INC_<10K Household income less than $10,000 

INC_10<20K Household income from $10,000 to $19,999 

INC_20<30K Household income from $20,000 to $29,999 

INC_30<40K Household income from $30,000 to $39,999 

INC_40<50K Household income from $40,000 to $49,999 

INC_50<60K Household income from $50,000 to $59,999 

INC_60<75K Household income from $60,000 to $74,999 

INC75<100K Household income from $75,000 to $99,999 

INC_>100K Household income $100,000 or more 
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Table B-1:  Socioeconomic Attributes at Census Blockgroup Level (continued) 

Attribute Name Description 

AVG_HH_INC Average household income 

HH_0_VEH Housing units with no vehicle 

HH_1_VEH Housing units with one vehicle 

HH_2_VEH Housing units with two vehicles 

HH_3_VEH Housing units with three vehicles 

HH_>3_VEH Housing units with three or more vehicles 
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