
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

School of Computing and Information Sciences College of Engineering and Computing

2023

Statistical and Machine Learning Analysis of the Human Brain Statistical and Machine Learning Analysis of the Human Brain

Functional Network in a Multi-Site Resting-State Functional MRI Functional Network in a Multi-Site Resting-State Functional MRI

Database Framework Database Framework

Oswaldo Artiles
Florida International University

Fahad Saeed, Ed.
Florida International University, fsaeed@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Artiles, Oswaldo and Saeed,, Fahad Ed., "Statistical and Machine Learning Analysis of the Human Brain
Functional Network in a Multi-Site Resting-State Functional MRI Database Framework" (2023). School of
Computing and Information Sciences. 30.
https://digitalcommons.fiu.edu/cs_fac/30

This work is brought to you for free and open access by the College of Engineering and Computing at FIU Digital
Commons. It has been accepted for inclusion in School of Computing and Information Sciences by an authorized
administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/cs_fac
https://digitalcommons.fiu.edu/coec
https://digitalcommons.fiu.edu/cs_fac?utm_source=digitalcommons.fiu.edu%2Fcs_fac%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fcs_fac%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/cs_fac/30?utm_source=digitalcommons.fiu.edu%2Fcs_fac%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

STATISTICAL AND MACHINE LEARNING ANALYSIS OF THE HUMAN

BRAIN FUNCTIONAL NETWORK IN A MULTI-SITE RESTING-STATE

FUNCTIONAL MRI DATABASE FRAMEWORK

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Oswaldo Artiles

2023

To: Interim Dean Ines Triay
College of Engineering and Computing

This dissertation, written by Oswaldo Artiles, and entitled Statistical and Machine
Learning Analysis of the Human Brain Functional Network in a Multi-site Resting-
state Functional MRI Database Framework, having been approved in respect to
style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Janki Bhimani

Leonardo Bobadilla

Xudong He

Arif Sarwat

Fahad Saeed, Major Professor

Date of Defense: November 6, 2023

The dissertation of Oswaldo Artiles is approved.

Interim Dean Ines Triay

College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2023

ii

© Copyright 2023 by Oswaldo Artiles

All rights reserved.

iii

DEDICATION

This dissertation is dedicated to Rita Elisa and Ana Rita, my grandmother and my

mother, who gave me love and cared for me every day of my childhood, and who

taught me the values of honesty, respect for life, and love for hard work, values

which have guided me during my entire life, they are always showing and lightning

my path.

iv

ACKNOWLEDGMENTS

I would like to acknowledge all the teachers and professors who helped me and

taught me during all the years of my life as a student. I am indebted to the mem-

bers of my dissertation committee: Dr. Janki Bhimani, Dr. Leonardo Bobadilla, Dr.

Xudong He, and Dr. Arif Sarwat, for supporting and giving me all their feedback to

improve my research. My special acknowledgment to my adviser, Dr. Fahad Saeed,

who taught me a lot about computer science and provided me with all the financial

and computational resources needed to complete the research presented in this dis-

sertation. I wish to acknowledge the administrative staff of the Knight Foundation

School of Computing and Information Sciences (KFSCIS), especially Rebeca, Olga,

Luis, Sydney, Eric, and John, who helped me with all their administrative and tech-

nical expertise. I also would like to thank Dr. Muhammad Haseeb, Dr. Muhammad

Usman Tariq, Fahad Almuqhim, and Tianren Yang, my fellow Ph.D. students at

Dr. Saeed’s lab, for the very helpful discussions about computer science that I have

had with them. Finally, my greatest debt to my wife Ivia, for giving me love and

for taking care of me with total dedication, and to my daughter Livia, for all her

love and for giving me the most beautiful reason to live.

v

ABSTRACT OF THE DISSERTATION

STATISTICAL AND MACHINE LEARNING ANALYSIS OF THE HUMAN

BRAIN FUNCTIONAL NETWORK IN A MULTI-SITE RESTING-STATE

FUNCTIONAL MRI DATABASE FRAMEWORK

by

Oswaldo Artiles

Florida International University, 2023

Miami, Florida

Professor Fahad Saeed, Major Professor

The human brain has a complex network structure that is non-random and multi-

scale. It consists of subsystems coupled by a nonlinear dynamic, enabling it to pro-

duce complex responses to various external inputs and self-organize. To understand

the physical structure and specific brain functions, it is essential to comprehend the

connectivity of the hundreds of billions of neurons in the human brain. Functional

connectivity (FC) in modern neuroscience is the statistical temporal dependencies

between neuronal activation events occurring in spatially separated brain regions.

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive

imaging technique widely used in neuroscience to understand the functional con-

nectivity of the human brain. The studies presented in this dissertation were based

on the models and methods from network neuroscience, which is an active area of

research developed in the last three decades. These methods were used to model and

analyze the functional human brain networks in a multi-site rs-fMRI data frame-

work.

vi

The contributions made in this dissertation to the study of the functional con-

nectivity of the human brain network are:

1. The GPU-based Sparse Fast Fourier Transform (SFFT) of k-sparse signals;

2. The GPU-based breadth-first search algorithm;

3. The GPU-based betweenness centrality graph metric algorithm;

4. A comprehensive approach to solving the problem of confounding effects in

the machine learning classification models of rs-fMRI multi-site data; and

5. A preliminary assessment of time-varying functional connectivity in a multi-

site data rs-fMRI framework.

We hope that the neuroscience research community will use and improve these

contributions to enhance the discovery of the functions and structure of the human

brain. This will lead to a better understanding of the causes of brain disorders and

the development of useful and effective biomarkers for their diagnosis.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Human Brain Functional Connectivity 1
1.2 Network and computational neuroscience: a brief introduction 3
1.3 Contributions to Network and Computational Neuroscience 5
1.3.1 High-performance Algorithms . 6
1.3.2 Statistical Analysis of Human Brain Functional Networks 8

2. GPU-SFFT:A GPU-BASED ALGORITHM FOR COMPUTING
THE SPARSE FAST FOURIER TRANSFORM (SFFT) OF K-SPARSE
SIGNALS . 12

2.1 Introduction . 12
2.2 Computational stages of the MIT-SFFT algorithm 14
2.3 GPU based Sparse Fast Fourier Transform algorithm 17
2.3.1 GPU-SFFT: Permutation and filtering 17
2.3.2 GPU-SFFT: FFT and cutoff . 21
2.3.3 GPU-SFFT: Frequency coefficients of the input signal 23
2.3.4 GPU-SFFT: Reverse hash function . 23
2.3.5 GPU-SFFT: Estimate values . 24
2.4 Results . 26
2.4.1 Experiments . 27
2.4.2 Experimental Results . 28
2.5 Summary . 30

3. TurboBFS: A GPU BASED BREADTH-FIRST SEARCH (BFS) ALGO-
RITHMS . 34

3.1 Introduction . 34
3.2 Breadth-First Search (BFS) algorithm 37
3.3 TurboBFS algorithms for unweighted graphs 39
3.3.1 Top-Down BFS algorithm for COOC or CSC formats 39
3.3.2 Sparse matrix-vector multiplication . 41
3.3.3 Bottom-Up BFS algorithm for the CSC format 44
3.3.4 CUDA implementation of the TurboBFS algorithms 48
3.4 Results . 48
3.4.1 Experimental results for regular graphs 49
3.4.2 Experimental results for irregular graphs 51
3.4.3 Experimental results for big graphs . 53
3.5 Summary . 56

viii

4. TurboBC: A GPU BASED BETWEENNESS CENTRALITY
ALGORITHM . 58

4.1 Introduction . 58
4.2 Betweenness centrality algorithm . 60
4.3 TurboBC algorithms for unweighted graphs. 62
4.3.1 Brandes’ BC algorithm in the language of linear algebra 64
4.3.2 Sparse matrix-vector multiplication (SpMV). 67
4.3.3 CUDA implementation of the TurboBC algorithm 70
4.4 Results . 71
4.4.1 Experimental results for regular graphs 72
4.4.2 Experimental results for irregular graphs 75
4.4.3 Experimental results for big graphs . 77
4.4.4 Experimental results for the exact BC computation of all vertices of a

graph . 79
4.4.5 GPU memory usage by the TurboBC algorithms 80
4.5 Summary . 83

5. CONFOUNDING EFFECTS ON THE PERFORMANCE OF MACHINE
LEARNING ANALYSIS OF STATIC FUNCTIONAL
CONNECTIVITY COMPUTED FROM RS-FMRI MULTI-SITE DATA 85

5.1 Introduction . 85
5.2 Methods and materials . 90
5.2.1 ABIDE resting fMRI multi-site data 90
5.2.2 Human brain functional networks . 91
5.2.3 The machine learning models: ASD-DiagNet and ASD-SAENet 94
5.2.4 Generation of new features . 96
5.2.5 Multiple linear regression models . 97
5.2.6 ComBat harmonization models . 100
5.2.7 Normalization methods . 102
5.2.8 Sub-samples selection . 105
5.2.9 Methods for the statistical comparison of experimental results com-

puted with the new features 110
5.3 Results . 111
5.3.1 Experimental results: Homogeneous sub-samples 112
5.3.2 Statistical comparison of experimental results computed with the new

features . 114
5.3.3 Experimental results: New features . 115
5.4 Summary . 124

6. ASSESSMENT OF TIME-VARYING FUNCTIONAL CONNECTIVITY IN
A MULTI-SITE rs-fMRI DATA FRAMEWORK 127

6.1 Introduction . 127
6.2 Methods and materials . 130

ix

6.2.1 ABIDE resting fMRI multi-site data 130
6.2.2 Time-varying functional connectivity 131
6.2.3 Statistical analysis of the time-varying functional connectivity 134
6.2.4 Assessment of the effect of head motion over the variability of tvFC . 137
6.3 Results . 138
6.3.1 Experimental results . 139
6.4 Summary . 147

7. CURRENT AND FUTURE WORK . 150

BIBLIOGRAPHY . 152

APPENDICES . 177

VITA . 181

x

LIST OF FIGURES

FIGURE PAGE

2.1 GPU-SFFT: MIT-SFFT Algorithm Workflow 15

2.2 GPU-SFFT: Execution Times vs Signal Size 29

2.3 GPU-SFFT: Execution Times vs Signal Sparsity 30

2.4 GPU-SFFT: Speedup . 30

2.5 GPU-SFFT: Mean Square Errors of the Output Signal 31

3.1 TurboBFS: COOC and CSC Sparse Storage Formats 37

3.2 TurboBFS: Degree Distribution for Undirected Graphs 37

3.3 TurboBFS: Example of Computation using the TurboBFS-tdscCSC Al-
gorithm . 42

3.4 TurboBFS: Speedup Experimental Results for Big Graphs 55

3.5 TurboBFS: MTEPs Experimental Results for Big Graphs 55

4.1 Example of CSC and COOC sparse storage formats for a sparse adja-
cency matrix representing a directed, unweighted graph. 63

4.2 Pipeline for the CUDA implementation of Algorithm 4.1. 70

4.3 Experimental results for a) the speedup over the sequential algorithm
and b)MTEPs obtained for our TurboBC algorithms in the compu-
tation of BC of the set of big graphs of Table 4.7. 78

4.4 Experimental results for a) the speedup and b) the MTEPs of the exact
computation of BC for all vertices of the graphs given in Table 4.9. 80

4.5 GPU memory usage, GPU memory upper bounds, Global Memory Load
Throughput (GLT) and performance(MTEPs) obtained with the
TurboBC-veCSC algorithm compared with the values obtained by
the gunrock BC algorithms for the computation of BC/vertex in the
mycielski group of irregular graphs included in Table 4.5. 81

4.6 Data flow for the GPU-based BC algorithms implemented in the gunrock
library and in TurboBC. 82

5.1 Workflow for the machine learning analysis of rs-fMRI data using new
features derived from the functional connectivity values to control
the confounding effects of multi-site rs-fMRI data. 96

5.2 Workflow for computation of new features for the machine learning anal-
ysis of the ABIDE rs-fMRI data using the MLR models. 97

xi

5.3 Summary of total counts of the number of values in the positive and
negative bins in the ranges defined in Section 5.2.9, corresponding to
the classification scores computed with ASD-DiagNet with the new
features. 114

5.4 Classification scores computed with ASD-DiagNet, using selected new
features obtained from the multiple linear regression models with in-
dividual independent variables described in Section 5.2.5, compared
with the baseline classification scores (FC) given in Table 5.5. The
baseline values for the whole 17 sites are indicated by the dashed
line, while the maximum values are indicated by the continuous line. 118

5.5 Classification scores computed with ASD-DiagNet using selected new
features obtained from the multiple linear regression models de-
scribed in Section 5.2.5, compared with the baseline classification
scores given in Table 5.5. The baseline values for the whole 17 sites
are indicated by the dashed line, while the maximum values are in-
dicated by the continuous line. 120

5.6 Classification scores computed using selected new features obtained from
the multiple linear regression models described in Section 5.2.5, com-
pared with the baseline classification scores computed with the func-
tional connectivity values and the sub-samples given in Table 5.5. All
the classification scores were computed with the ASD-SAENet ma-
chine learning model (see Section 5.2.3). The baseline values for the
whole 17 sites are indicated by the dashed line, while the maximum
values are indicated by the continuous line. 121

5.7 Classification scores computed with ASD-DiagNet using selected new
features obtained from the ComBat harmonization models described
in Section 5.2.6, compared with the baseline classification scores (FC)
given in Table 5.5. The baseline values for the whole 17 sites are
indicated by the dashed line, while the maximum values are indicated
by the continuous line. 121

5.8 Classification scores computed with ASD-DiagNet, using the new fea-
tures obtained from the normalization methods described in Section
5.2.7, compared with the baseline classification scores (FC) given in
Table 5.5. The baseline values for the whole 17 sites are indicated
by the dashed line, while the maximum values are indicated by the
continuous line. 123

6.1 Comparison of cutoff frequencies, f = 1/w(s), for the low-pass filtering
corresponding to the constant number of time windows, and constant
width of the time windows in seconds. 133

6.2 Workflow to compute the percentile of the pooled variance of tvFC
(pvartvFC) in the distribution of the pooled variance (pvarcorr−surr). 135

xii

6.3 Comparison between the number of subjects for which H0 was rejected
with P-values equal to or less than 0.1, obtained for 30 time windows,
and for the four strategies of the CPAC ABIDE pipeline given in
Section 6.2.1. 139

6.4 Comparison between the number of subjects for which H0 was rejected
with P-values equal to or less than 0.1, obtained for 60-time windows,
and for the four strategies of the CPAC ABIDE pipeline given in
Section 6.2.1. 140

6.5 Comparison between the percentage of subjects for which H0 was re-
jected per ABIDE site, for the four strategies of the CPAC ABIDE
pipeline given in Section 6.2.1, and for 30 and 60-time windows. The
sites in red are those with the maximum number of subjects for which
H0 was rejected with P-values equal to or less than 0.1. 141

6.6 Comparison between the number of subjects for which H0 was rejected
with P-values equal to or less than 0.1, obtained for time windows
with a width size of 50 seconds, and for the four strategies of the
CPAC ABIDE pipeline given in Section 6.2.1. 142

6.7 Comparison between the number of subjects for which H0 was rejected
with P-values equal to or less than 0.1, obtained for time windows
with a width size of 100 seconds, and for the four strategies of the
CPAC ABIDE pipeline given in Section 6.2.1. 143

6.8 Comparison between the percentage of subjects for which H0 was re-
jected per ABIDE site, for the four strategies of the CPAC ABIDE
pipeline given in Section 6.2.1, and for time windows with width sizes
of 50 and 100 seconds. The sites in red are those with the maximum
number of subjects for which H0 was rejected with P-values equal to
or less than 0.1. 144

6.9 Histogram showing the ranges of percentages of FD for the cumulative
percentage of subjects rejecting H0, for the nofilt-global strategy of
the CPAC pipeline, and for time windows with a constant width of
50 seconds. 146

xiii

LIST OF ABBREVIATIONS

BC Betweenness Centrality

BFS Breadth-First Search

COO Coordinate sparse storage format

COOC Coordinate Column sparse storage format (transpose of the COO format)

CSC Compressed Sparse Column storage format

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

cuFFT NVIDIA CUDA Fast Fourier Transform (FFT) library

FD Framewise displacement

FFT Fast Fourier Transform

fMRI Functional Magnetic Resonance Imaging

GLT Global Memory Load Throughput

GPU Graphics Processing Unit

GTEPs (Billions of Transverse Edges by Second)

HPC High Performance Computing

MIT Massachusetts Institute of Technology

ML Machine Learning

MIT-SFFT MIT Sparse Fast Fourier Transform

MRI Magnetic Resonance Imaging

MSE Mean Square Error

MTEPs (Millions of Transverse Edges by Second)

xiv

rs-fMRI resting state functional Magnetic Resonance Imaging

SFFT Sparse Fast Fourier Transform

SpMV Sparse matrix-vector multiplication

tvFC Time varying functional connectivity

xv

CHAPTER 1

INTRODUCTION

In this chapter, we present a brief review of human brain functional connectivity,

as well as an introduction to network and computational neuroscience as a gen-

eral framework for the studies presented in this dissertation. We also include a

brief description of the goals and main results of our contributions to network and

computational neuroscience.

1.1 Human Brain Functional Connectivity

The human brain is the most complex physical network which we know. A human

brain is composed of nerve cells, or neurons, elements for processing information and

signaling, and glial cells which are supporting elements. There are about 95 billion

neurons and the same number of nonneuronal cells in the human brain [ACG+09],

connected by approximately 100 trillion synapses, connections through which a neu-

ron receives information from other neurons [VG20], a model first proposed in the

seminal works of Ramon y Cajal [RyC06, yC97].

The human brain has a structure physically organized over three scales of space:

microscopic, mesoscopic, and macroscopic [BWB+09, STK05]. The microscopic

scale is represented by individual neurons and synapses (> 1µ m), this scale refers

to properties of the human brain that are only visible with microscopy devices. In

this scale, the reconstruction of networks of individual neurons and synapses requires

the use of invasive techniques over sections of brain tissues [FZB16]. The mesoscale

(∼ 0.3−3.3 mm) refers to populations of neurons such as cortical columns, of similar

types, sharing similar properties. In this scale, a combination of microscopy and

macroscopic techniques are combined to understand neuronal connectivity for a large

1

part of the brain. In the macroscopic scale, the brain is divided into a set of distinct

and coherent regions of interest (ROI), where each ROI has a biological meaning

[Spo11]. In this scale, noninvasive imaging techniques such as magnetic resonance

imaging (MRI) of the entire brain are used to map its structural and functional

connectivity on a range of millimeters to centimeters [FZB16, BS05, BWB+09].

Understanding the connectivity of the hundreds of billions of neurons in the hu-

man brain is essential to knowing its physical structure and the nature of specific

brain functions. In modern neuroscience, there are three important interrelated

concepts of connectivity: structural or anatomic, functional, and effective. The

structural connectivity or connectome [STK05, Hag05] refers to the set of phys-

ical connections between neuronal elements forming the human brain, mainly at

the macroscopic and mesoscopic scales [STK05, Spo11, CJY+13]. Functional con-

nectivity (FC) is defined as the statistical temporal dependencies between neuronal

activation events occurring in spatially separated brain regions [FFLF93]. Effec-

tive connectivity (EC) is described as the influence of a neuronal system on another

[FFF93]. A detailed review of functional and effective connectivity is given in refer-

ence [Fri11].

