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A search for a narrow, high-mass resonance decaying into Z and Higgs (H) bosons is presented. The 
final state studied consists of a merged jet pair and a τ pair resulting from the decays of Z and 
H bosons, respectively. The analysis is based on a data sample of proton–proton collisions at a center-of-
mass energy of 8 TeV, collected with the CMS experiment in 2012, and corresponding to an integrated 
luminosity of 19.7 fb−1. In the resonance mass range of interest, which extends from 0.8 to 2.5 TeV, 
the Z and H bosons are produced with large momenta, which implies that the final products of the two 
quarks or the two τ leptons must be detected within a small angular interval. From a combination of all 
possible decay modes of the τ leptons, production cross sections in a range between 0.9 and 27.8 fb are 
excluded at 95% confidence level, depending on the resonance mass.
© 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Very recently, the validity of the standard model (SM) of parti-
cle physics has been confirmed by the discovery of a Higgs boson 
with mass near 125 GeV by the ATLAS and CMS experiments [1,2]. 
Though the SM successfully describes a broad range of high energy 
phenomena, the solution to remaining problems with the struc-
ture of the SM, particularly the hierarchy problem, leads naturally 
to the introduction of physics beyond the standard model (BSM), 
possibly at the TeV scale [3–8]. Many of the BSM models predict 
the existence of heavy resonances with masses of the order of a 
TeV, which may have sizable couplings to the gauge and Higgs 
boson fields of the SM [9–12]. We consider here one important 
family among these models, which incorporate composite Higgs 
bosons [11,12]. In these models, the Higgs boson is a pseudo-
Nambu–Goldstone boson of a broken global symmetry. Other com-
posite bound states beyond the Higgs boson are expected to exist 
and could be experimentally observed.

Several searches for massive resonances decaying into pairs of 
vector bosons or Higgs bosons have been performed by the AT-
LAS and CMS experiments [13–24]. In this analysis, we search for 
a resonance with a mass in the range 0.8–2.5 TeV decaying to 
ZH, where the Z boson decays to qq and the Higgs boson decays 
to τ+τ− . It is assumed that the natural width of the resonance 

� E-mail address: cms-publication-committee-chair@cern.ch.

is negligible in comparison to the experimental mass resolution, 
which is between 6% and 10% of the mass of the resonance, de-
pending on the mass. There is also a small variation with the type 
of decay channel because of the dependence of the resolution on 
the number of neutrinos in the final state. In the model consid-
ered, the spin of the resonance is assumed to be one. However, 
it has been verified that the analysis is insensitive to the angular 
distributions of the decay products and therefore applies to other 
spin hypotheses.

The theoretical model used as benchmark in this work is de-
scribed in Ref. [25]. In this model a heavy SU(2)L vector triplet 
(HVT) containing neutral (Z′) and charged (W′,±) spin-1 states 
is introduced. This scenario is well-motivated in cases where the 
new physics sector is either weakly coupled [26], or strongly cou-
pled, e.g., in the minimal composite model [27]. The cross sections 
and branching fractions (B) for the heavy triplet model depend 
on the new physics scenario under study and can be character-
ized by three parameters in the phenomenological Lagrangian: the 
strength of the couplings to fermions cF, to the Higgs cH, and the 
self-coupling gV. In the case of a strongly coupled sector, the new 
heavy resonance has larger couplings to the W, Z, and H bosons, 
resulting in larger branching fractions for the diboson final states. 
Our benchmark model characterizes this scenario by choosing the 
parameters gV = 3 and cF = −cH = 1, which configure a strongly 
coupled sector.

http://dx.doi.org/10.1016/j.physletb.2015.07.011
0370-2693/© 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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In the high-mass case under study, the directions of the parti-
cles stemming from Z and H boson decays are separated by a small 
angle. This feature is referred to as the “boosted” regime. For the 
case of Z → qq, this results in the presence of one single recon-
structed jet after hadronization called a “Z-jet”. The novel feature 
of this analysis is the reconstruction and selection of a τ pair in 
the boosted regime. The presence of missing energy in τ decays 
does not allow a direct determination of the invariant mass.

