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NASH DEMAND GAME AND THE
KALAI-SMORODINSKY SOLUTION

NEJAT ANBARCI AND JOHN H. BOYD III

Abstract. We introduce two new variations on the Nash demand
game. One, like all known Nash-like demand games so far, has
the Nash solution outcome as its equilibrium outcome. In the
other, the range of solutions depends on an exogenous breakdown
probability; surprisingly, the Kalai-Smorodinsky outcome proves
to be the most robust equilibrium outcome. While the Kalai-
Smorodinsky solution always finishes on top, there is no possible
general ranking among the remaining solution concepts considered;
in fact, the rest of the solution concepts take their turns at the bot-
tom at various bargaining problems, depending on the specifics of
the bargaining setup.

1. Introduction

More than half-a-century ago the publication of Nash’s paper “Two

Person Cooperative Games” (Nash, 1953) established a new research

agenda, commonly referred to as the Nash program (see Binmore,

1998). It utilizes the strategic (non-cooperative) approach to provide

non-cooperative foundations for cooperative bargaining solution con-

cepts. The prototype is Nash’s demand game (Nash, 1953). In it, two

players simultaneously make demands; each player receives the payoff

they demand if the demands are jointly feasible, and nothing otherwise.

While the simplicity of Nash’s game is its great virtue, it has a ma-

jor downside: every point on the Pareto frontier is a Nash equilibrium

outcome. There have been several attempts to rectify this problem.

The first attempt was by Nash (1953) himself. He used a “smoothing”
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2 NEJAT ANBARCI AND JOHN H. BOYD III

approach in which incompatible demand combinations did not neces-

sarily lead to zero payoffs. Although this smoothing attempt uniquely

provided non-cooperative foundations for the Nash solution, it was not

deemed reasonable by game theorists since that time and several alter-

natives have been proposed.

In this paper, we introduce two new variations on the Nash demand

game. The first is a simultaneous move procedure that yields the Nash

solution as its unique equilibrium outcome. The second is based on

an exogenous breakdown probability. It can have multiple equilibria,

but they always include the Kalai-Smorodinsky solution, sometimes

uniquely.

The first of our demand games is in the tradition of Howard (1992)

and Rubinstein et al. (1992). These papers avoided the multiplicity

of equilibria without resorting to smoothing. The common feature of

these attempts was that they were sequential in nature—they did not

involve simultaneous demands by players any more. Our demand game

shows that a non-smoothing simultaneous version of the Nash demand

game can also lead to the Nash solution outcome uniquely.

Moulin (1984) proposed an alternative procedure where the unique

subgame-perfect equilibrium outcome coincides with that of the Kalai-

Smorodinsky solution. However, his setup is very different from Nash

demand games. Moulin’s procedure has a first-price auction format

that requires players to bid for the first-mover advantage.

The existing literature might lead one to think that all variations on

the Nash demand game lead to the Nash solution outcome, and that

other types of procedures, such as the auction framework of Moulin

(1984), are necessary to obtain other outcomes. To think so would

be a mistake. Our second demand game yields the Kalai-Smorodinsky

solution.

This demand game takes its inspiration from the Rubinstein et al.

(1992) version of the Nash demand game. Their original feature per-

tains to a player-induced endogenous break-down probability of the

procedure. We instead consider an exogenous break-down probability,

and further we do so in a simultaneous version of the Nash demand

game.
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In our game, two players simultaneously make demand proposals.

Each player receives the payoff they demand if the demands are jointly

feasible. Otherwise, the game continues with probability p; thus, it

terminates with probability (1− p), in which case players receive noth-

ing. If the game continues, each player’s proposal is selected at random

with equal probabilities. Most importantly, we find that at the low-

est level of the break-down probability that allows the players to come

to an agreement, there is a unique Nash equilibrium where the play-

ers agree.1 That equilibrium is always the Kalai-Smorodinsky solution

outcome (which will sometimes coincide with other solution outcomes).

