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ABSTRACT OF THE DISSERTATION 

A STATIC TRAFFIC ASSIGNMENT MODEL COMBINED WITH AN ARTIFICIAL 

NEURAL NETWORK DELAY MODEL 

 by  

Zhen Ding  

Florida International University, 2007  

Miami, Florida  

Professor Fang Zhao, Major Professor  

 As traffic congestion continues to worsen in large urban areas, solutions are 

urgently sought. However, transportation planning models, which estimate traffic 

volumes on transportation network links, are often unable to realistically consider travel 

time delays at intersections. Introducing signal controls in models often result in 

significant and unstable changes in network attributes, which, in turn, leads to instability 

of models. Ignoring the effect of delays at intersections makes the model output 

inaccurate and unable to predict travel time. To represent traffic conditions in a network 

more accurately, planning models should be capable of arriving at a network solution 

based on travel costs that are consistent with the intersection delays due to signal controls. 

This research attempts to achieve this goal by optimizing signal controls and estimating 

intersection delays accordingly, which are then used in traffic assignment.  Simultaneous 

optimization of traffic routing and signal controls has not been accomplished in real-

world applications of traffic assignment.  To this end, a delay model dealing with five 

major types of intersections has been developed using artificial neural networks (ANNs). 

An ANN architecture consists of interconnecting artificial neurons. The architecture may 
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either be used to gain an understanding of biological neural networks, or for solving 

artificial intelligence problems without necessarily creating a model of a real biological 

system. The ANN delay model has been trained using extensive simulations based on 

TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have 

percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is 

satisfactory for planning purposes. Larger prediction errors are typically associated with 

severely oversaturated conditions.   

 A combined system has also been developed that includes the artificial neural 

network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment 

model. The combined system employs the Frank-Wolfe method to achieve a convergent 

solution. Because the ANN delay model provides no derivatives of the delay function, a 

Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the 

iterative process of the Frank-Wolfe method. The performance of the combined system 

confirms that the convergence of the solution is achieved, although the global optimum 

may not be guaranteed.  
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1. INTRODUCTION 

1.1 Research Background 

 In transportation planning, a travel demand model is often applied to forecast 

future travel demand of various transportation facilities and transportation network 

performance.  As part of a demand model, a traffic assignment model estimates a network 

flow pattern, i.e., travel volumes using a specific transportation mode on network links 

for a given origin-destination (OD) matrix.  Usual practice apply Wardrop's principle of 

user equilibrium (Ortuzar and Willumsen, 2001) that specifies that each traveler chooses 

the shortest (travel time) path subject to every other driver doing the same.  The most 

important elements in traffic assignment are demand (represented by an OD matrix), 

network link capacities that generally describe the facilities’ ability to meet travel 

demand, and travel cost (often measured by travel time).  A solution of traffic assignment 

needs to overcome the fundamental difficulty that travel times are a function of demand, 

while demand is affected by travel time. Accurately modeling travel time is also a 

challenge. This is because the limitation of travel demand models, most of which are 

macroscopic simulation models, are unable to simulate the real-time traffic operation and 

have to treat the demand analysis problem at an aggregate level, including modeling 

demand as a daily demand, or for peak hour or hours and off-peak hours.   

 Delays at signalized intersections often contribute significantly to total travel time, 

especially on urban arterials under congested conditions.  Because delay time may be 

directly translated into level of service or loss of productivity, it has significant economic 

implications.  Therefore, minimization of delays is also an important goal of 
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transportation planning applications.  Long-range planning models need to deal with 

intersection delays in the modeling procedure.  In the four-step model procedure, with the 

exception of trip generation, all other three steps including trip distribution, mode choice, 

and traffic assignment, rely on accurate estimations of travel time.  However, current 

planning models often consider intersection delays in a limited manner. That is, the 

stochastic nature of signalized delay is often circumvented and quantified as a type of 

deterministic travel cost.  Ignoring delays at signalized intersections is a frequent practice 

opted for by many planning models, which inevitably affects the accuracy of traffic 

models.  Therefore, adequately considering intersection delays is essential to improving 

the performance of planning models.  

 The complexity of modeling intersection delays for a planning model lies mainly 

in the variety of roadway geometries, signal plans, and the means of data collection and 

processing.   Generally speaking, three categories of input data are required to estimate 

intersection delays.  They are signal timing plans, traffic flow of each lane group, and 

geometric conditions.  The cycle length, green splits, and traffic flow rate are required for 

control delay estimation, and the link capacity, lane group, and the segment length are 

important for queue delay estimation.  For corridor analysis, signal progression may pose 

important influence on control delays. A major problem is that such data are often 

unavailable for forecasting purposes.  For a transportation planning model, such data 

coverage for all of the intersections in a network may easily overburden not only data 

collection but the modeling procedure itself.  Therefore, intersection delay estimation 

needs to involve as few variables as possible in a planning model for practical 

applications.   
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 Traffic assignment and signal optimization, though usually dealt with separately, 

are two processes that interact with each other.  To explicitly consider this interaction, 

numerous studies have been done on the integration of these two processes, often called a 

combined control and assignment problem.  The combined problem involves two folds of 

optimization that are respectively aiming at optimizing signal timing and shortest path 

(traffic assignment).  The solution of the combined problem, often called the mutually 

consistent point, is to reach a network flow pattern that is simultaneously optimal for both 

shortest path selection of traffic assignment and the signal timing at an intersection.  The 

simple iterative optimization and assignment (IOA) is a frequently applied approximate 

algorithm used to reach mutually consistent solutions of signal settings and traffic 

assignment flows by intermittently/alternatively performing signal plan optimization and 

traffic assignment until convergence.  However, theoretically speaking, IOA is not an 

optimization method for the combined system and usually fail to converge. 

 Because the delay model is expected to work together with a traffic assignment 

model, it is not practical to perform signal phasing design for every intersection using the 

standard traffic analysis procedures, which are both time-consuming and data intensive.  

A traffic assignment model needs to follow the demand of a planning model – forecasting 

future traffic conditions of a transportation network, of which the signal timing plan and 

the intersection geometries are unknown for a future forecast year.  Therefore, the delay 

model has to estimate delays according to simple geometry information and volumes 

resulting from every traffic assignment iteration, while requiring no other information 

from the traffic assignment. 

 Another fundamental issue of this study is the convergence of the combined 
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system of traffic assignment and the intersection delay model.  Traffic assignment is 

performed according to costs, which are partially determined by signal controls because 

signal controls determine intersection delays.  For the combined problem, the traffic 

assignment problem, when cast as an optimization problem based on the standard user 

equilibrium (UE), usually does not converge (Lee and Machemehl, 2005).  For the 

solution to be useful, the methodology must be able to reach a convergent solution and, at 

the same time, appropriately consider intersection delays.   

 

1.2 Problem Statement 

 Intersection delays make up a large proportion of the total travel time in urban 

areas.  However, current planning models are unable to properly consider travel time 

delays at intersections for the following reasons: 

(1) The estimation of delay time at an intersection requires detailed intersection 

configuration and signal timing information, both for the base year and for a 

forecast year.  Such information is often unavailable for use in planning models.  

While signal plans in the base year are known and may be coded, they are 

unknown for a future year and cannot be assumed to be the same as the base year 

(Zhao and Ding, 2006).  This makes a base year model unsuitable for forecast 

applications if intersection delays must be considered. 

(2) Estimating intersection delay during a model run using the method of Highway 

Capacity Manual (TRB 2000) is time-consuming because the number of 

intersections may be large and many iterations of traffic assignment will be 

necessary to reach a convergent solution. 
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(3) There are currently no commercial application models capable of incorporating 

signal optimization into the traffic assignment process due to non-convergence 

problems.  The first two of these problems have been preliminarily dealt by the 

author with a research grant from the Florida Department of Transportation 

(FDOT).  The results show that, with some reasonable simplifying assumptions, 

delays at intersections may be estimated with adequate accuracy.  The further 

development of methods to address the convergence issue is urgently needed.  At 

this point, direct search algorithms, requiring no explicit gradient information, 

may be applicable to solve for the combined system (Sheffi, 1985).  Lacking 

efficient algorithms and empirical results, the combined control and assignment 

study often pose essential questions: How different are mutually consistent points 

from each other as network size increases and as realistic travel cost functions are 

used? Having recognized the non-convexity of the problem, can one search 

method effectively improve the quality of local solutions? 

 The failure of current travel models to consider intersection delays has a number 

of implications.  Firstly, network travel cost cannot be accurately estimated.  

Consequently, assignment results may be inaccurate, and wrong transportation 

investment decisions may be made, resulting in possible waste of tax payers’ money and 

the inability of the future transportation system to meet the travel demand.  Secondly, 

travel time is critical to modal split.  Inaccurate travel time estimations may result in 

incorrect estimation of transit demand, which may lead to improper investment in public 

transit. 
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 To improve the accuracy of highway and transit travel time estimation, delays at 

intersections need to be considered carefully.  A traffic assignment model that is able to 

accurately reflect intersection delays and produce convergent solutions is needed. 

 

1.3 Research Objectives and Scope 

 This dissertation is aimed at investigating the feasibility of incorporating 

intersection delays into a traffic assignment model.  To achieve this goal, a methodology 

will be developed to estimate intersection delays and to consider such delays during 

traffic assignment.  The methodology must be simple, in the sense that it does not require 

information that is normally unavailable for long-range planning purposes. It must also 

be feasible  

The first focus of this research is on developing an accurate and convenient 

intersection delay model, which performs based on signal setting, turning volume, and 

geometric conditions of an intersection. This dissertation aims at developing a combined 

model of an intersection delay estimating model and a traffic assignment model. The 

combined model is expected to be able to quickly converge to an optimal solution.   

 The specific objectives of this dissertation are to:  

1) Understand the state-of-the-art in intersection modeling in travel demand models; 

2) Establish simplifying standards for intersections with varied geometry, pedestrian 

activities, and traffic flow patterns in order to alleviate the difficulty in delay 

modeling and simulation; 

3) Develop a delay estimating model that can be combined with a traffic assignment 

model; the delay model needs to be capable of estimating delays based on 
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changing control parameters including cycle length resulted from continuous 

signal optimization among traffic assignment iterations;  

4) Search for an optimization algorithm that converges to a repeatable, stable, and 

bounded solution of both the delay estimating model and traffic assignment; 

5) Determine a set of criteria to quantify and evaluate the solution of the combined 

system of the delay model and traffic assignment.   

To limit the scope of the research, the following assumptions are made: 

1) Signals at intersections within a network are not coordinated.  This assumption is 

made due to the complexity of signal progression. It is much more complicated to 

describe a corridor or a subarea with signal progression in a planning model, and 

it will be time-consuming to optimize a coordinated signal plan for multiple 

intersections.  

2) Only a limited number of intersection types will be considered.  Although in 

practice there are many different types of intersections, developing delay models 

for all of them will be a significant undertaking.  Because the goal of this research 

is to study the feasibility of a traffic assignment process incorporating a delay 

model, the traffic assignment and the delay model will work for five frequently-

seen generic intersection types.   

3) Small networks will be used for testing the methodology.  This reduces 

computational time and allows numerous tests to be conducted.  This limitation 

will not cause the methodology to be invalid or lose scalability.  Computational 

efficiency of a travel demand model is important and will be investigated in the 

future in separate research. 
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1.4 Dissertation Organization 

 This dissertation is organized into five chapters.  Chapter 1 introduces the 

background of this research, puts forward the problem to be solved, and sets the goals 

and objectives as well as assumptions.  Chapter 2 provides a literature review on generic 

delay models, artificial neural networks (ANN), and the application of delay models in 

traffic assignment.  The final part of literature review focuses on the algorithms searching 

for the solution of the combined system of traffic assignment and delay model.  Chapter 3 

firstly establishes the system architecture for combined system, then respectively outlines 

the procedure to prepare research data, to develop the delay model, and to complete the 

combined system.  Chapter 4 completes comprehensive analysis on the performance of 

the ANN delay model as well as traffic assignment that has combined the delay model.  

A regression analysis is also presented to support the advantage of the ANN delay model 

by comparing the output statistics.  As to the solution of the combined system, the 

converging pattern of traffic assignment iterations is identified in applications of both 

small and large networks.  Finally, Chapter 5 provides conclusions, and identifies the 

limitations, original contributions, and conclusions of this research.  Future research is 

also recommended.   
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2. LITERATURE REVIEW  

 In this chapter, literature related to this research is reviewed.  Section 2.1 

describes the Webster’s delay model, which is the most fundamental of all delay models, 

is presented. Section 2.2 provides a discussion of the fundamental theories of delay 

models for a signalized intersection where the traffic is under conditions ranging from 

under-saturation to over-saturation. The most important applications, such as the 2000 

version of the Highway Capacity Manual (HCM) and 2002 version of the Florida 

Quality/Level of Service Handbook, are also introduced. Section 2.3 further discusses 

some research efforts to improve the major delay models. Section 2.4 gives a description 

of the origin, architecture, and advantages of an ANN and its applicability to delay 

estimation. Section 2.5 focuses on issues related to combined models of signal 

optimization and traffic assignment, among which there is one core issue of this 

dissertation – an algorithm that ensures fast and accurate convergence. As used for the 

various research tasks, some applicable software programs are also briefly described and 

compared. 

 

2.1 Webster’s Delay Model 

 Many techniques are available for estimating delays at intersection approaches. 

However, little research has been performed to assess the consistency of estimates of 

various models (Dion et al., 2004).  Moreover, the applicability of the delay models 

needs to be determined due to their different data requirements and algorithms. For a 

transportation planning model, a balance between simplicity and accuracy is essential 

when choosing a delay modeling technique. 
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 Delay estimation techniques often have varied accuracy and their own limitations.  

For example, when the v/c ratio approaches 1, steady-state delay models tend to produce 

unrealistically large delay estimates, while over-saturation delay models will yield close 

to zero delays. Among many reasons for such differences, the most important is the v/c 

ratio. The technical complexity of delay models increase considerably when the volume 

is near the capacity.  

 Intersection delays may include two components: queue delay and control delay. 

Queue delay, or stop delay, is difficult to quantify due to its stochastic nature affected by 

random arrivals. Sophisticated techniques may work better in estimating queue delays, 

but are often impractical for planning models due to intense data requirements. It is often 

difficult to find a well-balanced queue delay model for integration into a planning model.  

Control delay is the result of vehicles having to accelerate or decelerate at an 

intersection because of the traffic control. It is determined from signal setting, volume, 

and geometric conditions of an intersection. When control delays are incorporated into a 

planning model, they need to be updated repeatedly within traffic assignment iterations. 

A major problem is that in a planning model, of which the main purpose is to forecast 

future traffic conditions of a transportation network, signal timing plans and intersection 

geometry are unknown for a given forecast year.  It is impractical to perform signal 

phasing and timing design for every intersection using the standard traffic analysis 

procedures, which are both time-consuming and data intensive. Therefore, it is necessary 

to facilitate the signal design and optimization procedure through simplifying 

assumptions (Aashtiani and Iravani, 1999).   
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 The achievable accuracy of a planning model also depends on realistic objectives 

of an intersection delay model. Nowadays, adaptive signal settings and signal 

coordination are becoming more and more common in urban areas. As a result, the 

platoon effects of traffic progression are often significant and cannot be ignored in delay 

estimation. However, generic delay models are often inadequate in reflecting progression 

conditions. For example, the delay model of the HCM 2000 merely uses a progression 

adjustment factor to account for progression while treating a studied intersection as 

isolated. Beginning with HCM 1994, the delay calculations employ one of the most 

frequently used delay models based on the work by Webster (1958) as expressed in the 

following form: 
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where 

d = control delay per vehicle (s) 

c = lane group capacity (veh/h) 

C = cycle length (s) 

g = effective green time (s) 

s = saturation flow rate (veh/h), and 

v = demand for subject lane group or approach (veh/h) 

 This formula has three parts. The first term estimates the average approach delay 

assuming uniform arrivals, which is consistent with the deterministic queuing models 
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mentioned earlier. The second term considers the additional delays attributed to the 

randomness of vehicle arrivals. The third term is an empirical correction factor that 

reduces the estimated delay by 5~15% to be consistent with simulation results. Equation 

2.1 is among the most fundamental and frequently referenced equations of its kind.  