In the following, we label τ decays in a simplified way: τ± →
e±νν as “τe”, τ± → μ±νν as “τμ”, and τ± → (nπ)(mK)ν as “τh”, 
where n and m can be 0, 1, 2, or 3, and the pions and kaons 
can be either charged or neutral. Six channels, depending on the 
combinations of τ decays, are studied separately and labeled as 
all-leptonic (τeτe, τeτμ, τμτμ), semileptonic (τeτh, τμτh), and all-
hadronic (τhτh).

The experimental strategy is to reconstruct and identify the 
two bosons and to combine their information into a variable that 
can discriminate between signal and background and on which a 
statistical study can be performed. This variable is the estimated 
mass of the Z′ after applying dedicated reconstruction techniques 
to the boosted qq and ττ pairs (mZH). The mZH distribution would 
show an excess of events at the assumed Z′ mass if a signal were 
present.

2. CMS detector

A detailed description of the CMS detector, together with a def-
inition of the coordinate system used and the relevant kinematic 
variables, can be found in Ref. [28]. The central feature of the CMS 
detector is a 3.8 T superconducting solenoid of 6 m internal di-
ameter. Within the field volume are the silicon tracker, the crystal 
electromagnetic calorimeter (ECAL), and the brass and scintillator 
hadron calorimeter (HCAL). The muon detectors are located outside 
the solenoid and are installed between the layers of the steel flux-
return yoke of the solenoid. In addition, CMS has extensive forward 
calorimetry, in particular two steel and quartz-fiber hadron for-
ward calorimeters.

3. Data sample and simulation

The analysis is based on a data sample collected by the CMS 
experiment in proton–proton collisions at a center-of-mass energy 
of 8 TeV in 2012, corresponding to an integrated luminosity of 
19.7 fb−1. Events are selected online by a trigger that requires 
the presence of at least one of the following: either a hadronic 
jet reconstructed by the anti-kT algorithm [29] with a distance pa-
rameter of 0.5, transverse momentum pT larger than 320 GeV, and 
|η| < 5.0; or a total hadronic transverse energy, HT, defined as the 
scalar sum of the transverse energy of all the jets of the event, 
larger than 650 GeV. The transverse energy of a jet is defined as 
the reconstructed energy multiplied by the sine of the polar angle 
of the jet axis. Using events selected by less restrictive, pre-scaled 
triggers, it has been verified that the efficiency of this trigger af-
ter applying the offline event selection is above 99%. The difference 
from 100% is considered as a systematic uncertainty.

The process qq → Z′ → ZH → qqτ+τ− is simulated at parton 
level using a MadGraph5 1.5.11 [30] implementation of the model 
described in Ref. [31]. Seven signal samples are generated with 
masses between 0.8 and 2.5 TeV. For this mass interval, the Z′ pro-
duction cross section times branching fraction to ZH ranges from 
179.9 fb (mZ′ = 0.8 TeV) to 0.339 fb (mZ′ = 2.5 TeV). Although the 
main sources of background are estimated using observed events, 
Monte Carlo (MC) simulations are used to develop and validate 
the methods used in the analysis. Background samples are gen-
erated using MadGraph5 1.3.30 (Z/γ + jets and W + jets with 

leptonic decays), powheg 1.0 r1380 (tt and single top quark pro-
duction) [32–35], and pythia 6.426 [36] (SM diboson production 
and QCD multijet events with large HT). Showering and hadroniza-
tion are performed with pythia and τ decays are simulated using
tauola 1.1.5 [37] for all simulated samples. Geant4 [38] is used for 
the simulation of the CMS detector.

4. Event reconstruction

A particle-flow (PF) algorithm [39,40] is used to identify and 
to reconstruct candidate charged hadrons, neutral hadrons, pho-
tons, muons, and electrons produced in proton–proton collisions. 
Jets and τh candidates are then reconstructed using the PF candi-
dates. The jet energy scale is calibrated through correction factors 
that depend on the pT and η of the jet. These factors were com-
puted using a data set of proton–proton collisions at 

√
s = 8 TeV, 

corresponding to an integrated luminosity of 19.7 fb−1, follow-
ing the method described in [41]. All particles reconstructed with 
the PF algorithm are used to determine the missing transverse 
momentum, �pmiss

T . In first approximation, �pmiss
T is defined as the 

negative vector sum of transverse momenta of all reconstructed 
particles [42].

