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Results are presented of a search for heavy particles decaying into two photons. The analysis is based 
on a 19.7 fb−1 sample of proton–proton collisions at 

√
s = 8 TeV collected with the CMS detector at the 

CERN LHC. The diphoton mass spectrum from 150 to 850 GeV is used to search for an excess of events 
over the background. The search is extended to new resonances with natural widths of up to 10% of 
the mass value. No evidence for new particle production is observed and limits at 95% confidence level 
on the production cross section times branching fraction to diphotons are determined. These limits are 
interpreted in terms of two-Higgs-doublet model parameters.
© 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of a standard model-like Higgs boson at the CERN 
LHC [1–4] opens a new phase in the understanding of the standard 
model (SM) of particle physics. The search for additional Higgs-like 
particles and the measurement of their properties provide comple-
mentary ways to test the validity of the SM and to test for the 
presence of physics beyond it.

This analysis describes a search for new resonances in the 
diphoton invariant mass spectrum, using data corresponding to an 
integrated luminosity of 19.7 fb−1 collected with the CMS detector 
at a center-of-mass energy of 8 TeV at the CERN LHC. Despite the 
large nonresonant background, the diphoton decay mode provides 
a clean final-state topology that allows the mass of the decaying 
object to be reconstructed with high precision, exploiting the ex-
cellent performance of the electromagnetic calorimeter of the CMS 
experiment. The analysis searches for local excesses that could be 
due to the production of particles that decay into two photons 
with mass in the range from 150 to 850 GeV. Both narrow and 
wide resonances are investigated with natural widths ranging from 
100 MeV to 10% of the resonance mass. This search covers the 
diphoton mass range above that investigated in [2,4]. The ATLAS 

� E-mail address: cms-publication-committee-chair@cern.ch.

experiment recently published a similar search for narrow reso-
nances in the diphoton final state in the mass range between 65 
and 600 GeV at a center-of-mass energy of 8 TeV [5]. Previous 
searches for resonant diphoton processes have been performed at 
the Tevatron by D0 [6] and CDF [7] at a center-of-mass energy of 
1.96 TeV and by the ATLAS [8] and CMS [9] experiments at the LHC 
at a center-of-mass energy of 7 TeV.

Several models of physics beyond the SM, such as the two-
Higgs-doublet model (2HDM) [10], motivate the search for addi-
tional high-mass resonances in the diphoton channel. Generally, 
these models provide an extension of the Higgs sector, where a 
total of five Higgs bosons are predicted by the theory. The mass 
spectrum of the 2HDM can be split into two regions: a light SM-
like Higgs boson h with mass around 125 GeV and the remaining 
physical Higgs bosons, H, a scalar, A, a pseudoscalar, and H± , clus-
tered at an equal or higher scale with mH ∼ mA ∼ mH± . Under the 
assumption that the newly observed Higgs boson is the light CP-
even Higgs scalar of the 2HDM, the consistency of its couplings 
with those predicted by the SM pushes the model close to the so 
called alignment limit [11], where certain decay modes of heavy 
neutral Higgs bosons vanish, including H → VV (where V is a vec-
tor boson), H → hh, and A → Zh. At the same time, decays of 
H and A to γ γ and τ τ become increasingly important and the 
electroweak production modes, such as vector boson fusion or pro-
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duction in association with a W or a Z boson, are predicted to be 
suppressed. Therefore the production of both H and A is domi-
nated by gluon fusion. The absence of tree-level flavor-changing 
neutral currents in multiple-Higgs-doublet theories is guaranteed 
by the Glashow–Weinberg condition [12]. This condition is satis-
fied in the 2HDM by four discrete combinations of the Yukawa 
couplings of the fermions to the Higgs doublets. In the Type I sce-
nario all fermions couple to one doublet, while in Type II up-type 
quarks couple to one doublet and down-type quarks and leptons 
couple to the other. A detailed description of other scenarios is 
given in Ref. [10].

Given the general character of this search, the results can also 
be interpreted in terms of different spin hypotheses for the new 
particle. The Landau–Yang theorem [13,14] forbids the direct de-
cay of a spin-1 particle into a pair of photons. The cases of spin-0 
and spin-2 are investigated in this analysis. Spin-2 particles de-
caying into two photons are predicted by other extensions of the 
SM such as the Randall–Sundrum [15] and the Arkani-Hamed–
Dimopoulos–Dvali [16] models. These theories predict a distinct 
higher-dimensional scenario, which provides an approach to the 
hierarchy problem alternative to supersymmetry. The particle pre-
dicted in this context, the graviton, can have a mass in the TeV
range and thus be observed at the LHC preferentially in its decay 
into two gauge bosons, such as photons.