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive

imaging technique based on the blood oxygen level of the brain [OLNG90, OMT+93],

widely used in neuroscience to understand the functional connectivity of the human

brain (see Section 5.2.1). At the macroscopic scale, functional connectivity (FC) can

be measured as the statistical correlations between rs-fMRI time series recorded at

different brain regions. In imaging neuroscience, there are two classes of functional

connectivity: Static functional connectivity and time-varying functional connectiv-

ity. Static functional connectivity (sFC) is computed by assuming that functional

connectivity is constant in time. sFC is usually computed within the entire rs-fMRI

2

scanning session, capturing instantaneous statistical relationships between brain ar-

eas within a scanning session. Time-varying functional connectivity (tvFC) is the

functional connectivity that varies as a function of time. tvFC can be computed

within given segments of the rs-fMRI scanning session, shorter than the entire scan-

ning session, capturing instantaneous statistical relationships between brain areas

within each given segment of the scanning session. The tvFC is therefore a time

sequence of sFC values computed from the rs-fMRI time series in each segment.

tvFC can be used to extract dynamic functional connectivity from the rs-fMRI data

[CG10, HWA+13, ZFC+14, GB14]. In this dissertation, we computed the linear

correlation between the time series for all pairs of nodes of the functional networks,

using the Pearson correlation function (See Section 5.2.2)

1.2 Network and computational neuroscience: a brief intro-

duction

The human brain has been modeled as a complex network with a non-random multi-

scale structure, with subsystems coupled by nonlinear dynamics [BT02], with the

capability of generating complex responses to simultaneous and diverse external

inputs, and with self-organization capabilities.

Network neuroscience [BS17] is an active area of neuroscience research, devel-

oped in the last three decades for the data analysis and modeling of the healthy

and diseased functional and structural human brain networks [BS09, BB11, Spo13,

Spo11, Spo12, BS17]. Network neuroscience emerges from the intersection of the

availability of large and complex neural imaging data recorded from the human

brain, and the development of modern network science, a theoretical and practical

framework for the study of networks [BSV+07].

3

Computational neuroscience an important branch of computer science, has been

fundamental for the progress of network neuroscience in the last three decades.

Computational neuroscience encompasses a myriad of applications ranging from

statistical techniques for processing and analysis of brain imaging [Fri07, JBB13],

computational modeling of dynamic neural systems [DA05, FD10, Coo10, KAA+18,

KD18, KD20, SSZ23, SJD+23], graph theoretical analysis of structural and func-

tional brain networks [BS09, PF13, MWBV18, Spo18], and statistical and machine

learning analysis of brain networks for classification and discovery of biomarkers for

brain disorders [FZB15, YKK17, MWBV18].

In network neuroscience, the resting-state functional magnetic resonance imaging

(rs-fMRI) time series are modeled as a functional brain network, which is represented

as a weighted, undirected graph G = (V,E), where V is the finite set of nodes, repre-

senting brain regions, and E the set of edges, representing the connections between

the brain regions [Spo13]. The weights of the edges of the functional networks are

equal to the values of the static functional connectivity between the brain regions

(see Section 5.2.2).

The importance of nodes (brain regions) and edges (connections between brain

regions) of the functional networks are usually measured using graph metrics such

as node strength, closeness centrality, node betweenness centrality (BC), eigenvector

centrality (EVC), and clustering coefficient (CC). A node strength is computed as

the sum of the weights of the edges attached to the node. The closeness centrality of a

node is equal to the inverse of the average shortest path distance to the node. A node

betweenness centrality (BC) measures the proportion of shortest paths between all

pairs of nodes in the graph that passes through the node. The eigenvector centrality

of a node in a graph is a measure of the centrality of its neighbors, which is formally

defined as the corresponding element of the leading eigenvector of the adjacency

4

matrix representing the graph. The clustering coefficient (CC) of a node is the

proportion of closed triangles that are attached to the node, relative to the total

number of closed triangles that are possible between the neighbors of the node.

These local topological graph measures have been applied to the detection of hubs,

highly and very important brain regions, in the human brain network [SHK07], as

well as in the dynamic functional network of the human brain at rest [KEFK+17].

1.3 Contributions to Network and Computational Neuro-

science

In this dissertation, we present two groups of contributions to network and com-

putational neuroscience applied to the study of the functional connectivity of the

human brain network.

Our first group of contributions is the design and development of GPU-based

high-performance algorithms to compute: 1) the Sparse Fast Fourier Transform

(SFFT) of k-sparse signals [AS19]; 2) the breadth-first search algorithm [AS21d];

and 3) the betweenness centrality graph metric [AS21c], all of which can be used

for the analysis of large structural and functional brain networks.

Our second group of contributions, applicable to the statistical and machine

learning analysis of human brain functional networks in a multi-site resting-state

functional MRI database framework, are: 1) A comprehensive approach to the

solution of the problem of confounding effects over the machine learning classifi-

cation models of rs-fMRI multi-site data [AS21b, AAMS23], and 2) a preliminary

assessment of time-varying functional connectivity in a multi-site data rs-fMRI data

framework. In the following sections, we summarize our contributions.

5

1.3.1 High-performance Algorithms

GPU-SFFT: A GPU Based Algorithm to Compute the Sparse Fast Fourier

Transform (SFFT) of k-sparse Signals (Chapter 2)

The Sparse Fast Fourier Transform (MIT-SFFT) is a sequential algorithm developed

to compute the discrete Fourier transform of a signal with a sublinear time com-

plexity, i.e., algorithms with runtime complexity proportional to the sparsity level k,

where k is the number of non-zero coefficients of the signal in the frequency domain.

In this dissertation, we proposed a highly scalable and parallel high-performance

CPU-GPU algorithm called GPU-SFFT for computing the SFFT of k-sparse sig-

nals.

Our experiments showed that the specific optimizations applied to the design of

GPU-SFFT resulted in large decreases in the execution times needed for comput-

ing the SFFT. The comparison of the execution times of the GPU-SFFT with the

execution times of the sequential MIT-SFFT algorithm showed that the speedup ob-

tained with the GPU-SFFT was up to 38x when the times for data transfer between

the CPU and the GPU were not considered, and up to 22x when these times were

included. Moreover, up to 5x speedup was obtained when the execution times of

the GPU-SFFT were compared to the corresponding times of cuFFT, the NVIDIA

CUDA Fast Fourier Transform (FFT) library.

TurboBFS: A GPU Based Breadth-first Search (BFS) Algorithms (Chap-

ter 3)

TurboBFS is a GPU based linear-algebraic formulation and implementation of the

well-known Breadth-First Search (BFS) algorithm, that exhibits excellent scalability

on unweighted, undirected, or directed sparse graphs of arbitrary structure.

6

Our experimental results demonstrated that our TurboBFS algorithms obtained

up to 40 GTEPs (billions of transverse edges per second), and were on average

15.7x, 5.8x, and 1.8x faster than the other state-of-the-art BFS algorithms imple-

mented on the sequential SuiteSparse:GraphBLAS, and GPU-based GraphBLAST,

and gunrock libraries, respectively.

TurboBC: A GPU Based Betweenness Centrality Algorithms (Chapter

4)

TurboBC is, as far as we know, the first GPU-based linear-algebraic formulation

and implementation of a set of memory-efficient betweenness centrality algorithms

that exhibits good performance and high scalability on unweighted, undirected, or

directed sparse graphs of arbitrary structure.

Our extensive set of experiments showed that the TurboBC algorithms obtained

more than 18 GTEPs (billions of transverse edges per second), and an average

speedup of 31.9x over the sequential version of the BC algorithm, and were on

average 1.7x and 2.2x faster than the state-of-the-art BC algorithms implemented

on the high performance, GPU-based, gunrock [WDP+16], and CPU-based, ligra

[SB13] libraries, respectively. These experiments also showed that by minimizing

their memory footprint, the GPU memory usage of of the gunrock library was higher

than the memory usage of the TurboBC algorithms, allowing these algorithms to

compute the BC of relatively big graphs, for which the gunrock algorithms ran out

of memory. Our experiments also demonstrated that the performance obtained by

the TurboBC algorithms, measured as MTEPs, as a function of the GPU memory

bandwidth, were much greater than those obtained by the BC algorithms in the

gunrock library, showing that the GPU memory was used more efficiently by the

TurboBC algorithms.

7

1.3.2 Statistical Analysis of Human Brain Functional Net-

works

The preprocessed rs-fMRI data used in the studies presented in this Section was ob-

tained from the international imaging sites publicly available in the ABIDE database

[CBC+13, DMYL+14, DMOC+17].

A comprehensive approach to the solution of the problem of confounding

effects over the machine learning classification models of rs-fMRI multi-

site data (Chapter 5)

One main challenge for the neuroscience research community using rs-fMRI multi-

site databases is the existence of confounding effects, associated with variables result-

ing from imaging and population heterogeneity among different sites. Several studies

have shown that these confounding factors affect the performance of the machine

learning models when executed on rs-fMRI multi-site data [PBM15, KFMB+16,

AMDM+17]. One main effect is the increase in variability, as well as the imposition

of upper limits on the classification scores, due to the decrease of statistical power

of the machine learning classification of patients and control subjects.

As a solution to this challenge, we proposed a comprehensive approach to improv-

ing the classification scores of the machine learning models applied to the analysis

of multi-site rs-fMRI data by i) identifying the population and imaging variables

producing the confounding effects, and ii) controlling these confounding effects to

maximize the classification scores. For this study, we computed functional networks

derived from static functional connectivity.

The main results obtained with our proposed models and methods were an ac-

curacy of 76.4 %, sensitivity of 82.9 %, and specificity of 77.0 %, which are 8.8 %,

8

20.5 %, and 7.5 % above the baseline classification scores obtained from the machine

learning analysis of the static functional connectivity computed from the ABIDE

rs-fMRI multi-site data. These experimental results demonstrated the effectiveness

of our proposed approach to quantify the confounding effects of the phenotypic and

imaging variables, as well to maximize the classification scores which were obtained

with the proposed statistical models and methods.

Assessment of Time-Varying Functional Connectivity in a Multi-site rs-

fMRI Data Framework (Chapter 6)

Considering that the human brain is a complex non-linear dynamic system [BT02],

the assumption of static functional connectivity is an important limitation to ad-

vancing our knowledge of the dynamic functional brain. Considering this limitation,

recent research has evolved to use the concept of time-varying functional connec-

tivity (tvFC), i.e., functional connectivity, measured as the statistical correlations

between rs-fMRI time series recorded at different brain regions, that vary as a func-

tion of time.

In this preliminary study, we used functional networks with the nodes represent-

ing brain regions. The rs-fMRI time series of each brain region was segmented using

a sliding time-window technique, and then the time-varying functional connectivity

(tvFC) was obtained as a time-sequence of static functional connectivity (sFC) val-

ues computed for each segment. We performed statistical tests on the tvFC for each

ABIDE subject, to prove the claim that the time-variability of each tvFC represents

non-linear dynamics of the functional brain.

To prove the null hypothesis H0, i.e., the claim that the variability of tvFC

is due to measurement noise, we needed to obtain the test statistics of the null

distribution to verify whether the test statistics of the tvFC, obtained from the rs-

9

fMRI time series, are outside the test statistics of the null distribution. Since the

amount of the ABIDE rs-fMRI data is very limited to compute the test statistics of

the null distribution, a solution is to generate this distribution from surrogate data

[TEL+92].

The goal of this preliminary study was the assessment of the effects of the width

in seconds of the time windows, the filtering and global signal regression, and the

head motion over the non-linear dynamics of the functional brain network contained

in the tvFC values obtained from the ABIDE rs-fMRI data.

Our experimental results showed that the two greatest number of subjects for

which the null hypothesis H0 was rejected, were obtained for the no-filtering strate-

gies (nofilt-global and nofilt-noglobal) of the CPAC pipeline, respectively. We also

showed that due to the greater cutoff frequencies corresponding to time windows

with a width size of 50 seconds compared to the frequencies obtained for a width

size of 100 seconds, the maximum number of subjects rejecting H0 was 801 sub-

jects for a width size of 50 seconds (91 % of all ABIDE subjects in Table 6.1), 35

% greater than the 594 subjects obtained for a width size of 100 seconds. These

maximum results were obtained for the nofilt-global strategy of the CPAC pipeline.

Furthermore, these results also allowed us to conclude that for these maximum num-

bers, the null hypothesis H0, i.e., the claim that the variability of tvFC is due to

measurement noise, was rejected with a P-value of 0.1, and, therefore there is suffi-

cient evidence, at a P-value of 0.1, to support the claim that the variability of tvFC

represents non-linear dynamics of the functional connectivity (DFC) of the brain.

Finally, we concluded that the effect of the head motion over the non-linear dynam-

ics of the functional brain network contained in the tvFC values had an upper bound

determined by the percentages of FD greater than 0.2 mm. This upper bound, for

example, was less than 12 % for about 80 % of the subjects rejecting H0, hence, for

10

these subjects, a high percentage of the variability of the tvFC values represented

the non-linear dynamics of the functional brain network, with the corresponding

levels of significance determined by the P-values.

We hope that the contributions of this dissertation will be used and improved

by the neuroscience research community, to enhance the discovery of the functions

and structure of the human brain, and the understanding of the causes of brain

disorders, as well as to define useful and effective biomarkers for the diagnosis of

these disorders.

11

CHAPTER 2

GPU-SFFT:A GPU-BASED ALGORITHM FOR COMPUTING

THE SPARSE FAST FOURIER TRANSFORM (SFFT) OF K-SPARSE

SIGNALS

In this chapter, we present a highly scalable GPU-based high-performance algorithm,

called GPU-SFFT, for computing the Sparse Fast Fourier Transform (SFFT) of k-

sparse signals [AS19].

2.1 Introduction

The Discrete Fourier Transform (DFT) is one of the most important algorithms

for the analysis of the spectral representation of signals in engineering and science,

with a wide range of applications from astronomy to medical imaging, and from

seismology to cryptography. The DFT algorithm computes the Fourier transform

of a discrete signal of size n with a time complexity of O(n2). This time complexity

results in unacceptable performance for processing the big data sets characteristic

of modern applications. The Fast Fourier Transform (FFT) is the fastest and most

widely used algorithm to process the DFT of a signal of size n with a time complexity

of O(n log n)[DL42, CT65, CLW67, DS00]. However, the FFT algorithm may be

too slow to process the DFT of terabyte signals, even when these signals are sparse

in the frequency domain, i.e. with only k frequency coefficients different than zero,

where k << n. Moreover, in many applications, it is sometimes hard to obtain

enough data to compute the DFT with the desired accuracy [Has18].

The suboptimal performance of the FFT algorithm to compute the DFT of

k-sparse signals, and the existence of an important set of domains(video, audio,

medical imaging, spectroscopy, GPS, seismic data) with signals that are sparse in

12

the frequency domain, motivated the development of sub-linear algorithms, i.e. al-

gorithms with runtime complexity proportional to the level of sparsity, which use

only a subset of this data to compute the frequency coefficients which are significant

[GGI+02, GMS05, GI10]. The Sparse Fast Fourier Transform (SFFT) algorithm

developed at MIT (MIT-SFFT) [Has18] are sub-linear algorithms that by exploit-

ing the inherent sparsity of natural signals, are faster than the FFT algorithms for

k-sparse data. The MIT-SFFT algorithm implements a solution to the problem of

computing the DFT, x̂(f), of a signal, x(t), of size n, with only k non-zero frequency

coefficients, the other n−k coefficients are zero. For general signals, the MIT-SFFT

computes an approximation x̂′(f) of x̂(f). The time complexity of the version 2.0

of the MIT-SFFT algorithm is O(log n 3
√

nk2 log n) with a sparsity level range of

O(n/
√
log n), i.e. the algorithm is faster than FFT up to O(n/log n) [Has18].

Our GPU-based Sparse Fast Fourier Transform (GPU-SFFT) is a GPU-based

high-performance parallel algorithm that implements the parallel version of the

functionality corresponding to the stages shown in Figure 2.1 for the MIT-SFFT

sequential algorithm. GPU-SFFT algorithm is based on carefully designed parallel

computing optimization that considers the structure of the MIT-SFFT algorithm as

well as CPU-GPU architectures.

The first optimization was to unroll the for loops in the sequential MIT-SSFT to

increase the parallelism by maximizing the number of concurrent threads executing

independent instructions, as well as ensuring coalesced global memory access by

the threads in each warp. The second one was to minimize the transfer of data

between the CPU and the GPU, by transferring only input data from the CPU to

the GPU, and only output results from the GPU to the CPU, and performing all the

computations on the GPU side. The third optimization was to replace the sequential

sort algorithms in the MIT-SFFT with the high-performance sorting algorithms

13

available in the Thrust library for CUDA [BH12], as well as to compute the reduced

size FFTs of the algorithm with cuFFT, the NVIDIA CUDA Fast Fourier Transform

(FFT) library [NVI].

2.2 Computational stages of the MIT-SFFT algorithm

Figure 2.1 shows a simplified workflow diagram of the the computational stages of

the sequential MIT-SFFT algorithm [Has18]. The outer loop of the algorithm is

divided into location loops and estimation loops.

The location loops in Figure 2.1 implement the stages of permutation and filter-

ing, FFT and cutoff, and reverse hash function. The MIT-SFFT algorithm is based

on binning the large Fourier coefficients of the significant frequencies, present in the

input signal, into a small set of B bins, where B = O(k) is a parameter that divides

n.

The collision problem of having non-zero frequencies coefficients in the same bin

is solved by separating two coefficients that are close to each other, locating them on

separate bins, so that there is only one large frequency per bin with high probability.

The permutation stage of the location loop performs the random permutation of

the input signal so that adjacent coefficients in the frequency domain are evenly

separated. The process of binning the frequency coefficients is implemented by

filtering the permuted input signal. The filter suppresses the frequency coefficients

that hash out of the bin while passing through frequency coefficients that hash into

the bin. The utilization of a filter guarantees the goal of binning one frequency

coefficient per bin, minimizing the leakage of frequencies from one bin to another

[Has18]. The hashing-based spectrum permutation method implemented in the

14

MIT-SFFT maps indices of the original signal spectrum to the permuted locations

so that the original locations can then be recovered in the estimation loops.

Figure 2.1: GPU-SFFT: MIT-SFFT Algorithm Workflow
A simplified workflow diagram of the outer loop of the version 2.0 of the

MIT-SFFT algorithm

After permuting and filtering the input signal, the original problem has been

reduced from a n-dimensional DFT to a B-dimensional DFT. This size-reduced

DFT is computed by the FFT algorithm with time complexity O(B log B). After

computing the B-dimensional DFT, each bin in the frequency domain contains at

most one potential large coefficient. However, in a k-sparse DFT, it is likely that

many of the coefficients in the bins are close to zero. The algorithm guarantees

15

that the probability of missing a large coefficient is low if the top O(k) samples are

selected [Has18]. Then, in the cutoff stage, the indices of the top k coefficients of

maximum magnitude are selected from the set of B bins in the frequency domain,

and the indices of the other B − k coefficients are discarded.