Jets are reconstructed using the Cambridge–Aachen (CA) algo-
rithm [43], with a distance parameter of 0.8, chosen so that it 
contains the hadronization products of the two quarks from the 
Z boson. Jet pruning and subjet-searching algorithms are applied 
to these jets as in Ref. [17]. In these algorithms the original jets 
are re-clustered by removing pileup and underlying-event particles 
at low-pT and large angle. The term pileup refers to additional in-
teractions occurring in the same LHC bunch crossing. We define 
mP

jet as the invariant mass of the jet constituents after the prun-
ing procedure. This invariant mass provides good discrimination 
between Z-jets and quark/gluon-jets since it tends to be shifted 
towards the energy scale at which the jet was produced. We also 
define a quantity called “N-subjettiness”, τN , that is sensitive to 
the different jet substructure characteristics of quark/gluon and Z-
jets, as [44]:

τN = 1

d0

∑

k

pT,k min(�R1,k,�R2,k, . . . ,�R N,k), (1)

where N is the number of subjets in which the original jet can 
be reclustered with the kT algorithm [45,46]; the index k runs 
over the PF constituents of the jet; pT,k is the transverse mo-
mentum of the kth constituent; �Rn,k is a distance defined as √

(�ηn,k)
2 + (�φn,k)

2 where �ηn,k and �φn,k are the differences 
in pseudorapidity and azimuthal angle between the kth constituent 
and the nth subjet axis; and d0 = ∑

k pT,k R0 is a normalization 
factor with R0 equal to the original jet distance parameter. The 
variable τN quantifies the tendency of a jet to be composed of N
subjets, having smaller values for jets with a N-subjets-like con-
figuration. We define τ21 as the ratio between the 2-subjettiness 
and the 1-subjettiness, τ21 = τ2/τ1. The variables mP

jet and τ21 have 
been shown to have a good discrimination power between signal 
and background [47], therefore in the following they are used to 
define signal and background enriched regions of the analysis.

In order to match trigger requirements and avoid inefficiencies 
close to the threshold, at least one jet in the event is required 
to have pT > 400 GeV and |η| < 2.4. In addition, this jet is re-
quired to pass minimal consistency requirements on the fraction 
of charged and neutral particles contributing to it, to avoid fake 
jets from isolated noise patterns in the calorimeters or the tracker 
systems. While the CA jet selection is common to all the chan-
nels considered, the reconstruction of the ττ system is performed 
differently depending on the τ decay channel.
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The all-leptonic channels are identified by combinations of elec-
trons, muons, and �pmiss

T , which are products of the decay of a pair 
of τ leptons from the Higgs boson. Electrons are reconstructed 
by combining the information from an ECAL energy cluster with 
that of a matching track in the silicon tracker [48]. Electrons are 
selected if they have pT > 10 GeV, |η| < 2.5, and satisfy require-
ments on the ECAL shower shape, the ratio of energies measured 
in HCAL and ECAL around the electron candidate, the compatibil-
ity with the primary vertex of the event [49], and the track-cluster 
matching parameters. Muon candidates [50] are reconstructed by 
performing a global track fit in which the silicon tracker and the 
muon system information is combined. For the τμτμ channel, to 
avoid identification inefficiencies caused by the small angular sep-
aration of the two muon trajectories, the second muon candidate 
is reconstructed with a different algorithm in which tracks in the 
silicon tracker are matched in space to signals in the muon de-
tectors [17]. Muons are required to have pT > 10 GeV, |η| < 2.4
and to pass additional requirements on the quality of the track 
reconstruction, on the impact parameter of the track, and on the 
number of measurements in the tracker and the muon systems. 
Electron and muon candidates are required to satisfy particle-flow 
based isolation criteria that require low activity in a cone around 
the lepton, the isolation cone, after the removal of particles due 
to additional interactions. Because the lepton from the other sig-
nal τ decay in the boosted pair can fall in the isolation cone, other 
electrons and muons are not considered in the computation of the 
isolation criteria.

In the semileptonic channels, a lepton selected with all the cri-
teria above is combined with a τh candidate. The reconstruction of 
τh starts from the clustering of jets using the anti-kT algorithm 
with a distance parameter of 0.5. Electrons and muons, identi-
fied by looser criteria than the nominal ones used in the analysis, 
are removed from the list of particles used in the clustering if 
they fall within the jet distance parameter. The τh is reconstructed 
and identified using the “hadron-plus-strips” technique [51], which 
searches for the most common decay modes of the τh starting 
from charged hadrons and photons forming π0 candidates. We se-
lect τh candidates with pT > 20 GeV and |η| < 2.3. Electrons and 
muons misidentified as τh are suppressed using dedicated crite-
ria based on the consistency between the measurements in the 
tracker, the calorimeters, and the muon detectors. Finally, loose 
PF-based isolation criteria are applied to the τh candidates, not 
counting electrons and muons in the cone.