One may then wonder which solution concept(s) would next follow

the Kalai-Smorodinsky solution as we raise the break-down probabil-

ity. We examine this issue for several well-known solution concepts. All

that can be said is that the Equal Sacrifice outcome is supported when-

ever the Egalitarian solution is supported. Beyond that, anything goes.

We provide examples in which the (1) Egalitarian and Equal Sacrifice,

(2) Average Payoff, (3) Nash, and (5) Equal Area solutions rank last.

Thus, while the Kalai-Smorodinsky solution is always on top, there is

no possible general ranking among the remaining solution concepts.

Section two sets up the bargaining problem and defines some stan-

dard solutions. Our two Nash demand games are examined in sections

three and four. Some concluding remarks are in section five.

2. The Bargaining Problem and Solution Concepts

A two-person cooperative bargaining problem is described by a pair

(S, d) where S ⊂ R2
+ is the utility possibility set with disagreement point

d ∈ S being the utility allocation that results if no agreement is reached.

For notational convenience, let d = (d1, d2) be normalized such that

each di = 0 for each i = 1, 2. With d so defined, the bargaining

problem is defined by S alone.

We use the following notation for vector inequalities: x ≥ y means

xi ≥ yi for all i = 1, 2; x > y means x ≥ y and there is some i with

xi > yi; x� y means xi > yi for all i. The set S is assumed to contain

1There are also two equilibria where the players fail to agree.
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some x � (0, 0) and to be convex, compact, and comprehensive. The

last means that if x ∈ S and (0, 0) ≤ y ≤ x, then y ∈ S.

Let B be the set of all such bargaining problems S. A solution is a

function f : B → R2
+ with fS = (fS

1 , f
S
2 ) ∈ S for all S ∈ B. Let ∂S

denote the Pareto frontier (or boundary) of S. Thus ∂S = {x ∈ S :

x′ > x implies x′ 6∈ S}.
The Nash solution N is defined such that its outcome for S maxi-

mizes N1N2 over the set S (Nash, 1950).

Let bSi = max{xi : (x1, x2) ∈ S}. The Kalai-Smorodinsky solution

KS is defined such that its outcome for S is the maximal point in S

with KS1/KS2 = bS1 /b
S
2 (Kalai and Smorodinsky, 1975).

Let lS be the line through the origin dividing S into equal areas. The

Equal Area solution is defined such that its outcome for S is EA =

lS ∩ ∂S (Anbarci and Bigelow, 1994; Anbarci, 1993).

Let mS be the center of gravity of S. The Average Payoff solution

AP is defined such that its outcome for S is the intersection of the

line through the origin and mS with the Pareto frontier ∂S (Anbarci,

1995).

All of the above solution concepts satisfy the axioms of Symmetry,

Weak Pareto Optimality, and Scale Invariance. As a consequence, their

outcomes coincide not only in any symmetric S, but also in any S with

a linear frontier. In that case the outcome for all is the mid-point of

the Pareto frontier.

Two prominent solution concepts fail to satisfy one of the three ax-

ioms mentioned above, the Egalitarian and Equal Sacrifice solutions.

Both fail Scale Invariance. The Egalitarian solution E has solution

outcome for S as the point (ES, ES) ∈ S that maximizes ES (Kalai,

1977; Roth, 1977). Regardless of how asymmetric S is, ES is always on

the 45o line. Thus given an asymmetric S with a linear Pareto frontier,

its outcome never coincides with any of the solutions above.

The Equal Sacrifice solution ES is the other prominent solution

concept that fails to satisfy Scale Invariance. Its outcome for S is

the point (ES1, ES2) that is maximal in S among all points obeying

b1 −ES1 = b2 −ES2 (Chun, 1988). When the bargaining set is asym-

metric, it never coincides with the solutions satisfying all three axioms.
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One more well-known solution concept that fails one of the three

axioms is the Dictatorial solution. There are two Dictatorial solutions,

D(1) and D(2). Their outcomes for S are defined by the equations

DS(i) = bSi . It fails to satisfy Symmetry, and therefore its outcome

never coincides with any of the other solutions on any S (Bigelow and

Anbarci, 1993).