In the reverse hash function stage, the k largest coefficients found in the cutoff

stage are reconstructed by finding the original locations in the frequency domain

[SP14]. The version 2.0 of the MIT-SFFT adds a heuristic to restrict the location

of the indices of the largest coefficients using a filter that has no leakage at all. The

intersection of these indices with the indices of the k largest coefficients found in

the cutoff stage is computed in the reverse hash function. In a voting approach, this

function gives a vote to an index, every time the index appears in the intersection

of both sets of indices, when the number of votes reaches a threshold, the index is

added to the output of the function. The output of the location loops are the indices

of the largest frequency coefficients that have a number of votes at least equal to a

given threshold [Has18].

The estimation loops share the permutation, filtering, and the FFT stages de-

scribed for the location loops, with the goal of having one large frequency coefficient

per bin with high probability. Given the set of indices computed by the location

loops, and the bins in the frequency domain, the estimation coefficients stage of

the estimation loops returns the indices and the values of the k largest frequency

coefficients. To compensate for the collision of large frequencies in the same bin,

the output of the estimation loops is the median of the values of the frequency

coefficients found on all the estimation loops.

16

2.3 GPU based Sparse Fast Fourier Transform algorithm

This section includes a description of the functionality of our GPU-SSFT algorithm,

including the techniques used to implement such functionality. The description is

based on pseudocodes that map to the stages shown in Figure 2.1. One of the goals

in the design of our GPU-SFFT algorithm was to minimize the transfer of data be-

tween the CPU and the GPU to reduce the I/O time and to improve speedups. The

first procedure to achieve this goal is to compute the time and frequency components

of the filters on the GPU (device) side as a preprocessing stage for the GPU-SFFT

algorithm. The second procedure is to transfer the data of the CPU (host) input

signal of size n to the GPU (device) side only one time at the start of the computa-

tion. Both procedures are represented in Algorithm 2.1 for the outer loop function

of the GPU-SFFT. The input of Algorithm 2.1 are the host input signal, hx, and

the time and frequency components on the device side of the filters, dfiltt and dfiltf

respectively, where fs is the size of the filters. Lines 4 and 5 of Algorithm 2.1,

show the allocation of GPU global memory for the device input signal, dx, and the

memory transfer of hx to dx. Lines 6 to 10 of Algorithm 2.1, show the allocation

of GPU global memory for the internal variables. The functions which are called in

the for loops of Algorithm 2.1 implement the GPU version of the stages shown in

Figure 2.1. The output of Algorithm 2.1 is the output signal, ĥx, in the device side.

All the functions included in Algorithm 2.1 are described in the following sections.

2.3.1 GPU-SFFT: Permutation and filtering

Algorithm 2.2 is the sequential version of the permutation and filtering stage in

Figure 2.1, implementing (line 6) the hash function given in Equation 2.1 which

17

Algorithm 2.1 GPU outer loop function.

1: Input: hx[0..n],dfiltt[0..fs],dfiltf [0..fs]

2: Output: ĥx[0..IF]
3: procedure OutLpGPU(hx,n,dfiltt,dfiltf ,fs,B,Bt,W ,L,Lc,Lt,Ll)
4: dx[0..n]← cudaMalloc(n)
5: cudaMemcpy(dx, hx)
6: dbinst[0..L ∗B]← cudaMalloc(L ∗B)
7: dbinsf [0..L ∗B]← cudaMalloc(L ∗B)
8: dI[0..n]← cudaMalloc(n)
9: dJ2[0..Lc ∗Bt]← cudaMalloc(Lc ∗Bt)
10: dHσ[0..L]← cudaMallocManaged(L)
11: for i← 0, Lc do
12: LocLargeCoefGPU(dx,Bt,n,W ,dJ2[i ∗Bt])
13: end for
14: IF ← 0
15: for i← 0, L do
16: σ ← random() mod n ▷ gcd(σ, n) = 1
17: dHσ[i]← modInv(σ, n) ▷ dHσ[i]σ = 1(mod n)
18: dJ [0..Bt]← cudaMalloc(Bt)
19: PermFilterGPU(dx,B,dfiltt,fs,dbinst,dHσ[i])
20: FFTCutoffGPU(dJ ,dbinst,dbinsf ,B,Bt)
21: if L < Ll then
22: RevHashGPU(dI,dJ ,Bt,B,n,Lt,dJ2,W ,IF ,σ)
23: end if
24: end for
25: ĥx← EstValGPU(dI, IF, dbinsf , dfiltf , B, n, L, dHσ)

26: end procedure

maps each one of the n elements of the input signal to one of the B bins[Has18].

hσ,B(i) = floor
(iσ

n/B

)
▷ hσ,B : [n]→ [B], (2.1)

On the GPU version of Algorithm 2.2, a thread collision can occur when multiple

threads, for example, threads i, B + i, 2B + i, ..., try to update the same bin con-

currently, introducing time delays that negatively impact the performance of the

parallel algorithm. Algorithm 2.3 is the GPU version of the sequential Algorithm

2.2. Algorithm 2.3 is designed to solve the thread collision with a tiling based

approach [KWM16]. The number of colliding threads is approximately equal to

T = floor(fs/B), where fs is the size of the filter. Since fs is not divisible by B,

18

Algorithm 2.2 Sequential function to permute and filter the input signal x.

1: procedure PermFilter(x,B,filtt,fs,binst,Hσ,i)
2: for i← 0, fs do
3: end for

4: end procedure

when the filter vector is partitioned into T tiles of size B, there are R = fs mod B

remaining elements of the filter after the T tile. The tiling approach resolves the

collision problem because each GPU thread computes T unique components of the

permuted and filtered signal and bins them into only one component of the binst

vector. Each one of the T components is computed by the GPU thread by convo-

luting one component of the permuted input signal with a filter component that is

for each iteration in a different tile and it is unique for each GPU thread. After

the i = (B − 1) ∗ T iteration of the for loop finishes, the remaining R iterations, on

which i = B, access the last R elements of the filter.

The kernel PFTKERN of the algorithm 2.3 implements the tilling approach for

unrolling the for loop of the sequential algorithm 2.2. Each GPU thread on this ker-

nel bins the components of the permuted and filtered input signal that correspond to

one bin, independently of each other thread on the kernel, making this computation

free of collisions. Each thread computes the first for loop (lines 17 to 22) of size T .

After this for loop finishes, the remaining R components of the filter are convoluted

with the permuted input signal in the second for loop (lines 24-28) of PFTKERN.

In the sequential algorithm 2.2, the permutation index (line 7) has an implicit de-

pendence on the index i of the for loop. In the GPU version, the computation of the

indices of the permuted input signal, the filter, and the bins on PFTKERN are ex-

plicitly dependent on the index of the thread. The experimental results showed that

for input signals with sizes n < 227, the performance of PFTKERN is much higher

than the performance of the corresponding for loop on the sequential version. The

19

Algorithm 2.3 GPU function to permute and filter the input signal x.

1: Input: dx[0..n],dfiltt[0..fs]
2: Output: dbinst[0..B]
3: procedure PmFilterGPU(dx,B,dfiltt,fs,dbinst,dHσ,i)
4: dbinst ← cudaMemset(dbinst, 0, B)
5: T ← fs/B,R← fs mod B
6: if n < 227 then
7: PFTKern(dbinst,dx,dfiltt,n,B,dHσ,i,T ,R)
8: else
9: PFKern(dbinst,dx,dfiltt,n,B,dHσ,i,fs)
10: end if
11: end procedure

12: procedure PFTKern(dbinst,dx,dfiltt,n,B,dHσ,i,T ,R)
13: i← threadIdx.x + blockIdx.x ∗ blockDim.x
14: if i < B or i == B then
15: if i < B then
16: for j ← 0, T do
17: id← i+ j ∗B
18: dbinst[i]+← dx[(id ∗ dHσ,i) mod n] ∗ dfiltt[id]
19: end for
20: end if
21: if i == B then
22: for j ← 0, R do
23: id← j ∗ T + i
24: dbinst[j]+← dx[(id ∗ dHσ,i) mod n] ∗ dfiltt[id]
25: end for
26: end if
27: end if
28: end procedure

29: procedure PFKern(dbinst,dx,dfiltt,n,B,dHσ,i,fs)
30: i← threadIdx.x + blockIdx.x ∗ blockDim.x
31: if i < fs then
32: dbinst[i mod B]+← dx[(i ∗ dHσ,i) mod n] ∗ dfiltt[i]
33: end if

34: end procedure

sizes of the for loops on this kernel are T < 30 and R < 1000, which are efficiently

computed by one thread within times that are smaller than the time delays caused

by the potential thread collisions. However, for input signals with sizes n ≥ 227, the

value of R is in the range [2000, 250000], increasing the time to compute the second

20

for loop on PFTKERN, degrading the performance of the algorithm. In order to

obtain the expected high performance, the kernel PFKERN (lines 32 to 38) was

added to Algorithm 2.3. This kernel is designed to implement a direct unrolling

of the corresponding sequential for loop. PFKERN has therefore the time delays

introduced by the collision of about T threads trying to update the same bin but

does not have the time delays caused by the computation of the second for loop on

PFTKERN, which are greater than the corresponding collision times. PFKERN has

therefore a higher performance than PFTKERN for input signals with sizes n ≥ 227.

Hence, in order to guarantee the high performance of Algorithm 2.2 for all the input

signals, PFTKERN is selected for input signals with sizes n < 227, and PFKERN for

sizes n ≥ 227 (lines 7-10).

2.3.2 GPU-SFFT: FFT and cutoff

Algorithms 2.4 and 2.5 are the GPU implementation of the FFT and Cutoff stages

on Figure 2.1. In Algorithm 2.4, the FFT of the bins vector in the domain time

is computed using the cuFFT library. The bins vector in the frequency domain is

Algorithm 2.4 GPU function to compute the FFT of the bins vector in the time domain,
and to find and sort the Bt = 2k indices of the largest frequency coefficients in the bins
vector in the frequency domain.

1: Input: dbinst[0..B]
2: Output: dbinsf [0..B], dJ [0..Bt]
3: procedure FFTCutoffGPU(dJ ,dbinst,dbinsf ,B,Bt)
4: dbinsf ← cuFFT(dbinst, B)
5: dJ ← CutoffGpu(dJ, dbinsf , Bt, B)

6: end procedure

the input to Algorithm 2.5, on which the Bt = 2k indices of the largest frequency

coefficients on this vector are computed and sorted. Algorithm 2.5 allocates de-

vice memory for two vectors: dsampless and dsamplesI . The components of both

21

Algorithm 2.5 GPU function to find and sort the Bt = 2k indices of the largest
frequency coefficients in the input vector.

1: Input: dŷ[0..m]
2: Output: dId[0..Bt]
3: procedure CutoffGPU(dId,Bt,dŷ,m)
4: dsampless[0..m]← cudaMalloc(m)
5: dsamplesI [0..m]← cudaMalloc(m)
6: SKern(dŷ, dsampless, dsamplesI ,m)
7: thrust::sort(dsampless)
8: cutoff ← dsampless[m−Bt − 1]
9: id← 0
10: CKern(dId, cutoff, dsamplesI ,m, id,Bt)
11: thrust::sort(dId)
12: end procedure

13: procedure SKern(dŷ,dsampless,dsamplesI ,m)
14: i← threadIdx.x + blockIdx.x ∗ blockDim.x
15: if i < m then
16: dsampless[i]← ||dŷ||2
17: dsamplesI [i]← dsampless[i]
18: end if
19: end procedure

20: procedure CKern(dId,cutoff ,dsamplesI ,m,id,Bt)
21: i← threadIdx.x + blockIdx.x ∗ blockDim.x
22: if i < m then
23: if dsamplesI [i] > cutoff and id < Bt then
24: dId [atomicAdd(id, 1)]← i
25: end if
26: end if

27: end procedure

vectors are computed as the square of the magnitudes of the input vector on the

SKERN kernel. After sorting the dsampless vector, with the sort functionality of

the Thrust library [BH12], a cutoff value is computed. The kernel CKERN imple-

ments the unrolling of the corresponding for loop on the sequential version of the

MIT-SFFT algorithm. The cutoff value is used on CKERN to compute the indices

of the largest frequency coefficients. These largest frequency coefficients are the

elements in dsamplesI with values greater or equal to the cutoff.

22

Algorithm 2.6 GPU function to restrict the location of the 2k largest frequency coef-
ficients in the DFT of the input signal x.

1: Input: dx[0..n]
2: Output: dJ2[0..Bt]
3: procedure LocLargeCoefGPU(dx,Bt,n,W ,dJ2)
4: dx′[0..W]← cudaMalloc(W)
5: dŷ[0..W]← cudaMalloc(W)
6: σ ← n/W, τ ← random() ∗ σ
7: LLCKern(dx′, dx,W, τ, σ)
8: dŷ ← cuFFT(dx′,W)
9: dJ2 ← CutoffGPU(dJ2, Bt, dŷ,W)
10: end procedure

11: procedure LLCKern(dx′,dx,W ,τ ,σ)
12: i← threadIdx.x + blockIdx.x ∗ blockDim.x
13: if i < W then
14: dx′[i]← dx[τ + i ∗ σ]
15: end if

16: end procedure

2.3.3 GPU-SFFT: Frequency coefficients of the input signal

The function to restrict the location of the 2k largest frequency coefficients in the

DFT of the input signal x is a heuristic that was added as a preprocessing stage in

version 2.0 of the MIT-SFFT (see Figure 2.1), to improve the performance of the

algorithm [Has18]. This function implements an aliasing filter which is very efficient

because has no leakage. Algorithm 2.6 implements the GPU version of this function.

The output of the kernel LLCKERN is the filtered input signal dx′. After comput-

ing the FFT of dx′,dŷ, by cuFFT, the set of indices of the 2k largest frequencies

contained in dŷ is computed by the procedure CUTOOFGPU on Algorithm 2.5.

2.3.4 GPU-SFFT: Reverse hash function

The GPU version of the reverse hash stage of Figure 2.1 is implemented by Algorithm

2.7 by unrolling the corresponding for loop on the sequential version of the MIT-

23

SFFT algorithm. The goal of Algorithm 2.7 is to reverse the hash function (Equation

2.1) to compute the true indices of the largest frequency coefficients that have been

hashed to non-empty bins [Has18]. The input of Algorithm 2.7 is the set of indices

of frequency coefficients, dJ , computed by Algorithm 2.5, and the set of indices

of frequency coefficients, dJ2, computed by Algorithm 2.6. For each location loop,

Algorithm 2.7 computes the set of indices IL of the largest frequency coefficients

that map to J under the hash function and that are in the permuted set of indices

dJ2σ, namely

IL = {iL ∈ [n]|(hσ(iL) ∈ dJ) ∩ (iL ∈ dJ2σ)}, (2.2)

where dJ2σ = (dJ2 ∗ σ) mod W . Algorithm 2.7 implements a voting approach

[Has18] on which each time an index is added to the set IL, the index will get a vote

(line 14). The output of Algorithm 2.7 is the set of true indices dI of the largest

frequency coefficients which get a number of votes equal or greater than a given

parameter Lt, i.e.

dI = {id ∈ Ij|dV [id] ≥ Lt}, (2.3)

where Ij ∈ IL.

2.3.5 GPU-SFFT: Estimate values

The GPU version of the estimate frequency coefficients stage of Figure 2.1 is imple-

mented by Algorithm 2.8 by unrolling the corresponding for loop on the sequential

version of the MIT-SFFT algorithm. This algorithm is based on the theorem that

the DFT of a signal in the time domain corresponds to phase rotation in the fre-

quency domain, i.e. x(n− τ)⇔ e−2πfτ x̂(f) [SI06]. The goal of Algorithm 2.8 is to

compute the true values of the largest frequency coefficients that have been hashed

24

Algorithm 2.7 GPU function to reverse the hash function and to return the set of
indices of the largest frequency coefficients that occurred in at least Lt of the location
loops.

1: Input: dJ [0..B],dJ2[0..Bt]
2: Output: dI[0..IF]
3: procedure RevHashGPU(dI,dJ ,Bt,B,n,Lt,dJ2,W ,IF ,σ)
4: dV [0..n]← cudaMalloc(n)
5: dV ← cudaMemset(dV, 0, n)
6: dJ2σ[0..Bt]← cudaMalloc(Bt)
7: dJ2σ ← (dJ2 ∗ σ) mod W
8: RHKern(dI,dJ ,dV ,dJ2σ,Lt,IF ,W)
9: end procedure

10: procedure RHKern(dI,dJ ,dV ,dJ2σ,Lt,IF ,W)
11: i← threadIdx.x + blockIdx.x ∗ blockDim.x
12: if i < Bt then
13: IL = {iL ∈ [n]|(hσ(iL) ∈ dJ) ∩ (iL ∈ dJ2σ)} ← iL,i
14: atomicAdd(dV [iL,i], 1)
15: if dV [iL,i] == Lt then
16: dI [atomicAdd(IF, 1)]← iL,i
17: end if
18: end if

19: end procedure

to non-empty bins, by removing the phase rotation introduced by the permutation

and filtering of the input signal in the time domain [Has18]. The input of Algorithm

2.8 is the set of indices of frequency coefficients, dI, computed by Algorithm 2.7.

Each thread of the kernel EVKERN of Algorithm 2.8 runs a for loop of size equal to

the total number of loops (L), on which the index I(i) is permuted, and the value

of the largest frequency coefficient binsf [hσ,B(I[i])] is divided by the corresponding

component of the frequency component of the filter to remove the phase rotation.

It is possible that more than one frequency hash to the same bin, hence, to com-

pensate for errors due to this hash collision, the median of the values computed in

the for loop is assigned to the I(i) component of the SFFT (x) = x̂. The device

memory transfer of the SFFT output signal, dx̂ to the host memory, hx̂, completes

the output of Algorithm 2.8.

25

Algorithm 2.8 GPU function to estimate the values of the largest coefficients given the
indices of such coefficients.

1: Input: dI[0..IF],dfiltf [0..fs],dbinsf [0..L ∗B]
2: Output: hx̂[0..IF]
3: procedure EValGPU(dI,IF ,dbinsf ,dfiltf ,B,n,L,dHσ)
4: dx̂[0..IF]← cudaMalloc(IF)
5: EVKern(dx̂,dI,IF ,dbinsf ,L,n,dHσ,B,dfiltf)
6: cudaMemcpy(hx̂, dx̂)
7: return hx̂
8: end procedure

9: procedure EVKern(dx̂,dI,IF ,dbinsf ,L,n,dHσ,B,dfiltf)
10: i← threadIdx.x + blockIdx.x ∗ blockDim.x
11: if i < IF then
12: pos← 0
13: for j ← 0, L do
14: id← (dHσ[j] ∗ dI[i]) mod n
15: x′v[pos]← binsf [hσ,B(I[i])]/filtf [id mod (n/B)]
16: pos++

17: end for
18: dx̂[I[i]]← median(x′v)
19: end if

20: end procedure

2.4 Results

In this Section, we present the results of the experiments performed to compare

the performance of the proposed GPU-SFFT algorithm with the performances of

the sequential MIT-SFFT algorithm [Has18], and of cuFFT, the NVIDIA CUDA

Fast Fourier Transform (FFT) library [NVI]. We were not able to compare the

performance of GPU-SFFT with other similar algorithms proposed on reference

[WCC16] because neither the code nor the parameters used in their experiments

were available.