In the all-hadronic ττ channel, a subjet-searching technique 
[52] is applied to all CA-jets (distance parameter R = 0.8) in each 
event to identify the τh candidates. At the next-to-last step of the 
clustering algorithm, there are two subjets, which are ordered by 
mass. If both have pT > 10 GeV and the mass of the leading subjet 
is smaller than 2/3 of the mass of the original merged jet, the two 
objects are used as seeding jets for τ lepton reconstruction via the 
“hadron-plus-strips” technique. If any of the criteria above fail, the 
procedure for one of the subjets is performed again for a maxi-
mum of four iterations. The efficiency for finding subjets with this 
method in signal events is 92%, independent of pT, for τh with 
pT > 40 GeV. In the lowest bin investigated (pT between 20 and 
40 GeV) the efficiency is around 80%.

The visible mass, mvis, of the ττ system is defined as the in-
variant mass of all detectable products of the two decays. Because 
the unobserved neutrinos can carry a significant fraction of the ττ
energy/momenta, this variable is not suited for reconstructing res-
onances that include the ττ system among its decay products. In-
stead, the Secondary Vertex fit (SVFIT) algorithm described in [53], 
which combines the �pmiss

T with the visible momenta to calculate 
a more precise estimator of the kinematics of the parent boson, is 
used to reconstruct the ττ system in all search channels.

5. Background composition

The composition of the background remaining after reconstruc-
tion is different for each of the search channels.

In the τeτe, τeτμ , and τμτμ channels, the background is almost 
entirely composed of Z/γ + jets events with genuine τ or other 
lepton decays. In the τeτh and τμτh channels, additional significant 
contributions to the total background come from W + jets and tt
events with leptonic W-boson decays, and a hadronic jet misiden-
tified as τh. Among tt events, those with one W boson decaying 
leptonically and one decaying to quarks can potentially produce a 
signal-like structure in mP

jet and τ21. We refer to this as the “tt
peaking contribution” in the following.

The background in the τhτh channel is dominated by QCD mul-
tijets production. There is a small but non-negligible contribution 
from Z + jets, W + jets, and tt production. For all these processes, 
it is possible that genuine τh or at least one extra jet or lepton 
misidentified as τh allow the event to pass the selection.

In all channels there is a very small, irreducible component of 
genuine SM dibosons, which are not distinguishable from signal, 
except for the non-peaking structure in mZH.

6. Event selection

In all channels, the boosted Z boson decaying to qq is identified 
by requiring the selection: 70 < mP

jet < 110 GeV and τ21 < 0.75. 
This region is referred to as the “signal region”.

In the all-leptonic and semileptonic channels, the ττ four-
momentum estimated from SVFIT is combined with that of the 
CA-jet to obtain the resonance mass mZH. Several preselection re-
quirements are applied to remove backgrounds from low-mass 
resonances and from overlaps of lepton and τ lepton reconstruc-
tion in the detector: mvis > 10 GeV, �R

 > 0.1 (where �R =√

(�η)2 + (�φ)2 and 
 denotes electrons, muons, or hadronically 
decaying taus), |�pmiss

T | > 20 GeV, and pT,ττ > 100 GeV, as esti-
mated from the SVFIT procedure.

Since the background in the all-hadronic channel is initially 
dominated by QCD multijet events, a different preselection is ap-
plied for the all-hadronic channel. Only events that have not been 
included in the all-leptonic or semileptonic categories are consid-
ered in this category. The event is then separated into two hemi-
spheres containing the decay products of the two bosons by requir-
ing the following preselection: |�pmiss