The paper is organized as follows: after a brief description of 
the CMS detector in Section 2, the data and simulated samples are 
described in Section 3, while the reconstruction and identification 
of photons is detailed in Section 4. The diphoton vertex identifica-
tion is covered in Section 4.3, followed by the description of the 
event selection and classification in Section 5. Sections 6.1 and 6.2
describe, respectively, the signal and background models used for 
the interpretation of the data, and Section 6.3 discusses the as-
sociated systematic uncertainties. Finally, in Section 7 the model 
independent results of the search for new diphoton resonances and 
their interpretation in terms of the standalone production and de-
cay rates for H and A within the 2HDM are discussed. We express 
these results in terms of the appropriate 2HDM parameters.

2. The CMS detector

The central feature of the CMS detector is a superconducting 
solenoid, of 6 m internal diameter, providing an axial magnetic 
field of 3.8 T along the beam direction. Within the field volume 
there are a silicon pixel and strip tracker, a lead tungstate crys-
tal electromagnetic calorimeter (ECAL), and a brass and scintillator 
hadron calorimeter (HCAL). Charged particle trajectories are mea-
sured by the tracker system, covering 0 ≤ φ ≤ 2π in azimuth and 
|η| < 2.5 in pseudorapidity.

Muons are measured in gas-ionization detectors embedded in 
the steel return yoke. The ECAL, which surrounds the tracker vol-
ume, consists of 75 848 lead tungstate crystals that provide cov-
erage in pseudorapidity |η| < 1.48 in the barrel region (EB) and 
1.48 < |η| < 3.00 in two endcap regions (EE). The EB modules 
are arranged in projective towers. A preshower detector consist-
ing of two planes of silicon sensors interleaved with a total of 
3 radiation lengths of lead is located in front of the EE. In the 
region |η| < 1.74, the HCAL cells have widths of 0.087 in pseudo-
rapidity and azimuth. In the (η, φ) plane, and for |η| < 1.48, the 
HCAL cells map onto 5 × 5 ECAL crystal arrays to form calorimeter 
towers projecting radially outward from close to the nominal inter-
action point. At larger values of |η|, the size of the towers increases 
and the matching ECAL arrays contain fewer crystals. Within each 
tower, the energy deposits in ECAL and HCAL cells are summed to 
define the calorimeter tower energies, subsequently used to calcu-
late the energies and directions of hadronic jets. A more detailed 

description of the CMS detector, together with a definition of the 
coordinate system used and the relevant kinematic variables, can 
be found in Ref. [17].

Photons generally deposit their energy in a group of crystals 
of the ECAL called “cluster”. Reconstruction of the photons used 
in this analysis is described in Section 4, and uses a clustering of 
the energy recorded in the ECAL, known as a “supercluster”, which 
may be extended in the φ direction to form an extended cluster 
or group of clusters [18]. Several procedures are used to calibrate 
the energy response of individual crystals before the clustering 
steps [19]. The changes in the transparency of the ECAL crystals 
due to irradiation during the LHC running periods and their sub-
sequent recovery are monitored continuously, and corrected for, 
using light injected from a laser system. The calibration of the 
ECAL is achieved by exploiting the φ symmetry of the energy flow, 
and by using photons from π0 → γ γ and η → γ γ decays and 
electrons from W → eνe and Z → e+e− decays [19].

3. Data samples and simulated events

The events used in the analysis are selected by two diphoton 
triggers with asymmetric transverse momentum thresholds (pT), 
26 and 18 GeV or 36 and 22 GeV on the leading and sublead-
ing photons respectively, depending on the data taking period, and 
complementary photon selections. One selection requires a loose 
calorimetric identification based on the shape of the electromag-
netic shower and loose isolation requirements on the photon can-
didates, while the other requires only that the photon candidates 
have a high value of the R9 shower shape variable. The R9 vari-
able is defined as the energy sum of 3 × 3 crystals centered on 
the most energetic crystal in the supercluster divided by the en-
ergy of the supercluster. Photons that convert before reaching the 
calorimeter tend to have wider showers and lower values of R9
than unconverted photons. High trigger efficiency is maintained 
by allowing both photons to satisfy either selection. The measured 
trigger efficiency is above 99.8% for events satisfying the diphoton 
preselection discussed in Section 4.1 required for events entering 
the analysis.