There have been many efforts to determine various parameters based on local conditions 

or developing theoretical modifications. As a result, many delay models often have a 

form similar to that of Webster’s formula.  

 Numerous time-dependent delay formulas have been proposed and incorporated 

into a number of capacity guides, such as the 1994 and 1997 Highway Capacity Manuals 

and guides used in Australia and Canada.  Details of the delay models applied in the 

HCM will be discussed in Section 2.3. The delay models in HCM 2000 currently used in 

the United States, Australia, and Canada all originated from the Webster’s formula (Dion 

et al., 2004).   

 Webster’s formula makes the simplifying assumption that the arrival function is 

uniform (i.e., arrivals are at a constant rate, v (veh/s)).  With the uniform delay formula, 

random arrivals are not considered. At isolated intersections, vehicle arrivals are more 

likely to be randomly distributed. The assumption of uniform arrival implies that the 

queue of vehicles at an intersection operating under under-saturated conditions is always 

cleared before the next red signal.  Generally considered to be the earliest model of its 

kind, Webster (1958) proposed a stochastic model that assumes that arrivals are Poisson 

distributed with an average rate v (veh/h). The “overflow delay” is ascribed to individual 

cycle failures, even with the v/c ratio for the entire analysis period is always less than 

1.00.   
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 Following Webster’s work, some other stochastic models have been proposed, 

including, for instance, the models by McNeil (1968) and Heidemann (1994). These 

models all share several basic assumptions.  First, the number of arrivals within a fixed 

time interval follows a known distribution, usually a Poisson distribution.  This 

distribution does not change over time, which implies that these models should not be 

applied to estimate delays of coordinated intersections, where arrivals are platooned as a 

result of upstream traffic signals.  Second, while it is recognized that temporary over-

saturation may occur due to random arrivals, it is assumed that the system remains under-

saturated throughout an analysis period.  A primary consequence of such steady-state 

stochastic delay modeling is that the estimated delays tend to infinity as traffic demand 

approaches saturation (v/c ratio = 1.0).  This is considered by many a weakness of this 

type of model (Roess et al., 1998).  The concept of a time-dependent delay model was 

originally proposed and enhanced by Kimber and Hollis (1979).  A proper delay 

estimation model theoretically should perform better for different demand levels.  For 

low v/c ratios, the model is expected to produce delay estimates similar to those produced 

by deterministic queuing delay models assuming constant uniform arrivals.  As demand 

increases, a growing proportion of delay is attributed to the random vehicle arrivals and 

the failure of all queued vehicles to clear in certain cycles. As the v/c ratio approaches 1.0, 

the model shall not approach infinity, but instead shall generate estimates tangent to the 

deterministic over-saturation model as Eq. 2.1 does.   

 

2.2 Generic Intersection Delay Models and Applications 
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 This section introduces the theory and history of generic delay models, which 

have been comprehensively studied for their characteristics and weaknesses.  

Applications such as the HCM 2000 and the Florida Department of Transportation 

Florida Quality/Level of Service Handbook (2002) are also described.   

2.2.1 Intersection Delay Models 

 Almost every real-world model of delays at a signalized intersection begins with 

the Webster delay model (Eq. 2.1).  Hurdle (1984) and Dion et al. (2004) provide 

excellent reviews of major delay models. They also studied the basic principles and 

simplifying assumptions that are not well-tailored to the real world. Although some 

improvements on methodologies and assumptions have been made, the theoretical core of 

delay models has remained basically unaltered. Hurdle’s summary, which was based on a 

comparison of steady-state models and deterministic models, is still essentially 

instructive to this day. 

 Most signal intersection delay models fall into two categories, steady-state models 

and deterministic queuing models. The former are usually considered useful only for 

predicting delays at intersections with light loads, while the latter do well only in the 

analysis of heavily loaded intersections where volume overwhelms capacity (v/c > 1).  

These models ignore the random arrivals effect on the queue length when intersections 

are slightly saturated. Because their assumptions are based on different v/c values, these 

two types of models are incompatible. However, when the load is heavy but v/c is still 

less than one, some good models are expected to produce excellent estimates. In 

TRANSYT, developed by Transport and Road Research Laboratory, an algorithm based 
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on a compromise between these two types of models is employed. The algorithm, while 

not a solid and realistic model, is able to illustrate some intuitive ideas.  The TRANSYT 

algorithm may be represented by an approximated formula (Robertson and Gower, 1977): 

))240)(()((15 2/12

T
vcvcv

c
TD +−+−=      Eq 2.2 

where 

D = total delay for an intersection approach (veh/s), 

c = capacity of an intersection approach (veh/h), 

v = demand for subject lane group or approach (veh/h), and 

T = duration of analysis period. 

 A derivation of the TRANSYT random delay equation was presented by Kimber 

and Hollis (1979).  The basic idea is to achieve a smooth transition between the steady-

state and over-saturation models in the v/c range around 1. However, the smooth 

transition between the two types of models is not the result of any detailed analysis.  

Instead, it is based on an intuitive understanding of what happens. As pointed out by 

Hurdle (1984), to improve the delay estimates, more refined queue behavior models are 

required.  Unfortunately, such models tend to be too complicated and demanding where 

data input is concerned.   

 As a continued effort to study steady-state versus deterministic models, Dion et al. 

(2004) compared the delay estimates at under-saturated and over-saturated pre-timed 

signalized intersections. Deterministic queuing models are classic applications for 

predicting delays for signalized intersections. These models view traffic on each 

intersection approach as a uniform stream of arriving vehicles seeking service from a 
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control device that provides a high service rate. However, when the ratio of v/c is much 

lower than 1, the random effect is too evident to be ignored. This may be partly why such 

models have been applied mainly at intersections with far more arrivals per cycle than 

those that can be served during a green interval (v/c > 1). In such cases, the random effect 

may be negligible, and model performance is fairly adequate. Equations for calculating 

the average uniform vehicle delays during a cycle are presented below (Dion et al., 2004). 

Note that Eq. 2.3 is, in fact, identical to the formula in the HCM. 
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1        Eq 2.3 

where 

d1 = uniform delay (s) 

c = lane group capacity (veh/h) 

C = cycle length(s) 

g = effective green time (s) 

s = saturation flow rate (veh/h) 

v = demand for subject lane group or approach (veh/h) 

X = v/c ratio or degree of saturation for lane group 

 Steady-state stochastic delay models are one type of stochastic delay model that 

attempt to account for the randomness in vehicle arrivals. One fundamental, and most 

often referenced example, is Webster’s model (Eq. 2.1, Webster, 1958). These models all 

assume that the number of arrivals in a given time interval follows a known distribution, 

typically a Poisson distribution, and that this distribution does not change over time.  It is 
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also assumed that the system remains under-saturated over the analysis period. Although 

temporary over-saturation may occur due to the randomness of arrivals, the system is 

assumed to have been running long enough to settle into a steady state. 

 

Figure 2.1  Steady-State Stochastic Models versus Deterministic Over-saturation 

Models (Dion et al., 2004) 

 To improve the performance of steady-state stochastic delay models and the 

deterministic queuing models, the concept of a general time-dependent delay model was 

introduced by Kimber and Hollis (1979) using the coordinate transformation technique.  

This technique transforms the equation of a steady-state stochastic delay model so that it 

becomes asymptotic to a deterministic over-saturation model. Although according to 

Hurdle (1984), there is no rigorous theoretical basis for this approach, empirical evidence 

confirms that the results are reasonable. Therefore, the delay models in the capacity 

guides of the U.S., Australia, and Canada, which are similar to each other, are all based 
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on the coordinate transformation technique. All of these models assume steady-state 

traffic conditions. Under stochastic equilibrium conditions, the arrival and departure flow 

rates remain stationary for an indefinite period of time. The number of arrivals is also 

assumed to follow a Poisson distribution, which remains constant over time, and the 

headways between departures have a known distribution with a constant mean value.   

 In addition to the majority of stochastic and deterministic models, a microscopic 

traffic simulation model is used to track individual vehicle movements in simulated 

networks, which allows such models to consider virtually any traffic conditions, ranging 

from under-saturation to severe over-saturation. The models determine the delay incurred 

to an individual vehicle traveling in a network with different characteristics by comparing 

simulated and ideal travel times. Dion et al. (2004) also employ the INTEGRATION 

microscopic traffic simulation software to arrive at delay estimates. The simulation model 

integrates dynamic traffic simulation and traffic assignment. Delay is estimated for each 

individual vehicle by calculating, for each traveled link, the difference between the 

vehicles simulated travel time and the travel time that the vehicle would have 

experienced on the link at free-flow speed. The average delay estimates from the 

INTEGRATION simulation model are in general agreement with the estimates from the 

various models such as the 1981 Australian Capacity Guide, the 1995 Canadian Capacity 

Guide, and the 1997 HCM delay models. Dion et al. (2004) pointed out a strong 

consistency in the delays estimated by the time-dependent stochastic delay models and by 

the INTEGRATION microscopic traffic simulation model. 

 Consistent with the conclusions by Hurdle (1984), Dion et al. found the same 

trend in the results from stochastic and deterministic models. All of the analytical delay 
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models generated similar results when the v/c ratios were low. Deterministic queuing 

always made the lowest estimates because this type model considers only uniform 

arrivals. Therefore, they are unable to consider the potential additional delays that arise 

from the random over-saturation delays caused by a platoon of arriving vehicles.   

 To summarize how to simply and effectively consider intersection delays, almost 

every real-world model of delays at a signalized intersection begins with the Webster 

delay model (Eq. 2.1).   

2.2.2 Applications of Generic Delay Models 

 In the U.S., the HCM is the most comprehensively used reference of delay models 

(Troutbeck and Blogg, 1998), although the HCM’s methodology comes with limitations 

that have been widely criticized. The intersection delay methodology of the HCM ignores 

the potential impact of downstream congestion on intersection operation as well as turn-

pocket overflows on through volume and intersection operation. That is, the intersection 

is analyzed as an isolated facility. Therefore, the delay calculations merely reflect the 

average control delay experienced by all vehicles that arrive in the studied period, 

including delays incurred beyond the studied period when the lane group is over-

saturated. Control delay includes movements at slower speeds and stops on intersection 

approaches as vehicles move forward in queue position or slow down upstream of an 

intersection. 

 For a given lane group, the average control delay per vehicle is calculated by 

d = d1 (PF) + d2 + d3        Eq 2.4 

where 
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d  =  control delay per vehicle (s/veh) 

d1  =  uniform control delay assuming uniform arrivals (s/veh) 

PF =  uniform delay progression adjustment factor accounting for effects of signal 

progression 

d2  =  incremental delay to account for effect of random arrivals and over-saturation 

queues 

d3  =  initial queue delay accounting for delay to all vehicles in analysis period due to 

initial queue at start of analysis period (s/veh) 

In Eq. 2.4, d1 and d2 are defined as follows: 
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where 

C = cycle length(s) 

g = effective green time 

X = v/c ratio or degree of saturation for lane group 

and 

d2 = 900T [(X – 1) +
cT
Xkl)(X 81 2 +− ]     Eq. 2.6 

where 

T = duration of analysis period 

k = incremental delay factor dependent on controller settings 

l = upstream filtering/metering adjustment factor 
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c = lane group capacity (veh/h) 

X = lane group v/c ratio or degree of saturation 

 Both calculations of d1 and d2 assume no initial queue at the beginning of the 

analysis period of duration T: 

cT
tuQd b )1(1800

3
+

=         Eq 2.7 

where 

c  = lane group capacity (veh/h) 

Qb = initial queue at the start of period T (veh) 

T  = duration of analysis period 

t  = duration of unmet demand in T (h) 

u  = delay parameter 

 These delay terms are estimated from variables or parameters that are related to 

operations upstream of the subject intersection. They include six vehicle arrival types 

(HCM, 2000), green time ratio (g/C), percentage of vehicles arriving during green time, 

degree of saturation (v/c), lane capacity, length of analysis period, and size of queue at 

the start of each cycle. Conditions of the downstream segments and intersections are 

usually ignored. As the HCM 2000 indicates, “The potential impact of downstream 

intersection on the upstream intersections is not taken into account.” When a downstream 

intersection influences an upstream one, additional parameters/variables need to be 

considered other than those in the HCM 2000. The other major limitation is that random 

overflow at the connected link is not considered. 
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 The HCM also provides procedures for calculating delays at two-way stop 

controls and all-way stop controls.  To simplify the calculations, it is assumed that left 

turning lanes are always present on the major street.   

 In Florida, an important application of the HCM methodologies is the 

Quality/Level of Service Handbook of the Florida Department of Transportation (FDOT), 

referred to as FDOT Q/LOS herein, and its software, which is nationally recognized as 

the leading planning application of the HCM for the evaluation of automobile/truck LOS.  

According to Figure 2.2, both control delays and LOS criteria apply the HCM procedures.  

While operational analyses, such as intersection signal timing, are sometimes conducted 

at the planning level, the handbook does not provide the necessary tools for actual design 

or operation of facilities or services where more appropriate resource documents or 

analysis methods are available. 

 

Figure 2.2  Control Delay in the Q/LOS Procedure of Florida (Quality/Level of 

Service Handbook, 2002) 
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 The handbook’s planning level analyses make extensive use of simplifying 

assumptions to primary Q/LOS evaluation techniques and default values to operational 

models. For example, a major simplifying assumption, which is essential to the 

development of the Generalized Tables in the FDOT Q/LOS, is the selection of a single 

effective green ratio (g/C) for all of the intersections of an arterial. 

 FDOT has determined that, for generalized planning analyses, the “weighted 

effective green ratio” yields the closest results to actual conditions. The weighted 

effective g/C of an arterial is the average of the critical intersection’s through g/C and the 

average of the other intersections’ through g/C. Another significant planning assumption 

is that mainline non-through movements are adequately accommodated.  Typically, the 

through movement is the straight movement. However, occasionally the “through” 

movement is a right or left turning movement, with the straight ahead movement being 

considered a non-through movement. Most analyses of through movements in the HCM 

are relatively straightforward. Complications arise with the treatment of turning/merging 

movements, especially for signalized intersections and arterials. By handling non-through 

arterial movements (i.e., turns from the arterial and side street movements) in a general 

way, Q/LOS analyses are greatly simplified.   