As a preliminary stage for the design and implementation of GPU-SFFT, we port

the MIT-SFFT in C++ to C. This version called MIT-SFFTC is more compatible

with the CUDA C language easing the implementation of GPU-SFFT. We used this

version for all the experiments included in this Section.

26

2.4.1 Experiments

The input signal, x, to the experiments in the time domain was computed as inverse

DFTs of a signal, ŷ, in the frequency domain with k randomly chosen elements equal

to 1 and n−k elements equal to zero. The output SFFT signals of the experiments, x̂,

were compared to the corresponding input signal in the frequency domain. Only the

experiments whose results replicated exactly the input signals, i.e., with no missing

components, were accepted as valid results. For all the experiments presented in

this section, the output signal error was measured by the mean square error (MSE)

defined by [TD00]

MSE =
1

k

k−1∑
i=0

[(x̂[i].x− ŷ[i].x)2 + (x̂[i].y − ŷ[i].y)2], (2.4)

where x̂[i].x(y[i].x) and x̂[i].y(y[i].y) are the real and imaginary components of

x̂[i](y[i]) respectively.

The experiments designed to evaluate the performance of the GPU-SFFT algo-

rithm were divided into two sets. The first set of experiments had input signals with

sizes in the range [219, 227], and a level of sparsity of k = 1000. The second set of

experiments had input signals with sparsity levels in the range [1000, 43000], and a

size of n = 227. The parameters used in the experiments are given in Tables 2.1 to

2.4, and the symbols used in these tables to identify the parameters are described

in the Sparse Fourier Transform Code Documentation [HIKP12].

Table 2.1: Parameters MIT-SFFT (n = 2q, k = 1000)

q 19 20 21 22 23 24 25 26
B 3.85 1.4 2.16 0.683 0.99 0.663 0.662 0.478

Comb-cst 256 128 128 256 256 128 128 128
loc-loops 3 2 2 2 2 2 2 2
est-loops 5 6 5 5 3 5 5 5
thre-loops 2 2 2 2 2 2 2 2
Comb-loops 2 2 2 2 2 2 2 2

27

Table 2.2: Parameters GPU-SFFT (n = 2q, k = 1000)

q 19 20 21 22 23 24 25 26
B 3.85 1.4 2.16 0.683 0.99 0.663 0.662 0.478

Comb-cst 256 128 128 256 256 128 128 128
loc-loops 3 2 2 2 2 2 2 2
est-loops 5 5 5 5 3 5 5 5
thre-loops 2 2 2 2 2 2 2 2
Comb-loops 2 2 2 2 2 2 2 2

Table 2.3: Parameters MIT-SFFT (n = 227)

k/1000 1 7 13 19 25 31 37 43
B 0.68 0.77 0.665 0.66 0.79 0.69 0.70 0.8

Comb-cst 128 4096 4096 4096 8192 16384 32768 32768
loc-loops 3 2 2 2 2 3 3 3
est-loops 4 5 9 9 9 9 10 9
thre-loops 2 2 2 2 2 2 2 2
Comb-loops 2 2 2 2 2 2 2 2

All the experiments presented in this Section were performed on a Linux server

with Ubuntu operating system version 16.04.5, 44 Intel Xeon Gold processors, a

clock speed of 2.1 GHz, and 125 GB of RAM. The GPU in this server is an NVIDIA

Titan Xp, with 30 SM, 128 cores/SM, maximum clock rate of 1.58 GHz, 12196 MB

of global memory, and CUDA version 10.1 with CUDA capability of 6.1.

2.4.2 Experimental Results

For the first set of experiments, Figure 2.2 a) compares the execution times of the

MIT-SFFTC and the GPU-SFFT, when the I/O times to transfer the input signal

from the host to the device were not included. The GPU-SFFT times reflected the

impact of the parallelization by being nearly independent of the signal size and by

being much lower than the times of MIT-SFFTC. The speedup obtained with the

GPU-SFFT vs MIT-SFFTC (Figure 2.4 a) had a maximum of 21x with an average

of 9x. When the I/O times were included, GPU-SFFT was faster than MIT-SFFTC

for all signal sizes, and faster than cuFFT for signal sizes greater than 222 (Figure

28

Table 2.4: Parameters GPU-SFFT (n = 227)

k/1000 1 7 13 19 25 31 37 43
B 0.68 0.77 0.665 0.66 0.79 0.69 0.70 0.8

Comb-cst 128 4096 4096 4096 8192 16384 32768 32768
loc-loops 3 2 2 2 2 3 3 3
est-loops 4 5 7 9 9 9 8 8
thre-loops 2 2 2 2 2 2 2 2
Comb-loops 2 2 2 2 2 2 2 2

2.2 b)). For this case, the speedup obtained with GPU-SFFT vs MIT-SFFTC had

a maximum of 4x and an average of 3x, and the speedup of GPU-SFFT vs cuFFT

had a maximum of 5x and an average of 3x.

Figure 2.2: GPU-SFFT: Execution Times vs Signal Size

For the second set of experiments, Figure 2.3 a) compares the execution times

of the MIT-SFFTC and the GPU-SFFT when the I/O times are not included. The

GPU-SFFT times were much lower than the times of MIT-SFFTC in the complete

range of sparsity levels. The speedup obtained with the GPU-SFFT vs MIT-SFFTC

(Figure 2.4 b) had a maximum of 38x with an average of 29x. When the I/O times

were included, GPU-SFFT was still faster than both MIT-SFFTC and cuFFT for

all the sparsity levels (Figure 2.3 b)). For this case, the speedup obtained with

GPU-SFFT vs MIT-SFFTC had a maximum of 22x and an average of 13x, and the

speedup of GPU-SFFT vs cuFFT had a maximum of 5x and an average of 3x.

29

Figure 2.3: GPU-SFFT: Execution Times vs Signal Sparsity

Figure 2.4: GPU-SFFT: Speedup

GPU− SFFT accuracy: Figure 2.5 showed that the mean square error (MSE,

Equation 2.4) of the output signal, for both sets of experiments, was below 10−4, with

all the k frequencies components in the output of GPU-SFFT successfully recovered.

Hence, GPU-SFFT showed a better performance than both the MIT-SFFTC and

cuFFT with high levels of accuracy.

2.5 Summary

The Sparse Fast Fourier Transform (MIT-SFFT) is an algorithm to compute the dis-

crete Fourier transform of a signal with a sublinear time complexity, i.e., algorithms

30

Figure 2.5: GPU-SFFT: Mean Square Errors of the Output Signal

with runtime complexity proportional to the sparsity level k, where k is the number

of non-zero coefficients of the signal in the frequency domain. In this chapter, we

proposed a highly scalable and parallel CPU-GPU algorithm called GPU-SFFT for

computing the SFFT of k-sparse signals. GPU-SFFT was designed to achieve a

high-performance algorithm by carefully crafting parallel regions in the sequential

MIT-SFFT code [Has18], increasing the parallelism by maximizing the number of

concurrent threads executing independent instructions. The design of GPU-SFFT

also adopted a specific data-management strategy to minimize the data transfer

between the CPU and the GPU leading to reduced I/O times, by transferring only

input data from the CPU to the GPU, and only output results from the GPU to

the CPU, and performing all the computations on the GPU side.

Our experiments showed that the specific optimizations applied to the design

of GPU-SFFT resulted in a substantial decrease in the execution times needed for

computing the SFFT. The comparison of the execution times of the GPU-SFFT with

the execution times of the sequential MIT-SFFT algorithm showed that the speedup

obtained with the GPU-SFFT was up to 38x when the times for data transfer

between the CPU and the GPU were not considered, and up to 22x when these

31

times were included. Moreover, up to 5x speedup was obtained when the execution

times of the GPU-SFFT were compared to the corresponding times of cuFFT, the

NVIDIA CUDA Fast Fourier Transform (FFT) library. For all the experiments

performed with the GPU-SFFT algorithm, the mean square error (MSE) was below

10−4, and there were no missing frequencies in the computed SFFT output signal.

The source code for GPU-SFFT is available at https://github.com/pcdslab/gpu-sfft.

CUDA Computer Model

The GPU-based high-performance algorithms presented in this chapter and in chap-

ters 3 and 4, were implemented using the following CUDA computer model.

The programmable Graphics Processing Units (GPUs) is a highly parallel, mul-

tithreaded, many-core processors with very high computational power and memory

bandwidth [Gui20]. The GPU is organized into an array of highly threaded stream-

ing multiprocessors (SMs). Each SM contains several cores that share control logic

and instruction cache. The GPU architecture is called Single Instruction Multiple

Thread (SIMT), on which hundreds of threads on each core can concurrently execute

the same instruction [CM14].

In 2006, NVIDIA introduced the Compute Unified Device Architecture (CUDA),

a general-purpose parallel computing platform and programming model that allows

programmers to use CUDA-enabled GPUs to solve many complex computational

problems [Gui20]. A key component of the CUDA programming model is the kernel,

the code that implements the instructions to be executed by the threads on the GPU

device. The threads executing the instructions in a kernel are grouped into one or

two-dimensional grids. The grids are made up of threads blocks. The threads in a

block are organized in groups of 32 called warps. All the threads in a warp execute

the same instruction at the same time.

32

The CUDA memory model contains different types of programmable memory

spaces: Registers, shared memory, local memory, constant memory, texture memory,

and global memory. Each thread has private local memory. Each thread block has

shared memory visible to all threads of the block and with the same lifetime as

the block. Using shared memory improves the performance when threads inside the

block need to access the same data multiple times. All threads have access to the

same global memory. Global memory is the largest, highest latency, and most used

memory on a GPU. Data transferred from CPU to GPU resides in global memory.

Transferring data between CPU and GPU is a slow process with a negative impact on

the performance of a CUDA code, hence this type of transfer should be minimized.

Coalesced memory accesses occur when all the 32 threads in warp access adjacent

memory locations. Ensuring coalesced global memory access is an important goal

for high-performance GPU-based algorithms [CM14].

33

CHAPTER 3

TURBOBFS: A GPU BASED BREADTH-FIRST SEARCH (BFS)

ALGORITHMS

In this chapter, we present the design and implementation of TurboBFS, a highly

scalable GPU-based set of top-down and bottom-up BFS algorithms in the language

of linear algebra [AS21d].

3.1 Introduction

Graphs that are used for modeling of human brain [BS17], omics data [GOB+10], or

social networks [JWBW16], are huge, making a manual inspection of these graphs

practically impossible. A popular, and fundamental, method used for making sense

of these large graphs is the well-known Breadth-First Search (BFS) algorithm with

many interesting applications. However, the high complexity of BFS algorithms is a

severe bottleneck for numerous computational problems. Due to its importance, and

high computational complexity with numerous applications; the BFS algorithm has

been used to evaluate the performance of practically all the high-performance graphs

processing libraries such as Ligra for shared memory machines [SB13], Gunrock on

the GPU [WDP+16], the implementation for the GraphBLAS standard, SuiteS-

parse:GraphBLAS [ACD+20], and the GPU based GraphBLAST library [YBO22]

built over the GrapBLAS library. Furthermore, the Graph 500 benchmark uses BFS

as one of the algorithms for ranking supercomputers [BFG+06].

BFS algorithms and their applications are both interesting and challenging for

Graphics Processing Units (GPU’s) [Gui20], because these algorithms (and archi-

tecture) have enough parallelism, but the data-access patterns are highly irregular.

Other challenges for implementing BFS in a scalable fashion include limited global

34

memory of the GPU’s, the data-transfer PCIe bottleneck, and warp divergence on

the GPU kernels. These challenges are primary reasons for limits on the size of

the graph that can be processed in a scalable fashion by the available BFS algo-

rithms, and to elicit limited speedups on CPU-GPU architectures, being, therefore,

an active area of research [PWW+17, WDP+16, YBO22].

We designed and implemented TurboBFS, a highly scalable set of GPU-based

BFS algorithms in the language of linear algebra. As far as we know, the first BFS

algorithm in the language of linear algebra was described in chapter 6 of reference

[KG11] as a first step of the betweenness centrality algorithm proposed by Brandes

[Bra08, KG11]. This algorithm was implemented on the SuiteSparse:GraphBLAS

and GraphBLAST libraries. The performances of both GPU-Based BFS algorithms

were compared in reference [YBO22].

The algorithms on TurboBFS are applicable to unweighted, directed, and undi-

rected graphs represented by sparse adjacency matrices in the Compressed Sparse

Column (CSC) format, or in the transpose of the Coordinate (COO) format, which

were equally applicable to direct and undirected graphs. The design of TurboBFS

was based on parallel optimizations selected to solve some of the problems associ-

ated with the challenges that we just discussed. We implemented a top-down BFS

algorithm exploiting the sparsity of the frontier vector, which contains the number

of shortest paths from the discovered vertices to the connected undiscovered ver-

tices. Further exploitation of the sparsity is acquired by using the sparsity of the

output vector, which contains the number of shortest paths from the root vertex to

the discovered vertices. We also implemented the bottom-up BFS algorithm pre-

sented in reference [BAP12], as well as an algorithm that combined both approaches

[BBAP13], which showed the best performance for some groups of graphs. To opti-

mize the use of the limited global memory of the GPU, we considered all the graphs

35

unweighted, i.e., represented by Boolean sparse adjacency matrices [KG11], so that,

the value arrays of the corresponding sparse formats were not stored. This opti-

mization resulted in a substantial reduction of the GPU global memory footprint

required by the algorithms, resulting in substantial bandwidth utilization, as well

as an increased performance due to a reduction in the number of unnecessary float-

ing operations. Our algorithms were also designed to use only one type of sparse

compressed format with the corresponding reduction in the memory footprint. A

comprehensive experimental detail and results are presented to assess the perfor-

mance of the algorithms in TurboBFS.

Regular and irregular graphs

To implement the TurboBFS algorithms, the graphs were classified into two classes:

regular graphs and irregular graphs. The regular graphs were those with a degree

distribution with a regular pattern, i.e., with relatively low values of maximum,

mean, and variance, while irregular graphs were graphs having some vertices with

maximum degrees that are many orders of magnitude greater than their mean, and

standard deviations relatively larger than those shown by regular graphs. Figure 3.2

shows the differences between the degree distribution of these two classes of graphs.

This Figure shows the relative histogram for the degree distribution of a regular

graph, delaunay23, with a maximum, mean, and standard deviation equal to 28, 6.0,

and 1.0 respectively, as well as the relative histogram for the degree distribution of an

irregular graph, mycielskian19, with a maximum, mean, and standard deviation of

their degree distribution equal to 196607, 2297 and 4530 respectively. The dispersion

of the degree distribution for the irregular graph is as expected much greater than

the corresponding dispersion for the regular graph. In our experiments, we found

that the depth d of the BFS tree for irregular graphs is much lower than the depth

36

for regular graphs. A greater depth means that the runtime of the BFS algorithm

increases, for example, for the delaunay23 graph, with 8.4×106 vertices and 50×106

edges, d was equal to 1213 and the runtime 2014 ms, while for the mycielskian19

graph, with 393215 vertices and 903× 106 edges, d was equal to 3 and the runtime

31 ms. Therefore, the topology of the graphs which determines the depth of the

BFS trees had a huge impact on the performance of the TurboBFS algorithms.

Figure 3.1: TurboBFS: COOC and CSC Sparse Storage Formats

Figure 3.2: TurboBFS: Degree Distribution for Undirected Graphs

3.2 Breadth-First Search (BFS) algorithm

The breadth-first search (BFS) algorithm is applicable to any unweighted, directed

or undirected graph G = (V,E), where V is the finite set of vertices and E the set

37

of edges. Any pair (u, v) ∈ E implies that the vertices u and v in V are connected

by an edge in G. A graph G is directed if E consists of ordered pairs, otherwise,

G is undirected. Given a graph G = (V,E) and a root vertex r ∈ V , the top-down

BFS algorithm performs a systematic search of every vertex on E that is reachable

from r. The algorithm computes the shortest path (smallest number of edges) from

r to each reachable vertex, producing a BFS tree of the graph G. For connected

graphs, the BFS tree is a spanning tree. On every step of the BFS algorithm, the

frontier between discovered and undiscovered vertices is expanded. The algorithm

discovers all the vertices at depth d, before discovering all the vertices at depth

d + 1 on the BFS tree. On every step of the top-down BFS there are three sets of

vertices. The first set, σ, contains the number of shortest paths from the root vertex

to the discovered vertices, the second set, f , contains the number of shortest paths

from the discovered vertices to the connected undiscovered vertices, and the third

set is the undiscovered vertices, i.e., V − σ − f . The set f represents the frontier

between the discovered and the undiscovered vertices. For a graph G with n vertices

and m edges represented by a sparse adjacency matrix, the time complexity of the

sequential BFS algorithm is O(n2) [CLRS22].

In every step of the top-down BFS algorithm, the vertices in f are like parents

discovering their children among their neighbors. The step only finishes when each

parent has searched for all the potential children. In the bottom-up BFS algorithm

[BAP12], the searching process is reversed,i.e., at every step, the undiscovered ver-

tices are like children searching for parents, when a vertex finds a parent among its

neighbors, the searching process finishes for that vertex. More details about our

implementation of this algorithm are given in Section 3.3.

38

3.3 TurboBFS algorithms for unweighted graphs

This section presents our versions of the top-down and bottom-up BFS algorithms

in the language of linear algebra for directed and undirected unweighted graphs. For

the design and implementation of our algorithms, we used the Coordinate column

COOC (transpose of the COO format) and the Compressed Sparse Column CSC

sparse storage formats to represent the sparse adjacency matrices of the graphs.

These formats are the best choice to compute the transpose sparse matrix-vector

multiplication (y = ATx) performed in the top-down Algorithm 3.1, as well as the

operations needed for the bottom-up Algorithm 3.6. Figure 3.1 shows examples

of these formats for a sparse adjacency matrix representing a directed, unweighted

graph. For a n × n adjacency sparse matrix A with nnz non-zero elements repre-

senting unweighted graphs, the array rowA (size nnz) stores the corresponding row

indices of these non-zero values. The array CPA (size n + 1) stores the sequential

indices (from 1 to nnz) of the non-zero values in A that start a column, the first

element of this array is always equal to 1 and the last element equal to nnz + 1.

The array rowA of the COOC format is identical to the corresponding arrays of

the CSC format, while the array colA (size nnz) stores the corresponding column

indices of the non-zero values in A. To reduce the memory footprint and increase

the performance of the TurboBFS algorithms, the arrays that store the non-zero

values of the sparse adjacency matrix of unweighted graphs were not used by our

algorithms.

3.3.1 Top-Down BFS algorithm for COOC or CSC formats

Algorithm 3.1 represents the linear algebra formulation of the top-down BFS algo-

rithm for a graph G = (V,E) with n vertices and nnz edges, represented by n× n

39

sparse adjacency matrix A in the COOC sparse storage format, with nnz non-zero

elements. Algorithm 3.2 is the implementation of the same algorithm for the CSC

sparse storage format. These algorithms are inspired by the BFS algorithm de-

scribed in chapter 6 of reference [KG11], where it is presented as a first step of the

linear algebra version of the betweenness centrality algorithm [Bra08]. The main

innovation of our algorithms 3.1 and 3.2 was the utilization of the sparsity of the

frontier vector f and output vector σ to substantially improve the performance of

the algorithms described in [KG11]. Algorithm 3.1 computes a top-down BFS from

Algorithm 3.1 Linear algebra formulation of the top-down BFS algorithm for an un-
weighted graph represented by a sparse adjacency matrix A in the COOC format.