3. Nash’s Demand Game and its Modifications

In Nash’s demand game (Nash, 1953), players 1 and 2 simultaneously

make demands xi with xi ∈ [0, bi]. If x = (x1, x2) ∈ S, player i receives

xi. Otherwise, both players get 0.

The canonical form of this game is a prototype of a very general

problem: how should the gains from cooperation be divided among the

participants? As Binmore (1998) puts it: “Bargaining between two

individuals is worthwhile when an agreement between them can create a

surplus that would otherwise be unavailable. . . . The archetypal version

of this problem is called dividing the dollar” (p. 21). “Many bargaining

problems have this simple structure. For example, wage negotiations

often reduce to a dispute over how the surplus created by the joint

efforts of a firm and its workers should be divided” (p. 69).

This game, however, has a multiplicity of Nash equilibria since every

point on the Pareto frontier is a Nash equilibrium outcome (as a matter

of fact, (0, 0) is also a Nash equilibrium outcome; in that equilibrium

each player i demands bi). There have been several attempts to rectify

this problem.

The use of such a mechanism can be motivated by thinking of an

outside agent, an arbitrator, who tries to help the parties to resolve

their disputes via a mechanism that will induce the parties to reach

a desirable outcome on their own. In the industrial relations litera-

ture, for instance, providing an incentive for the parties to resolve their

dispute voluntarily is considered an important virtue of an arbitration

mechanism (for instance, see Bloom (1981), and the references therein).

In addition, such a mechanism should not be too punitive, unlike the

original Nash demand game.
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It is evident that Nash’s demand game punishes both players se-

verely regardless of how close (x1, x2) is to being in S. Nash (1953) was

the first to address this problem. He proposed the following variation

of his original demand game: Given (x1, x2), denote player i’s payoff

function by Li = xiH(x1, x2) where H(x1, x2) = 1 for (x1, x2) ∈ S

and H(x1, x2) = 0 otherwise. In order to secure a unique Nash equi-

librium, Nash (1953) suggested smoothing the payoff function L by

replacing the indicator function H with a continuous approximation h

such that h equals H on S, but then drops off to zero in a continuous

way. The smoothed payoff function for player i is the expected utility

Gi(x1, x2) = xih(x1, x2). Nash (1953) proved that as h approaches H,

the Nash solution outcome becomes the unique Nash equilibrium out-

come of this modified demand game. Remarkably, this holds regardless

of the form of h.

Smoothing, however, has not been received too well by many other

scholars since it lacked motivation. Luce and Raiffa (1957, p. 142)

called it “a completely artificial mathematical escape from the trou-

blesome nonuniqueness,” and questioned its “relevance to the players.”

Schelling (1960, p. 283) stated that smoothing was “in no sense logi-

cally necessary” in such a prototypical bargaining setup. On the other

hand, with smoothing, players are not necessarily assigned their dis-

agreement payoffs when the demands are incompatible.

Howard (1992) studied a procedure whose subgame perfect equilib-

rium outcome coincides with that of the Nash solution. This procedure

also assumes common knowledge of preference between players. Let A

be a finite set of alternatives. The players consider lotteries over the

alternatives in A as possible resolutions of the bargaining problem.

Let M be the set of all probability distributions over A. Given a dis-

tribution in M define the choice (bargaining) set S ⊂ R2
+ using von

Neumann-Morgenstern utility ui : M → R for i = 1, 2.

There are three phases in Howard’s procedure:

Phase 1: Players 1 and 2 propose (x1, x
∗
2) and (x∗1, x2) in S, re-

spectively. If (x1, x2) ∈ S, then each player i receives his de-

mand xi. Otherwise, we go to Phase 2.
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Phase 2: Player 1 announces some r ∈ [0, 1]. Player 2 has three

options: (1) He may accept (x1, x
∗
2); (2) he may ‘counter by

announcing some t ∈ (r, 1], then Player 1 may choose between

t(x1, x
∗
2) and (x∗1, x2); or (3) he may ‘challenge’, then Player 1

may either accept (x∗1, x2) or counter by announcing some r′ ∈
(r, 1] so that Player 2 may choose either r′(x∗1, x2) or (x1, x

∗
2).