T | > 40 GeV, |�φ(CA-jet, τh)| >
2.0 and |�φ(�pmiss

T , τh)| < 1.5, for each of the two τh candidates.
Further criteria investigated for signal selection in all chan-

nels include tighter requirements on variables like the pT of the 
highest-pT (leading) lepton or τh and mττ as estimated from the 
SVFIT procedure. An upper limit is placed on �R

 in order to 
reject W + jets events, where a jet misidentified as a τ lepton 
is usually well-separated in space from the isolated lepton. The 
number of b jets in the event also provides a useful criterion to 
reduce the tt contribution. Jets may be identified as b jets, us-
ing the combined secondary vertex algorithm [54] which exploits 
observables related to the long lifetime of b hadrons, and are con-
sidered if not overlapping with τ candidates and CA-jets. Those b 
jets are clustered with the anti-kT jet algorithm, with a distance 
parameter R = 0.5. Optimization of the selection on these vari-
ables is based on the Punzi factor of merit (P) [55], defined as: 
P = εsig/(1 + √

B ), where εsig is the signal efficiency and B is the 
background yield after applying the selection. The results of the 
optimization are listed in Table 1. It has been verified that these 
results are not sensitive to the choice of mZH window used to eval-
uate εsig and B . In Table 2 we show the efficiency of the selection 
in signal events for all search channels.
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Table 1
Summary of the optimized event selection for the six ττ channels. The selection 
variables are explained in the text. The label 
 refers to electrons, muons, and τ
leptons decaying hadronically.

Selection τeτe, τeτμ , τμτμ τeτh, τμτh τhτh

|�pmiss
T | >100 GeV >50 GeV >80 GeV

pleading
T,
 — >35 GeV >50 GeV

Nb-tagged jet = 0 = 0 –
�R

 <1.0 <1.0 <1.0
mττ – – 105–180 GeV

7. Background estimation

Because of the non-uniformity of the background composition, 
different estimation techniques are used in each channel.

In the τeτe, τeτμ , and τμτμ channels the main background 
source lacks events with a genuine massive boson decaying to 
quarks, therefore a technique based on sidebands of the mP

jet and 
τ21 variables is used for background estimation. In an enlarged 
search region defined by mP

jet > 20 GeV, we define the “sideband 
region”, inverting the selections on mP

jet and τ21, therefore includ-

ing both mP
jet regions outside the signal range and regions with 

τ21 > 0.75.
The total background is estimated in intervals of mZH, using the 

formula:

Nbkg(x) = N Nsb(x)α(x), (2)

where x = mZH, N is a normalization factor, Nsb(x) is the num-
ber of events observed in the sideband region, in bins of mZH, and 
α(x) is a binned ratio between the shapes of the mZH distribu-
tions in the signal and sideband region, taken from the sum of 
MC components. The normalization factor is found through a fit 
of the observed pruned jet mass distribution, following the pro-
cedure used in Ref. [17]. The pruned jet mass distribution in the 
region 20 < mP

jet < 200 GeV, τ21 < 0.75 is fit in MC samples with 
the following function:

F (x) = N eax (
1 + erf[(x − b)/c]), (3)

where “erf” is the error function and the parameters a, b and c
are estimated from the MC simulation. A fit to the observed dis-
tribution, excluding the signal region, is then used to determine 
N . Fig. 1 shows the observed distributions of mZH in all-leptonic 
channels, along with the corresponding MC expectations for sig-
nal and background, as well as the background estimation derived 
with the above procedure.

In the semileptonic channels, a control sample defined by the 
preselection described before, but requiring at least one b-tagged 
jet, is selected. It has been established with simulation that more 
than 95% of this sample is composed of tt events. Two scale factors 
(SFs) relating the ratio of the observed to simulated event rates, 
one for the tt peaking contribution and the other for the tt com-
binatorial background, are estimated from this control sample. The 
pruned jet mass distribution is fit with the sum of two functions:

F tt(x) = N(non-peaking) eAx (
1 + erf[(x − B)/C])

+ N(peaking) G(D, E) (4)

where A, B , and C define the shape of the non-peaking compo-
nent, analogous to Eq. (3), and G(D, E) is a Gaussian function of 
mean D and standard deviation E . The values of these two param-
eters are fixed to those found in the analysis searching for vector 
boson pair resonances [17] because we are using the same Z-jet re-
construction. From this fit, the two scale factors between data and 
MC are found, one for each contribution: rSF

1 = N(peaking)data/

N(peaking)MC and rSF
2 = N(non-peaking)data/N(non-peaking)MC. 

The same procedure as for the all-leptonic channels is then ap-
plied, fitting the observed sideband distribution but using a mod-
ified function, given by the sum of the tt contribution and the 
function of Eq. (3), where the tt normalization is fixed at the MC 
expectation, scaled by the two SFs. Fig. 2 shows the distributions 
of mZH in semileptonic channels, along with the corresponding 
MC expectations and the background estimation derived with the 
above procedure.