Monte Carlo (MC) signal and background events are generated 
using a combination of programs. Full detector response is sim-
ulated with Geant4 [20]. Multiple simultaneous pp interactions 
(pileup) are simulated, and the events are weighted to reproduce 
the distribution of primary vertices observed in data. The interac-
tions used to simulate pileup are generated with the same version 
of pythia [21], v6.424, that is used for other purposes as described 
below. The pythia tune used for the underlying event activity is 
Z2* [22]. New resonances X are simulated with a natural width 
of 0.1 GeV which is smaller than the value of the mass resolution 
in the energy range considered. Both spin-0 and spin-2 hypothe-
ses are considered. Simulated signal samples of X → γ γ events 
are generated with pythia [21] for the gluon fusion process with 
the following mass hypotheses: 150, 200, 250, 300, 400, 600 and 
850 GeV. Interference between the signal and the background is 
studied using sherpa 2.1.0 [23,24]. The exclusion limits detailed 
in Section 7 are computed using either a signal plus interference 
template given by sherpa or the Breit–Wigner theoretical model 
described in Section 6.1. The inclusion of the interference in our 
signal model affects the expected and observed upper limits on 
the signal yields at the level of 3% or less. The effect is therefore 
negligible compared to the systematic uncertainties, described in 
Section 6.3, and is not included in the final results. Simulated back-
grounds include the diphoton continuum process involving two 
prompt photons, generated with sherpa 1.4.2 [23], and processes 
where one of the photon candidates arises from misidentified jet 
fragments, simulated with pythia. These two contributions repre-
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sent 97% of the total background in this analysis. A less than 3% 
contribution is expected from QCD events in which both photons 
candidates arise from misidentified jet fragments; this contribution 
is neglected in the analysis.

4. Photon reconstruction and identification

Photon candidates for the analysis are reconstructed from en-
ergy deposits in the ECAL using algorithms that constrain the su-
perclusters in η and φ to the shapes expected from photons with 
high pT. The clustering algorithms account for about 98% of the 
energy of the photons, including those that undergo conversion 
and bremsstrahlung in the material in front of the ECAL. Groups 
of clusters are used to form superclusters. In the barrel region, su-
perclusters are formed from five-crystal-wide strips in η, centered 
on the locally most energetic crystal (seed), and have a variable 
extension in φ to take into account the effect of the magnetic 
field on electrons from photons showering before ECAL. In the end-
caps, where the crystals are arranged according to an x–y rather 
than an η–φ geometry, matrices of 5 × 5 crystals, which may par-
tially overlap and are centered on the seed crystal, are summed if 
they lie within a narrow φ road. About half of the photons con-
vert into e+e− pairs in the material upstream of the ECAL. If the 
resulting charged-particle tracks originate sufficiently close to the 
interaction point to pass through three or more tracking layers, 
conversion track pairs may be reconstructed and matched to the 
photon candidate.

The energy containment of the photon showers in the clustered 
crystals and the shower losses due to conversions in the material 
upstream of the calorimeter are corrected using a multivariate re-
gression technique based on a boosted decision tree (BDT) [25,26], 
which uses as input a collection of shower shape and kinematic 
variables, together with the energy measured in the preshower 
for events with photons in the endcaps. Corrections are derived 
from simulation. In order to correct for residual discrepancies be-
tween simulation and data, the MC simulation is tuned to match 
the energy resolution observed in data, while data are calibrated 
to match the energy response in simulation. More details about 
photon reconstruction can be found in [18].

The photon candidates used in the analysis are required to be 
within the fiducial region, |η| < 2.5, excluding the barrel-endcap 
transition region 1.44 < |η| < 1.57.

4.1. Photon preselection

The photon candidates in this analysis are required to satisfy 
preselection criteria similar to the trigger requirements:

• pγ1
T > 33 GeV and pγ2

T > 25 GeV, where pγ1
T and pγ2

T are the 
transverse momenta of the leading and subleading photons, 
respectively;

• a selection on the hadronic leakage of the shower, measured 
as the ratio of energy in HCAL cells behind the supercluster to 
the energy in the supercluster;

• a photon identification based on isolation and shape of the 
shower with lower thresholds with respect the one used in 
the final photon selection described in Section 4.2;

• an electron veto, which removes the photon candidate if its 
supercluster is matched to an electron track with no missing 
hits in the innermost tracker layers.