Phase 3: If no agreement is reached in Phase 2, the players get

the disagreement point (0, 0).

We propose a new Simultaneous Procedure which retains the first

phase of Howard’s procedure, but replaces the remainder by a simul-

taneous move scheme that rewards more generous proposals:

Phase 1: Players 1 and 2 propose (x1, x
∗
2) and (x∗1, x2) in S, re-

spectively. If (x1, x2) ∈ S, the players get (x1, x2). Otherwise

we proceed to Phase 2.

Phase 2: Each Player i announces some ti ∈ [0, 1]. After these

announcements, each Player i may or may not choose tj(xi, x
∗
j).

(1) If Player i chooses tj(xi, x
∗
j) and Player j does not choose

ti(x
∗
i , xj), then tj(xi, x

∗
j) is the outcome.

(2) If both players choose tj(xi, x
∗
j) and ti(x

∗
i , xj) simultane-

ously, a coin toss determines the outcome.

(3) If neither tj(xi, x
∗
j) nor ti(x

∗
i , xj) is chosen, but ti = tj, then

a coin toss determines the outcome.

(4) If neither tj(xi, x
∗
j) nor ti(x

∗
i , xj) is chosen, but ti > tj, then

ti(xi, x
∗
j) becomes the outcome.

If ti > tj, then Player i is more generous in that he is willing to

accept a bigger proportion of his opponent’s initial proposal than the

proportion of his initial proposal that his opponent is willing to accept.

That is, at the last part of Phase 2, if there is no agreement, but

Player i is more generous, then he secures the ti proportion of his initial

proposal. Thus, if his generosity is not appreciated by his opponent,

that generosity is applied to his own initial proposal. In a sense, each

player has to be prepared to taste his own medicine, the medicine that

he has prescribed for the other player.
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Theorem 1. The iterated strict dominance equilibrium outcome of the

Simultaneous Procedure is the Nash solution outcome.

Proof. We know that the highest possible product of the form x1x
∗
2

is the Nash product. Suppose Player 1 proposes the Nash product

(x1, x
∗
2). If Player 2 proposes (x∗1, x2) with x2 < x∗2, then (x1, x2) ∈ S

and becomes the outcome. This is worse for 2 than the Nash outcome.

Thus Player 2 will not respond to the Nash outcome (x1, x
∗
2) with

x2 < x∗2. Moreover, if x∗1 > x1, x2 < x∗2, so Player 2’s response will

obey x∗1 ≤ x1, x2 ≥ x∗2. Of course, if Player 2 also proposes the Nash

outcome, the procedure ends after Phase 1.

Suppose that the proposals by the two players do not coincide and

that x1x
∗
2 > x∗1x2 (we consider the case x1x

∗
2 > x∗1x2 later). Since the

proposals do not coincide, 1 > x∗2/x2 > x∗1/x1 ≥ 0. In order to secure

t1(x1, x
∗
2) as the outcome, Player 1 must announce some t1 in Phase

2 such that t1 is slightly below x∗2/x2 but greater than x∗1/x1. To see

that, note that if t1 < x∗1/x1, then Player 2 making an announcement

of t2 = 1 at Phase 2 would reject choosing t1(x
∗
1, x2) and would prefer

having t2(x1, x
∗
2) = (x1, x

∗
2) instead. In addition, if t1 is not slightly

below x∗2/x2, then Player 2 might choose t1(x
∗
1, x2) which is worse than

t1(x1, x
∗
2) for Player 1.

Likewise, when x1x
∗
2 < x∗1x2, in order to secure t2(x

∗
1, x2), Player 2

must announce some t2 in Phase 2 such that t2 is slightly below x∗1/x1

but greater than x∗2/x2.