1: Input : A, r, n.
2: Output: σ(1....n)
3: procedure tdBFS-LA-UG(A,σ,r,n)
4: d← 0
5: c← 1
6: f ← 0
7: σ ← 0
8: while c > 0 do
9: d← d+ 1
10: c← 0
11: if d == 1 then
12: f(r)← 1
13: σ(r)← 1
14: end if
15: ft ← ATf
16: f ← 0
17: if ∃σ(i) == 0 then
18: f(i)← ft(i)
19: end if
20: if ∃f(i)! = 0 then
21: σ(i)← σ(i) + f(i)
22: c← 1
23: end if
24: end while

25: end procedure

the root vertex r, with d representing the current depth of the discovered vertices.

The final value of d is equal to the height of the BFS tree rooted on r. The output

40

vector σ contains the number of shortest paths from the root vertex to the discov-

ered vertices. The frontier vector f contains the number of shortest paths from the

discovered vertices to the undiscovered vertices to which there is some edge. The

while loop stops when the vector f is equal to 0, i.e., when all the vertices reachable

from r have been discovered (lines 20 to 22). The vector f is updated by the sparse

matrix-vector multiplication (SpMV) operation with the transpose of the adjacency

matrix (line 15), followed by a mask operation (lines 17 to 19) that updates on f

the shortest paths to vertices no yet contained on the vector σ, guaranteeing that

only the new discovered shortest paths are added to σ (lines 20 and 21).

Algorithm 3.2 represents the linear algebra formulation of the BFS algorithm for

a graphs G = (V,E) with the sparse adjacency matrix A in the CSC sparse storage

format. This algorithm is similar to Algorithm 3.1, with the difference that due to

the properties of the CSC format, the performance of the algorithm is improved by

including the mask operation in the SpMV operation, as shown in Algorithm 3.4.

3.3.2 Sparse matrix-vector multiplication

Our experimental results showed that the runtime of the SpMV operation on Al-

gorithms 3.1 and 3.2 can be up to 90 % of their total runtime. Hence the overall

performance of these algorithms was mainly determined by the performance of this

operation. Algorithm 3.3 implements the sequential SpMV (ft ← ATf) operation

of Algorithm 3.1. The parallel version of this algorithm, designated as scCOOC,

assigns one thread per edge of the graph. The top-down BFS algorithm using the sc-

COOC algorithm for the SpMV operation was designated as TurboBFS-tdscCOOC.

Algorithm 3.4 implements the sequential version of the SpMV operation on Al-

gorithm 3.2. The mask operation (line 2) is implemented by computing the com-

41

ponents of the vector ft only when the corresponding component of the σ vector

is equal to 0, ensuring that only the new discovered shortest paths are added to σ

(lines 19 to 20 of Algorithm 3.2). The straightforward parallelization of Algorithm

3.4, known as CSC-scalar (scCSC), on a GPU kernel assigns one thread per vertex.

In this paper, the acronym TurboBFS-tdscCSC designated the top-down BFS al-

gorithm using the scCSC algorithm for the SpMV operation. Figure 3.3 shows the

Figure 3.3: TurboBFS: Example of Computation using the TurboBFS-tdscCSC
Algorithm

computation of the top-down BFS for the root vertex 2 of the graph in the example

of Figure 3.1, using the TurboBFS-tdscCSC algorithm. The example assigns one

thread per vertex and shows the values assigned to the vectors σ and f on each

one of the two steps of the BFS computation. For irregular graphs, the scCSC

kernel results in poor performance due to uncoalesced memory access and warp di-

vergence. To improve the performance of the SpMV operation for irregular graphs,

we implemented the CSC-vector(veCSC) algorithm shown in Algorithm 3.5, which

is similar to the CSR-vector algorithm proposed in [BG08]. The veCSC algorithm

42

Algorithm 3.2 Linear algebra formulation of the top-down BFS algorithm for an un-
weighted graph represented by sparse adjacency matrices A in the CSC format.

1: Input: A, r, n.
2: Output: σ(1....n)
3: procedure BFS-LA-UG(A,σ,r,n)
4: d← 0
5: c← 1
6: f ← 0
7: σ ← 0
8: while c > 0 do
9: d← d+ 1
10: c← 0
11: ft ← 0
12: if d == 1 then
13: f(r)← 1
14: σ(r)← 1
15: end if
16: ft ← ATf
17: f ← ft
18: if ∃f(i)! = 0 then
19: σ(i)← σ(i) + f(i)
20: c← 1
21: end if
22: end while

23: end procedure

assigns a warp per vertex. This algorithm incorporates the warp shuffle instruction

(lines 18-22) to reduce the local sums by the threads in the warp without using

shared memory. The first thread in the warp outputs the result (lines 23-25). The

veCSC algorithm solves the problems of no coalesced memory access and the warp

divergence of the scCSC algorithm. The best performance of the veCSC algorithm

is obtained for irregular graphs, on which the warp divergence is minimized. The

acronym TurboBFS-tdveCSC designated the top-down BFS algorithm using the

veCSC algorithm for the SpMV operation.

43

Algorithm 3.3 Algorithm to implement the sequential ft ← ATf operation of the
BFS algorithm 3.1 with the sparse adjacency matrices in the COOC format.

1: for k → 1, nnz do
2: if f(rowA(k)) > 0 then
3: ft(colA(k))← ft(colA(k)) + f(rowA(k))
4: end if

5: end for

Algorithm 3.4 Algorithm (scCSC) to implement the sequential ft ← ATf oper-
ation of the BFS algorithm 3.2 for sparse adjacency matrix in the CSC format.

1: for i→ 1, n do
2: if σ(i) == 0 then
3: sum← 0
4: start← CPA(i)
5: end← CPA(i+ 1)− 1
6: for k → start, end do
7: sum← sum+ f(rowA(k))
8: end for
9: if sum > 0 then
10: ft(i)← sum
11: end if
12: end if

13: end for

3.3.3 Bottom-Up BFS algorithm for the CSC format

Algorithm 3.6 is the linear algebra formulation of the bottom-up BFS algorithm

described in reference [BAP12], for an unweighted graph G = (V, E) represented

by sparse adjacency matrices A in the CSC sparse storage format. This algorithm

computes a bottom-up BFS from the root vertex r, with d representing the current

depth of the discovered vertices. The final value of d is equal to the height of the

BFS tree rooted on r. The output vector S contains the level d at which each

vertex is discovered. If the vertex v is undiscovered (line 12), the search for the

parent of v starts at line 15 by searching all the incidents vertices to v (in the vector

I), when a parent is found (line 16), the corresponding element of the matrix S(v)

is updated with the next to the current level (d + 1). After discovering the parent

44

Algorithm 3.5 GPU-based algorithm (veCSC) to implement the sparse matrix-vector
multiplication ft ← ATf with the sparse adjacency matrix in the CSC format.

1: Input: CPA,rowA,f
2: Output: ft
3: procedure veCSC-SpMV-Kernel(CPA,rowA,f)
4: threadid ← threadIdx.x+ blockIdx.x ∗ blockDim.x
5: threadLaneid ← threadid ∗ (threadsPerWarp− 1)
6: warpid ← threadid/threadsPerWarp
7: col← warpid
8: while col < n do
9: if σ(col) == 0 then
10: start← CPA(col)
11: end← CPA(col + threadLaneid)
12: sum← 0
13: icp← start+ threadLaneid
14: while icp < end do
15: sum← sum+ f(rowA(icp))
16: icp← icp+ threadsPerWarp
17: end while
18: offset← threadsPerWarp/2
19: while offset > 0 do
20: sum← sum+ shfl− down− sync(offset)
21: offset← offset/2
22: end while
23: if threadLaneid == 0 then
24: ft(warpid)← sum
25: end if
26: end if
27: col← col + numWarp
28: end while

29: end procedure

of v, the searching process is completed with the break instruction on line 17. This

early termination of the searching process is the main difference with the top-down

BFS algorithms 3.1 and 3.2 on which all the potential children must be checked

on each searching step of the algorithm. The straightforward parallelization of

Algorithm 3.6 by a GPU kernel assigns one thread per vertex, we used the acronym

TurboBFS-busc to designate this algorithm. For irregular graphs, the TurboBFS-

busc kernel results in poor performance due to uncoalesced memory access and

warp divergence. To improve the performance of Algorithm 3.6 for irregular graphs,

45

Algorithm 3.6 Linear algebra formulation of the bottom-up BFS algorithm for an
unweighted graph represented by sparse adjacency matrices A in the CSC format.

1: Input: A,CPA, r, n.
2: Output: S(1....n)
3: procedure buBFS-LA-UG(A,CPA,r,n)
4: d← 0
5: c← 1
6: S ← −1
7: S(r)← d
8: while c > 0 do
9: c← 0
10: for v → 1, n do
11: if S(v) == −1 then
12: k ← CPA(v)
13: end← CPA(v + 1)− 1
14: while k > end do
15: if S(I(k)) == d then
16: S(v)← d+ 1
17: c← 1
18: break
19: end if
20: k ← k + 1
21: end while
22: end if
23: end for
24: d← d+ 1
25: end while

26: end procedure

we implemented the TurboBFS-buve Algorithm 3.7, which is a simplified version

of Algorithm 3.5 and where a warp is assigned to each vertex. The TurboBFS-

buve algorithm solves the problems of no coalesced memory access and the warp

divergence of the TurboBFS-busc algorithm for irregular graphs. The bottom-up

BFS algorithm has the best performance when a large fraction of the vertices are

in the frontier [BAP12]. At the beginning of the BFS search, the frontier vector

is sparse and the top-down BFS is more efficient than the bottom-up approach.

Hence, to yield the best performance, both algorithms can be combined, running

the top-down BFS at the beginning of the process, and when the frontier vector

46

Algorithm 3.7 TurboBFS-buve:GPU-based implementation of Algorithm 3.6, using one
warp per vertex.

1: Input: CPA,rowA,S,d
2: Output: S
3: procedure veCSC-BU-Kernel(CPA,rowA,S,d),
4: threadid ← threadIdx.x+ blockIdx.x ∗ blockDim.x
5: threadLaneid ← threadid&(threadsPerWarp− 1)
6: warpid ← threadid/threadsPerWarp
7: col← warpid
8: break ← 0
9: while !break and col < n and S(col) == −1 do
10: start← CPA(col)
11: end← CPA(col+ threadLaneid)
12: icp← start+ threadLaneid
13: while !break and icp < end do
14: if S(rowA(icp)) == d then
15: S(col)← d
16: c← 1
17: break ← 1
18: end if
19: icp← icp+ threadsPerWarp
20: end while
21: col← col + numWarp
22: end while

23: end procedure

becomes dense to switch to the bottom-up algorithm, in a direction optimizing BFS

algorithm [BBAP13]. We designed and implemented a combined BFS algorithm

on which the searching process starts with the top-down Algorithm 3.2, and then

when the frontier vector f becomes dense, the searching process continues with the

bottom-up Algorithm 3.6. We use the heuristics proposed in reference [BBAP13],

to switch from the top-down to the bottom-up algorithm when the frontier vector

has a minimum of 10% of nonzero elements. We used the acronym TurboBFS-tdbu

to designate this combined algorithm.

47

3.3.4 CUDA implementation of the TurboBFS algorithms

For the CUDA implementation of the TurboBFS algorithms, we designed and im-

plemented Algorithm 3.1 and Algorithm 3.2 with only two kernels on the GPU. The

first kernel initializes the f and σ vectors and executes the SpMV(ft ← ATf) op-

eration, and the second kernel computes the additional functions of the algorithms.

This implementation increased the performance of the algorithm by reducing the

overhead due to the sequential execution of more than two kernels on the GPU. The

implementation of the bottom-up BFS Algorithm 3.6 used only one GPU kernel.

3.4 Results

The experiments presented in this section were designed to assess the performance

of our TurboBFS algorithms by comparing it to the performance of the benchmark

algorithms available in the SuiteSparse:GraphBLAS library [ACD+20], and in the

GPU-based GraphBLAST [YBO22], and gunrock [WDP+16] libraries.

Our benchmark of sixty-nine graphs used in the experiments are represented

by sparse adjacency matrices selected from the SuiteSparse Matrix Collection (for-

merly the University of Florida Sparse Matrix Collection) [DH11, KAB+19], some

of these graphs are also in the Stanford Large Network Dataset Collection [LK14].

The selected adjacency matrices represent thirty-nine undirected and thirty directed

graphs, with up to 1900× 106 edges and up to 214× 106 vertices. The parameters

for each graph are given in the Tables 3.1, 3.3, and 3.5. The weighted graphs were

considered unweighted graphs for all the experiments.

The average running time (milliseconds) for each experiment was obtained by

50 trials per experiment. The MTEPs (millions of transverse edges by second)

achieved for each BFS algorithm were computed as the ratio between the number

48

of edges (thousands of edges) and the average running time (milliseconds). We

also implemented a sequential BFS algorithm to verify the results obtained from

the GPU-based algorithms, only the correct results were accepted. For all the

results presented in this section, we chose the TurboBFS algorithm with the best

performance.

All the experiments presented in this Section were performed on a Linux server

with Ubuntu operating system version 16.04.6, 22 Intel Xeon Gold 6152 processors,

a clock speed 2.1 GHz, and 125 GB of RAM. The GPU in this server was an NVIDIA

Titan Xp, with 30 SM, 128 cores/SM, maximum clock rate of 1.58 GHz, 12196 MB

of global memory, and CUDA version 10.1.243 with CUDA capability of 6.1.

3.4.1 Experimental results for regular graphs

This section summarizes the results of the experiments performed for the compu-

tation of BFS on thirty-eight regular graphs, nineteen of them direct (D) graphs

and the rest undirected (U) graphs. The number of vertices and edges, as well as

the parameters (maximum, mean, standard deviation) of the degree (out-degree for

directed graphs) distribution of the graphs, are given for each graph in Table 3.1,

and Table 3.2 includes the MTPEs and the speedup of the TurboBFS algorithms

over the algorithms implemented on the GraphBLAST ((GBLAST)x), gunrock

((gunrock)x), and SuiteSparse:GraphBLAS ((GBLAS)x) libraries. The symbol

OOM means that the corresponding benchmark algorithm ran out of memory, and

the symbol 2.2x in the column ((gunrock)x) means that TurboBFS was 2.2x faster

than the BFS algorithms in the gunrock libray.

The TurboBFS algorithms obtained up to 2000 MTEPs and were on average 7.4x,

2.0x, and 11.7x faster than the BFS algorithms available on the GraphBLAST, gun-

49

Table 3.1: Parameters for the set of directed (D) and undirected (U) regular graphs
with experimental results given in Table 3.2.

File V×103 E×103 degree(max/µ/σ) d
g7jac100sc(D) 30 385 153/13/22 14
g7jac120sc(D) 36 475 153/13/23 14
g7jac140sc(D) 42 566 153/14/24 15
g7jac160sc(D) 47 657 153/14/24 16
g7jac180sc(D) 53. 747 153/14/24 17
g7jac200sc(D) 59 838 153/14/25 17
cit-HepPh(D) 35 422 411/12/15 33
email-Enron(U) 37 368 1383/10/36 10
delaunayn15(U) 33 197 18/6/2 84
delaunayn16(U) 66 393 17/6/2 110
delaunayn17(U) 131 786 17/6/1 157
delaunayn18(U) 262 1573 21/6/1 197
delaunayn19(U) 524 3146 21/6/1 306
astro-ph(U) 17 243 360/15/21 10
ri2010(U) 25 126 44/5/3 66
me2010(U) 70 336 73/5/3 108
az2010(U) 242 1196 137/5/4 128
nc2010(U) 289 1417 83/5/3 207
fl2010(U) 484 2346 177/5/4 151
ca2010(U) 710 3489 141/5/3 216
enron(D) 69 276 1392/4/28 8

Wordnet3(D) 83 133 64/2/2 20
ASIC-100ks(D) 99 579 206/6/6 33
ASIC-320ks(D) 322 1828 412/6/8 31
ASIC-680ks(D) 683 2329 210/3/4 31
smallworld(U) 100 1000 17/10/1 9
luxemb-osm(U) 115 239 6/2/1 1035
netherl-osm(U) 2217 4883 7/2/1 1796
internet(D) 125 207 138/2/4 21

amazon0302(D) 262 1235 5/5/1 72
amazon0312(D) 401 3200 10/8/3 45
amazon0601(D) 403 3387 1/8/3 36
amazon0505(D) 410 3357 10/8/3 36
amazon-2008(D) 735 5158 10/7/4 32
web-NtDame(D) 326 1497 3455/5/22 52
roadNet-PA(U) 1091 3084 9/3/1 542
roadNet-TX(U) 1393 3843 12/31 723
roadNet-CA(U) 1971 5533 12/3/1 555

rock, and SuiteSparse:GraphBLAS libraries respectively. The top-down TurboBFS-

tdscCSC algorithm obtained the best performance for twenty-one (55 %) of the

graphs, and the bottom-up TurboBFS-busc algorithm showed the best performance

for fifteen (40 %) of the graphs in this group.

50

Table 3.2: Experimental MTEPs and speedup over the GraphBLAST
((GBLAST)x), gunrock ((gunrock)x), and SuiteSparse:GraphBLAS
((GBLAS)x) libraries, obtained with the TurboBFS algorithms for the com-
putation of BFS for the set of regular graphs given in Table 3.1.

File MTEPs (GBLAST)x (gunrock)x (GBLAS)x
g7jac100sc(D) 769 8.4x 2.2x 10.4x
g7jac120sc(D) 792 7.0x 2.0x 8.3x
g7jac140sc(D) 1132 9.0x 2.4x 15.6x
g7jac160sc(D) 1094 8.0x 2.5x 13.3x
g7jac180sc(D) 1068 7.4x 2.3x 13.4x
g7jac200sc(D) 1047 6.2x 2.4x 10.6x
cit-HepPh(D) 703 22.7x 4.2x 13.3x
email-Enron(U) 613 4.5x 1.7x 6.3x
delaunayn15(U) 109 9.0x 3.1x 8.5x
delaunayn16(U) 164 8.9x 3.4x 11.7x
delaunayn17(U) 161 7.6x 2.2x 15.9x
delaunayn18(U) 225 9.1x 2.0x 12.7x
delaunayn19(U) 115 3.6x 1.0x 9.2x
astro-ph(U) 808 15.0x 2.7x 12.7x
ri2010(U) 90 11.1x 3.2x 7.4x
me2010(U) 112 9.4x 2.5x 8.3x
az2010(U) 150 4.1x 1.3x 9.4x
nc2010(U) 104 4.6x 1.2x 9.1x
fl2010(U) 165 3.8x 0.9x 10.6x
ca2010(U) 126 2.9x 0.8x 8.0x
enron(D) 690 8.8x 2.0x 13.0x

Wordnet3(D) 190 10.6x 2.3x 6.6x
ASIC-100ks(D) 482 9.0x 2.7x 14.2x
ASIC-320ks(D) 870 7.6x 1.8x 17.1x
ASIC-680ks(D) 776 5.1x 1.4x 21.7x
smallworld(U) 2000 8.0x 2.4x 24.2x
luxemb-osm(U) 20 16.8x 6.7x 3.5x
netherl-osm(U) 26 2.5x 0.8x 1.9x
internet(D) 345 8.3x 3.2x 29.2x

amazon0302(D) 363 6.8x 2.1x 11.8x
amazon0312(D) 593 3.5x 0.9x 9.1x
amazon0601(D) 847 3.9x 1.0x 12.0x
amazon0505(D) 839 3.9x 1.0x 13.3x
amazon-2008(D) 992 2.9x 0.8x 14.2x
web-NtDame(D) 454 9.5x 1.6x 8.5x
roadNet-PA(U) 71 4.3x 1.0x 9.5x
roadNet-TX(U) 62 4.0x 0.9x 8.8x
roadNet-CA(U) 87 3.6x 1.0x 10.1x

3.4.2 Experimental results for irregular graphs

This section presents the results of the experiments performed for the computation

of BFS on twenty-three irregular graphs, six of them direct graphs, and seven-

51

Table 3.3: Parameters for the set of directed (D) and undirected (U) irregular graphs
with experimental results given in Table 3.4.