The efficiency of the photon preselection, measured in data us-
ing a “tag-and-probe” technique [27], ranges from 94% to 99% [2]. 
The efficiency of all preselection criteria, except the electron veto 

requirement, is measured using Z → e+e− events, while the ef-
ficiency for photons to satisfy the electron veto requirement is 
measured using Z → μμγ events, in which the photon is pro-
duced by final state radiation, which provide a more than 99% pure 
source of prompt photons.

4.2. Photon identification and selection

Photon identification is performed by applying selection re-
quirements on a set of discriminating variables. In this analysis, the 
selection is optimized separately in four different pseudorapidity 
and R9 regions [2]. The variables used to suppress the background 
due to the misidentification of jets with high electromagnetic con-
tent are:

• the sum of the transverse momenta of all the tracks coming 
from the vertex chosen for the event (described in Section 4.3) 
within a veto cone of 	R = √

(	η)2 + (	φ)2 = 0.3 around the 
photon candidate’s direction;

• the sum of the ECAL energy deposits in crystals located within 
a veto cone of 	R = 0.3 around the supercluster position, ex-
cluding the photon;

• the sum of the energies of HCAL towers whose centers lie 
within an annular veto region of outer radius 	Ro = 0.4 and 
inner radius 	Ri = 0.15, centered on the ECAL supercluster 
position;

• the ratio between the sum of HCAL tower energies within a 
veto cone of size 	R < 0.15 centered on the ECAL supercluster 
position, and the energy of the supercluster;

• the spread in η of the electromagnetic cluster, computed with 
logarithmic weights and defined as

σ 2
ηη =

∑
wi(ηi − η̄)2∑

wi
, where

η̄ =
∑

wiηi∑
wi

and wi = max

(
0,4.7 + ln

Ei

E5×5

)
, (1)

and the sum runs over the 5×5 crystal matrix around the 
most energetic crystal in the supercluster. E5×5 is the energy 
of the 5×5 crystal matrix and ηi = 0.0174η̂i , where η̂i is the 
η index of the ith crystal. This variable represents the second 
moment of the energy distribution along the η coordinate.

A more detailed description of the isolation requirements can be 
found in [18]. The energy deposited within the isolation cones 
is corrected for the contribution from pileup and the underlying 
event using the FastJet technique [28].

4.3. Diphoton vertex identification

The diphoton mass resolution has contributions from the reso-
lution of the measurement of the photon energies and the angle 
between the two photons. The opening angle resolution strongly 
depends on the determination of the interaction point where the 
two photons were produced. If the vertex from which the photons 
originate is known with a precision better than 10 mm, the exper-
imental resolution on the angle between them makes a negligible 
contribution to the mass resolution.

No charged particle tracks result from photons that do not con-
vert, so the diphoton vertex is identified indirectly, using the kine-
matic properties of the diphoton system and its correlations with 
the kinematic properties of the recoiling tracks. If either of the 
photons converts, the direction of the resulting tracks can provide 
additional information [2].
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Table 1
Definition of diphoton event classes.

Class η criterion R9 criterion

0 max(|η|) < 1.44 min(R9) > 0.94
1 max(|η|) < 1.44 min(R9) < 0.94
2 1.57 < max(|η|) < 2.50 min(R9) > 0.94
3 1.57 < max(|η|) < 2.50 min(R9) < 0.94

Fig. 1. Signal efficiency times acceptance as a function of the mass for a spin-0 scalar 
resonance, produced via gluon–gluon fusion, with natural width equal to 0.1 GeV. 
The shaded region indicates the systematic uncertainty.

The efficiency for finding the correct vertex for a diphoton res-
onance of mass above 150 GeV is between 79% and 92% and in-
creases with the mass of the resonance.

5. Event selection and classification

The analysis uses events with two photon candidates satis-
fying the preselection and identification requirements, and with 
pγ1

T > mγ γ /3 and pγ2
T > mγ γ /4. The use of pT thresholds scaled 

by mγ γ prevents a distortion of the low end of the mγ γ spec-
trum that would result from fixed thresholds [29]. This strategy 
has two other main advantages. Background modeling is simpli-
fied because the shapes of the invariant mass distributions in the 
different event classes are similar after this selection. In addition 
scaled pT thresholds allow for tighter selection criteria with the 
mass increase, while preserving the acceptance of the selection.