 FDOT recommends the use of two submodels of FDOT Q/LOS, HIGHPLAN and 

ARTPLAN respectively, for highways and arterials. The assumed free flow speed is five 

mph higher than the posted speed. For arterial planning, traffic volume is included as a 

variable in the current 2002 version of the FDOT Q/LOS Handbook and the 

accompanying software.  Specifically, FDOT include traffic volume as a variable in 

calculating running speeds and to better reflect running speeds of through vehicles, as 
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opposed to the total mix of through and turning vehicles. The Quality/Level of Service 

Handbook and its software are designed for the evaluation of roadway users’ quality/level 

of service (Q/LOS) at planning and preliminary engineering levels. Q/LOS analyses are 

based on three types of input variables: roadway, traffic, and control. For an urban 

arterial, ten variables having a significant impact on volume calculation in LOS analysis 

are: 

• Number of through lanes 
• Left turn lanes 
• Paved shoulder/bicycle lane/outside lane width 
• Sidewalk 
• Average annual daily traffic (AADT) 
• Planning analysis hour factor (K) 
• Directional distribution factor (D) 
• Bus frequency 
• Signalized intersection spacing 
• Effective green ratio (g/C) 
 

 Most of these variables are required and are used in the standard HCM 2000 

procedures. The software, as well as the handbook, is based on the HCM 2000 techniques. 

ARTPLAN is primarily applicable for urban signalized roadways. 

 

2.3 Research Efforts to Improve Generic Delay Models 

 Many efforts have been made to overcome the limitations of the widely applied 

HCM delay model. For instance, under over-saturated traffic conditions, Benekohal and 

Kim (2005) found counterintuitive results because the progression adjustment factor (PF) 

is not applied to signalized delay models when there is an initial queue, as recommended 

in the HCM. On some occasions, delays under an initial queue condition end up being 

shorter than delays with a zero initial queue. Under over-saturated conditions, when there 
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is an initial queue, the HCM 2000 delay model yields the same uniform delay values for 

all arrival types, which does not seem reasonable because platooning affects delay.  

Benekohal and Kim propose a new uniform delay model considering platoon impact for 

over-saturated traffic conditions when progression is poor. This approach directly 

quantifies the platooning effects in delay, eliminating the need to apply a progression 

adjustment factor. Like the HCM 2000, the proposed model is applicable with or without 

an initial queue: 

d1 = 0.5sg [Q1C + Q2(C-t1) – qoC2 – sg2]     Eq 2.8 

where 

qav = average arrival rate (veh/s) 

qpl =  platoon arrival rate (veh/s) 

qn = non-platoon arrival rate (veh/s) 

t1 = platoon duration time (s) 

qo = overflow rate (qav minus c) (veh/s) 

Q1 = number of arrivals when queue increase rate changes for the first time (= qp t1) 

Q2 = number of arrivals at the end of cycle (= qavC) 

 Compared to inputs in the HCM, this arrival based model also requires platoon 

duration time (t1), platoon flow rate (qpl), and non-platoon flow rate (qn) for calculating 

platoon and non-platoon arrival rates and compute the delay. The additional input may be 

difficult to collect from the planning perspective. However, the authors declared that this 

arrival-based approach was more accurate than the HCM approach.   

 Another major limitation of the HCM methodologies is that its delay model only 

deals with isolated intersections. At present, most delay models deal with congestion 
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delays without giving consideration to the impact of downstream congestion and traffic 

disturbances that may include waiting queues at downstream signalized approaches 

(Ahmed and Abu-Lebdeh, 2005). Closely spaced intersections are frequently seen in 

urban areas of the U.S. Other, more distantly spaced intersections with heavy traffic flow 

may also cause potential bottlenecks where downstream congestion may still cause 

unacceptable delays at upstream intersections. 

 The control delay from the HCM 2000 is a combination of three delays with a 

progression adjustment factor (PF) as shown below (Eq. 2.4): 

d = d1(PF) + d2 + d3  

 These three delays may be computed based on the following information: offsets, 

green phase at downstream intersection, distance between intersections, link traveling 

speed of vehicles, queue lengths, queue spillovers, speed of shockwaves, and so on. A 

new delay term may be needed to capture the influence of traffic operations at a 

downstream intersection and/or link on the neighboring upstream intersection. To 

estimate the length of delay due to a downstream disturbance, Ahmed and Abu-Lebdeh 

(2005) introduced a fourth delay term (d4). This term will be determined and quantified 

by the geometry and traffic operational characteristics of both upstream and downstream 

intersections. Traffic disturbances at a downstream intersection may cause an interruption 

in flow on the link between two intersections. Consequently, a number of shockwaves are 

generated. Shockwave analysis is applied to evaluate the significance of a downstream 

disturbance for an upstream intersection. The average speed of traffic will be a function 

of space that is not occupied by traffic. 
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where  

n  =  total number of vehicles queued at the upstream intersection 

hv  =  effective space headway (m) 

1v  =  speed of mid-block stopping wave (m/s) 

1λ  =  speed of mid-block starting wave (m/s)  

1)4(d  =  portion of d4 incurred by the first vehicle at an upstream intersection 
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where 

Off = offset (s) 

L1 = queue length measured from the downstream intersection stop line to the tail of 

the queue (m) 

L2 = remaining space on link (not occupied by vehicles) (m) 

v1 = speed of mid-block starting wave (m/s)  

v2 = speed of starting wave at downstream intersection (m/s). 

va = average link speed (m/s) 

 Because the queue length at the downstream approach directly impacts the 

magnitude of d4, the model needs to include parameters such as offsets, incoming volume 

from the upstream intersection, and other traffic control variables. Due to the many 

variables involved, including green/red phase, offsets, and average link speed, data 

requirements at this level of detail may overburden the transportation planning model. 
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 Another direction of research is queuing theory. Troutbeck and Blogg (1998) 

compare queue accumulation and decay for a high-definition approach given random 

arrival and departures. The approximation of queue length and delay has been commonly 

called “coordinate transformation technique” following the publication by Kimber and 

Hollis (1979).  Kimber and Hollis’ theory is fairly similar to what is described by Hurdle 

(1984) regarding control delay, which is a mathematical representation of the steady-state 

queue length versus an over-saturation (deterministic) curve. As shown in Figure 2.3, the 

transformed equation by Kimber and Hollis (1979) produces a modified curve that 

transitions from steady-state models to deterministic ones. Troutbeck and Blogg compare 

the “coordinate transformation technique” with a solution to time-dependant and 

equilibrium queues by Newell (1982), whose methodology is based on the diffusion 

equation with the additional estimate of the variance. 

 

Figure 2.3  The Modified Curve of Transform Technique (Troutbeck and Blogg, 1998) 
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 As Hurdle (1984) points out, Kimber and Hollis’ approach simply uses 

mathematical expressions that fit the curve shown in Figure 2.3. Kimber and Hollis admit 

that in the limiting cases (the two ends of the curve) their results are correct and that in 

the intermediate regions the behavior of their functions is sensible. Kimber and Hollis’ 

method provides little understanding of the system, particularly when a system reaches a 

critical point or as the demand approaches the capacity.   

 

2.4 Artificial Neural Network 

 Other than mathematical formulas, some other non-linear search algorithms might 

be worth careful consideration in estimating delays at signalized intersections. The 

computations by artificial neural networks (ANNs) have emerged in the past few decades 

as a powerful paradigm that has found applications in almost all engineering branches.  

Neural networks were inspired by the mechanisms by which real biological neurons work 

in the human brain. The decision making process of the brain is simulated by an artificial 

network of neurons manipulating data among the many nonlinear nodes operating in 

parallel. Hornik et al. (1989) state that the multitasking ability of the human brain to 

simultaneously consider a large number of pieces of information and constraints is 

actually due to the powerful neural architecture of connections or parallel distributed 

processing. A trained network can predict output response to a high degree of accuracy 

much faster than sophisticated conventional models. 

 A neural network needs to learn from an enormous number of samples so that a 

particular input leads to a specific target output. During intense training, the network is 

constantly adjusted, based on a comparison of the network output and the target (original 
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records), until the network output matches the target. Typically many such input/target 

pairs are used in this supervised learning for a network (Demuth et al., 2006). 

 

Figure 2.4  General Process of Supervised Learning of an ANN (Demuth et al., 2006) 
 
 The main type of ANN used in this study is referred to as a multilayered, feed-

forward neural network. The following are essential:  

1. A feed-forward propagation rule,  

2. A network topology (i.e., the number of nodes, layers, and their connectivity), and 

3. A learning rule. The error back-propagation algorithm (also known as the generalized 

delta rule) is the most commonly used learning rule (Demuth et al., 2006).  

 The feed-forward neural networks that use the error back-propagation learning 

rule are generally referred to as back-propagation neural networks. A typical back-

propagation neural network architecture used in this paper is sketched in Figure 2.5. The 

g and f are transfer functions for the neurons in the hidden layer and in the output layer, 

respectively: 

 n 

g = Σ ( Wp Xp ) +  bp                                                            Eq 2.11 
 p=1 

 
  m 

f = Σ ( Wk gk ) +  bk                                                             Eq 2.12 
        k=1 
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where 

w = connection weight between neurons 

b = bias term of corresponding nodes 

 

Figure 2.5 A Typical Structure of a Multilayered Neural Network (Demuth et al., 
2006) 
 
 The multilayered back-propagation ANN usually has one input layer, one output 

layer, and constructed processing elements (artificial neurons) termed hidden layers.  The 

hidden layers are sandwiched between the input and output layers. The neurons in these 

hidden layers allow the network to represent and compute more complicated associations 

between input and output patterns. The network operation consists of a highly nonlinear 

functional mapping of the neurons in the hidden layers between the input and output 

variables. Each artificial neuron or processing element receives several input signals Xj 

originating from previous nodes and then processes each signal considering its 

connection weight Wij. For example, the relationship between the input signals and the 

level of internal activity of the processing element is given by the weighted sum of its 

inputs as follows: 

         n 

Ni = Σ ( Wij Xj ) -  bi                   Eq 2.13 
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        j=1 

 
where  

Ni = net input signal (level of internal activity) in node i, 

Wij = connection weight between artificial neurons i and j, 

Xj = value of signal coming from previous node j, 

bi = bias term of node i (corresponds to an activation threshold), 

n = number of input signals from previous nodes. 

 When the weighted sum of the input signals exceeds the activation threshold bi, 

the artificial neuron outputs a signal yi dictated by a transfer function f(x). The output 

signal is then expressed as a function of the input signal Ni by: 

yi = f (Ni)                                                                                         Eq 2.14 

where  

f(x) = 1 / (1 + e-x ), may be a sigmoid function which accepts input over the range (-

∞, +∞) and uniquely maps the output yi into the range [0,1]. 

 The neural network modifies the connection weights between the layers and the 

node biases in ensuing iterations to allow a type of learning for the network. The weights 

and node biases are shifted until the error between the desired output and the actual 

output is minimized. Learning (or training) is the process whose objective is to adjust the 

link weights and node biases so that when presented with a set of inputs, ANN produces 

the desired outputs. 

 In recent years, artificial neural networks (ANNs) have been frequently employed 

in classification, optimization, and prediction. ANNs are suitable in such circumstances 

to predict the behavior where cause and effect relationships are little known. ANNs also 
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have the advantage of a well-defined process that requires no algorithmic conversion of 

an input into an output. 

 

2.5 The Combined Model of Intersection Delay and Traffic Assignment 

 This section summarizes the research efforts in incorporating control delays into 

the traffic assignment process. Control delay estimating models need to be reasonably 

simplified before being employed to improve the accuracy of traffic assignment.   

 Having incorporated the delay model, traffic assignment still follows a generic 

methodology and a set of assumptions. Hence, users are always making wise and 

informed decisions, and the network’s traveling cost cannot be reduced further. However, 

signal phasing design and traffic assignment procedures are mutually dependent on one 

another.  Equilibrium is reached only when the necessary conditions of both aspects are 

met. The studies by Gartner and Al-Malik (1996), and Lee and Machemehl (1999) reveal 

many attempts to optimize the combined signal control and assignment problem.  An 

iterative procedure may be applied on a network with more realistic intersections than the 

two-phase intersections discussed earlier. The simple iterative process, when unable to 

reach convergence, often continues to an endless oscillation (Lee and Machemehl., 2005). 

To dampen the oscillation, the method of successive averages (MSA), known also as a 

simplified transformation of the Frank-Wolfe algorithm, (Sheffi, 1985) may be useful. 

The MSA is based on a predetermined move size along the descent direction, and the 

procedure may be demonstrated as follows: 

1. Initialization.  Perform an equilibrium assignment based on a set of initial travel 
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costs t0.  This generates a set of network flows xa.  Set n := 1. 

2. Update.  Set ta = ta (xa), 

3. Direction finding.  Perform an equilibrium assignment based on current set of travel 

costs ta, which yields an auxiliary network flow pattern ya. 

4. Move.  Obtain the new flow pattern setting, set a = (1/n). 

a) xn+1
a = xn

a + (1/n) (yn
a - xn

a) 

5. Convergence criterion. Examine the similarity of network flows of successive 

iterations. If convergence is attained, stop. If not, set n := n+1 and go to step 1. 

The major difficulty of the Frank-Wolfe algorithm is due to non-convexity (Lee and 

Machemehl, 1999) and circumvented in this way. Another alternative is using a direct 

search algorithm requiring no gradient information.   

2.5.1 Simultaneous Optimization of Signal Settings and Traffic Assignment 

 Signal timing design for an isolated intersection has been covered in the HCM 

and in many standard textbooks such as that by Roess et al. (1998). Many commercial 

signal optimizers are available such as TRANSYT-7F, and Synchro.   

 For real-world applications, researchers often need to find an appropriate 

accuracy extent for strategic planning purposes. To consider a regional model with large 

zones and a relatively coarse network with delay functions for links, Hill (1998) also 

implemented delay functions based on selected analytic models for priority, roundabout, 

and signal controlled intersections. Zhou and Vaughan (1999) performed intersection 

modeling by treating complicated intersection situations using the macro capabilities of 

EMME/2 other than the normal assignment methods. EMME/2 has network calculation 
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modules to calculate the capacity and effective green time of turning movements. Their 

general approach to the new strategic highway assignment module involves calculating 

the effective green time and capacity for every movement in a network, which are fed 

into a turn penalty function to estimate the movement delays. The equilibrium assignment 

adds the movement delay to link delay to assign traffic that are used, in turn, to calculate 

the effective green time and link capacity in the following iteration. However, the model 

requires more input variables than traditional travel demand models. Furthermore, much 

more effort needs to be made to locate the input data, which include shared lane existence, 

signal control availability, opposed flow information, green time, and cycle time. A turn 

penalty function is applied to calculate delays of each movement at an intersection.  This 

type of turn penalty function is in fact developed from a more general function form that 

embraces the delay functions seen in the Highway Capacity Manual and the Canadian 

and Australian methods and that appears the same as that mentioned earlier (Eq. 2.15).   

D = Du(x) + Do(x)       Eq. 2.15

where 

D  = total delay of a turning movement (s) 

Du = uniform delay (s) 

Do = overflow delay (s) 

 The turn penalty function shown in Eq. 2.15 is expected to estimate realistically 

the delay when the degree of saturation, x, is closer to 1.0. The model by Zhou and 

Vaughan (1999) is able to effectively represent various conditions at signalized 

intersections.  Its iterative approach with a new turn penalty function usually proves to 

 35



achieve relatively quick convergence. However, little is discussed on the signal control 

optimizations during the iterative procedures. 