File V×103 E×103 degree(max/µ/σ) d
mycielski12(U) 3 407 1535/133/149 3
mycielski13(U) 6 1228 3071/200/247.0 3
mycielski14(U) 12 3696 6143/301/407 3
mycielski15(U) 24 11111 12287/452/664 3
mycielski16(U) 49 33383 24575/679/1080 3
mycielski17(U) 98 100246 49151/1020/1747 3
mycielski18(U) 196.6 300934 98303/1531/2817 3
mycielski19(U) 393 903195 196607/2297/4530 3
EAT-SR(D) 23.2 326 78/14/20 7

kron-logn16(U) 66 4913 17999/75/313 6
kron-logn17 (U) 131.1 10229 29937/78/378 6
kron-logn18(U) 262 21166 49164/81/454 6
kron-logn19(U) 524 43563 80676/83/541 6
kron-logn20(U) 1049 89241 131505/85/641 6
kron-logn21(U) 2097 182084 213906/87/756 6
soc-Epinio1(D) 76 509 1801/7/26 11
Linux-call(D) 324 1209 712/4/6 45
web-Stanf (D) 282 2313 255/8/11 147
com-LiveJ (D) 3998 69362 14815/17/43 14
com-Orkut(U) 3072 234370 33133/76/155 8

soc-LiveJour1(D) 4848 68994 20293/14/36 15
mawi-12345(U) 18571 38040 16.4× 106/2/3806 11
mawi-20000(U) 35991 74485 32.5× 106/2/5414 11

teen undirected graphs. The number of vertices and edges, as well as the param-

eters (maximum, mean, standard deviation) of the degree (out-degree for directed

graphs) distribution of the graphs, are given for each graph in Table 3.3, and Table

3.4 includes the MTPEs and the speedup of the TurboBFS algorithms over the algo-

rithms implemented on the GraphBLAST ((GBLAST)x), gunrock ((gunrock)x),

and SuiteSparse:GraphBLAS ((GBLAS)x) libraries.

The TurboBFS algorithms obtained up to 40 GTEPs, and were on average 3.0x,

1.3x, and 22.4x faster than the BFS algorithms available on the GraphBLAST, gun-

rock, and SuiteSparse:GraphBLAS libraries respectively. The top-down TurboBFS-

tdveCSC algorithm obtained the best performance for seven (30 %), the bottom-up

TurboBFS-buve algorithm for five (21.7 %), and the combined top-down bottom-up

TurboBFS-tdbu algorithm for six (26.1 %) of the irregular graphs in Table 3.4. The

52

Table 3.4: Experimental MTEPs and speedup over the GraphBLAST
((GBLAST)x), gunrock ((gunrock)x), and SuiteSparse:GraphBLAS
((GBLAS)x) libraries, obtained with the TurboBFS algorithms for the com-
putation of BFS for the set of irregular graphs given in Table 3.3.

File MTEPs (GBLAST)x (gunrock)x (GBLAS)x
mycielski12(U) 2036 5.5x 2.2x 7.5x
mycielski13(U) 4092 3.9x 1.8x 12.5x
mycielski14(U) 6159 2.0x 1.5x 23.3x
mycielski15(U) 11111 1.3x 1.7x 30.9x
mycielski16(U) 16691 1.1x 1.5x 36.2x
mycielski17(U) 22277 0.8x 1.5x 42.2x
mycielski18(U) 31347 0.8x 1.7x 48.0x
mycielski19(U) 39778 OOM 1.8x 57.3x
EAT-SR(D) 1085 6.3x 2.7x 16.7x

kron-logn16(U) 4466 2.1x 1.2x 28.3x
kron-logn17 (U) 4447 1.7x 0.8x 16.7x
kron-logn18(U) 5292 1.3x 0.9x 30.0x
kron-logn19(U) 5808 1.1x 0.9x 17.3x
kron-logn20(U) 3984 1.1x 1.1x 24.6x
kron-logn21(U) 2642 0.9x 1.2x 15.4x
soc-Epinio1(D) 848 8.0x 2.3x 16.7x
Linux-call(D) 432 6.5x 1.2x 3.2x
web-Stanf (D) 160 6.8x 0.8x 3.3x
com-LiveJ (D) 1286 0.9x 0.8x 9.6x
com-Orkut(U) 1698 0.9x 0.8x 6.4x

soc-LiveJour1(D) 940 1.3x 0.9x 7.5x
mawi-12345(U) 1330 5.7x 0.7x 28.4x
mawi-20000(U) 1357 5.2x 0.7x 29.1x

top-down TurboBFS-tdscCOOC algorithm obtained the best performance for five

(21.7 %) of these irregular graphs, including the most irregular graphs, the mawi

graphs, in the group, showing that the COOC format is the most suitable format

for these highly irregular graphs.

3.4.3 Experimental results for big graphs

This section presents the results of the experiments performed for the computation

of BFS on eight relatively big graphs, five of them direct graphs, and three undi-

rected graphs. The number of vertices and edges, as well as the parameters (max-

imum, mean, standard deviation) of the degree (out-degree for directed graphs)

53

distribution of the graphs, are given for each graph in Table 3.5, and Table 3.6

includes the MTPEs and the speedup of the TurboBFS algorithms over the algo-

rithms implemented on the GraphBLAST ((GBLAST)x), gunrock ((gunrock)x),

and SuiteSparse:GraphBLAS ((GBLAS)x) libraries. The directed graph sk-2005

Table 3.5: Parameters for the set of directed (D) and undirected (U) big graphs
with experimental results given in Table 3.6.

File V×106 E×106 degree(max/µ/σ) d
kmer-P1a(U) 139 298 40/2/1 487
kmer-A2a(U) 171 361 40/2/1 515
kmer-V1r(U) 214 465 8/2/1 342
it-2004(D) 41 1151 9964/28/67 50
twitter7(D) 42 1468 3× 106/35/2420 13

GAP-twitter(D) 62 1468 3× 106/24/1990 15
GAP-web(D) 51 1930 12869/38/78 56
sk-2005(D) 51 1949 12870/39/78 54

Table 3.6: Experimental MTEPs and speedup over the SuiteSparse:GraphBLAS
((GBLAS)x) library, obtained with the TurboBFS algorithms for the computation
of BFS for the set of big graphs given in Table 3.5.

File MTEPs (GBLAST)x (gunrock)x (GBLAS)x
kmer-P1a(U) 110 OOM OOM 10.0x
kmer-A2a(U) 109 OOM OOM 11.5x
kmer-V1r(U) 240 OOM OOM 19.1x
it-2004(D) 892 OOM OOM 3.3x
twitter7(D) 1537 OOM OOM 10.2x

GAP-twitter(D) 811 OOM OOM 8.3x
GAP-web(D) 1038 OOM OOM 4.0x
sk-2005(D) 1147 OOM OOM 4.6x

in Table 3.5 is the largest graph for which the BFS was computed with our available

GPU. The first three graphs of Table 3.5 are regular graphs for which the bottom-up

TurboBFS-busc algorithm showed the best performance, and the other five graphs

are irregular graphs for which the best performance was obtained with the com-

bined top-down and bottom-up TurboBFS-tdbu algorithm. For all the big graphs

on Table 3.6, the BFS algorithms on the gunrock and GraphBLAST libraries ran

out of memory (OOM), asserting our optimization strategy of reducing the mem-

ory footprint to design and implement our highly scalable TurboBFS algorithms.

54

Figure 3.4 shows that the greatest speedups of the TurboBC algorithms were ob-

Figure 3.4: TurboBFS: Speedup Experimental Results for Big Graphs

tained for the regular graphs. This Figure also shows that the maximum speedup of

the TurboBFS-tdbu algorithm over the BFS algorithm on the GraphBLAS library

was obtained for twitter7, the most irregular graph in the group with the smallest

value for the depth (d) of the BFS tree. Figure 3.5 shows that the largest value for

the MTEPs was obtained for the twitter7 graph, while the smallest values for the

METPs were obtained for the regular graphs which had the greatest values for the

depth (d) of the BFS tree.

Figure 3.5: TurboBFS: MTEPs Experimental Results for Big Graphs

55

3.5 Summary

Graphs that are used for modeling the human brain, omics data, or social networks

are huge, and manual inspection of these graphs is impossible. A popular, and fun-

damental, method used for making sense of these large graphs is the well-known

Breadth-First Search (BFS) algorithm. However, BFS suffers from large computa-

tional cost, especially for big graphs of interest. More recently, the use of Graphics

processing units (GPU) has been promising, but challenging because of the limited

global memory of GPUs, and irregular structures of real-world graphs.

In this chapter, we presented a GPU-based linear-algebraic formulation and im-

plementation of BFS, called TurboBFS, that exhibits excellent scalability on un-

weighted, undirected, or directed sparse graphs of arbitrary structure. GraphBLAST

and gunrock algorithms use combined top-down bottom-up BFS algorithms that re-

quire storing the arrays of the CSC and CSR formats simultaneously on the GPU

for directed graphs, increasing the space complexity of the algorithms, and limiting

the size of the graphs for which the BFS can be computed. Our approach for design-

ing and implementing the algorithms in TurboBFS differed from the GraphBLAST

and the gunrock approaches, because we used highly scalable algorithms which were

simpler and hence with less overhead. We also reduced the memory footprint of the

TurboBFS algorithms by using only the CSC format for both directed and undi-

rected graphs, and by transferring to the GPU only one set of the arrays that store

the indices of the non-zero values of the sparse adjacency matrices representing the

graphs, allowing us to compute the BFS for graphs with higher number of edges

than those computed by GraphBLAST and the gunrock libraries on the same GPU.

This reduction in space complexity also increased the performance of the TurboBFS

algorithms.

56

Our experimental results demonstrated that our TurboBFS algorithms obtained

up to 40 GTEPs (billions of transverse edges per second), and were on average

15.7x, 5.8x, and 1.8x faster than the other state-of-the-art BFS algorithms imple-

mented on the sequential SuiteSparse:GraphBLAS, and GPU-based GraphBLAST,

and gunrock libraries, respectively. The codes to implement the algorithms proposed

in this chapter are available at https://github.com/pcdslab/TurboBFS.

Our future work will be focused on improving the performance of the algorithms

in TurboBFS, especially the performance of the algorithms computing the vector

sparse matrix multiplication operations. Our goal will be to design and implement

GPU-based BFS algorithms with higher performance than the state-of-the-art algo-

rithms available on the GraphBLAST and gunrock libraries.

57

CHAPTER 4

TURBOBC: A GPU BASED BETWEENNESS CENTRALITY

ALGORITHM

In this chapter, we describe the design, implementation, and experimental results

computed with TurboBC, a set of GPU-based betweenness centrality (BC) algo-

rithms in the language of linear algebra [AS21c].

4.1 Introduction

Centrality is a fundamental concept in graph analytic [Bav48], used to measure the

influence of individual vertices or edges on huge graphs that are used for modeling

and analysis of the human brain [RS10], omics data [BPS13], or social networks

[OAS10]. One of the most important measures of centrality is the shortest path

based betweenness centrality (BC), a metric used to measure the importance of

vertices and/or edges in a graph [Fre77].

The BC algorithms have enough parallelism to be implemented on high-performance,

parallel graphs processing libraries such as the CPU-based, shared memory, ligra li-

brary [SB13]. These algorithms can also be implemented using all the computational

power of modern Graphics Processing Units (GPU’s) [cor21], however, this imple-

mentation is challenging because real-world graphs have some vertices whose degrees

are much greater than the mean degree in the graph, resulting in data-access pat-

terns which are highly irregular. This type of data produces load imbalances and

warp divergences that negatively affect the performance of the kernels in GPUs.

The limited global memory and the data-transfer bottleneck of the GPU are also

important challenges to implementing scalable BC algorithms for the BC compu-

tation on modern huge graphs. These challenges result in limits in the scalability

58

and performance of the BC algorithms, being therefore an active area of research.

One of the first implementations of this algorithm on GPU was given in reference

[JLH+12] as an edge-parallel approach, followed by the gpu-fan package described

in [SZ11], which was based on an improved All-Pairs Shortest Path (APSP) algo-

rithm. Several hybrid GPU-CPU and multiple GPU implementations are presented

in [MB14, SZ11, SKSC13, PWW+17, SB13, WDP+16]. As far as we know, the

BC algorithm in the language of linear algebra was first described in chapter 6 of

reference [KG11] and implemented in the GraphBLAS library for CPUs [BMM+17],

being our proposed TurboBC algorithms, the first GPU-based implementation of

BC inspired in this linear algebra algorithm.

The memory-efficient and highly scalable BC algorithms on TurboBC are based

on two parallel optimizations. Our first optimization was to reduce the space com-

plexity of the algorithm by limiting the number and the size of the arrays used on

the computations performed by the GPU kernels. The second optimization was to

design and implement our BC algorithms by exploiting the sparsity of the frontier

and output vectors of the Breadth First Search (BFS) stage.

The TurboBC algorithms are applicable to unweighted, directed, and undirected

graphs represented by sparse adjacency matrices in the Compressed Sparse Column

(CSC) and the transpose of the Coordinate Sparse (COO) formats. The GPU-based

gunrock BC algorithms use techniques such as BFS push-pull, that, as illustrated in

Figure 4.6, require storing additional auxiliary arrays on the GPU global memory,

increasing the space complexity of the algorithms and limiting the size of the graphs

for which the BC can be computed with limited memory GPUs. Our approach for

designing and implementing the algorithms in TurboBC differed from the gunrock

approach because we used memory-efficient and highly scalable algorithms which

were simpler and hence with less overhead. To reduce the memory footprint and

59

to increase the memory efficiency and the scalability of TurboBC, the algorithms

were designed to use only one sparse storage format for each BC computation, also

the number of auxiliary arrays on the device side was minimized. The reduction

in the memory footprint increased the memory bandwidth utilization and reduced

the number of unnecessary floating operations. The design and implementation

of the TurboBC algorithms also exploited the sparsity of the frontier and output

vectors of the Breadth First Search (BFS) stage. These optimizations improved

the performance and the scalability of the TurboBC algorithms. A comprehensive

experimental detail and results are presented to assess the performance of the GPU-

based BC algorithms in TurboBC.

4.2 Betweenness centrality algorithm

The shortest-path betweenness centrality (BC) algorithm is applicable to any un-

weighted, directed or undirected graph G = (V,E), where V is the finite set of

vertices and E is the set of edges. Any pair (u, v) ∈ E implies that the vertices u

and v in V are connected by an edge in G. A graph G is directed if E consists of

ordered pairs, otherwise, G is undirected. Given a source vertex s ∈ V in a graph

G, the Breadth First Search (BFS) stage of the BC algorithm performs a systematic

search of every vertex on E that is reachable from s. The algorithm computes the

shortest path, i.e., the smallest number of edges from s to each reachable vertex t.

The number of shortest paths between the vertices s and t is denoted by σst, and

σst(v) is equal to the number of shortest paths between s and t passing through the

vertex v ∈ V , where v is different than s and t [Bra08, AS21d].

60

Betweenness centrality of a vertex v, BC(v), in a graph G was formally defined

by Freeman [Fre77] as

BC(v) =
∑
s ̸=v ̸=t

σst(v)/σst =
∑
s ̸=v ̸=t

δst(v) (4.1)

where σst(v)/σst = 0, if σst = 0, and δst(v) = σst(v)/σst, the pair-wise dependences,

is the fraction of shortest paths between the vertices s and t that pass through v.

This definition of BC equally applies to disconnected and connected, directed and

undirected graphs [Fre77]. The straightforward computation of the BC of a vertex v,

starts by computing the number and the length of all pairs’ shortest paths over the

graph, followed by computing the BC for each vertex by looking at all other pairs of

vertices and increasing the value of BC(v) if the vertex, v, was in the corresponding

shortest path. If |V | = n, the time complexity of this BC algorithm is O(n3), and

its space complexity is O(n2).

Brandes [Bra08], proposed a more efficient BC algorithm on which the pair-wise

dependences can be aggregated without computing all of them explicitly. Let the

one-sided dependences be defined as

δs(v) =
∑
t∈V

δst(v) (4.2)

for all s, v ∈ V . Then

BC(v) =
∑
s ̸=v

δs(v) (4.3)

The following recurrence relation computes the one-sided dependences in the Bran-

des’ BC algorithm

δs(v) =
∑

w:d(s,w)=d(s,v)+1

σsv

σsw

(1 + δs(w)) (4.4)

where d(s, v) is the length of the shortest path from s to v. The recurrence relation

4.4 computes the one-sided dependencies of a vertex s on some vertex v from the

61

one-sided dependence of a vertex w one edge far away. For a graph with |E| = m,

the time complexity of Brandes’ algorithm for unweighted graphs is equal to O(nm),

and the space complexity is equal to O(n+m). This algorithm is especially suitable

for graphs represented by sparse adjacency matrices.

4.3 TurboBC algorithms for unweighted graphs.

This section describes the design and implementation of our GPU-based TurboBC

algorithms in the language of linear algebra for unweighted graphs. The TurboBC

algorithms were implemented for graphs represented by sparse adjacency matrices in

the Compressed Sparse Column (CSC) format, as well as in the COOC format which

is the transpose of the Coordinate Sparse (COO) format. Both sparse formats are

suitable to implement the sparse matrix-vector multiplication operations included in

the BC Algorithm 4.1. Figure 4.1 shows an example of the CSC and COOC formats

for a sparse adjacency matrix representing an undirected, unweighted graph. For a

n×n adjacency sparse matrix A with m non-zero elements representing unweighted

graphs, the array rowA (size m) of the CSC format, stores the corresponding row

indices of the subsequent non-zero values of the columns in the matrix, and the

array CPA (size n + 1) stores the indices of the elements in the array rowA, that

start a column. The first element of CPA is always equal to 1 (one-based format)

and the last element is equal to m + 1. The COOC format contains two arrays:

rowA which is equal to the corresponding array in the CSC format, and the colA

(size m) array that stores the column indices of the non-zero values of the adjacency

matrix A. To reduce the memory footprint and increase the performance of the

TurboBC algorithms, the arrays that store the non-zero values of the binary sparse

adjacency matrix of unweighted graphs were not used in the corresponding sparse

62

matrix-vector multiplication (SpMV) operations of our algorithms.