The search sensitivity is increased by subdividing the events 
into classes, according to indicators of mass resolution and pre-
dicted signal-to-background ratio. Two simple classifiers are used: 
the minimum R9 and the maximum pseudorapidity of the two 
photons. Photons with a high value of the R9 variable are predom-
inantly unconverted, have a better energy resolution than those 
with a lower value, and are less likely to arise from misidentifica-
tion of jet fragments. Similarly, photons in the barrel have better 
energy resolution than those in the endcap and are less likely to 
be incorrectly identified. The classification scheme groups together 
events with good diphoton mass resolution, resulting from photons 
with good energy resolution and with better signal-to-background 
ratio. The event class definitions are shown in Table 1.

Fig. 1 shows the signal efficiency times the acceptance of the 
event selection as a function of the mass hypothesis for a nar-
row spin-0 scalar resonance produced via gluon–gluon fusion. The 
shaded region shows the systematic uncertainty due to different 
sources as described in Section 6.3. The acceptance over the full 
mass range is also evaluated for the pseudoscalar hypothesis and 
found to be compatible with that measured for the scalar reso-

Fig. 2. Diphoton invariant mass distribution for the selected events in data and sim-
ulation. Background processes are represented by the filled histograms. The shaded 
band represents the Poisson uncertainty in the MC prediction.The prompt dipho-
ton events and the photon plus jets events are shown separately. The ratio between 
data and MC is displayed bin by bin in the bottom plot. In this figure, the leading-
order cross sections for the background processes are scaled to next-to-leading-
order (NLO) predictions with scale factors derived from CMS measurements at 7 TeV
[30,31].

nances within the uncertainties. For the spin-2 scenario the corre-
sponding numbers are about 5–10% smaller, because of differences 
in acceptance between the two models. Fig. 2 shows the dipho-
ton invariant mass distribution for selected events in data and MC 
simulation, normalized to an integrated luminosity of 19.7 fb−1, 
for all event classes combined. The bin width of this distribution is 
chosen to be narrow enough to properly display wide resonances. 
However a data driven technique is exploited in this analysis for 
the estimation of the background, as detailed in Section 6.2.

6. Statistical methodology

In order to assess the compatibility of the data with the pres-
ence of a diphoton resonance, we make a hypothesis test based 
on a frequentist construction [32,33]. An unbinned maximum-
likelihood fit in a sliding window range to the diphoton invariant 
mass distributions in all the event classes is made using a para-
metric model for the signal and a background shape obtained di-
rectly from data. A scan of the signal mass and the signal width 
is performed. The signal and background normalizations are al-
lowed to float, together with the parameters which describe the 
background shape. The log-likelihood ratio is used as test statis-
tic. The signal model is derived from MC simulation as described 
in Section 6.1, with corrections determined from data-MC compar-
isons applied. The functional form of the background distribution 
is determined by fitting the measured mγ γ distribution as detailed 
in Section 6.2. Systematic uncertainties described in Section 6.3
are incorporated into the analysis via nuisance parameters and are 
treated according to the frequentist paradigm [34].

6.1. Signal parametrization

To construct the signal fitting function from simulated events, 
the reconstructed mγ γ distribution of each event class is de-
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scribed in terms of a parametric function of the hypothetical signal 
mass mX. This procedure can be extended in a simple fashion to 
allow for an additional free parameter, the natural width �X of the 
new resonance, by convolving a resolution function, which takes 
into account the detector response, with a theoretical line shape. 
The convolution of the detector response, described in this section, 
with the theoretical lineshape, described in Section 6.1.1, is applied 
for any natural width hypothesis.

The detector response is parametrized in terms of the relative 
difference between the reconstructed diphoton mass mreco and the 
true mass mtrue, μ = (mreco − mtrue)/mtrue. The resolution function 
R is obtained by fitting the response distribution with an ana-
lytic function, namely the sum of two single-sided Crystal Ball (CB) 
functions [35] with common mean μ0 and width σ , and different 
values of n and α. The Crystal Ball function combines a Gaussian 
core and a power-law tail with an exponent n to account for in-
complete photon energy containment in the cluster related to the 
material in front of the calorimeter, and for other reconstruction 
effects:

fCB(μ) =
{

N√
2πσ

exp

(
− (μ − μ0)

2

2σ 2

)
, for

μ − μ0

σ
> α;

N√
2πσ

(
n

|α|

)n

exp

(
−|α|2

2

)

×
(

n

|α| − |α| − μ − μ0

σ

)−n

,

for
μ − μ0

σ
≤ α. (2)

The parameter α defines the transition between the Gaussian and 
power-law functions. The fit to the response distribution in the 
first class of events for a simulated signal with mX = 150 GeV is 
shown in Fig. 3. The resolution in μ (i.e., the σ in Eq. (2)) improves 
by roughly 20%, from 0.021 to 0.016, when the resonance mass 
increases from 150 to 850 GeV. The resolution function R is con-
structed so that σ depends continuously on mtrue via a quadratic 
polynomial function.