When x1x
∗
2 = x∗1x2, then observe that each Player i has to announce

a ti = x∗1/x1 = x∗2/x2. Then in Phase 1, each Player i will propose a

point in S with a higher Nash product than x1x
∗
2 = x∗1x2. This bidding

will stop when x1x
∗
2 = x∗1x2 is indeed the Nash product. �

Note that the player with a more generous proposal (in the sense that

it complies more with his opponent’s demand for himself) gets rewarded

and the one with less generous demand gets relatively punished.

Example 1. Consider the convex hull of {(0, 0), (4, 0), (0, 2)}. The

Nash solution outcome is (2, 1). Thus the Nash product is 2. Suppose

Player 1 proposes (2.5, 0.75) (with a Nash product of 1.875) and Player

2 proposes (1, 1.5) (with a Nash product of 1.5). Note that x∗1/x1 =
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1/2.5 = 0.4 and x∗2/x2 = 0.75/1.5 = 0.5. Then Player 1 can announce

some t1 = 0.5 − ε where ε is a small and positive with ε < 0.1. Then

t1 = 0.5− ε > 0.4 = x∗1/x1. In that case, Player 1 will not choose any

t2(x1, x
∗
2) since his t1 will be greater than Player 2’s t2 and Player 1

prefers t1(x1, x
∗
2) = (0.5 − ε)(2.5, 0.75) = (1.25, 0.375) − ε(2.5, 0.75) to

any such t2(x1, x
∗
2) ≤ 0.4(2.5, 0.75) = (1, 0.3). In order to have a higher

payoff than 0.375, Player 2 has to make a proposal with a higher Nash

product than (2.5, 0.75) back in Phase 1, and so on.

4. Probabilistic Demand Games

Rubinstein et al. (1992) simplified Howard’s procedure by introduc-

ing a probability of terminating the game.

Phase 1: Player 1 proposes (x1, x
∗
2) ∈ S.

Phase 2: Player 2 can either accept Player 1’s proposal or pro-

poses (x∗1, x2) ∈ S and announces some p ∈ [0, 1].

Phase 3: Nature makes a choice: With probability (1 − p) the

game terminates with payoffs d = (0, 0) and with probability p

the game continues.

Phase 4: Player 1 chooses between Player 2’s proposal (x∗1, x2)

and a lottery that yields 1’s original proposal (x1, x
∗
2) with prob-

ability p and d = (0, 0) with probability (1− p).

This procedure also yields a subgame perfect equilibrium outcome

which coincides with that of the Nash solution. The presence of Na-

ture’s choice in that procedure is very appealing. It points out the pos-

sibility that a relationship may end after a failure to reach an agreement

with some probability. But the fact that this probability is determined

by one of the players may not be deemed very realistic.

Instead, we consider a very simple but simultaneous version of the

Rubinstein et al. (1992) procedure where the probability with which

the relationship may end after a failure to reach agreement will be

exogenous and may take any value in [0, 1].

Define the Probabilistic Simultaneous Procedure as follows:

Phase 1: Players 1 and 2 respectively propose (x1, x
∗
2) and (x∗1, x2)

in S. If (x1, x2) ∈ S, then each Player i receives his demand
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xi. Otherwise, the game continues to Phase 2 with probabil-

ity p ∈ [0, 1] and terminates paying d = (0, 0) with probability

(1− p).
Phase 2: One of the initial proposals (x1, x

∗
2) and (x∗1, x2) is se-

lected at random with probability 1
2
.

Apart from the original Nash demand game (which ends up with

a continuum of Nash equilibria), this is one of the simplest demand

games that has been studied in the literature—if not the simplest.

An interesting question is whether this procedure provides any non-

cooperative foundations for the Nash or any other bargaining solution

concept.

It is easy to see that, when p = 0, our scheme reduces to the original

Nash demand game. As p tends to 1, it in a sense resembles the con-

ventional arbitration with chilling effect where parties make extreme

demands and the arbitrator splits the difference. The interesting cases

will certainly lie between these two extremes where p is neither close

to 0 nor to 1.