Figure 4.1: Example of CSC and COOC sparse storage formats for a sparse adja-
cency matrix representing a directed, unweighted graph.

Scalar and vector algorithms for regular and irregular graphs

We implemented two types of BC algorithms. The first type, called scalar algo-

rithms, computes the sparse matrix-vector multiplication with GPU kernels, assign-

ing one thread per vertex (CSC format) or one thread per edge (COOC format).

The second type of algorithm, vector algorithms, computes the sparse matrix-vector

multiplication with GPU kernels that assign one warp per vertex (CSC format).

In this chapter, the graphs were classified into two classes: regular graphs and

irregular graphs. The regular graphs are those for which, in our experiments, the

scalar BC algorithms obtained the best performance, while irregular graphs are

those for which the vector BC algorithms obtained the best performance.

63

We also applied the scale-free metrics, proposed in reference [LAT+05], to ap-

proximately quantify when a graph is regular or irregular. The scale-free metrics

scf , for a graph G = (V,E) is defined by

scf =
∑

(u,v)∈E

degree(u) ∗ degree(v) (4.5)

where degree(u) is the degree of vertex u ∈ V , for directed graphs degree(u) =

out.degree(u). Our experiments showed that for regular graphs the scf metric is in

the range [1, 224], and for irregular graphs in the range [5846, 651837], more details

about these results are given in Section 4.4 on which the experimental results are

presented.

4.3.1 Brandes’ BC algorithm in the language of linear alge-

bra

Algorithm 4.1 represents the linear algebra formulation of the Brandes’ BC algo-

rithm for a graph G = (V,E) with n vertices and m edges, represented by n × n

sparse adjacency matrix A in the COOC format, with m non-zero elements. This al-

gorithm is inspired by the BC algorithm described in chapter 6 of reference [KG11].

Algorithm 4.1 computes the exact betweenness centrality vector, bc, for all the

connected vertices of the graph G using a two-stage procedure.

The first stage of Algorithm 4.1 is a forward stage on which a Breadth First

Search (BFS) from the source vertex s is performed at the first while loop (lines 11

to 28), where d represents the current depth of the discovered vertices. The final

value of d is equal to the height of the BFS tree rooted at s. The output vector

σ contains the number of shortest paths from the source vertex to the discovered

vertices. The frontier vector f contains the number of shortest paths from the

64

discovered vertices in the last iteration, to the undiscovered vertices to which there

is some edge. The while loop stops when the vector f is equal to 0, i.e., when all

the vertices reachable from s have been discovered. The vector f is updated by the

sparse matrix-vector multiplication (SpMV) operation with the adjacency matrix

(line 19), followed by a mask operation (lines 20 to 22) that exploits the sparsity of

the vector σ and updates the shortest paths to vertices on f , not yet contained on

the vector σ, guaranteeing that only the new discovered shortest paths are added to

σ (line 25). By using the sparsity of the vector f , the vectors S and σ are updated

only when the corresponding component of the vector f is not zero (lines 23 to 27).

The vector S stores the depth at which each vertex is discovered.

The second stage of Algorithm 4.1 is a backward stage on which the one-sided

dependences vector, δ, is computed within the second while loop (lines 31 to 42),

using Equation 4.4. For the computations in this stage, the vertices are visited

in reverse order of their depth. The computation of the vector δ starts when the

auxiliary vector δu is computed (lines 32 to 36) for those values derived from the

children at depth d, which are stored on the vector S. The vector δu is then weighted

by the adjacency matrix A with the SpMV operation (line 37). The vector δ is

updated (lines 38 to 40), with the values corresponding at depth d−1 as determined

by the vector S. Finally, the betweenness centrality vector bc is computed, using

Equation 4.3, for all parent vertices, v, not equal to the source vertex s (lines 43 to

47). For undirected graphs the computation of the vector bc should compensate by

the double counting of every pair of vertices, hence bc(v)← bc(v)+ δ(v)/2 for these

graphs [Bra08].

The BC algorithm with the sparse adjacency matrix in the CSC format has the

same two stages of Algorithm 4.1, with the difference that in the first stage, the

mask operation is included in the SpMV operation as shown in Algorithm 4.3.

65

Algorithm 4.1 Linear algebra shortest path vertex betweenness centrality algorithm for
a graph represented by a sparse adjacency matrix A in the COOC sparse storage format.

1: Input: A. ▷ sparse adjacency matrix representing a graph.
2: Output: σ(1....n) ▷ stores number of shortest paths.
3: Output: bc(1....n) ▷ betweenness centrality vector
4: procedure BC-LA(G = A : Bn×n)
5: bc← 0
6: for s← 1, n do ▷ s: source vertex of BFS tree
7: d← 0 ▷ d: the current depth being examined
8: c← 1 ▷ c: check if the vector f is equal to 0
9: S ← 0 ▷ stores depth at which a vertex is discovered
10: σ ← 0
11: while c > 0 do ▷ BFS stage starts
12: d← d+ 1
13: c,ft ← 0
14: if d == 1 then
15: f(s), σ(s)← 1
16: end if
17: ft ← ATf
18: if ∃σ(i) == 0 then
19: f(i)← ft(i)
20: end if
21: if ∃f(i)! = 0 then
22: S(i)← d
23: σ(i)← σ(i) + f(i)
24: c← 1
25: end if
26: end while
27: d← d− 1
28: δ ← 0
29: while d > 1 do ▷ one-sided dependences vector stage starts
30: δu, δut ← 0
31: if S(i) == d and σ(i) > 0 then
32: δu(i)← (1.0 + δ(i))÷ σ(i)
33: end if
34: δut ← AT δu
35: if S(i) == d− 1 then
36: δ(i)← δ(i) + δut(i)× σ(i)
37: end if
38: d← d− 1
39: end while
40: for v ← 1, n do ▷ update of vector bc starts
41: if v ̸= s then
42: bc(v)← bc(v) + δ(v)
43: end if
44: end for
45: end for
46: return bc

47: end procedure

66

4.3.2 Sparse matrix-vector multiplication (SpMV).

Our experimental results showed that the runtime of the SpMV operation (lines

19 and 37) can be up to 90 % of the total runtime of Algorithm 4.1, determining,

therefore, the overall performance of the BC algorithm. We implemented the SpMV

operation with three algorithms, the first one based on the COOC format and the

other two based on the CSC format.

Algorithm 4.2 Algorithm to implement the sequential SpMV operations of Algo-
rithm 4.1 (lines 19 and 37) with the sparse adjacency matrix in the COOC format.

1: Input: x,rowA,colA
2: Output: y
3: procedure scCOOC-SpMV(x,rowA,colA,y)
4: for k → 1,m do
5: if x(rowA(k)) > 0 then
6: y(colA(k))← y(colA(k)) + x(rowA(k))
7: end if
8: end for

9: end procedure

There are graphs with some vertices with a much higher degree than the mean

value of the degrees in the graph, the SpMV operation for these graphs creates load

unbalance in the threads of the GPU which negatively affects the performance of the

SpMV algorithm. Our experiments showed that the SpMV algorithm based on the

COOC format is less affected by this load unbalance, when applied to regular graphs

that have vertices with much higher degrees than the mean degree of the graph.

Algorithm 4.2 implements the sequential version of the SpMV operations on the

first and second stages (lines 19 and 37) of Algorithm 4.1 with the sparse adjacency

matrix in the COOC format. The sparsity of vector x is exploited by updating the

vector y only when the corresponding component of vector x is greater than zero

(line 5). The parallelization of Algorithm 4.2, known as COOC-scalar (scCOOC),

67

on a GPU kernel assigns one thread per edge. The acronym TurboBC-scCOOC

designates the BC algorithm using the scCOOC algorithm for the SpMV operation.

Algorithm 4.3 Algorithm to implement the sequential SpMV operations of Algo-
rithm 4.1 (lines 19 and 37) with the sparse adjacency matrix in the CSC format.

1: Input: x,CPA,rowA

2: Output: y
3: procedure scCSC-SpMV(x,CPA,rowA,y)
4: for i→ 1, n do
5: if σ(i) == 0 then
6: sum← 0
7: start← CPA(i)
8: end← CPA(i+ 1)− 1
9: for k → start, end do
10: sum← sum+ x(rowA(k))
11: end for
12: if sum > 0 then
13: y(i)← sum
14: end if
15: end if
16: end for

17: end procedure

Our experiments showed that for some medium-sized graphs (see Table 4.2), the

best performance was obtained with Algorithm 4.3, which implements the sequen-

tial version of the SpMV operations on Algorithm 4.1, with the sparse adjacency

matrix in the CSC format. Algorithm 4.3 implements the mask operation (line 5) by

computing the components of the vector y only when the corresponding component

of the σ vector is equal to 0, ensuring that only the new discovered shortest paths

are added to σ (line 25 of Algorithm 4.1). The sparsity of vector x is used on line

12 when the vector y is updated only when the variable sum is greater than zero.

The straightforward parallelization of Algorithm 4.3, known as CSC-scalar (scCSC),

with a GPU kernel, assigns one thread per vertex. The acronym TurboBC-scCSC

designates the BC algorithm using the scCSC algorithm for the SpMV operation.

68

Algorithm 4.4 GPU-based algorithm to implement the SpMV (veCSC) operation of
Algorithm 4.1 (lines 19 and 37) with the sparse adjacency matrix in the CSC format.

1: Input: x,CPA,rowA

2: Output: y
3: procedure veCSC-SpMV-Kernel(x,CPA,rowA,y)
4: threadid ← threadIdx.x+ blockIdx.x ∗ blockDim.x
5: threadLaneid ← threadid&(threadsPerWarp− 1)
6: warpid ← threadid/threadsPerWarp
7: while col < n do
8: if σ(col) == 0 then
9: start← CPA(warpid)
10: end← CPA(warpid + threadLaneid)
11: sum← 0
12: icp← start+ threadLaneid
13: while icp < end do
14: sum← sum+ y(rowA(icp))
15: icp← icp+ threadsPerWarp
16: end while
17: offset← threadsPerWarp/2
18: while offset > 0 do
19: sum← sum+ shfl− sync(mask, sum, offset)
20: offset← offset/2
21: end while
22: if threadLaneid == 0 ∧ sum > 0 then
23: y(warpid)← sum
24: end if
25: end if
26: col← col + num− warps
27: end while

28: end procedure

Our experiments for irregular graphs showed that both the TurboBC-scCOOC

and the TurboBC-scCSC algorithms resulted in poor performance due to uncoa-

lesced memory access and warp divergence. To improve the performance of the

SpMV operation for irregular graphs, we implemented the CSC-vector(veCSC) al-

gorithm shown in Algorithm 4.4, which is similar to the CSR-vector algorithm pro-

posed in [BG08]. The veCSC algorithm assigns a warp for vertex. This algorithm

incorporates the warp shuffle instruction (lines 18-21) to reduce the local sums by

the threads in the warp without using shared memory. The first thread in the warp

69

outputs the final result (lines 22-24). The veCSC algorithm solves the problems of

no coalesced memory access and warp divergence of the scalar algorithms when ap-

plied to irregular graphs. The best performance of the veCSC algorithm is obtained

for irregular graphs, on which the warp divergence is minimized. The acronym

TurboBC-veCSC designates the BC algorithm using the veCSC algorithm for the

SpMV operation.

Figure 4.2: Pipeline for the CUDA implementation of Algorithm 4.1.

4.3.3 CUDA implementation of the TurboBC algorithm

We designed and implemented Algorithm 4.1 using the pipeline shown in Figure 4.2.

The BFS stage of Algorithm 4.1 was implemented using two kernels, the first kernel

initializes the f and σ vectors (lines 15 to 18) and executes the SpMV (ft ← fA)

operation (line 19), the second kernel computes the additional functions of this

stage. The computation of the one-sided dependences vector, δ, was implemented

using three kernels, the first kernel updates the vector δu (lines 34-36), the second

kernel computes the SpMV operation (line 37), and the third kernel updates the

vector δ (lines 38-40). One additional kernel updates the vector bc (lines 43 to

70

47). This implementation increased the performance of the algorithm by reducing

the overhead due to the sequential execution of too many kernels on the GPU.

Our experiments showed that the performance of Algorithm 4.1 increased when the

SpMV operation of the BFS stage was performed over integer data types for the f

and ft vectors. Hence, in order to minimize the memory footprint on the GPU due

to the storage of auxiliary vectors, the deallocation of the device memory for the

vectors f and ft is followed by the allocation of device memory to the float type

vectors δ, δu, and δut. The SpMV operation with integer data types was up to 2.7x

faster than the same operation with float data types, with a very small overhead

due to the allocation and deallocation operations of the device memory.

4.4 Results

The experiments presented in this section were designed to assess the performance

of our TurboBC algorithms by comparing them to the benchmark parallel BC al-

gorithms available in the state-of-the-art GPU-based gunrock [WDP+16] and CPU-

based, shared memory, ligra [SB13] libraries. We also compared the performance of

the TurboBC algorithms with the performance of our implementation of the sequen-

tial version of Algorithm 4.1 with the sparse adjacency matrix in the CSC format.

Our benchmark of thirty-three graphs used in the experiments were represented

by sparse adjacency matrices selected from the SuiteSparse Matrix Collection (for-

merly the University of Florida Sparse Matrix Collection) [KAB+19], and from the

Stanford Large Network Dataset Collection [LS16]. The selected adjacency matrices

represented eighteen undirected and fifteen directed graphs, covering a wide range

of vertices [28×103, 214×106] and edges [171×103, 1950×106]. The parameters for

71

the selected graphs are given in Tables 4.1, 4.3, 4.5, and 4.7. The weighted graphs

were considered unweighted graphs for all the experiments.

The average runtime (milliseconds) for each experiment was obtained by 50 trials

per experiment. We used the sequential version of the BC algorithm to verify the re-

sults obtained from the TurboBC algorithms, only the correct results were accepted.

For all the results presented in this section, we chose the TurboBC algorithm which

showed the best performance for each graph. For the experiments on which the BC

was computed for one vertex, the MTEPs (millions of transverse edges by second),

achieved for the BC algorithms, were computed as the ratio m/t where m is the

number of edges (thousands) and t is the average runtime (milliseconds). For the

experiments on which the exact BC was computed for all the vertices in the graph,

the MTEPs were computed as mn/t where n is the number of vertices (t in seconds,

mn in millions).

All the experiments presented in this section were performed on a Linux server

with Ubuntu operating system version 16.04.6, 22 Intel Xeon Gold 6152 processors,

a clock speed 2.1 GHz, and 125 GB of RAM. The GPU in this server was an NVIDIA

Titan Xp, with 30 SM, 128 cores/SM, maximum clock rate of 1.58 GHz, 12196 MB

of global memory, and CUDA version 10.1.243 with CUDA capability of 6.1.

4.4.1 Experimental results for regular graphs

This section summarizes the results of the experiments performed with the TurboBC

algorithms to compute the BC of one vertex on twenty regular graphs, twelve of them

directed (D) graphs and eight undirected (U) graphs. The number of vertices (n)

and edges (m), the parameters (maximum, mean, standard deviation) of the degree

(out-degree for directed graphs) distribution, the depth of the BFS tree (d), and the

72

scale free metrics (scf), are given for each graph in Tables 4.1 and 4.3, and Tables

4.2 and 4.4 include the runtime, MTPEs and the speedup obtained by the TurboBC

algorithms over the algorithms implemented on the gunrock ((gunrock)x) and ligra

((ligra)x) libraries, and over the sequential algorithm ((seq.)x). The symbol 2.7x

in the column ((gunrock)x) means that TurboBC was 2.7x faster than the BC

algorithms in the gunrock library.

The TurboBC-scCSC algorithm showed the best performance by obtaining the

Table 4.1: Parameters for the set of directed (D) and undirected (U) regular graphs
with experimental results given in Table 4.2.

File n×103 m×103 degree(max/µ/σ) d scf
mark3j060sc(D) 28 171 44/6/4 42 10
mark3j080sc(D) 37 228 44/6/4 52 10
mark3j100sc(D) 46 285 44/6/4 62 10
mark3j120sc(D) 55 343 44/6/4 72 10
g7j140sc(D) 42 566 153/14/24 15 197
g7j160sc(D) 47 657 153/14/24 16 208

delaunayn15(U) 33 197 18/6/1 84 13
delaunayn16(U) 66 393 17/6/1 110 14
luxemb-osm(U) 115 239 6/2/0 1035 2
internet(D) 125 207 138/2/4 21 1

Table 4.2: Experimental runtime, MTPEs and the speedup obtained by the
TurboBC-scCSC algorithm over the algorithms implemented on the gunrock ((gun-
rock)x) and ligra ((ligra)x) libraries, and over the sequential algorithm ((seq.)x),
with the computation of BC/vertex for the set of regular graphs given in Table 4.1.

File runtime MTEPs (seq.)x (gunrock)x (ligra)x
mark3j060sc(D) 2.1 82 11.5x 2.7x 2.2x
mark3j080sc(D) 2.8 82 9.8x 2.5x 1.5x
mark3j100sc(D) 3.5 82 11.4x 2.4x 1.5x
mark3j120sc(D) 4.4 78 12.9x 2.2x 1.6x
g7j140sc(D) 1.2 472 12.5x 1.9x 2.3x
g7j160sc(D) 1.4 469 13.3x 1.8x 2.6x

delaunayn15(U) 4.7 42 14.4x 2.4x 1.2x
delaunayn16(U) 7.1 55 25.3x 2.2x 1.9x
luxemb-osm(U) 50.0 5 24.7x 2.3x 1.0x
internet(D) 1.5 138 37.8x 1.9x 2.0x

maximum values of speedup and MTEPs, for the ten regular graphs in Table 4.2,

obtaining up to 472 MTEPs, as well as a maximum of 37.8x and an average of

73

17.4x speedup over the sequential code, a maximum of 2.7x and an average of 2.2x

speedup over the the BC algorithm available in the gunrock library, and a maximum

of 2.6x and an average of 1.8x speedup over the BC algorithm available in the ligra

library. The scale-free metrics scf for this group of regular graphs varied in the

range [1,208] and 80 % of the graphs had a value below 15 for this metric. The

depth (d) of the BFS tree was below 100 for 80 % of the graphs in this group.

For the ten regular graphs in Table 4.4, the TurboBC-scCOOC algorithm showed

Table 4.3: Parameters for the set of directed (D) and undirected (U) regular graphs
with experimental results given in Table 4.4.