6.1.1. Parametric line shape
The theoretical line shape of unstable particles is modeled 

with a Breit–Wigner (BW) distribution with a mass-dependent 
width [36]:

gBW(m|mX,�X) = N

(m2 − m2
X)2 + m2

X�2
X

. (3)

The effect of the proton parton distribution functions (PDF) on the 
signal shape for a wide resonance (with �X = 0.1MX) is inves-
tigated with high-mass Higgs boson samples produced with the
powheg generator [37]. The shape obtained after convolution with 
the PDF is still well described by a BW function within an accuracy 
better than 1%.

The final signal model is obtained from the convolution of the 
BW in Eq. (3) and the response function R:

gS(mγ γ |mX,�X) = R(mγ γ |m) ⊗ gBW(m|mX,�X). (4)

This signal model is validated by fitting the reconstructed mass 
distribution for a simulated signal with �X = 0.1 GeV, as shown in 
Fig. 4.

Fig. 3. Fit to the detector response distribution for mX = 150 GeV with two single-
sided Crystal Ball functions (solid curve), displayed with linear (top) and logarithmic 
(bottom) scales. The dashed and dotted curves show the individual Crystal Ball com-
ponents.

6.2. Background modeling

The modeling of the background relies entirely on the data, so 
there are no systematic uncertainties due to potential mismodel-
ing of the background processes by the MC simulation. Because the 
exact functional form of the background in each event class is not 
known, the parametric model must be flexible enough to describe 
a variety of potential underlying functions. Using an incorrect back-
ground model can lead to biases in the measured signal yield, 
which can strongly reduce the sensitivity of the analysis to any 
potential signal. The procedure used to determine the background 
fitting function, which results in a negligible bias, is presented 
here. In this study the bias on the fitted signal yield is defined 
as the difference between the number of fitted signal events and 
the number of expected signal events. A set of analytical functions 
that could describe the unknown true background distribution in 
data is first determined. The five functions considered as possible 
truth models are analytical forms that are used in dijet resonance 
searches [38] to describe both data and QCD predictions and mod-
els that are frequently used in diphoton resonance searches [2]. 
The bias study procedure described below is performed consider-
ing each function among the available set of models. The candidate 
fitting function that performs best in this study is f0, the product 
of exponential and power-law functions:

f0(m) = e−p1m m−p2 . (5)
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Fig. 4. Parametrized signal shape for a signal with mX = 150 GeV and �X = 0.1 GeV, 
displayed with linear (top) and logarithmic (bottom) scales. The solid curve shows 
the result of a fit to the simulated events (points with error bars); the dashed curve 
represents the Breit–Wigner component of the model.

As an example, the fits of this model to the data in the four event 
classes are shown in Fig. 5 for the fit range [240, 640] GeV, used 
for searching for a peak near 350 GeV. In order to check that 
a background fit model results in a negligible bias in the fitted 
signal yield, we construct pseudo-data sets with the other four an-
alytical models by randomly drawing diphoton mass values from 
them. The number of background events generated in each set is 
equal to the number of events observed in data in a fixed mass 
range. Background-only pseudo-data sets are then fitted with the 
signal + background probability density function. The criterion for 
the bias to be negligible is that it must be five times smaller than 
the statistical uncertainty in the number of fitted signal events for 
all four types of pseudo-data sets across the entire mass region of 
interest. When this criterion is satisfied, any potential bias from 
the background fit function can be neglected in comparison with 
the statistical uncertainty from the finite data sample. The func-
tional form of the truth model being fixed, the lower and upper 
bounds of the fit range are varied for each hypothetical resonance 
mass in order to minimize the bias. The desired fit range for each 
hypothetical mass is the one that gives the smallest bias for all 
the truth models considered. This study is performed for a reso-
nance with width equal to 10% of its mass, as the bias tends to 
increase with increasing resonance width. The optimal lower and 
upper bounds of the fit range are parametrized as a function of the 
resonance mass with polynomial functions.