One question is whether any bargaining solution outcomes would be

admitted in the Nash equilibrium set of our scheme given all or most p

levels. We can readily infer that the p = 0 case would admit all known

solution outcomes (including the Dictatorial solution outcomes). But

when we consider the p = 1 case, a simple setup with a linear Pareto

frontier will lead to the midpoint becoming the only Nash equilibrium

outcome. From that one can infer that only bargaining solutions satis-

fying Symmetry, Weak Pareto Optimality, and Scale Invariance would

be initial candidates, precluding the outcomes from other well-known

solution concepts, including the Egalitarian, Equal Sacrifice, and Dic-

tatorial solutions, from being in every Nash equilibrium outcome set.

In addition, the equilibrium outcome obtained in the simple setup

with a linear Pareto frontier has a drawback too. The demands are

far from the equilibrium outcome payoffs. Then we pose the follow-

ing question: are there any Nash equilibria for some levels of p, where

the demands coincide with some of the resulting Nash equilibrium out-

come payoffs such that the demand vector also coincides with one of

the solution outcomes? In addition, we also ask whether any other
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solution outcomes would be admitted in the Nash equilibrium set with

the above property (where the demand vector coincides with the equi-

librium payoffs) at some levels of p?

If there are several such solution concepts, then the crucial question

becomes which of these solution concepts’ outcome will be the Nash

equilibrium outcome with that property at the highest possible p level

(i.e., with the least amount of possible punishment via the probabilistic

imposition of the disagreement outcome). Thus one can imagine a

procedure similar to the Dutch auction (or another procedure similar

to the English auction) where one starts with p = 1 (or p = 0) and

keeps decreasing (increasing) p until one solution outcome becomes the

unique equilibrium outcome (until only one solution outcome remains

as the equilibrium outcome) where the demand vector coincides with

the equilibrium payoff vector.

Another way of approaching this scheme would be to consider the fol-

lowing setup. Suppose one segment in a society strictly adheres to one

of the solution concepts as the norm (see Binmore, 1998, for instance)

and always demands the payoff that is prescribed by that solution con-

cept for him in any bargaining situation. Suppose another segment

in that society does not adhere to that norm. Consider bargaining

situations between members of different segments. Then one can find

the lowest probability of assigning the disagreement payoff to induce a

member from the second segment as well to demand the payoff that is

prescribed by that solution concept for him. That would be the norm

that can be sustained most easily.

Theorem 2. In the Probabilistic Simultaneous Procedure, there is a

maximum probability p∗ for which there is a Nash equilibrium that both

players agree on (i.e., the game does not go to Phase 2). The Kalai-

Smorodinsky solution outcome is a Nash equilibrium at p∗ and at every

lower value of p. Moreover, if the probability of continuing to Phase

2 is p∗, and (x1, x2) is a Nash equilibrium that both players agree on,

then (x1, x2) = (KS1, KS2). Finally, p∗ ≥ 2/3.

Proof. As before, let bi = max{xi : (x1, x2) ∈ S}. We start by suppos-

ing that Player j has offered x∗i to Player i. Player i can either accept,
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or choose (x1, x2) ∈ S with xi 6= x∗i . In the latter case we go to Phase 2,

and Player i obtains a payoff of (p/2)xi + (p/2)x∗i . Player i will prefer

to go to Phase 2 if

p

2
xi +

p

2
x∗i > x∗i , that is, if

p

2
xi >

(
1− p

2

)
x∗i .

If Player i prefers to go to Phase 2, his best response is to pick his

ideal point, which pays him bi. Thus Player i prefers to go to Phase 2

whenever (p/2)bi > (1− (p/2))x∗i . We simplify this to pbi > (2− p)x∗i
Let (KS1, KS2) be the Kalai-Smorodinsky outcome. We know that

KS1/b1 = KS2/b2. For (KS1, KS2) to be a Nash equilibrium where

both players choose the same point, we must have pbi ≤ (2 − p)KSi.

Define p∗ by p∗bi = (2 − p∗)KSi). If (KS1, KS2) = (b1, b2), p
∗ = 1.