For each of the methods used, consistency checks compar-
ing data and background predictions are performed using sam-
ples of events at the preselection level, that are expected to have 

Table 2
Summary of the signal efficiencies, number of expected background events, and number of observed events for the six ττ channels. Only statistical uncertainties are included. 
For the all-leptonic and semileptonic channels, numbers of expected background events and observed events are evaluated for each mass point in mZH intervals corresponding 
to ±2.5 times the expected resolution. For the all-hadronic channel we consider the number of expected background, signal, and observed events for mZH > 800 GeV. When 
the expected background is zero, the 68% confidence level upper limit is listed.

Mass (TeV) τeτe τeτμ τμτμ τeτh τμτh τhτh

B(ττ ) 3.2% 6.2% 3.0% 23.1% 22.6% 41.9%

εsig(%) 0.8 2.8 ± 0.7 3.4 ± 0.5 4.2 ± 0.7 3.3 ± 0.3 4.4 ± 0.3 2.2 ± 0.2
0.9 11 ± 1 16 ± 1 20 ± 2 14.3 ± 0.5 18.7 ± 0.6 11.5 ± 0.4
1.0 17 ± 2 24 ± 1 38 ± 2 21.2 ± 0.6 29.3 ± 0.7 18.0 ± 0.5
1.2 26 ± 2 30 ± 1 39 ± 2 28.3 ± 0.7 35.8 ± 0.7 23.0 ± 0.5
1.5 30 ± 2 42 ± 2 53 ± 2 29.2 ± 0.8 38.1 ± 0.9 29.1 ± 0.7
2.0 28 ± 2 39 ± 2 56 ± 3 31.1 ± 0.8 39.2 ± 0.9 31.9 ± 0.7
2.5 27 ± 2 37 ± 2 42 ± 2 26.8 ± 0.8 37.0 ± 0.8 30.1 ± 0.7

Nbkg 0.8 0.3 ± 0.5 1.1 ± 0.8 1.6 ± 1.2 6.1 ± 2.0 6.7 ± 2.1

6.1+3.2
−2.5

0.9 0.5 ± 0.4 1.7 ± 1.2 3.8 ± 2.1 9.8 ± 3.2 9.2 ± 2.9
1.0 1.4 ± 1.4 1.7 ± 1.0 2.0 ± 0.9 9.5 ± 3.5 7.6 ± 2.2
1.2 1.2 ± 1.2 1.2 ± 0.8 1.4 ± 0.6 5.0 ± 2.0 6.6 ± 2.3
1.5 0.4 ± 0.4 0.07 ± 0.04 0.9 ± 0.4 4.3 ± 1.8 2.6 ± 0.9
2.0 <0.5 <0.4 0.7 ± 0.4 0.1 ± 0.1 <0.4
2.5 <2.1 <0.3 0.3 ± 0.1 0.18 ± 0.05 <0.5

Nobs 0.8 1 1 2 3 10

8

0.9 2 2 3 4 13
1.0 2 2 5 2 13
1.2 0 1 3 5 12
1.5 0 0 1 2 5
2.0 0 1 0 0 0
2.5 0 0 0 0 0
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Fig. 1. Observed distributions of mZH for the all-leptonic channels along with the 
corresponding MC expectations for signal and background, as well as background 
estimation derived from data: (top) τeτe category; (middle) τeτμ category; (bottom) 
τμτμ category. Ten equal-size histogram bins cover the region from 0 to 2.5 TeV, 
while a single bin is used at higher mZH because of the limited number of MC and 
data events. The signal cross section is scaled by a factor of 5.

small contributions from potential signal resonances. In the case 
of the semileptonic channels, we show in Fig. 3 the distribution of 
mP

jet for data and MC at the preselection level. The black line, rep-
resenting the fit to data, is obtained by the sum of Eqs. (3) and 
(4), with the tt shape as obtained from the control sample, the tt
normalization is fixed to MC scaled by the two SFs, and the other 
components are free in the sideband fit. An overall agreement be-
tween data and prediction is observed. The background prediction 
in the signal region is 156 ± 26 events, with an observation of 151 
events, for the τeτh channel and 204 ± 31 events, with an obser-
vation of 203 events, for the τμτh channel.