As a closure test, the obtained fit ranges are used to compute 
the bias on the number of fitted signal events as a function of the 
assumed resonance mass. We find that the f0 function produces a 
sufficiently small bias for all four truth models in all event classes 
and for any width of the resonance up to 10% of the mass. We 
therefore use this background function to fit the data.

Our approach to extract the numbers of signal and background 
events cannot be used above mX = 850 GeV because of the very 
small number of events in the data. This is therefore the highest 
value of mass considered in this search for new resonances. The 
lowest value of mX considered is 150 GeV, and the fitted range in 
mγ γ is [130, 1000] GeV. The maximum value of the width of the 
resonance is fixed to 10% of the resonance mass itself. This value 
is limited by the width of the resonance mass points at the edges 
of the range (150 and 850 GeV) which have to be included in the 
fitting range ([130, 1000] GeV) within at least one sigma.

6.3. Systematic uncertainties

The experimental systematic uncertainties can be separated 
into those related to the yield and those related to the signal 
shape. A log-normal prior is assumed for the uncertainties in the 
class yields, while the shape uncertainties are incorporated as 
parametric variations of the model.

The normalization uncertainty related to the integrated lumi-
nosity is 2.6% [39]. The photon-related uncertainties are the same 
as in [2]. The uncertainty in the energy scale is conservatively in-
creased to 0.5% in the barrel and to 2% in the endcaps to take into 
account additional nonlinearities. Systematic uncertainties related 
to individual photons are then propagated to the signal model, 
where they result in uncertainties in the peak position and width. 
The 1% (2.6%) normalization uncertainty in the barrel (endcap) re-
lated to the offline photon identification is taken from the largest 
uncertainty in the data/MC scale factors computed with Z → e+e−
events using the tag-and-probe technique. A 1% normalization un-
certainty is also assumed in the trigger efficiency. A normalization 
uncertainty of 2–5% is included to take into account possible event 
class migration due to R9 selection efficiency uncertainties in both 
barrel and endcap. More details about trigger and R9 efficiencies 
can be found in Ref. [2].

Systematic uncertainties estimated for the SM-like Higgs boson 
search [2] can be safely used for this analysis as well as for low 
mass resonances, where the bulk of the photon pT distribution 
is close to that of the photons coming from decays of the SM-
like Higgs boson. This is not the case for high-mass resonances. 
Therefore a normalization uncertainty of 5% per photon pair is also 
included to account for the differences in the pT spectra of the sig-
nal photons and the electrons from Z → e+e− used to estimate the 
uncertainties [40].

The use of the BW model has an accuracy of the order 
�X/mX [36]. A global normalization uncertainty equal to �X/mX is 
added to account for any uncertainty due to the theoretical signal 
line shape. Table 2 lists all the systematic uncertainties accounted 
for in the analysis.

7. Results and interpretation

The invariant mass spectra show no clear evidence for the pres-
ence of a new particle decaying to two photons. Exclusion limits 
are therefore computed. A modified frequentist CLs method [32] is 
employed, with the asymptotic approximation for the statistic test 
as described in Ref. [41]. Model-independent results are presented 
for a spin-0 and spin-2 resonance produced via gluon–gluon fu-
sion. Fig. 6 shows the 95% confidence level (CL) exclusion limits 
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Fig. 5. Fits to the diphoton mass distributions in the four classes of events in the window [240, 640] GeV chosen for searching for a peak near 350 GeV using the f0 model 
and assuming no signal. The ratio between data and f0 is displayed bin by bin in the bottom plot.

Table 2
Summary of uncertainties that have impact on the signal strength, ap-
plicable to events in all classes.

Sources of systematic 
uncertainty

Uncertainty

Per photon Barrel Endcap
Energy resolution, R9 > 0.94

(low η, high η)
0.10%, 0.20% 0.14%, 0.06%

Energy resolution, R9 < 0.94
(low η, high η)

0.10%, 0.18% 0.18%, 0.12%

Photon energy scale 0.5% 2%
Photon identification 

efficiency
1.0% 2.6%

Per event Barrel Endcap
Integrated luminosity 2.6% 2.6%
Vertex finding efficiency 0.2% 0.2%
Trigger efficiency 1.0% 1.0%
R9 class migration 2.3% 5.5%
Additional normalization 

uncertainty
5% 5%

Breit–Wigner model 0.01–10% 0.01–10%

on the production cross section times branching fraction (σB), ob-
tained by combining all four event classes, as a function of mass 
for a narrow (�X = 0.1 GeV) spin-2 resonance. Fig. 7 shows the 
95% CL combined limits for two width hypotheses, �X = 0.1 GeV
and �X = 0.1mX, as a function of mass for the spin-0 model. The 
results shown in Figs. 6 and 7 (top) are similar because of the 