Otherwise, p∗ < 1. Moreover, if p ≤ p∗, pbi ≤ p∗pbi = (2 − p)KSi ≤
(2 − p∗)KSi. It follows that (KS1, KS2) is a Nash equilibrium for all

p ≤ p∗.

Now suppose p∗ < 1. If (x1, x2) is a Nash equilibrium for p with both

players choosing the same point, then

bi ≤
(

2− p
p

)
xi <

(
2− p∗

p∗

)
xi, so xi > KSi.

But (KS1, KS2) is weakly Pareto optimal, so this is impossible. There

are no such Nash equilibria. It follows that if there is a Nash equi-

librium that both players agree on, then p ≤ p∗. But then the Kalai-

Smorodinsky outcome is also a Nash equilibrium.

Now suppose (x1, x2) is a Nash equilibrium that both players agree on

with a continuation probability of p∗. Then xi ≥ p∗bi/(2− p∗) = KSi.

We cannot have both xi > KSi as the Kalai-Smorodinsky solution is

weakly Pareto optimal. Choose i so xi > KSi and let j denote the other

player. Then we may take a convex combination of (x1, x2) and j’s ideal

point that leads to a strong Pareto improvement over (KS1, KS2). This

is impossible, so (KS1, KS2) is the only Nash equilibrium that both

players agree on when p∗ is the continuation probability.

The Kalai-Smorodinsky outcome gives each player at least half of

the ideal point. The minimum value of p∗ occurs when each gets ex-

actly half of the ideal value, as occurs when S is the convex hull of
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{(0, 0), (b1, 0), (0, b2)}. Then bi = p∗bi/(2− p∗), which implies p∗ = 2/3

is the minimum value. �

A natural question is whether the various bargaining solution out-

comes appear in a predictable order when p decreases. The next theo-

rem addresses one such case.

Theorem 3. Suppose the Egalitarian solution outcome is a Phase 1

Nash equilibrium of the Probabilistic Simultaneous Procedure at prob-

ability p. Then the Equal Sacrifice outcome is also a Phase 1 Nash

equilibrium at probability p.

Proof. Let S be the bargaining set and b = (b1, b2) the ideal point corre-

sponding to S. Because S is comprehensive, we know (b1, 0), (0, b2) ∈ S.

Let (z, z) ∈ S be the Egalitarian outcome. Without loss of generality,

we may assume b1 ≥ b2. In fact, if b1 = b2, we must have b1 = b2 = z,

in which case (z, z) is also the Equal Sacrifice outcome.

For the remainder of the proof we consider the non-trivial case b1 >

b2. Let T be the convex hull of {(0, 0), (b1, 0), (z, z), (0, b2)}. Let x =

(x1, x2) be the Equal Sacrifice outcome for T . The Equal Sacrifice

outcome for S is to the northeast of x, and so will be an equilibrium

at any value of p where x is an equilibrium. Thus it is enough to show

the result for T .

The line through (z, z) and (b1, 0) is y = z(b1 − x)/(b1 − z). The

Equal Sacrifice outcome obeys x2 = zb2/b1. Equal Sacrifice then yields

x1 = b1 − b2 + x2 = b1 + b2(z − b1)/b1. Now x1 ≤ b1, so (b1 − b2)x1 ≤
(b1 − b2)b1 = (x1 − x2)b1. It follows that x2b1 ≤ x1b2.

Since the Egalitarian outcome is an equilibrium, z ≥ bip/(2− p) for

i = 1, 2. As b1 > b2, we can sum this up as z ≥ b1p/(2− p). But then

x2 = zb2/b1 ≥ b2p/(2− p). We use the fact that x1 ≥ x2(b1/b2) to see

that x1 ≥ b1p/(2− p). This establishes that Equal Sacrifice outcome x

is an equilibrium at probability p. �

What about the other cases? Can we rank other solution concepts

using the probability level they appear at? No!

The following examples show that the no other unambiguous rank-

ings are possible for the other solutions. Denote the solution outcomes
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as follows: Nash (N), Kalai-Smorodinsky (KS), Egalitarian (E), Equal

Sacrifice (ES), Equal Area (EA), and Average Payoff (AP). Sometimes

all of these will coincide, as happens when S is the convex hull of

{(0, 0), (2, 0), (0, 2)}. Note that p∗ = 2/3 here.