In the all-hadronic channel, for events where the leading jet 
satisfies the requirement τ21 < 0.75, a plane is defined using the 
mP

jet and mττ variables and four regions are considered, as shown 
in Fig. 4. Most of the signal events are expected in region A, while 
regions B, C, D are dominated by background events. Studies of the 
correlation factors for simulated events and in regions orthogonal 

Fig. 2. Observed distributions of mZH for the semileptonic channels along with the 
corresponding MC expectations for signal and background, as well as background 
estimation derived from data: (top) τeτh category; (bottom) τμτh category. Ten 
equal-size histogram bins cover the region from 0 to 2.5 TeV, while a single bin 
is used at higher mZH because of the limited number of MC and data events. The 
signal cross section is scaled by a factor of 5.

to the signal region show that the variables mP
jet and mττ are es-

sentially uncorrelated. In this case, the total number of background 
events in the region A can be estimated as:

Nbkg = (NB ND)/NC. (5)

The method described by Eq. (5), called “ABCD method”, gives a 
background prediction in the signal region that has been checked 
to be insensitive to possible signal contamination in the regions B, 
C, D.

Fig. 5 shows the observed distributions of mZH in the τhτh chan-
nel, along with the corresponding MC expectations for signal and 
background. The low number of events in regions B, C, D is not suf-
ficient to derive the shape of the distribution in the signal region 
using the ABCD method. We use the results from this method to 
compute the cross section upper limits, which are obtained with-
out assumptions about the shape of the distributions. The ABCD 
method is checked using an alternative background estimation 
technique, where tt, W + jets and Z + jets background contri-
butions are given by Eq. (2), while the QCD multijet background 
is estimated from a control sample of events where at least one τ
candidate fails the isolation requirement. The same control sample 
is used to obtain the shape of the QCD distribution in the signal 
region presented in Fig. 5.

8. Systematic uncertainties

The sources of systematic uncertainty in this analysis, which 
affect either the background estimation or the signal efficiencies, 
are described below.

For the signal efficiency, the main uncertainties come from the 
limited number of signal MC events (3–10%), the integrated lumi-
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Fig. 3. Observed distributions of mP
jet for the semileptonic channels along with the 

corresponding MC expectations for signal and background: (top) τeτh category; 
(bottom) τμτh category. Fits are performed for MC and data (as discussed in the 
text).

Fig. 4. Definitions of the A, B, C, and D regions in the mP
jet/mττ plane used in the 

background estimation for the all-hadronic channel.

Fig. 5. Observed distributions of mZH for the τhτh category along with the corre-
sponding MC expectations for signal and background. Ten equal-size histogram bins 
cover the region from 0 to 2.5 TeV, while a single bin is used at higher mZH because 
of the limited number of MC and data events. The signal cross section is scaled by 
a factor of 5.

nosity (2.5%) [56], and the uncertainty on the modeling of pileup 
(0.2–2.2%). Hereafter, the ranges indicate the different channels 
and mass regions used in the evaluation of the upper limits. The 
scale factors for lepton identification are derived from dedicated 
analyses of observed and simulated Z → 
+
− events, using the 
“tag-and-probe” method [50,51,57]. The uncertainties in these fac-
tors are taken as systematic uncertainties and amount to 1–4% 
for electrons, 1–6% for muons and 9–26% for τ leptons decaying 
hadronically. The jet and lepton four-momenta are varied over a 
range given by the energy scale and resolution uncertainties [41]. 
In this process, variations in the lepton and jet four-momenta are 
propagated consistently to �pmiss

T . For the all-leptonic and semilep-
tonic channels, additional uncertainties come from the procedure 
of removing nearby tracks and leptons used in the hadronic τ re-
construction, and from the isolation variable computation in the 
case of boosted topologies. The inefficiency resulting from these 
procedures, as measured in signal simulation, is assigned as a sys-
tematic uncertainty, corresponding to 1–16% for τ reconstruction 
and 1–21% for isolation. In the all-hadronic analysis, a constant un-
certainty of 10% is assigned for the application of the τ reconstruc-
tion procedure to collimated subjets, comparing the performance 
for isolated and non-isolated τ leptons in simulation. The jet trig-
ger efficiency has an uncertainty of <1%, as determined from a 
less selective trigger. Following the method derived for vector bo-
son identification in merged jets [58], a scale factor of 0.94 ± 0.06
is used for the efficiency of the pruning and subjet searching tech-
niques applied on the CA jet, where the uncertainty is included 
in the estimation of the overall systematic uncertainty. For the b 
tagging, data-to-MC corrections derived from several control sam-
ples are applied and the uncertainties on these corrections are 
propagated as systematic uncertainties in the analysis (2–6%). The 
procedure used to derive the b-tagging systematic uncertainties is 
described in Ref. [54].