 Other efforts include a study by Ceylan and Bell (2004) using the genetic 

algorithm (GA) approach to solve traffic signal control and traffic assignment problems 

to optimize signal timings with stochastic user equilibrium link flows for an entire 

network. Levinson and Kumar (1994) also developed a delay model based on Hurdle’s 

study and estimated the cycle time and green time using the methodologies suggested by 

Roess et al. (1998).  The output of the intersection model is the average delay of a turning 

movement. The delay model is actually an application of Webster’s formula. One 

important finding by Levinson and Kumar is that loading from highly aggregate zones to 

a single point will over-saturate the network at that point and seriously disrupt signal 

timings. The limitation of their method is that signal timing plans are often not fully 

optimized. A more intuitive method by Gartner and Al-Malik (1996) is promising for 

theoretical applications. This method employs a solution procedure that enables the 

simultaneous optimization of the two problems: signal setting and link volume estimation. 

That is, the signal settings produce link costs that determine a flow pattern such that these 

settings are optimal for it. Signal settings are determined by a network optimization 

procedure, for example, MAXBAND or TRANSYT-7F, on the basis of traffic volume 

data previously collected under the existing signal settings. The key to an efficient control 

strategy is to measure the effect of new signal timings because drivers adjust to them, 

thus resulting in new user-optimized traffic flow patterns. Gartner and Al-Malik’s model 

simultaneously evaluates the route choice behavior of the motorist and determines the 
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corresponding optimal signal settings, both of which are essential to rerouting traffic for 

the purpose of reducing congestion and avoiding bottlenecks. 

 The model is among the first to introduce a way of expressing signal controls as 

flow variables in a deterministic manner. However, this experimental procedure considers 

only an individual signalized intersection with the following simplifications: 

1. Only two conflicting streams, 

2. Two-phase operation, 

3. Fixed cycle length given, and 

4. One isolated intersection (offset is not considered). 

 Therefore, it is still a distance from real-world applications. The traffic 

assignment aspect of Gartner and Al-Malik’s application follows the generic 

methodology and assumptions. In other words, the users are always making wise and 

informed decisions and the network’s traveling cost cannot be reduced further. Having 

developed a flow-dependent signal control model, signal setting and traffic assignment 

procedures are ready to be combined into one inclusive model. The equilibrium is 

reached only when the necessary conditions of both aspects are met. Compared to the 

study performed by Gartner and Al-Malik (1996), Lee and Machemehl (1999) made a 

further attempt to optimize the combined signal control and assignment problem. An 

iterative procedure was applied on a network with more realistic intersections than the 

two-phase intersections discussed earlier. Because Wardrop’s two principles define, 

respectively, the user equilibrium (UE) and the system-optimized (SO) assignments, Lee 

and Machemehl suggest an iterative procedure to solve the combined problem of signal 
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optimization and traffic assignment, which are treated as two sub-problems as shown in 

Figure 2.6. 

 

Figure 2.6  Iterative Optimization and Assignment Procedure 

 The assignment uses link performance functions resulting from signal 

optimization. Signal optimization is performed with flow patterns provided by the 

assignment sub-problem. This is so-called the Iterative Optimization and Assignment 

Procedure, or simply Iterative Approach (Cantarella and Sforza, 1987). The procedure 

continues until it converges to one solution, which is termed mutually consistent because 

the flow is at UE and the signal setting is optimal at the same time. Similar to the study 

by Gartner and Al-Malik (1996), Lee and Machemehl (1999) utilize Webster’s delay 

function in traffic assignment. Because the equilibrium network-traffic signal 

optimization problem is not necessarily convex, it may have multiple local solutions.  

Therefore, it is possible that some local and mutually consistent solutions will show poor 

performance compared to the others. The driver route choice rule is minimum time path 

selection so that drivers follow deterministic user equilibrium. The objective function of 

the model is to minimize the total travel time of the equilibrium network, that is, 
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where 

z(x) = the travel time required by all network flows on the network. 

xa = the flow on link a,  

rs
kf  = the flow on path k of origin r and destination s. 

 There are two difficulties in solving the above objective function (Lee and 

Machemehl, 1999). First, due to the non-convexity, z may have various local minima.  As 

a result, any gradient-based search will find only a local minimum. Second, z requires 

knowledge of the OD pattern, which is difficult to develop for large, sophisticated 

networks.  The iterative approach has typically been a practical alternative.   

 To solve z, Lee and Machemehl use two approaches, namely local search and 

iterative approach, to compare the optimal solutions. It is found that when the network is 

small, there may be only several distinct local solutions, which may be obtained easily by 

local searches. Although the mutually consistent solution is intrinsically suboptimal, it is 

close to the local solutions for a small network when demand level is low.  As demand 

increases, the difference will grow. For a large network, there may be enormous local or 

quasi-local solutions. Therefore, any local search may easily result in worse solutions if 

the initial solution is not in a good domain neighborhood. Lee and Machemehl used a 

simplified method based on a gradient approximation suggested by Sheffi and Powell 
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(1983). Because the iterative approach includes a signal optimization procedure, it finds a 

good solution showing a short total travel time, which may not be mutually consistent 

until convergence, regardless whether the initial solution is in a good neighborhood or not. 

Then the search drifts to find a mutually consistent point. For a large network with high 

demand, there may be many mutually consistent points, such that it is likely to find one 

close to the signal optimal point. 

 Simplified gradient estimation local searches show promising performance as 

well as computational efficiency. However, for large networks with high demand, the 

iterative approach tends to find better solutions and is more valuable in real-world 

applications.  Another promising alternative is the direct search method known as 

unconstrained optimization techniques that do not explicitly use derivatives. The phrase 

“direct search” describes sequential examination of trial solutions involving comparison 

of each trial solution with the “best” solution obtained up until that time, together with a 

strategy for determining (as a function of earlier results) what the next trial solution will 

be. The procedure employs straightforward search strategies that employ no techniques of 

classical analysis except where there is a demonstrable advantage in doing so (Kolday et 

al., 2003). Many users from the scientific and engineering communities preferred to 

avoid the calculation of gradients, which was for a long time the single biggest source of 

error in applying optimization software. At present, two things have become increasingly 

clear about the direct search method (Kolday et al., 2003): 

 1. Direct search methods remain an effective option, and sometimes the only 

option, for several varieties of difficult optimization problems. 
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 2. For a large number of direct search methods, it is possible to provide rigorous 

guarantees of convergence. 

 A preliminary study has been performed using the direct search method to find at 

least a local optimum. The local optimum ensures the equilibrium between traffic 

assignment and signal controls. In other words, the signal timings optimized are not 

affected by the negligible change of the assigned volume, and so it is with intersection 

delays. The issues regarding the applied optimization search algorithm in the model will 

provide solid proof of convergence and the relevance to real-world applications. 

2.5.2 Convergence Solutions and Search Algorithms 

 The combined system aims at solving Eq. 2.16. The calculation is developed from 

a link travel cost calculation. The link flow on a single link may be calculated as 

∑∑∑=
m n k

mn
ak

mn
ka Pq δ         Eq 2.17 

where 

mn
akδ = 1 if link a is on path k and 0 otherwise 

mn
kP = flow on route k connecting OD pair (m, n) 

mnf = trip demand rate between origin m and destination n 

 If denotes the average travel time on link a (q),( baa qqt b denotes the conflicting 

flow on link b), the user equilibrium objective function is 
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and the corresponding system optimization function is 
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z(Q) = ∑        Eq 2.19 
a baaa qqtq ),(

 Sheffi (1985) establishes two conditions that are required for the user-equilibrium 

problem to have a unique solution. The link travel time is a strictly increasing function to 

the flow of that link; and a link’s own flow exerts more influence on its travel time than 

the flows on any other link do. 
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 The objective functions Eq. 2.18 and Eq. 2.19, satisfying neither condition, are, 

hence, non-convex. Although two simple network examples are presented with good 

performance, when confronting a complex network, it has to be determined whether to 

search for the best among the multiple solutions or to modify the network to converge to 

a single solution. Sheffi (1985, p.117) also formulated fundamentals on the uniqueness of 

the UE flow that provide a solution regarding traffic assignment. 

 However, in this study, the model aims at actual application. Therefore, the 

regular theoretical assumption that the link performance functions are independent of 

each other has to be relaxed, as it is not always valid. For example, left turning 

movements in signalized intersections have a discernible influence on the green time 

allocated to the other movements and, thus, the delays. On the other hand, the delays that 

left turning traffic receives are often not dominated by the left turning volume.  In the real 

world, the link interactions tend to be asymmetric. That is to say, the marginal effect of 

one link’s flow, xa, on the travel time of the other link, b, is not equal to the effect of xb 

 42



on the travel time of link a. It has been repeatedly proven that there is no known 

mathematical program able to find the equilibrium flow pattern for a standard (fixed-

demand) UE model (Sheffi, 1985; Lee and Machemehl, 2005. Researchers have been 

striving to apply direct solution algorithms to tackle the problem (Sheffi, 1985).  

However, it is now known that a necessary and sufficient condition for the monotonicity 

of the link travel time function is that the Jacobian matrix (Eq. 2.20) must be positive 

definite (Smith, 1979). The Jacobian matrix is composed of the partial derivatives of the 

total link travel time function with respect to all link flows. The necessary and sufficient 

condition may not be valid in the real world, and so a unique equilibrium solution may 

not be available. There could be multiple equilibriums for a UE traffic assignment 

considering link interactions on delays.     
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 Heydecker (1983) suggested two issues that should be settled in order for a traffic 

assignment to produce desirable results. One is that the assignment should have one 

single, stable solution. The other is that the procedure should always be able to converge 

to the solution. Heydecker’s standards may be applied in the evaluation of the combined 

system that integrates a traffic assignment model and a delay estimating model.   

 A simple iterative process unable to reach convergence often continues to an 

endless oscillation (Lee and Machemehl, 2005). To dampen the oscillation, the method of 
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successive averages (MSA), known also as a simplified transformation of the Frank-

Wolfe algorithm (Sheffi, 1985; Ortuzar and Willumsen, 2001), may be useful. The 

method is based on a predetermined move size along the descent direction, and the 

procedure may be demonstrated as follows: 

1. Initialization.  Perform an equilibrium assignment based on a set of initial travel 

costs t0.  This generates a set of network flows xa.  Set n := 1. 

2. Update.  Set ta = ta (xa), 

3. Direction finding.  Perform an equilibrium assignment based on current set of travel 

costs ta, which yields an auxiliary network flow pattern ya. 

4. Move.  Obtain the new flow pattern setting, set a = (1/n). 

xn+1
a = xn

a + (1/n) (yn
a - xn

a) 

5. Convergence criterion. Examine the similarity of network flows of successive 

iterations. If convergence is attained, stop. If not, set n := n+1 and go to step 1. 

 The original Frank-Wolfe algorithm, different from the MSA in step 4, optimizes 

move size factor a using mathematical programming methods so that convergence of UE 

might be more efficiently reached. The goal of the Frank-Wolfe algorithm is to find a 

downhill direction and proceed to step 5. However, because at step 5 an UE assignment 

applies an ANN delay model, it is difficult or impractical to solve for a using traditional 

mathematical programming that uses the gradient or higher derivatives of the objective 

function.   

 Among direct search methods requiring no gradient or derivatives, the mesh 

adaptive direct search (MADS) algorithm is one that might be applied to seek the 

optimized a in the step 4. Capable of minimizing the potentially non-smooth function, the 
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MADS allows local exploration in a dense set of directions in the space of optimization 

variables (Audet and Dennis, 2006). As a direct search algorithm that computes a 

sequence of points that get closer and closer to the optimal point, at each step MADS 

searches a set of points, called a mesh, around the current point — the point computed at 

the previous step of the algorithm. The mesh is formed by adding the current point to a 

scalar multiple of a set of vectors. If MADS finds a point in the mesh that improves the 

objective function at the current point, the new point becomes the current point at the 

next step (MathWorks, 2004). MADS, when employed in the combined system, finds a 

scalar, α, which solves the program in the form of Eq. 2.21. 
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2.5.3 The Applicable Software 

 According to Traffic Analysis Tools Primer (Alexiadis et al., 2004), majority of 

analytical/deterministic tools employ the procedures of the HCM. These tools 

conveniently predict capacity, density, speed, delay, and queuing on a variety of 

transportation facilities and are validated with field data, small-scale experiments, or 

laboratory test beds. Analytical/deterministic tools are suitable for analyzing the 

performance of isolated or small transportation facilities. However, they are limited in 

their capability to study networkwide system effects.   

 For many applications, the HCM is the most comprehensively applied and 

acknowledged traffic analysis technique in the U.S. The HCM procedures are ideal for 
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handling the performance of isolated facilities with moderate congestion problems. They 

are quick and reliable for predicting if a facility will be operating beyond its capacity, and 

they have been well experimented through enormous field validation efforts. However, 

the HCM procedures are generally inadequate in their ability to assess system effects.  

Majority of the HCM methods and models assume that the performance of an intersection 

or road segment is not adversely influenced by conditions of adjacent streets. Long 

queues at one facility that interferes with another nearby location violate the assumption.  

If the HCM procedures do not meet the needs of the analysis, it requires the users to 

determine whether microscopic, mesoscopic, or macroscopic simulation is necessary. If it 

is not indispensable to microscopically track individual vehicle movements, the analysts 

may enjoy advantage of the simpler data entry and control optimization features available 

in  regular mesoscopic or macroscopic simulation models. 

 For comprehensive traffic analysis functions including signal timing optimization 

and signal coordination, Synchro and TRANSYT-7F have been widely applied.  

TRANSYT-7F has been popular since the 1980s and many extensions have been 

produced for various customized applications. Some research (Wong et al., 2001) has 

indicated that TRANSYT-7F is usable to model intersection delays while considering 

coordination effects. 

 Synchro has a friendly user interface for most traffic analysis of signals and is 

more practical than TRANSYT-7F. Synchro uses two methods for calculating delays:  

One is based on Webster’s formula, and the other, newer one is called the Percentile 

Delay Method.  It is assumed that each of these scenarios will be representative of 20% 

of the possible cycles of signal phases.  For each scenario, traffic for each approach is 
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adjusted to that percentile.  Delays are calculated using the adjusted volumes, and green 

times are calculated.  If the intersection is near saturation or above saturation, additional 

time will be added to account for vehicles carried over between cycles. However, 

Synchro does not provide a macro running mode that is capable of processing hundreds 

of simulations and optimizations automatically. In this respect, TRANSYT-7F is superior 

because of its convenient macro function. 

 CUBE, a travel demand model software package by Citilabs, is capable of 

considering intersection delays and is widely applied in Florida. The control delay 

estimates are by default based on the HCM’s delay model.   

 

2.6 Summary 

 Although the intersection delay estimation technique of the HCM has been widely 

applied, it is merely based on curve fitting rather than a sound mathematical model of 

signal systems. Therefore, when signal systems operate under oversaturated conditions 

(v/c = 1), many traffic conditions are still not well modeled. However, reasonable results 

are possible under the condition that the users are aware of model limitations. None of the 

deterministic or steady-state models could produce fully consistent or accurate results.  

Although not always correct, it has been generally agreed on that most steady-state delay 

models and deterministic models considered here generate relatively consistent delay 

estimates when employed for under-saturated signalized intersections with v/c ratios 

below 0.6 (Dion et al., 2004). To develop a new generation of models that reasonably 

consider variations of travel demand over time, more information on traffic patterns is 
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essential. At present, it may be unrealistic to expect the availability of such information.  

However, for microscopic operational analysis, such data may be obtained.   