Fig. 6. Exclusion limit at 95% CL on the cross section times branching fraction of 
a new, narrow, spin-2 resonance decaying into two photons as a function of the 
resonance mass hypothesis, combining the four classes of events.

small differences in the efficiency times the acceptance in the two 
different spin scenarios. Fig. 8 shows the dependence of the limit 
on �X for two values of the resonance mass (150 and 840 GeV) 
in the spin-0 model. Fig. 9 shows the 95% CL exclusion limits on 
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Fig. 7. Exclusion limit at 95% CL on the cross section times branching fraction of a 
new, spin-0 resonance decaying into two photons as a function of the resonance 
mass hypothesis, combining the four classes of events. The results for a narrow 
resonance hypothesis (�X = 0.1 GeV) (top) and for a wide resonance hypothesis 
(�X = 0.1mX) (bottom) are shown.

the production cross section times branching fraction as a func-
tion of the resonance mass and width in the spin-0 model. The 
expected limits lie between 6 × 10−4 pb and 4 × 10−2 pb over the 
full mass range analyzed. The observed limits are consistent with 
the expected sensitivity of the analysis in the no signal hypothe-
sis. The largest excess is observed at mX ∼ 580 GeV with a local 
significance of less than 2.5σ .

7.1. Interpretation in two-Higgs-doublet model

In this section the model-independent limits obtained for a hy-
pothetical heavy diphoton resonance are interpreted in the context 
of the two heavy neutral Higgs bosons, H and A, predicted in 
the 2HDM [11]. In this model, the production cross sections for 
H and A, as well as the branching fractions for their decays to two 
photons depend on two parameters, α and β . The mixing angle 
between H and h is given by α, while tan β is the ratio of the 
vacuum expectation values of the two Higgs doublets. The 2HDM 
cross sections are calculated by means of the SusHi [42] program, 
and branching fractions are obtained using 2HDMC [43].

Exclusion regions in the tan β versus cos(β − α) plane are 
shown only for the diphoton decay of the pseudoscalar Higgs bo-
son A; no region of the phase space can be excluded for the decay 
of the heavy H scalar.

Fig. 8. Exclusion limit at 95% CL on the cross section times branching fraction 
of a new, spin-0 resonance decaying into two photons as a function of the res-
onance width hypothesis, combining the four classes of events. The results for 
mX = 150 (840) GeV are shown top (bottom).

Fig. 10 shows the observed and expected exclusion regions for 
a heavy Higgs boson A of mass 200 and 300 GeV for the Type I 
2HDM. The case where H and A are degenerate in mass is consid-
ered.

In Fig. 10 the region below the curve is excluded. These con-
tour plots are similar to those in [10]. The constraints obtained 
in this analysis on the 2HDM parameters are complementary to 
those already set by ATLAS on heavy neutral Higgs boson pro-
duction using multilepton final states [44] and by CMS on heavy 
neutral Higgs bosons production using multilepton and diphoton 
final states [45,46].

8. Summary

A search for resonant production of two photons is performed 
using 19.7 fb−1 of pp collisions collected at 

√
s = 8 TeV, in the 

mass range 150–850 GeV. Widths of the resonance X in the range 
0.1 GeV to 0.1mX are investigated. Both spin-0 and spin-2 scenar-
ios are considered. A fit to the diphoton invariant mass distribution 
in data is performed using a parametric model for the signal and 
a background shape obtained directly from data. No evidence for a 
signal is observed, and upper exclusion limits at 95% CL are set on 
the production cross section times branching fraction. The model-
independent upper limits extend over considerably wider mass 
and width ranges than in previous searches. We further interpret 
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Fig. 9. Combined observed (top) and expected (bottom) exclusion limits at 95% CL 
on the cross section times branching fraction of a new, spin-0 resonance decaying 
into two photons as a function of the resonance mass and width hypotheses. Con-
tours are displayed for different values of σB(X → γ γ ). (For interpretation of the 
colors in this figure, the reader is referred to the web version of this article.)

these limits in the context of the 2HDM, presenting exclusion con-
tours in the tan β versus cos(β − α) plane. This is the first search 
for heavy diphoton resonances carried out at the LHC to be inter-
preted in terms of the 2HDM.
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