The uncertainties in the background estimate are dominated 
by the limited numbers of MC events and sideband data events 
(4–16 events in all-leptonic channels, 34–37 events in semilep-
tonic channels and 29 in the all-hadronic channels). In the analysis 
of the all-leptonic and semileptonic channels, additional uncertain-
ties in the background yields of 10–96% originate from the limited 
number of events of the background MC samples used in the com-
putation of the α(x) quantity, and 18–47% from the normalization 
fit.

9. Results

Table 2 shows the signal efficiencies (computed using a sample 
generated with corresponding τ decays), the background expec-
tation and the number of observed events for the six analysis 
channels.

Having observed no significant deviations in the observed num-
ber of events from the expected background, we set upper limits 
on the production cross section of a new resonance in the ZH fi-
nal state. We use the CLs criterion [59,60] to extract upper bounds 
on the cross section, combining all six event categories. The test 
statistic is a profile likelihood ratio [61] and the systematic un-
certainties are treated as nuisance parameters with the frequentist 
approach. The nuisance parameters are described with log-normal 
prior probability distribution functions, except for those related 
to the extrapolation from sideband events, which are expected to 
follow a  distribution [61]. In the all-leptonic and semileptonic 
channels, the numbers of signal and background events are calcu-
lated for a region corresponding to ±2.5 times the expected res-
olution around each mass point in mZH, while in the all-hadronic 
channel we consider the number of expected background, signal 
and observed events in mZH > 800 GeV for each mass point. The 
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Fig. 6. Expected and observed upper limits on the quantity σ(Z′) B(Z′ → ZH) for 
the six analysis channels combined. Green and yellow bands correspond to ±1 or 
±σ variations on the expected upper limit, respectively. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 7. Exclusion regions in the plane of the HVT-model coupling constants (gVcH, 
g2cF/gV) for two resonance masses, 1.0 and 1.5 TeV. The point B of the bench-
mark model used in the analysis, corresponding to gV = 3 and cF = −cH = 1, is 
also shown. The boundaries of the regions of the plane excluded by this search 
are indicated by the dashed and dotted lines, and associated hatching. The areas 
indicated by the solid line and solid shading correspond to regions where the the-
oretical width is larger than the experimental resolution of the present search and 
thus the narrow-resonance assumption is not satisfied.

expected and observed upper limits are shown in Fig. 6. Produc-
tion cross sections times branching fraction in a range between 
0.9 and 27.8 fb, depending on the resonance mass (0.8–2.5 TeV), 
are excluded at a 95% confidence level.

In Fig. 6, the results from this analysis are also compared to 
the cross section of the theoretical model, used as benchmark in 
this paper and studied in Ref. [25]. In this model, the parameters 
are chosen to be gV = 3 and cF = −cH = 1, corresponding to a 
strongly coupled sector. In Fig. 7, a scan of the coupling parameters 
and the corresponding regions of exclusion in the HVT model are 
shown. The parameters are defined as gVcH and g2cF/gV, related 
to the coupling strength of the new resonance to the Higgs boson 
and to fermions. Regions of the plane excluded by this search are 
indicated by hatched areas. Ranges of the scan are limited by the 
assumption that the new resonance is narrow.

10. Summary

A search for a highly massive (≥0.8 TeV) and narrow resonance 
decaying to Z and H bosons that decay in turn to merged dijet 

and τ+τ− final states has been conducted with data samples col-
lected in 8 TeV proton–proton collisions by the CMS experiment 
in 2012. For a high-mass resonance decaying to much lighter Z 
and H bosons, the final state particles must be detected and recon-
structed in small angular regions. This is the first search performed 
by adopting novel and advanced reconstruction techniques to ac-
complish that end. From a combination of all possible decay modes 
of the τ leptons, production cross sections in a range between 0.9 
and 27.8 fb, depending on the resonance mass (0.8–2.5 TeV), are 
excluded at a 95% confidence level.
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