 It is a common practice for a traffic assignment model to assume that an 

intersection is isolated if the estimates are made based on the HCM delay model (Gartner 

and Al-Malik, 1996; Lee and Machemehl, 1999). The prediction curve based on the 

TRANSYT traffic model developed by Robertson (1977) has been widely accepted as an 

effective tool for evaluating queues and delays on links in a network. The traditional 

delay models are mostly too awkward to be incorporated by a planning model due to 

either data requirements or disappointing functionality. The ANN method is promising 

because it is highly capable of handling nonlinear fitting. Moreover, there are 

theoretically enough simulation scenarios to train the ANN model by adjusting the 

internal weights. A global optimum of the combined system of traffic assignment and 

delay model is impossible to reach using traditional mathematical programming. 

However, direct search methods have the potential to guarantee convergence solutions. 

Therefore, although IOA may be useful now and then, IOA strengthened by a direct 

search algorithm is recommended. It is still an open field as far as finding an advanced 

search algorithm for the purpose of the combined system goes.   
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3. RESEARCH METHODOLOGY  

3.1 System Architecture  

 The research mainly studies a combined system with an architecture illustrated in 

Figure 3.1.  The box in the upper left corner is the process during which a dataset of 

traffic volumes and delays is created.  The dataset formulates a direct relationship or 

approximating function between volumes and corresponding delay.  Based on this dataset, 

the intersection delay model will be calibrated and will predict the intersection delay for 

given volumes at an intersection.  Finally, this model will be applied during the traffic 

assignment iteration process of a planning model.  Resulting from traffic assignment, the 

assigned volume will be provided to the delay model, which will, in turn, estimate the 

intersection delays.  The delay estimates will then be used to update the travel costs in the 

next traffic assignment.  

 
Figure 3.1  Conceptual Process of the Proposed Methodology (Zhao and Ding, 2006) 
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 The methodology has mainly two advantages. First, the delay model is able to 

estimate delays for an intersection with an implicitly optimized signal plan.  The second 

advantage is that the delay model takes its input directly from a planning model and 

estimates delays that can be easily used to update the travel cost in the planning model, 

therefore forming a tight integration of the two processes.  The input data to the delay 

model are movement volumes and facility information including facility type, link 

capacity, and number of lanes at an intersection.  

 In Section 3.2, data preparation for calibrating the delay model and for testing the 

combined delay-assignment model is described.  The delay model is built using the 

Artificial Neural Network (ANN) technique.  The development of the ANN delay model 

is presented in Section 3.3.  Finally, in Section 3.4, a combined system that integrates the 

delay model and traffic assignment model is discussed. 

 

3.2 Data Preparation 

3.2.1 Study Networks / Intersections 

 A virtual street network consisting of 20 signalized intersections is constructed. 

The generic geometric conditions, including speed limits, are maintained. However, the 

traffic load on the network is a large set of random OD matrix. There are several factors, 

such as pedestrians and on-street parking, that are either unavailable or uneconomical for 

explicit consideration by the delay model during traffic assignment. As such, they may be 

more conveniently applied in other circumstances. 
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Figure 3.2  The Large Network for Concept Demonstration 
  
 Considering that this study aims at a promising method to solve for the combined 

system, one fundamental simplification is to reduce the infinite number of intersection 

configurations into manageable categories so that the later simulation of various 

intersection conditions and the training of the ANN delay model are convenient. The 

intersections are divided into five types that are most-frequently seen in the Gainesville 

urban area as shown in Table 3.1. The geometry conditions are simplified using uniform 

lane width, link length, number of lanes, and speed limits determined by the facility type 

and area type. The frequent on-street parking and pedestrians are not considered. The 

delay model avoids incorporating certain local conditions that may skew the delay 

estimates when applied in similar circumstances. Therefore, the considered network with 

assumed parameters is highly generic and fairly different from the original in terms of 

geometric conditions.   
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Table 3.1  Intersection Types of Different Facility Types and Lanes 
Intersection 
Type Code Description of Intersection Type 

2322 Divided three-lane arterial with divided two-lane arterial 
2222 Divided two-lane arterial with divided two-lane arterial 
2241 Divided two-lane arterial with one-lane local road 
3141 Undivided one-lane arterial with one-lane local road 
4141 One-lane local road with one-lane local road 

 
 To facilitate and expedite the experimental operations of the combined system, a 

simple small network is also constructed (Figure 3.3). The small network may save a 

great deal of running time while still measuring the performance of the combined system. 

The convergence problem is expected to be dealt with first on the small network. 

 
Figure 3.3  The Small Network for Concept Demonstration 
 

3.2.2 Simulation Scenarios 

 The delay model is developed based on an ANN architecture, which requires 

sufficient scenario data for training an ANN. Due to the lack of comprehensive field data 

for the typical intersections operations, a large number of simulations are performed 
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using TRANSYT-7F, which is a signal timing optimizer as well as a traffic simulator 

with a batch mode option. Serving as the data source for the ANN delay model, these 

scenarios contain most of the possible traffic conditions for a studied intersection. The 

corresponding timing plans are optimized by TRANSYT-7F based on the inputs of 

geometry and volumes. Finally, the movement delays may also be calculated based on 

the timing plans.   

 The ANN delay model needs to “learn” from varied volume conditions to be able 

to predict delays accurately. To obtain control delays at intersections of different 

geometric conditions, datasets are developed to represent most traffic conditions at an 

intersection. Because a generic four-leg intersection has 12 movements, for which there 

are an infinite number of possible volume conditions, it is impractical to enumerate all 

possible volume conditions of all of the movements at an intersection. One simplification 

used in most signal optimizers such as Synchro and TRANSYT-7F is to combine right-

turn traffic with through volume if they share the same lane. This reduces the 12 

movements to eight movements. In other words, a simulation scenario of an intersection 

has eight samples of movements (four left-turning and four through movements) and, 

therefore, eight samples of delay estimates. 

 During the simulations, TRANSYT-7F firstly optimizes the signal plans based on 

the intersection volumes and then produces delay estimates accordingly. Together with 

the geometry information of the studied intersection, the volumes and the corresponding 

delays form the data required for the ANN delay model training. 
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3.3 The Development of an ANN Delay Model 

 To estimate intersection delays with adequate accuracy based on inputs directly 

available from traffic assignment, the Artificial Neural Network (ANN) technique is 

applied to develop the delay model. MATLAB programming is used to develop the ANN 

model by establishing relationships between traffic conditions and intersection delays.  

To be specific, the inputs are the movement volumes and facility information including 

facility type, area type, and number of lanes at an intersection, while the output is the 

movement’s intersection delay.     

 For all types of identified major intersections, the ANN model has two internal 

architectures that deal with the left-turning traffic and the through traffic, respectively.  

The model estimates the control delay for each movement using simulated volumes of all 

approaches at an intersection. The performance of the ANN delay model may be easily 

evaluated through comparison of the model estimates with TRANSYT-7F simulations.  

3.3.1 Architecture of the ANN Delay Model 

 Learning rules, which determine the architecture of ANN models, are important to 

model performance. Among the commonly used learning rules, back-propagation trains a 

multilayer feed-forward network with differentiable transfer functions to perform 

function approximation, pattern association, pattern classification, as well as a number of 

optimization strategies (Demuth et al., 2006). The term back-propagation refers to the 

process by which derivatives of network errors with respect to network weights and 

biases may be computed. The architecture of a multilayer network is not completely 

constrained by the problem to be solved.  It has been suggested that a two-layer 

(sigmoid/linear) network may represent any functional relationship between inputs and 
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outputs, provided that enough neurons are used (Demuth et al., 2006). In this study, the 

ANN models have two layers of neurons. As Figure 3.4 shows, one layer using a sigmoid 

transfer function handles input vector p, which is weighted by vector w. The second layer 

is the output layer that produces result A, which follows a linear relation as Figure 3.5 

indicates. Thus, the network models an approximate mathematical relation: 

A = f (wp + b)         Eq 3.1 

where 

A = ANN output 

w = weight assigned to inputs 

p = inputs  

b = adjusting bias 

 
Figure 3.4  A Sigmoid Transfer Function of an ANN Layer (Demuth et al., 2006) 
 

 
Figure 3.5  A Logarith-Based Transfer Function of an ANN Output Layer (Demuth et 
al., 2006) 
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 The number of neurons in the sigmoid layer is required to exceed that of the 

inputs (Demuth et al., 2006). By trial-and-error, one sigmoid layer with 50 neurons is 

determined as the best for the ANN models. The number of inputs to the network is 

determined by the problem at hand, and the number of neurons in the output layer is 

based on the number of outputs required. However, the number of layers between 

network inputs and the output layer, as well as the sizes of the layers, is to be determined 

by the analyst. Although in principle, a network with just one hidden layer can be taught 

to approximate any continuous functional mapping, the experiments in this study have 

shown that mappings from one real space to another are often better learned by networks 

with two hidden layers. However, in the present study, it is found that one hidden layer is 

enough for neural network generalization. According to Demuth et al. (2006), this often 

happens in the feed-forward neural network. Hence, more layers seem redundant for 

training purposes. 

 The inputs that the ANN model receives, include movement volumes, facility 

type, link capacity, and number of lanes, which are typically available from a planning 

model. Because TRANSYT-7F considers through and right-turning volumes in the same 

lane group, 12 movements at an intersection are reduced to eight movement volumes, two 

facility types, two numbers of lanes, and two link capacities that are fed to the ANN for 

the output of a delay estimate for an approach movement at a four-leg intersection: 

Dc : movement delay of the studied approach (s) 

v11~41: through volume of four approaches (vph) 

v12~42: left-turn volume of four approaches (vph) 

c1~2: link capacity of two links (vphpl) 
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f1~2: facility type of two links 

l1~2: number of lanes of two links 

 Figure 3.6 illustrates the spatial relationship of movement volumes, link capacities, 

number of lanes, facility type, and the corresponding delay estimate.  Facility type 

implies the intersection categories.  And link capacity, together with movement volumes, 

has significant implications on density of traffic on the link.  In the preliminary stage of 

developing the ANN model, all variables that are available from traffic assignment and 

seemingly related are incorporated so that the ANN model may fully apply all potential 

information for its training, although a certain variable may be redundant with the other 

one if simultaneously serving as the inputs of the ANN model.  

 
Figure 3.6 Spatial Relationships of the Input Variables for the Delay Model 
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Using the above information, a delay model should reflect the relationship 

between delay and the variables that describe volumes, capacity, and facility types of the 

two crossing streets, as described in a general form in Eq. 3.2:  

       Eq. 3.2 ),,,( 2~12~1,2~142~1241~11 lfcvvFDc =

 The functional relationship, F, may be expressed using different modeling 

techniques. A set of multiple linear regression models is developed to serve as a 

benchmark to evaluate the proposed ANN delay model.  The regression models take the 

form below: 

 Dc = b0 + b1.v11 + b2.v12 + b3.v21 + b4.v22 + b5. v31 + b6.v32 + b7.v41 + b8.v42 + b9.c1 + 

 b10.c2 + b11. f1 + b12.f2 + b13.l1 + b14.l2      Eq. 3.3 

where 

b0~14 = regression coefficients 

 Due to the correlation among these variables, tests of multicollinearity are 

conducted.  Muliticollinearity, in practical terms, means that the predictor variables are 

linearly related with each other, which may cause serious numerical and statistical 

difficulties in fitting a regression model (Mason et al., 1975).  Variance inflation factors 

(VIF) are a direct measure of multicollinearity. A predictor with VIF larger than 10 

usually needs to be removed from the MLR models. In Table 3.2, VIF of c1, c2, l1, and l2 

are very large, which implies significant linear relationship between link capacity and 

number of lanes. Therefore, the variable representing the two link capacities (c1 and c2) 

are discarded. The remaining 12 predictor variables demonstrate no more high VIF 

(Table 3.3), and therefore are taken as the inputs of the ANN delay model.  A comparison 
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of the performance of the MLR models and the ANN model will be discussed in Chapter 

4. 

Table 3.2  VIF of the Preliminary MLR Delay Model (b0~14: linear coefficients)  
VIF Through Movement Left Turn Movement
b1 2.65 1.60 
b2 2.65 1.60 
b3 1.60 2.65 
b4 1.60 2.65 
b5 2.63 1.60 
b6 2.63 1.60 
b7 1.60 2.63 
b8 1.60 2.63 
b9 410.52 410.54 
b10 377.06 377.08 
b11 20.24 20.24 
b12 288.27 288.28 
b13 23.82 23.82 
b14 252.43 252.44 

 
Table 3.3  VIF of the Ultimate MLR Delay Model 

VIF Through Movement Left Turn Movement
b1 2.55 1.55 
b2 2.55 1.55 
b3 1.55 2.55 
b4 1.55 2.55 
b5 2.55 1.55 
b6 2.55 1.55 
b7 1.55 2.55 
b8 1.55 2.55 
b11 7.05 7.05 
b12 4.67 4.67 
b13 6.91 6.91 
b14 4.55 4.55 

 
 As to the back-propagation learning rule used to train the ANN models, the 

Levenberg-Marquardt algorithm is usually the fastest of several training algorithms 

implementing the back-propagation learning rule. It provides a memory reduction feature 

when the training data set is large. Several other training algorithms are also considered.  
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Requiring no line search, the scaled conjugate gradient algorithm is a good general 

purpose training algorithm. The Bayesian regularization algorithm is a modification of 

the Levenberg-Marquardt training algorithm used to produce networks that generalize 

better. It reduces the difficulty of determining the optimum network architecture.   

 The performances of ANN models using the above three training algorithms were 

examined for all intersection types. It was found that the scaled conjugate gradient 

usually produced a relatively better fit compared to the other two, based on three 

evaluation criteria: the regression R-squared value, the root-mean-square error (RMSE), 

and the percent root-mean-square error (%RMSE). The RMSE, also known as the 

standard error, represents the average error of model predictions. The %RMSE is a 

statistic indicating the percentage of the average expected error in the actual value, and it 

has been adopted by the FDOT as a criterion in calibrating travel models. The formulas 

for computing the RMSE and the %RMSE are given below: 
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where 

xc = delay estimates from TRANSYT-7F simulation (seconds per vehicle) 

xv = delay predictions by ANN delay model (seconds per vehicle) 

n = number of ANN inputs (simulated scenarios) 
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 For all types of intersections, the ANN delay models that apply the scaled 

conjugate gradient algorithm usually demonstrate relatively better performance than the 

other two. Table 3.4 shows the performance statistics of the ANN delay model for 

intersection type 2241. Because of the relatively lower %RMSE, a multilayer feed-

forward ANN architecture with a scaled conjugate gradient algorithm is applied in 

developing the ANN delay models. 

Table 3.4  Performance Statistics of Three Training Algorithms for 2241 Type of 
Intersection 

Training Algorithm Regression
R-squared RMSE %RMSE 

Scaled Conjugate Gradient 0.855 8.34 18.77 
Bayesian Regularization 0.767 10.47 22.23 
Levenberg-Marquardt 0.807 9.55 20.27 

 
3.4 The Combined System 

 The well-trained ANN delay model is designed to interact with a standard static 

traffic assignment model. A typical assignment model builds paths based upon link costs 

(travel time in this study) and assigns trips to those paths for each origins and destinations.  

After all origins and destinations have been processed, link costs are updated based upon 

the level of congestion on each link. The entire path and assignment process is repeated 

until termination criteria are reached. The volumes from each assignment are combined 

to form a weighted assignment. Different criteria are applied to determine if enough 

iterations have been performed. The input format of the ANN delay model must be 

compatible with the output format of the traffic assignment procedure. Likewise, the 

traffic assignment also has to perform based on the ANN delay model’s output. The delay 

model and the traffic assignment call for one execution of each other during every 

iteration of the combined system, as shown in Figure 3.7. The delay estimates, serving as 
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a data source shared by both the delay model and the traffic assignment, require a 

compatible format for the data exchange interface connecting the delay estimates and the 

traffic assignment.   