Example 2. Let S be the convex hull of {(0, 0), (0, 2), (4, 0)}. Then

the Nash, Kalai-Smorodinsky, Equal Area, and Average Payoff solu-

tion outcomes coincide at (2, 1). Egalitarian is (4/3, 4/3) and Equal

Sacrifice is (8/3, 2/3). Here p∗ = 2/3, which supports the Kalai-

Smorodinsky, Nash, Equal Area, and Average Payoff solution out-

comes. The Equal Sacrifice and Egalitarian solution outcomes do not

appear as equilibria until p ≤ 1/2. Of course, if we had taken (2, 0) as

the right corner of S, all of these solution outcomes would coincide at

(1, 1).

Example 3. We modify the previous example slightly by truncat-

ing at x1 = 3. In other words, we take S as the convex hull of

{(0, 0), (0, 2), (3, 1/2), (3, 0)}. The Kalai-Smorodinsky solution outcome

is now (12/7, 8/7) with p∗ = 8/11. Then Nash solution outcome re-

mains at (2, 1) with p = 2/3. The Equal Area solution outcome is

now (15/8, 17/16) with p = 34/49. The Egalitarian solution outcome

remains at (4/3, 4/3), but now has p = 8/13. Equal Sacrifice joins the

Nash solution outcome at (2, 1) with p = 2/3. The Average Payoff

solution outcome is (24/13, 14/13) with p = 14/23.

Example 4. We now truncate at x1 = 2. In other words, we take S as

the convex hull of {(0, 0), (0, 2), (2, 1), (2, 0)}. The Kalai-Smorodinsky,

Egalitarian, and Equal Sacrifice solution outcomes are now (4/3, 4/3)

with p∗ = 4/5. Then Nash solution outcome remains at (2, 1) with

p = 2/3. The Equal Area solution outcome is now (3/2, 5/4) with

p = 2/5. The Average Payoff solution outcome is (16/11, 14/11) with

p = 4/19.

Example 5. Let S be the convex hull of {(0, 0), (3, 0), (3, 1), (2, 2), (0, 3)}.
The point (2, 2) is the Kalai-Smorodinsky, Nash, Equal Sacrifice, and
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Egalitarian solution outcome. However, the Equal Area solution out-

come is (17/8, 15/8). This requires p ≤ 10/13. The Average Payoff

solution outcome is (40/19, 36/19), which is supported by p ≤ 24/31.

We can sum up the rankings by probability of the various solutions.

Example 2 Example 3 Example 4 Example 5

KS, N, AP, EA KS KS, ES, E KS, N, ES, E

ES, E EA AP AP

ES, N EA EA

E N

AP

As we know, the Kalai-Smorodinsky solution outcome is always at

the top. We see that each of the other solutions sometimes ties it.

These also examples show that any of the solutions other than Kalai-

Smorodinsky can be last in the rankings, although when Equal Sacrifice

is last, it must tie with Egalitarian. Example 3 shows that Egalitarian

can rank strictly below Equal Sacrifice. In sum, the examples show

that no other general rankings of these solutions are possible beyond

the requirements of Theorems 2 and 3.

5. Concluding Remarks

We have introduced two variations on the Nash demand game that

involve simultaneous moves. The first is a simultaneous game related

to Howard’s procedure. As in most Nash demand games, the Nash so-

lution outcome is the equilibrium outcome. The second has a range of

possible solutions that depends on an exogenous breakdown probabil-

ity. Of these, the Kalai-Smorodinsky outcome is most robust equilib-

rium outcome. The breakdown probabilities at which other solutions

occur allow us to rank the other outcomes. We show there is no possi-

ble general ranking among a variety of standard solution concepts, save

that the Equal Sacrifice solution is more robust than the Egalitarian

solution.

Whether there are other simple Nash demand games that yield some

of the other well-known bargaining solutions remains an open question.
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