 When traffic assignment incorporates control delays, it is always an indispensable 

issue to pursue the convergence, which is one of the major challenges in this research.   

 

Figure 3.7  Iterative Signal Plan Optimization and Assignment Procedure 

 The combined system has an obvious dilemma when attempting to arrive at an 

optimized solution.  The ANN delay model implicitly optimizes the signal settings based 

on the received assignment volume. The resulting intersection delays then cause the 

traffic assignment to re-calculate the updated route costs and re-assign the traffic onto the 

network. Thus, in the following iteration, once again will the ANN delay model have to 

re-adjust the underlying signal settings, as well as the traffic assignment, to re-optimize 

the assigned volumes. As Figure 3.7 shows, such a simple iterative process unable to 

reach convergence more often than not continues to an endless oscillation (Lee and 

Machemehl, 2005). Therefore, an optimization search algorithm is required to prove that 

the combined model may always reach a solution regarding equilibrium for both the 

delay model and the traffic assignment.  
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 At the final stage of the study, the performance of the combined system needs to 

be evaluated based on a two-fold consideration. First, to validate the convergence of the 

iterations, the following criteria may be referred to (Horowitz, 1989): 

 Premature termination of iterations leads to significant error. 

 A solution is replicable for a given problem. 

 Different starting points should reach the same solution. 

 Note that Horowitz’s criteria (1989) are essentially more specific, yet otherwise 

identical to what Heydecker (1983) recommended. Second, the validated convergence 

must be arithmetically demonstrated through a general criterion of the system’s 

convergence tests that accepts no or only a negligible difference in the network flow 

patterns for two consecutive iterations. This criterion may be explained by Eq. 3.6 (Sheffi, 

1985), which indicates that the signal settings may not be further optimized to reduce the 

difference of the network flows of two consecutive iterations. 
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where  

A = number of links in the network  

k = a predetermined constant.   

 Alternatively, another criterion that is based on the change in flows may be used.  

For instance, the iteration may terminate if  
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 These two equations have different considerations. Eq 3.6 calculated the network 

flow change averaged onto the whole network, whilst Eq 3.7 solely considers the overall 

change of network flows in consecutive iterations. 
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4. ANALYSIS OF RESEARCH RESULTS 

4.1 ANN Delay Model Performance Analysis 

4.1.1 Data Preparation 

 The data for training the ANN delay model are extracted from the simulations 

performed via TRANSYT-7F.  In addition to the volumes and delays, the facility type 

and the capacity of the four cross roads are also needed as input to the ANN models.  The 

capacities are assumed based on the approach’s facility type, area type, and lane number 

defined in the user’s manual of FSUTMS (FDOT, 1997) and are given in Table 4.1. Take 

intersection type 2322 as an example. The first two digits respectively represent a link’s 

facility type (2) and number of lanes (3), and the last two digits give the same 

information for the crossing link (facility type 2 with 2 lanes). 

Table 4.1  Network Link Capacity for Roads of Different Facility Types and Lanes 
Intersection Type Base Capacity (vphpl) 

2322 755 
2222 750 
2241 750/530 
3141 592/530 
4141 530 

 
 To create the training datasets, a total of 150 combinations of through volumes are 

created. To ensure that the volumes reflect the real traffic conditions, the historical traffic 

counts from the Florida Traffic Information (FTI) 2004 CD were examined. The peak-

hour traffic counts were extracted from the 88 Portable Traffic Monitoring Sites (PTMS) 

for intersections of facility type 2 in all directions in the Gainesville urban area (Figure 

5.1). The peak-hour traffic counts per lane were found to approximately follow a normal 

distribution curve, with a mean µ = 462.72 and a standard deviation σ = 135.83, as shown 
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in Figure 5.2. Therefore, the normal distribution was for intersections of facility type 2 

when creating the simulation scenarios. Because no PTMSs are found for undivided 

arterials (facility type 3) and local collectors (facility type 4), it is assumed that the peak-

hour traffic for these facility types also follow a similar normal distribution. The µ and σ 

are slightly adjusted so that [µ-3σ, µ+3σ] properly contains the assumed base capacities.  

This range represents the 99% confidence interval of a normal distribution. In other 

words, the volumes selected will fall within this range with a 99% probability. Table 4.2 

gives the normal distribution parameters for different intersection types. 

 
Figure 4.1  Locations of 88 PTMS for Divided Arterials in the Gainesville Urban 

Area 
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Figure 4.2  Distribution of Peak-hour Traffic Counts of 88 PTMS for Divided 

Arterials 
 
Table 4.2  Normal Distribution Parameters for Volumes by Intersection Type 

Intersection Type µ  σ 
2322 462.72 135.83 
2222 462.72 135.83 
2241 462.72 135.83 
3141 400.00 125.00 
4141 400.00 125.00 

 
 The 150 combinations of through traffic volumes were created by sampling from 

normally distributed volumes within the range of [µ-3σ, µ+3σ] using random numbers. 

For all types of intersections in this study, the heaviest through volume simulated was 

approximately 1.4 times that of the corresponding approach’s base capacity.   

 The simulation scenarios also require left-turning volumes. Assuming seven 

turning ratios for generating different combinations of turning traffic, which are 10%, 

15%, 20%, 25%, 30%, 35%, and 40%, the number of combinations of four turning ratios 

is 74 = 2,401. However, because an ANN model does not need to be trained with all 
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possible situations to make predictions, not all of the 2,401 turning ratio combinations 

have to be considered in training. It was found that the ANN model did not seem to be 

sensitive to small variations of turning ratios under certain through traffic conditions. For 

instance, an intersection with a turning ratio combination of [0.1 0.1 0.25 0.3] has no 

significantly different traffic situation compared to one with a turning ratio combination 

of [0.1 0.1 0.2 0.3] when the four through volumes are fixed. Therefore, only 12 turning 

ratio combinations are randomly selected from the 2,401 to combine with the through 

volumes and create the ANN training scenarios. The performance of ANN delay models 

has proven that this proportion is adequate for the analysis. As a result, there are 1800 (= 

150 × 12) scenarios simulated for each intersection. Extracted from these 1800 scenarios 

are respectively 7200 (= 1800 × 4 legs) samples for either through or left-turn movements 

of each intersection type.  During the training of the ANN delay model, the input data are 

divided into three groups: training data, validation data, and testing data.  All of the 

samples are employed to train the ANN delay model except that approximately 15% of 

the 7200 samples are randomly allocated to test the ANN delay model’s accuracy at a 

later stage.  The ANN training employs “supervised learning,” that is, the training process 

is simultaneously supervised by the scaled conjugate gradient training algorithm that 

applied validating data to the trained ANN to correct potential overfitting.  After the 

training of the ANN model, the testing data are used to evaluate the ANN model’s 

performance.   

4.1.2 Evaluation of the ANN Delay Model 

 The accuracy of the ANN delay model’ delay estimates is an essential condition 

to ensure the overall performance of the combined system.  Note that there are in fact two 
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ANN submodels in one architecture.  One is to estimate delays for through and right-

turning movements, and the other is for left-turning movements. Unless necessary, the 

entire model including its submodels will be referred to as the ANN model. It may be 

observed that the ANN delay model usually demonstrate three characteristics. The delay 

estimates for the larger intersections (facility type 2) are less accurate than those for the 

smaller intersections (of facility type 3 or 4). Regardless of the intersection types, the 

ANN model always perform better estimating delays for the through movement than for 

left-turning movements. That is, the left-turning delays are more difficult to estimate than 

the through movement delays. The “normal” traffic loadings result into better delay 

estimates than “rare” traffic conditions. For example, the conditions from both “tails” of 

the normal distribution tend to lead more erroneous delay estimates than those from 

middle of the “bell”. 

 To quantify the ANN model’s capability precisely, around 15% of the 7,200 input 

samples for ANN are randomly selected as testing data without duplicating the training or 

validation data. There are two intuitive methods to evaluate the ANN model training.  

One is to plot the error of predictions. The other is to fit a linear regression analysis 

between the predictions and the estimates.  Descriptive statistics, such as regression R-

squared, RMSE, and %RMSE, are calculated (Eqs 3.4, Eq 3.5). The %RMSE of delay 

estimates are controlled below 26%. The independent variables of the regression models 

are the eight volumes, two numbers of lanes, and two facility types (Table 3.3) and the 

dependent variable is the delay.  The regression coefficients, F-values, P-values, and 

performance statistics of every regression model are provided in the appendix.  The same 

training and testing data sets are used to develop and evaluate the MLR models 

 69



introduced in Chapter 3. The regression R-squared, RMSE, and %RMSE of the ANN 

delay model and the MLR models are compared in Table 4.3, which shows that the ANN 

delay model is superior to the regression models with frequent lower RMSE and %RMSE.  

Although the regression models often present R-squared values that are close to or even 

better than those of the ANN delay model, R-square values are not taken as the decisive 

standard judging the goodness of a delay model.  R-squared values merely identify how 

well a linear fit is and help the understanding of the performance of the delay models.  A 

high R-square value may come with a high %RMSE if the samples spread widely but 

symmetrically along the fitted line.  That is the reason why lower %RMSE and RMSE 

are the major factors judging the delay models.  Figure 4.3 to 4.7 illustrate the linear fit 

and the prediction errors for through and left-turning movements of all five intersection 

types. The linear fit, take Figure 4.3 for example, is between the ANN delay outputs and 

TRANSYT-7F simulated delay estimates (targets). The R-squared value is 0.578, which 

represent best linear relationship between the ANN outputs and the simulated delays. 

Figure 4.3 exhibits the ANN delay outputs and the simulated delays in different color so 

that the accuracy of the ANN predictions, delays in this case, may be easily identified. In 

the figures, a code is used to indicate the type of an intersection, as well as the movement 

studied, as follows:   

Table 4.3  Comparison of Performance Statistics of Two Categories of Models  
ANN 

Models 
Regression 

Models 
ANN 

Models 
Regression 

Models Intersection 
Category Statistics 

Through Through Left-turning Left-turning
R-Squared 0.729 0.705 0.609 0.573 

RMSE 7.13 11.36 17.17 19.78 
 

2322 
%RMSE 21.36 22.95 25.45 28.58 

R-Squared 0.754 0.769 0.685 0.647  
2222 RMSE 7.25 12.39 13.92 17.58 
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%RMSE 16.27 20.73 22.13 24.97 
R-Squared 0.791 0.818 0.662 0.628 

RMSE 5.49 8.17 9.78 13.67 
 

2241 
%RMSE 17.28 18.51 18.73 21.73 

R-Squared 0.734 0.771 0.638 0.657 
RMSE 4.69 6.14 9.71 10.75 

 
3141 

%RMSE 14.89 15.84 22.09 22.75 
R-Squared 0.655 0.717 0.613 0.576 

RMSE 4.67 5.67 5.51 6.46 
 

4141 
%RMSE 19.23 20.87 16.24 18.06 

R-Squared 0.787 0.746 0.749 0.629 
RMSE 5.1 11.245 12.62 18.56 

 
Overall 

%RMSE 16.76 25.23 23.80 26.61 
 

 
Figure 4.3  Linear Fit of ANN Delay Estimates and Targets for Intersection Type 

2322 

 71



 
Figure 4.4  Linear Fit of ANN Delay Estimates and Targets for Intersection Type 

2222 

 
Figure 4.5  Linear Fit of ANN Delay Estimates and Targets for Intersection Type 

2241 
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Figure 4.6  Linear Fit of ANN Delay Estimates and Targets for Intersection Type 

3141 

 
Figure 4.7  Linear Fit of ANN Delay Estimates and Targets for Intersection Type 

4141 
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 Another major concern about the delay model is the computing time. It should be 

short enough to be practical for application. Table 4.4 shows the computing costs for 

different sizes of experimental networks when using the delay model.  The mean of 

computing time is averaged based on 300 applications of the delay model.   

Table 4.4       Average Computing Time of Various Networks 
 Number of Intersections 
Network Size 4  20  
Average Computing Time (sec) 1.91 4.53 

 

 Further analysis is conducted on the characteristics of the prediction errors of the 

ANN delay model. Figure 4.8 shows the distributions of prediction errors by equal 

intervals and the trend of the mean absolute errors (MAE) for each intersection type.  

MAE is calculated to examine the size of forecast errors (Eq. 4). MAE assumes that the 

severity of a prediction error increases in a linear manner (e.g., a 2% error is twice as 

serious as a 1% error). For simplicity, only the through and right-turn scenarios are 

analyzed.  

MAE = 
n

xx
n

i

v
i

c
i∑

=

−
1         Eq 4.1 

where 

xc = delay estimates from TRANSYT-7F simulation (seconds per vehicle), 

xv = delay predictions by ANN delay model (seconds per vehicle), and 

n = number of testing inputs 
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Figure 4.8   Distributions of MAEs for Different Volume Ranges  
 
 It may be observed from Figure 4.8 that larger MAEs are encountered more 

frequently when the volumes reach or exceed the capacity of an intersection. The model 

performance is far less reliable if the intersection is seriously oversaturated. This problem 

is less severe for intersection type 4141, which has an acceptable MAE error even under 

heavy traffic conditions. One possible cause is that this study has employed single period 

analysis in signal timing optimization in TRANSYT-7F, which may not ensure realistic 

delay estimation under severely oversaturated conditions. 
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4.2 The Traffic Assignment Model 

In this research, the standard UE static traffic assignment is applied using Cube, a 

travel demand modeling software package by Citilabs and currently adopted in the State 

of Florida. The study network is constructed in Cube. An initial turn delay table and an 

OD matrix with all movement volumes less than 1.3 times the approach capacity are also 

generated and used as the initial input for traffic assignment. A total of 24,048 trips are 

assigned to the study network. A typical assignment model first builds the shortest paths 

for each origin-destination (OD) zone pair based on link travel costs. Trips are then 

assigned to these paths based on the shortest paths. After all OD pairs have been 

processed, link travel costs are updated based on the volumes on each link.  Then the 

processes of path building and assignment process repeat. The volumes from each 

assignment are combined with those obtained from the previous iteration to form a 

weighted assignment. This process continues until some criterion for termination is met. 

Different criteria may be used to determine when enough iterations have been performed. 

In this study, the link travel cost is updated in every assignment, not only by the variation 

of the link congestion level, but by the changes of the intersection delays as well.  For a 

specific link on the studied network, the total link travel cost consists of two parts:  

T = Tc + Tl         Eq 4.2 

where 

T = total link travel cost, 

Tc = movement delays of a upstream intersection prior to a destination node, and 

Tl = link travel time for the link connecting the upstream intersection and the 

destination node. 
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 Within one iteration of traffic assignment, Tc is provided by the ANN delay model 

for every turning movement of an intersection.  Based on identification number of 

intersections, the ANN delay model is able to determine if Tc is resulted from a delay 

estimate for through traffic, right-turn movements, or left-turns.  Tl is, on the other hand, 

calculated by the Cube traffic assignment model in the form of Bureau of Public Roads 

(BPR) volume-delay function using Eq. 4.3: 

Tl =  tu[1+ k(v/c) m]        Eq 4.3 

where 

tu = free flow travel time, a constant (undersaturate condition), 

k  = saturation weight factor (default value, 0.15), 

m = saturation power factor, (default value, 4). 

 The goal of the traffic assignment is to find the minimum total travel cost of the 

network: 

         Eq. 4.4 ∑
=
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4.3 The Combined System 

 As mentioned in Chapter 3.3, the combined system of the delay model and traffic 

assignment is an iterative process, as illustrated in Figure 4.9. The user equilibrium (UE) 

traffic assignment is performed by Cube, which produces link volumes. These link 

volumes and turning movements are provided to the ANN delay model, which updates 

control delays based on the assigned volumes. These delays are sent back to Cube for the 

next run of the traffic assignment. This process repeats until the solution of the combined 
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system converges. MATLAB is capable of reading and writing the inputs and outputs of 

traffic assignment performed by Cube, thus the data and intermediate results may 

smoothly flow within the combined system.  In Figure 4.9, the box labeled as Frank-

Wolfe Algorithm is the key in the combined system to produce a convergent solution. 

This algorithm is described below. 

 
Figure 4.9  Logical Loop of the Combined Model 
 
 To facilitate the convergence of the solutions, a search algorithm is required, since 

mathematical programming cannot guarantee convergence (Sheffi, 1985).  In this study, 

the ANN delay models cannot provide reliable gradient information to allow the 

application of traditional optimization techniques.  An alternative is to employ a meta-

heuristic algorithm such as direct search, which searches for a solution without using 

derivatives explicitly. Although the global optimum is not guaranteed, the direct search 
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method is often able to find satisfying solutions for many engineering applications. In 

fact, for practical applications, it is often the computing time, simplicity, and fast arrival 

at a local optimum that are the primary considerations To reach a satisfying solution, the 

search algorithm has to demonstrate a clear converging pattern of solutions to reach at 

least a local optimum. 

 A common choice for a search method is the method of successive averages 

(MSA), known also as a simplified transformation of the Frank-Wolfe algorithm (Sheffi, 

1985; Ortuzar and Willumsen, 2001). The method is based on a predetermined step size 

along the descent direction.  The procedure is as follows: 

1. Initialization.  Perform an equilibrium assignment based on a set of initial travel 

costs T. This generates a set of network flows xn
a, which represents the flow on 

link a. Set n = 1. 

2. Updating travel cost for each link a.  Set Ta = ta (x
n
a). 

3. Search direction finding. Perform an equilibrium assignment based on the current 

set of travel costs Ta, which yields an auxiliary network flow pattern yn
a. 

4. Determination of step size.  Obtain the new flow pattern setting, set α = (1/n). 

5. Derive a new set of flow. Set xn+1
a = xn

a + (1/n) (yn
a - xn

a) 

6. Checking Convergence criterion. Examine the difference between the network 

flows of successive iterations.  If the difference is small enough, convergence is 

considered to be attained, stop.  Otherwise, set n = n+1 and go to step 1. 

 The original Frank-Wolfe algorithm, different from the MSA in step 4, optimizes 

move size factor α using mathematical programming methods so that the convergence of 

the combined system may be reached more efficiently. The goal of the Frank-Wolfe 
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algorithm is to find a downhill direction and proceed to step 5. However, because at step 

5 the delay estimates are results from an ANN delay model that gives no gradient 

information, α  cannot be solved using traditional mathematical programming, which 

requires gradient or higher derivatives of the objective function. Therefore, the mesh 

adaptive direct search (MADS) algorithm, a direct search method requiring no gradient or 

derivatives, is applied to seek the optimized α in step 4. By minimizing the potentially 

non-smooth function represented by the delay model, the MADS allows local exploration 

in a dense set of directions in the space of optimization variables (Audet and Dennis, 

2006). As a direct search algorithm that computes a sequence of points that approach the 

optimum gradually, MADS searches at each step for a set of points, called a mesh, 

around the current solution point — the point computed at the previous step of the 

algorithm. The mesh is formed by adding the current point with α (a scalar value) 

multiplied by (yn
a - xn

a) as step 5.  If MADS finds a point in the mesh that improves the 

objective function at the current point, the new point becomes the current point at the 

next step (MathWorks, 2004).  

 MADS is used to substitute for step 4 above to help the Frank-Wolfe algorithm 

converge faster in the combined system. It attempts to find a scalar, α, that solves the 

program: 

ωα dxtxyxz
a

xyax

a
nnn ∑∫

−+
=−+

)(

0
)())((min     Eq. 4.5 

subject to 10 ≤≤ α  

 The α obtained will be used in computing the weighted flow, xn+1
a = xn

a + α (yn
a 

– xn
a).  To demonstrate the performance, the MADS Frank-Wolfe method (MFW) is, 
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respectively, applied to two networks shown in Figures 3.2 and 3.3. The smaller network 

has 12 links and four intersections with 5,963 vehicle trips. The larger network has 49 

links and 20 intersections with 24,048 vehicle trips. The performances of both networks 

confirm that the Frank-Wolfe algorithm helps the combined system converge to an 

identical network flow pattern, in spite of the choice of the MFW or MSA method. 

However, it is observed that the computing time to reach an identical solution increases 

substantially with the network size (see Table 4.5). Note that the combined system often 

reaches a different solution if limited time is allocated, although a trend of convergence is 

always demonstrated. These different solutions are various local optima that meet the 

stopping criterion as given in Eq 3.4 or Eq 3.5. Empirically speaking, among these local 

optima, there is one with a minimum link volume difference, which is the best solution 

that may be reached repeatedly if the combined system runs long enough.  This best 

solution may be repeatedly reached if enough time is given, no matter what the initial 

network flow pattern or intersection delays are.  However, as discussed in Chapter 2, 

there is no theoretical proof as to whether the solution is the global optimum or not. 

For comparison, the MSA method that applies a deterministic weight (α = 1/n) to 

each auxiliary flow is also applied to the combined system, and it is able to always reach 

the same solution but with many more iterations than the MFW method. For the simple 

network shown in Figure 3.3, with the same demand, the MFW may converge to the 

same network flow pattern after 15 iterations, which is much faster in terms of number of 

iterations than the MSA, which takes 61 iterations to reach the same convergence level. 

The performance on the large network further confirms the advantage of the MFW 

method, which takes 32 iterations to reach a solution versus 137 iterations for the MSA. 
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The networks with traffic loading ranging from heavy to light are all solved using a 

random initial OD matrix. The MFW demonstrates a consistent advantage over the MSA 

in all situations.  Horowitz (1989) gives a set of criteria for a satisfying solution from a 

travel demand model: 

 Premature termination of iterations leads to significant error. 
 A solution is replicable for a given problem. 
 Different starting points should reach the same solution. 

 The combined system, starting with varied initial signal settings, is always 

capable of converging to one identical network flow pattern with enough time allocated.   

Although the uniqueness of a solution cannot be guaranteed, the convergence is thus 

validated if the criteria of Horowitz (1989) are applied.  Note that the Eq. 3.6 and 3.7 

(Sheffi, 1985) are also employed to judge the convergence.  Both equations indicate that 

the signal settings may not be further optimized to reduce the difference of the network 

flows of two consecutive iterations.  There is a minimized error between successive 

network flow patterns at convergence. The resulting assigned volume and the previous 

iteration’s network flow pattern are approximately identical if judged by the stopping 

criteria. During the iterative procedure, the oscillation, though gradually dampened, 

cannot be completely eliminated because of the nature of the problem. This may be 

attributed partly to the ANN delay model merely estimating delays at a precision level of 

0.1 second, which results in round-offs and may not be sufficient for theoretical 

convergence. Another cause is that the signal settings may not always be a global 

optimum of the signal optimizers (in this case, TRANSYT-7F) due to varied initial 

conditions and time constraints (TRANSYT-7F manual). In other words, a local 

optimized signal setting may well serve more than one volume configuration of an 
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intersection with equivalent turning delays, which implies that there may be more than 

one initial network flow pattern leading to the convergence solution in the following 

iteration of the combined system.   

 Table 4.5 shows that the network flows and travel costs of successive iterations 

result into sufficiently small values of k1 and k2 (calculated by Eqs. 3.4 and 3.5), which 

indicate that the network flow patterns of two successive iterations are close enough to 

each other to validate convergence. 

Table 4.5  The Statistics of Convergence Criterion for Two Studied Network. 

MFW k1 k2
Total Trips 

(vehicle/hour) 
Small Network 0.047 0.0059 5,963 
Large Network 0.049 0.0030 24,048 

 
 Figures 4.10 through 4.15 illustrate how the solution quality, measured as the sum 

of absolute differences between successive iterations, changes with the iterations using 

three methods: simple iteration, MSA, and the MFW.  Two sets of convergence criteria 

are applied and the corresponding results are plotted.  Figure 4.10 shows that using 

simple iterations, the small network may be unable to find more than a solution, while 

Figure 4.13 indicates that the large network displays a non-converging, oscillating 

solution pattern, as discussed in Chapter 2. When either the MSA or MFW is applied, the 

convergence in both assignment volumes and delays are achieved, as shown in Figure 

4.11 and Figure 4.14, respectively. It may be easily seen that the MSA gives a relatively 

smoother curve and takes longer to converge when compared to the faster yet choppy 

convergence of the MFW (Figure 4.12 and Figure 4.15). This indicates that the MFW is 

able to improve the objective function value by larger amount at each step. 
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Figure 4.10  Oscillation of the Small Network using the Simple Iterations 
 

 
Figure 4.11  Convergence of the Small Network using the MSA 
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Figure 4.12  Convergence of the Small Network using the MFW 

 
Figure 4.13  Oscillation of the Large Network using the Simple Iterations 
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Figure 4.14  Convergence of the Large Network using the MSA 
 

 
Figure 4.15  Convergence of the Large Network using the MFW 

 To further explain the relationship between the volume and travel costs on 

competitive links, Figures 4.16 and 4.17 illustrate the interactions between left-turn 
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movements and through movements at a selected intersection in each of the two networks 

(see Figures 3.2 and 3.3) in each iteration of the combined system. The competitive 

behavior between the two movements can be easily identified, so is the converging trend 

of both link volumes and link travel costs. Take the simple network in Figure 3.3 as an 

example, the traffic start from origin 7 to destination 3 have two routes, respectively, 

passing through intersection 12 and 11. Therefore, the intersection delay for the left-turn 

movement 12-11-14 and that for the through movement 7-12-13 cause the two routes to 

compete with each other during traffic assignment. In continuous iterations, when the 

volume of the 7-12-13 movement (indicated by blue circles) becomes higher, the volume 

of the 12-11-14 movement (labeled by red circles) is always lower, which indicates a 

portion of travelers change their route between 12-11-14 and 7-12-13 in response to the 

increase or reduction of delays at either intersection. The same pattern may be observed 

between the delays for 7-12-13 and 12-11-14 (see Figure 4.16).  The identical 

competitive behavior of the large network is demonstrated in Figure 4.17. As the 

converging trend develops, the competitive behavior gradually shrinks to a negligible 

level. When the stop criteria are met and the iteration terminates, the difference between 

the volumes and delays from the final two iterations are respectively 0.26% and 0.19% 

for the through movements, and 0.15% and 0.27% for the left-turns, respectively. These 

negligible differences suggest that the level of service (LOS) of the network may not be 

affected with the convergent traffic assignment solution. 
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Figure 4.16  Two Competitive Links at Intersection 12 of the Small Network 

 
Figure 4.17  Two Competitive Links at Intersection 29 of the Large Network 

 Because the combined system incorporates the intersection delays, the assignment 

results and path costs are different from those of a simple traffic assignment.  For 

example, for the path connecting the OD pair 1 and 20 in the large network, Figures 4.18 
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and 4.19, respectively, demonstrate the path cost and assigned volumes obtained from the 

simple assignment and combined system.  In the two figures, a larger number on a link 

represents assigned volumes, and a smaller number indicates the link’s cost.  It can be 

seen that the total path costs of the combined system are always higher than those of the 

simple assignment. The path cost of OD 1-20 increases from 7.2 to 15.2 (minutes) due to 

the inclusion of intersection delays. The advantage of the combine system is that the path 

costs are considered in a more reasonable manner. The shortest path is also determined 

differently when intersection delays are included. 

 

Figure 4.18  Path Cost and Assigned Volumes between the OD pair 1-20 of the Large 
Network (the Simple Assignment) 
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Figure 4.19  Path Cost and Assigned Volumes between the OD pair 1-20 of the Large 

Network (the Combined System) 
 

Computation efficiency is always a concern for travel demand models, because 

reaching a solution may take considerable amount of time for large networks.  To 

investigate the efficiency of the combined system, the time allocation for each phase of 

the combined model is measured. Table 4.6 presents the computing time consumed by 

the MSA and MFW methods under the same traffic conditions.  It can be seen that the 

traffic assignment process spends much less time than the ANN delay model. Although 

these experiments do not show the computational advantage of the MFW, for large 

networks as suggested by Sheffi (1985) methods like MFW are economical for sparing 

unnecessary iterations.  

Table 4.6  Time Consumed by the Combined System of Different Networks  

Network Total Trips 
(Vehicle/hour) 

Time 
Allcation 

MSA 
(second/iteration)

MFW 
(second/iteration)

Total 3.25 13.53 
ANN 1.91 11.7 

Assignment 0.09 0.11 

 
Small 

Network 

 
5,963 

Others 1.25 1.72 
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Total 6.74 41.46 
ANN 4.53 38.88 

Assignment 0.50 0.67 

Large 
Network 

 
24,048 

Others 1.71 1.92 
 
From Table 4.6, it may be seen that the ANN model takes most of the time. Data 

exchange and recording functions (labeled as “Others”) also take considerable amount of 

time.  To reduce the computing time, a standalone extension may be devised for the ANN 

delay model.  Other programming language superior to Matlab in computing speed may 

also be employed to implement the system. 
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5. CONCLUSIONS AND FUTURE WORK 
 

5.1 Conclusions 

 For this dissertation research, a combined system of a traffic assignment and an 

ANN delay model has been developed.  The delay model is implemented using the ANN 

technology for five typical types of intersection configuration, and is able to provide 

intersection delay estimates when traffic volume data (including turning movements) and 

information on an intersection are provided without the need to perform signal 

optimization.  The ANN delay model is trained using a set of training data on traffic 

volumes and the corresponding intersection delays after signal plans have been optimized.  

The errors of the ANN delay model, measured as %RMSE, range from 14.8% to 25.6%. 

The ANN delay model produces more accurate delay estimates for smaller intersections 

(e.g., facility types 3 and 4) than for larger ones. This may be because smaller 

intersections of local collectors have less complex traffic conditions than larger 

intersections of arterials.  

 The combined system employs the method of successive average (MSA) and the 

Frank-Wolfe’s user equilibrium method to seek a traffic assignment solution that ensures 

that the traffic volumes from the traffic assignment are consistent with the intersection 

delays.  The combined system is capable of producing a convergent solution in a 

reasonable amount time, which may be significantly reduced after optimization of the 

program.  The MSA is simple and straightforward to implement, but requires more 

iterations to reach convergence because it lacks the ability to optimize the search step size. 

In comparison, the Frank-Wolf method is able to find a convergent solution for fewer 
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iterations.  However, it consumes more computational time at each iteration of the 

combined system due to the additional computation required to optimize the step size.  

Table 5.1 provides a comparison of the two methods. 

Table 5.1  Comparison of Convergence Patterns of Two Search Methods 
 Converging Pattern Time Consumption 

MSA Smooth Expensive 
MFW Choppy Economical 

 
At convergence, the solution may not be unique.  For example, a small number of 

trips may switch from one path to another alternately in response to small perturbation in 

intersection delays.  However, such small number of trips is insignificant and will not 

affect the usefulness of the model for planning applications. .Although the combined 

system is able to reach equilibrium, a global optimum of the combined system is not 

guaranteed due to the lack of a theoretical proof.  The system is able to demonstrate an 

obvious converging pattern leading to a local solution that may be repeated with varied 

initial network flow pattern or intersection delays, if sufficient time is allocated. 

 
5.2 Research Contributions  

 This research has contributed to the knowledge base of travel demand modeling in 

several ways. Firstly, the ANN delay model is able to estimate intersection delays more 

efficiently than complicated micro-simulation models that are often used. ANN delay 

model is faster and simpler due to their relaxed requirement on inputs so that no cycle 

length or green split is required as input.  The second advantage of the ANN model is that 

signal optimization is already implicitly completed, therefore computation necessary for 

signal optimization is avoided during traffic assignment.  This is important for 

computational efficiency of the combined system.  Another advantage of the ANN delay 
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model is their ability to provide delays based on signal plans that optimize not only green 

split but also cycle length for a given set of traffic volumes of an intersection.  This is an 

important improvement over previous combined systems, which only optimize green split 

but the cycle length is fixed.  By optimizing the cycle length, the combined system is able 

to simulate the actual situations more realistically and, thus, better serve engineering 

applications. (can this model be applied for dynamic assignment applications? NO, we 

cannot, we agreed on this before.)   

 The methodology developed in this research is able to produce convergent 

solutions of a network flow pattern for both small and large test networks, given an OD 

matrix. The convergence is not affected by random initial network flow patterns or 

random initial signal settings. The converging trend of the small network is smoother 

than that of the large network, which is possibly due to the relatively simple conditions of 

the small network.    

 
5.3 Limitations of the Combined System 

While the delay model is able to achieve accuracy that may be acceptable for 

planning purposes, the accuracy level is not uniform for all traffic conditions.  Analyses 

of the distributions of the prediction errors indicate that ANN delay model estimates 

delays with less accuracy when traffic is severely over-saturated or extremely under-

saturated. It appears hat the model cannot accurately quantify delays when excess traffic 

is far beyond the link capacities.  To improve the ability of the models for over-saturation 

conditions, producing ANN training data using better simulation models for signal 

optimization and delay estimation may be needed.  For light traffic, since there are often 
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more than one optimized signal settings, a significant difference in the delays of an 

approach may occur. 

 The large network studied has merely 20 intersections and five intersection types.  

The application to actual urban networks will require modeling of more intersections and 

geometric configurations.  In this study, signal progression is also not considered, 

although it is widely used in practice.  

 
5.4 Future Improvements 

 The optimization of signal plans in TRANSYT-7F  employs the genetic algorithm 

for searching for the global optimum of signal plans for any given scenario, which is 

time-consuming.  The search also does not guarantee of global optimal solutions.  With 

more computing resources, the simulation scenarios, as well as the corresponding signal 

plans, may be improved.  Although global optimal signal plans cannot be guarantee the, 

more global optima and near-global optima may help the ANN delay model improve its 

accuracy. 

 To make the combined system suitable for practical applications, more 

intersection types need to be considered, including unsignalized intersections. Signal 

coordination will also need to be included. 

 Presently, in most planning models, link travel time is determined based on the 

BPR formula that is also used in this research.  This formula may have already attempted 

to consider intersection delays, whereas in a simplified and inaccurate way.  If 

intersection delays can be modeled with good accuracy in a planning model, it will be 

necessary to also model the actual link travel time under different flow conditions.  To 
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realize such a link travel time model, the current ANN model needs to expand its input 

requirement on variable like segment length, and speed limit.  A challenging question 

may be if the BPR formula may be replaced by the ANN model, if the ANN model’s 

fitting seems promising.  A set of criteria will be required to make this decision.    

Due to the constraints of computing resources and limited time, there are many 

other search methods that have not been investigated. A more robust and efficient 

optimization algorithm will increase the speed of convergence, thus making the model 

better suited for applications to large networks in practice, which often consists of 

thousands of nodes and more links. 
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APPENDIX. AREA TYPE AND FACILITY TYPE DEFINTION 
 
Table A.1  One-Digit Area Type Codes 
Area Type Description 

1 Central Business District (CBD) 
2 Fringe 
3 Residential 
4 Outlying Business District (OBD) 
5 Rural 

Source: FDOT FSUTMS Technical Reports (1997-1998) 
 
Table A.2  One-Digit Facility Type Codes 

Facility Type Description 
1(10) Freeway 
2(20) Divided Arterial 
3(30) Undivided Arterial 
4(40) Collector 
5(50) Centroid Collector 
6(60) One-Way Streets 
7(70) Ramp 
8(80) HOV lane 
9(90) Tolls 

Source: FDOT FSUTMS Technical Reports (1997-1998) 
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Table A.3  Two-Digit Area Type Codes 
Area Type Description 

1x Central Business District (CBD) Areas (AT 10 is the default) 
11 Urbanized Area (over 500,000) Primary City CBD 
12 Urbanized Area (under 500,000) Primary City CBD 
13 Other Urbanized Area CBD and Small City Downtown 
14 Non-Urbanized Area Small City Downtown 
2x Central Business District (CBD) Fringe Areas (AT 20 is the default) 
21 All CBD Fringe Areas 
3x Residential Areas (AT 30 is the default) 
31 Residential Area of Urbanized Areas 
32 Undeveloped Portions of Urbanized Areas 
33 Transitioning Areas/ Urban Areas over 5,000 Population 
34 Beach Residential (per Southeast Regional Planning Model - SERPM) 
4x Outlying Business District (OBD) Areas (AT 40 is the default) 
41 High Density OBD 
42 Other OBD 
43 Beach OBD (per Southeast Regional Planning Model - SEPRM) 
5x Rural Area (AT 50 is the default) 
51 Developed Rural Areas/ Small Cities Under 5,000 Population 
52 Undeveloped Rural Areas 

Source: FDOT FSUTMS Highway Network (HNET) Procedural Enhancements Study: 
Final User’s Manual (March 1998). 
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Table A.4  Two-Digit Facility Type Codes 
Facility Type Description 

1x Freeways and Expressways (FT 10 is the default) 
11 Urban Freeway Group 1 (cities of 500,000 or more) 
12 Urban Freeway Group 2 (within urbanized area and not in Group 1) 
15 Collector/Distributor Lane 
16 Controlled Access Expressway 
17 Controlled Access Parkway 
2x Divided Arterials (FT 20 is the default) 
21 Divided Arterial Unsignalized (55 mph) 
22 Divided Arterial Unsignalized (45 mph) 
23 Divided Arterial Class 1a (> 0.00 to 2.49 signalized intersections per 

mile) 
24 Divided Arterial Class 1b (2.50 to 4.50 signalized intersections per 

mile) 
25 Divided Arterial Class II/III (> 4.50 signalized intersections per mile) 
3x Undivided Arterials (FT 30 is the default) 
31 Undivided Arterial Unsignalized with Turn Bays 
32 Undivided Arterial Class 1a (> 0.00 to 2.49 signalized intersections per 

mile) with Turn Bays 
33 Undivided Arterial Class 1b (2.50 to 4.50 signalized intersections per 

mile) with Turn Bays 
34 Undivided Arterial Class II/III (> 4.50 signalized intersections per 

mile) with Turn Bays 
35 Undivided Arterial Unsignalized without Turn Bays 
36 Undivided Arterial Class 1a (> 0.00 to 2.49 signalized intersections per 

mile) without Turn Bays 
37 Undivided Arterial Class 1b (2.50 to 4.50 signalized intersections per 

mile) without Turn Bays 
38 Undivided Arterial Class II/III (> 4.50 signalized intersections per 

mile) without Turn Bays 
4x Collectors (FT 40 is the default) 
41 Major Local Divided Roadway 
42 Major Local Undivided Roadway with Turn Bays 
43 Major Local Undivided Roadway without Turn Bays 
44 Other Local Divided Roadway 
45 Other Local Undivided Roadway with Turn Bays 
46 Other Local Undivided Roadway without Turn Bays 
47 Low Speed Local Collector 
48 Very Low Speed Local Collector 
5x Centroid Connectors (FT 50 is the default) 
51 Basic Centroid Connector 
52 External Station Centroid Connector 
6x One-Way Facilities (FT 60 is the default) 
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61 One-Way Facility Unsignalized 
62 One-Way Facility Class Ia (> 0.00 to 2.49 signalized intersections per 

mile) 
63 One-Way Facility Class Ib (2.50 to 4.50 signalized intersections per 

mile) 
64 One-Way Facility Class II/III (> 4.50 signalized intersections per mile)
65 Frontage Road Unsignalized 
66 Frontage Road Class Ia (> 0.00 to 2.49 signalized intersections per 

mile) 
67 Frontage Road Class Ib (2.50 to 4.50 signalized intersections per mile)
68 Frontage Road Class II/III (> 4.50 signalized intersections per mile) 
7x Ramps 
71 Freeway On-Ramp 
72 Freeway Loop On-Ramp 
73 Other On-Ramp 
74 Other Loop On-Ramp 
75 Freeway Off-Ramp 
76 Freeway Loop Off-Ramp 
77 Other Off-Ramp 
78 Other Loop Off-Ramp 
79 Freeway-Freeway High-Speed Ramp 
8x HOV Facilities (FT 80 is the default) 
81 Urban Freeway Group 1 (cities of 500,000 or more) 1 HOV Lane 

(Barrier Separated) 
82 Urban Freeway Group 2 (within urbanized area and not in Group 1) 

HOV Lane (Barrier Separated) 
83 Freeway Group 1 HOV Lane (Non-Barrier Separated) 
84 Other Freeway HOV Lane (Non-Barrier Separated) 
85 Non Freeway HOV Lane 
86 AM&PM Peak HOV Ramp 
87 AM Peak Only HOV Ramp 
88 PM Peak Only HOV Ramp 
89 All Day HOV Ramp 
9x Toll Facilities 
91 Urban Freeway Group 1 (cities of 500,000 or more) Toll Facility 
92 Urban Freeway Group 2 (within urbanized area and not in Group 1) 

Toll Facility 
93 Expressway/Parkway Toll Facility 
94 Divided Arterial Toll Facility 
95 Undivided Arterial Toll Facility 
97 Toll On-Ramp 
98 Toll Off-Ramp 
99 Toll Plaza 

Source: FDOT 1995 LOS Manual. 
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THE MULTIPLE LINEAR REGRESSION DELAY MODELS 
 
The Regression Model of 2322 Through and Right-turns: 
 
Regression Coefficients: 0    0.012198  -0.0072576    0.012284    
0.053196    0.011872    0.012742    0.028745    0.027353    0.013798   
-0.018954 
R-squared:               0.70473 
F-value:                 786.6402 
p-value:                 0 
RMSE(Standard Error):    11.3624 
%RMSE:                   0.22952 
 
The Regression Model of 2322 Left-turns: 
 
Regression Coefficients: 0     0.27315     -0.1718   0.0087988     
0.04585    0.037399    0.041008    0.025861    0.028084   -0.049479  -
0.0097074 
R-squared:               0.57335 
F-value:                 325.0917 
p-value:                 0 
RMSE(Standard Error):    19.7805 
%RMSE:                   0.28579 
 
The Regression Model of 2222 Through and Right-turns: 
 
Regression Coefficients: 0    0.013099  -0.0079866    0.013956    
0.039304    0.016013    0.015162    0.019582    0.021844   -0.001128           
0 
R-squared:               0.76934 
F-value:                 594.4958 
p-value:                 0 
RMSE(Standard Error):    12.3902 
%RMSE:                   0.20726 
 
The Regression Model of 2222 Left-turns: 
 
Regression Coefficients: 0     0.34258    -0.18131    0.007081    
0.051951    0.012794    0.044545    0.032779    0.026132   -0.047026           
0 
R-squared:               0.64715 
F-value:                 381.3522 
p-value:                 0 
RMSE(Standard Error):    17.5837 
%RMSE:                   0.24973 
 
The Regression Model of 2241 Through and Right-turns: 
 
Regression Coefficients: 0    0.011794  -0.0094249    0.021204    
0.039626    0.018878    0.019559    0.027326    0.034822   0.0065566   
0.0015487 
R-squared:               0.81811 
F-value:                 1705.4732 
p-value:                 0 
RMSE(Standard Error):    8.1734 
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%RMSE:                   0.18509 
 
The Regression Model of 2241 Left-turns: 
 
Regression Coefficients: 0     0.25654    -0.16443    0.015961    
0.034734   -0.023252    -0.01482    0.021818    0.019277 5.8764e-005     
0.00582 
R-squared:               0.6276 
F-value:                 724.7768 
p-value:                 0 
RMSE(Standard Error):    13.6696 
%RMSE:                   0.21733 
 
The Regression Model of 3141 Through and Right-turns: 
 
Regression Coefficients: 0     0.02692   -0.018933    0.011457      
0.0227    0.031059    0.032454    0.020762    0.020557    0.013264  -
0.0076375 
R-squared:               0.77111 
F-value:                 839.6844 
p-value:                 0 
RMSE(Standard Error):    6.1438 
%RMSE:                   0.15844 
 
The Regression Model of 3141 Left-turns: 
 
Regression Coefficients: 0     0.35129   -0.085541    0.018478    
0.036033   -0.004861   -0.013073    0.026841    0.025798    0.060481   
-0.057488 
R-squared:               0.65734 
F-value:                 588.8239 
p-value:                 0 
RMSE(Standard Error):    10.7551 
%RMSE:                   0.22747 
 
The Regression Model of 4141 Through and Right-turns: 
 
Regression Coefficients: 0   0.0015691   -0.018375      0.0115    
0.030646    0.030393    0.031025  -0.0023911  -0.0038858    0.023113           
0 
R-squared:               0.71723 
F-value:                 550.088 
p-value:                 0 
RMSE(Standard Error):    5.6732 
%RMSE:                   0.20874 
 
The Regression Model of 4141 Left-turns: 
 
Regression Coefficients: 0     0.11322   -0.015151   0.0020658    
0.020677  -0.0029621  -0.0020213    0.013748    0.013967    0.035322           
0 
R-squared:               0.57581 
F-value:                 230.6721 
p-value:                 0 
RMSE(Standard Error):    6.4617 
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%RMSE:                   0.18062 
 
The Regression Model of overall Through and Right-turns:  
  
Regression Coefficients: 35.6444    0.0126936  -0.00924569    0.0117344    
0.0435765    0.0165898    0.0173717    0.0230575    0.0248052     
0.178011     -7.23401     -1.46046     -9.81632 
R-squared:               0.74604 
F-value:                 3129.7385 
p-value:                 0 
RMSE(Standard Error):    11.2447 
%RMSE:                   0.25232 
 
The Regression Model of overall Left-turns: 
 
Regression Coefficients: 68.1677     0.230796     -0.15507    0.0105198    
0.0402775   0.00433645   0.00784748    0.0215501    0.0219944     -
5.40748     -18.0807     -1.57772      -13.997 
R-squared:               0.62945 
F-value:                 2855.4716 
p-value:                 0 
RMSE(Standard Error):    18.5601 
%RMSE:                   0.26607 
 
  
* The statistics are at 0.05% significance level. 
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