File n×103 m×103 degree(max/µ/σ) d scf
g7j180sc(D) 53 747 153/14/24 17 217
g7j200sc(D) 59 838 153/14/25 18 224

mark3j140sc(D) 64 400 44/6/4 82 10
smallworld(U) 100 1000 17/10/1 9 61
ASIC-100ks(D) 99 579 206/6/6 33 3
ASIC-680ks(D) 683 2329 210/3/4 31 2
com-Youtube(U) 1135 5975 28754/5/51 14 8
mawi-12345(U) 18571 38040 16× 106/2/3806 10 2
mawi-20000(U) 35991 74485 33× 106/2/5414 11 2
mawi-20030(U) 68863 143415 63× 106/2/7597 12 2

Table 4.4: Experimental runtime, MTPEs and the speedup obtained by the
TurboBC-scCOOC algorithm over the algorithms implemented on the gunrock
((gunrock)x) and ligra ((ligra)x) libraries, and over the sequential algorithm
((seq.)x), with the computation of BC/vertex for the set of regular graphs given in
Table 4.3.

File runtime(ms) MTEPs (seq.)x (gunrock)x (ligra)x
g7j180sc(D) 1.6 467 13.9x 1.7x 1.7x
g7j200sc(D) 1.7 493 14.6x 1.7x 1.8x

mark3j140sc(D) 5.3 76 13.2x 2.1x 1.2x
smallworld(U) 1.0 1000 27.6x 1.5x 1.5x
ASIC-100ks(D) 2.7 215 25.7x 1.6x 1.7x
ASIC-680ks(D) 6.6 353 43.9x 1.0x 1.5x
com-Youtube(U) 9.7 616 48.4x 1.0x 2.8x
mawi-12345(U) 74.8 509 33.6x 1.0x 3.6x
mawi-20000(U) 143.0 521 33.9x 1.0x 3.4x
mawi-20030(U) 261.4 549 32.3x 1.0x 3.2x

the best performance. This algorithm obtained up to 1000 MTEPs, a maximum of

48.4x and an average of 28.7x speedup over the sequential code, a maximum of 2.1x

74

and average of 1.3x speedup over the BC algorithm available in the gunrock library,

and a maximum of 3.6x and an average of 2.2x speedup over the BC algorithm

available in the ligra library. The scale-free metrics scf for this group of regular

graphs was in the range [2,224] and 80 % of the graphs have a value less than 100

for this metric.

Our experiments also showed that for the last four graphs in Table 4.4 with

vertices with a maximum degree much higher than the mean value, the TurboBC-

scCOOC based on the COOC format had a better performance than the TurboBC

algorithms based on the CSC format, and also than the corresponding algorithms

in the ligra library, asserting that the COOC format results in scalar algorithms

that are less affected for vertices with high degrees as compared to scalar algorithms

based on the CSC format.

4.4.2 Experimental results for irregular graphs

This section summarizes the results of the experiments performed to compute the

BC of one vertex on the nine irregular undirected (U) graphs. The number of

vertices (n) and edges (m), the parameters (maximum, mean, standard deviation)

of the degree distribution, the depth of the BFS tree (d), and the scale-free metrics

(scf), are given for each graph in Table 4.5, and Table 4.6 includes the runtime,

MTPEs and the speedup obtained by the TurboBC algorithms over the algorithms

implemented on the gunrock ((gunrock)x) and ligra ((ligra)x) libraries, and over

the sequential algorithm ((seq.)x).

As expected, the scale-free metrics scf for the irregular graphs given in Table

4.5, varied in a wider range [5846,651837], than those values of scf obtained for

regular graphs given in Table 4.1. The best performance on the computation of BC

75

Table 4.5: Parameters for the set of directed (D) and undirected (U) irregular graphs
with experimental results given in Table 4.6.

File n×103 m×103 degree(max/µ/σ) d scf
mycielski15(U) 25 11111 12287/452/664 3 41166
mycielski16(U) 49 33383 24575/679/1078 3 82833
mycielski17(U) 98 100246 49151/1020/1747 3 166407
mycielski18(U) 197 300934 98303/1531/2817 3 333199
mycielski19(U) 393 903195 196607/2297/4530 3 651837
kron-logn18(U) 262 21166 49164/81/454 6 5846
kron-logn19(U) 524 43563 80676/83/541 6 6609
kron-logn20(U) 1049 89241 131505/85/641 6 7410
kron-logn21(U) 2097 182084 213906/87/756 6 8161

Table 4.6: Experimental runtime, MTPEs and the speedup obtained by the
TurboBC-veCSC algorithm over the algorithms implemented on the gunrock ((gun-
rock)x) and ligra ((ligra)x) libraries, and over the sequential algorithm ((seq.)x),
with the computation of BC/vertex for the set of irregular graphs given in Table
4.5.

File runtime(ms) MTEPs (seq.)x (gunrock)x (ligra)x
mycielski15(U) 1.7 6536 17.4x 1.2x 2.3x
mycielski16(U) 3.4 9819 26.6x 1.5x 3.4x
mycielski17(U) 7.9 12689 34.6x 1.7x 4.4x
mycielski18(U) 18.5 16267 45.8x 2.1x 5.1x
mycielski19(U) 48.9 18470 53.1x 2.7x 5.2x
kron-logn18(U) 8.7 2433 31.6x 0.9x 1.1x
kron-logn19(U) 17.4 2504 44.7x 1.0x 0.9x
kron-logn20(U) 58.4 1528 34.0x 1.3x 1.0x
kron-logn21(U) 193.2 943 24.5x 1.1x 1.0x

for these irregular graphs was obtained by the TurboBC-veCSC algorithm as it was

expected. This algorithm obtained up to 18.5 GTEPs, as well as a maximum of 53.1x

and an average of 34.7x speedup over the sequential code, a maximum of 2.7x and an

average of 1.5x speedup over the BC algorithm available in the gunrock library, and

a maximum of 5.2x and an average of 2.7x speedup over the BC algorithm available

in the ligra library. The TurboBC-veCSC algorithm obtained the maximum values

of speedup and MTEPs for the mycielski group of graphs for which the depth (d)

of the BFS tree was equal to 3, and a scale-free metrics above 41000.

76

4.4.3 Experimental results for big graphs

This section summarizes the results of the experiments performed to compute the BC

of one vertex on four big graphs. The first graph in Table 4.7 is a regular graph for

which the TurboBC-scCSC algorithm showed the best performance, and the other

three graphs are irregular directed graphs. The directed graph sk-2005 in Table

4.7 is the largest graph for which the TurboBC was computed with our available

GPU. The number of vertices (n) and edges (m), the parameters (maximum, mean,

standard deviation) of the degree distribution, the depth of the BFS tree (d), and the

scale-free metrics (scf), are given for each graph in Table 4.7, and Table 4.8 includes

the runtime, MTPEs and the speedup obtained by the TurboBC algorithms over

the algorithms implemented on the ligra ((ligra)x) library, and over the sequential

algorithm ((seq.)x).

Table 4.7: Parameters for the set of directed (D) and undirected (U) big graphs
with experimental results given in Table 4.8.

File n×106 m×106 degree(max/µ/σ) d scf
kmer-V1r(U) 214 465 8/2/1 324 2
it-2004(D) 42 1151 9964/28/67 50 543

GAP-twitter(D) 62 1469 3× 106/24/1990 15 126
sk-2005(D) 51 1950 12870/39/78 54 1262

Table 4.8: Experimental runtime, MTPEs and the speedup obtained by the
TurboBC-veCSC algorithm over the algorithms implemented on the ligra ((ligra)x)
library, and over the sequential algorithm ((seq.)x), with the computation of
BC/vertex for the set of big graphs given in Table 4.7. The BC algorithm im-
plemented on the gunrock library ran out of memory for these big graphs.

File runtime(s) MTEPs (seq.)x (ligra)x
kmer-V1r(U) 14.3 33 94.5 0.9x
it-2004(D) 3.1 371 39.5 0.8x

GAP-twitter(D) 7.3 201 50.4 0.8x
sk-2005(D) 6.8 287 30.5 0.7x

77

For the it-2004 irregular graph, the best performance was obtained with the

TurboBC-scCOOC algorithm, for the other two irregular graphs the best perfor-

mance was obtained with the TurboBC-veCSC algorithm, because the TurboBC-

scCOOC algorithm ran out of memory (OOM). For all the graphs on the set, the

BC algorithm on the gunrock library ran out of memory (OOM), asserting our op-

timization strategy of reducing the memory footprint to design and implement our

highly scalable TurboBC algorithms.

The TurboBC algorithms obtained for this BC computation for big graphs, up

to 371 MTEPs, and a maximum of 94.5x and an average of 53.8x speedup over

the sequential code. Since the BC algorithms in the ligra library used the CPU

resources, especially the memory resources, effectively, there were up to 1.4x faster

than the TurboBC algorithms for the computation of BC in these big graphs.

Figure 4.3a) shows that the greatest speedups of the TurboBC algorithms over

the sequential BC algorithm were for the regular graph with the greatest value

for the depth (d) of the BFS tree and that the maximum values for the METPs

were obtained with the TurboBC-veCSC algorithm applied to the irregular directed

graphs, for which the depth (d) of the BFS tree was equal to or less than 50.

Figure 4.3: Experimental results for a) the speedup over the sequential algorithm
and b)MTEPs obtained for our TurboBC algorithms in the computation of BC of
the set of big graphs of Table 4.7.

78

4.4.4 Experimental results for the exact BC computation of

all vertices of a graph

Table 4.9 summarizes the experimental results obtained by the TurboBC algorithms

for the exact BC computation for all vertices of the set of six graphs. The first four

are directed regular graphs, and the last two are undirected irregular graphs. The

parameters and the TurboBC algorithm used for these computations for the regular

graphs are included in Tables 4.1 and 4.3, and for the irregular graphs in Table 4.5.

The parameter n×m is included in Table 4.9, because the MTEPs for the exact

BC computation are computed as the ratio between the number of edges times the

number of vertices (millions) and the average runtime (seconds).

The TurboBC algorithms obtained for this exact BC computation, up to 13.8

GTEPs and a maximum of 38.0x and an average of 18.4x speedup over the sequential

code. The results in Table 4.9, also show that both the speedup and the MTEPs

increased with the size of the graph, showing the high scalability of the TurboBC

algorithms for this type of computation.

Table 4.9: Experimental runtime, MTEPs, and speedup obtained with the TurboBC
algorithms over the sequential algorithm ((seq.)x) for the computation of the exact
BC of all vertices of a set of undirected and directed graphs.

File d n×m ×106 runtime(s) MTEPs (seq.)x
mark3j60sc(D) 42 4694 49.3 95 8.2x
mark3j80sc(D) 52 8345 90.8 92 9.2x
g7j180sc(D) 17 39906 105.9 377 13.4x
g7j200sc(D) 17 49688 129.7 383 14.3x

mycielski16(U) 3 1639081 159.8 10257 27.5x
mycielski17(U) 3 9854152 715.2 13778 38.0x

Figure 4.4 shows that the maximum values for speedups and for MTEPs were

obtained, for the graphs with the smaller values of the depth (d) of the corresponding

BFS trees.

79

Figure 4.4: Experimental results for a) the speedup and b) the MTEPs of the exact
computation of BC for all vertices of the graphs given in Table 4.9.

4.4.5 GPU memory usage by the TurboBC algorithms

Figure 4.5 c) compares the GPU memory usage by the TurboBC-veCSC algorithm

and by the BC algorithms in the gunrock library during the computation of BC

for the mycielski group of irregular graphs given in Table 4.5. Since the space

complexity of the Brandes’ algorithm is O(m+n), Figure 4.5 c) shows that there is

a linear relationship between the GPU memory usage and the sum of the number

of vertices plus the number of edges of the mycielski graphs. Due to the strategy

of reducing the memory footprint of the TurboBC algorithms, the memory usage of

the gunrock library was up to 60 % higher than the memory usage of the TurboBC-

veCSC algorithm.

To quantify the reduction in the memory footprint of the TurboBC algorithms,

Figure 4.6 shows the data flow for the BC algorithms in the gunrock library and

for our TurboBC algorithms. The host (CPU) arrays (yellow) are shown as inputs

to the memory transfer block, the auxiliary arrays (green) are used by the GPU

to compute the BC which results in the output arrays (blue). The size of each

array is given, with n as the number of vertices and m as the number of edges. We

assumed that a lower bound for the global memory required by the GPU during the

80

Figure 4.5: GPU memory usage, GPU memory upper bounds, Global Memory Load
Throughput (GLT) and performance(MTEPs) obtained with the TurboBC-veCSC
algorithm compared with the values obtained by the gunrock BC algorithms for the
computation of BC/vertex in the mycielski group of irregular graphs included in
Table 4.5.

BC computation was proportional to the total size of the arrays required by this

computation, which in the case of the gunrock library is equal to 9n+ 2m, and for

the TurboBC is equal to 7n+m for the BC computation stage. Figures 4.5 a) and b)

show the expected linear relationship between the GPU memory usage, considered

an experimental GPU memory upper bound, and the total size of the arrays for

the computation of BC with TurboBC and with the gunrock libray, respectively.

Our experimental results also showed that the reduction, proportional to 2n + m,

in the GPU global memory requirements of the TurboBC algorithms, illustrated in

Figure 4.5 c), allowed the computation of the BC for the relatively big graphs given

in Table 4.7, while the BC algorithms in the gunrock library ran out of memory for

these big graphs.

81

Figure 4.6: Data flow for the GPU-based BC algorithms implemented in the gunrock
library and in TurboBC.

GPU Global Memory Load Throughput (GLT) and MTEPS obtained

by the TurboBC-veCSC algorithm: The Global Memory Load Throughput

(GLT) is a GPU metric that measures the rate at which the GPU global memory is

accessed by an SM [cor21], Figure 4.5 d) compares this metric obtained by the most

important kernels of the TurboBC-veCSC algorithm, and by the kernels of the BC

algorithm in the gunrock library. The theoretical maximum GLT achievable for the

GPU (NVIDIA Titan Xp) used in our experiments was 575 GB/s, represented by

the horizontal line in Figure 4.5 d), the GLT obtained by the kernels in the gunrock

library were substantially below this value, while the kernels in the TurboBC-veCSC

algorithm obtained GLT values that were 60 % higher than the theoretical maximum

GLT. Figure 4.5 e) illustrates that the MTEPs, as a function of the GLT metric,

obtained by the TurboBC-veCSC algorithm were much higher than those obtained

by the BC algorithms in the gunrock library.

82

In summary, the experimental results presented in Figure 4.5, showed that for

a representative group of highly irregular big graphs, the TurboBC algorithms used

memory more efficiently than the BC algorithms in the gunrock library.

4.5 Summary

Betweenness centrality (BC) is a shortest path centrality metric used to measure the

influence of individual vertices or edges on huge graphs that are used for modeling

and analysis of the human brain, omics data, or social networks. The application of

the BC algorithm to modern graphs must deal with the size of the graphs, as well as

highly irregular data-access patterns. These challenges are particularly important

when the BC algorithm is implemented on Graphics Processing Units (GPU), due to

the limited global memory of these processors, as well as the decrease in performance

due to the load unbalance resulting from processing irregular data structures.

In this chapter, as far as we know, we present the first GPU-based linear-algebraic

formulation and implementation of BC, called TurboBC, a set of memory-efficient

BC algorithms that exhibits good performance and high scalability on unweighted,

undirected, or directed sparse graphs of arbitrary structure.

Our extensive set of experiments showed that the TurboBC algorithms obtained

more than 18 GTEPs (billions of transverse edges per second), and an average

speedup of 31.9x over the sequential version of the BC algorithm, and were on av-

erage 1.7x and 2.2x faster than the state-of-the-art algorithms implemented on the

high performance, GPU-based, gunrock [WDP+16], and CPU-based, ligra [SB13]

libraries, respectively. These experiments also showed that by minimizing their

memory footprint, the GPU memory usage of the gunrock library was higher than

the memory usage of the TurboBC algorithms, allowing these algorithms to com-

83

pute the BC of relatively big graphs, for which the gunrock algorithms ran out of

memory. Our experiments also demonstrated that the performance obtained by the

TurboBC algorithms, measured as MTEPs, as a function of the GPU memory band-

width, were much greater than those obtained by the BC algorithms in the gunrock

library, showing that the GPU memory was used more efficiently by the TurboBC

algorithms. The codes to implement the algorithms proposed in this chapter are

available at https://github.com/pcdslab/TurboBC.

Our future work will be focused on improving the performance of the algorithms

in TurboBC, especially the performance of the algorithms computing the vector

sparse matrix multiplication operations. Our goal will be to design and implement

memory-efficient, on which the usage of the shared memory in the GPU will be

optimized, and scalable GPU-based BC algorithms, with higher performance for big

graphs than the state-of-the-art BC algorithms.

84

CHAPTER 5

CONFOUNDING EFFECTS ON THE PERFORMANCE OF

MACHINE LEARNING ANALYSIS OF STATIC FUNCTIONAL

CONNECTIVITY COMPUTED FROM RS-FMRI MULTI-SITE

DATA

In this chapter, we present a comprehensive approach for the solution of the problem

of confounding effects over the machine learning classification models of rs-fMRI

multisite-data [AAMS23].

5.1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive

imaging technique based on the blood oxygen level of the brain [OLNG90, OMT+93],

widely used in neuroscience to understand the functional connectivity of the human

brain. An active area of research in neuroscience is the modeling of rs-fMRI data,

using complex graph theory, to discover the functions and structure of the human

brain, and for the detection of brain disorders [SCKH04, STK05, SR07, vdHSBP08,

BB11, Spo12, BS17].

Initial fMRI studies based on data collected in a single imaging site, usually had

limited statistical power, due to the difficulties in obtaining large amounts of data

such as the limited participants with brain disorders in one geographical location,

as well as limited resources [VHT09]. To overcome these limitations, multi-site neu-

roimaging data have been extensively used in network neuroscience research in the

last decade [FGC+06, FSB+08, VHT09, BMZ+10, GGW+10, PBG+12, NSF+17,

RMMM+17]. The Autism Brain Imaging Data Exchange (ABIDE) functional mag-

netic resonance database [CBC+13, DMYL+14, DMOC+17] exemplifies a modern

85

multi-site rs-fMRI database which provides a larger sample size of rs-fMRI data

obtained from a more heterogeneous population living in different geographical lo-

cations, resulting in higher statistical power compared to the rs-fMRI data ob-

tained for a single site [VHT09, BMZ+10]. The ABIDE database is a powerful tool

for enhancing the reproducibility and the reliability of the statistical methods and

models implemented for the diagnosis and discovery of autism spectrum disorders

[AMDM+17, EMF+19, AS21a].

One main challenge for the neuroscience research community using rs-fMRI

multi-site databases is the existence of confounding effects, associated with vari-

ables resulting from imaging and population heterogeneity among different sites.

Several studies have shown that these confounding factors affect the performance

of the machine learning models when executed on rs-fMRI multi-site data [PBM15,

KFMB+16, AMDM+17]. One main effect is the increase in variability, as well as the

imposition of upper limits on the classification scores, due to the decrease of statis-

tical power of the machine learning classification of patients and control subjects.

A first group of confounding effects are those resulting from the imaging acqui-

sition such as MRI scanner vendor, scanner technology, magnetic field strength

and inhomogeneities, and scanning protocols and parameters for the image ac-

quisition, such as scan length, repetition time, echo time, acquisition time, and

voxel size [FGC+06, FSB+08, GJM+10, BMS+11, BMP+13, KAD+14, CLC+14,

FMG+14, FSF+15, MNS+16, AMDM+17]. The control and reduction of these imag-

ing confound effects have been partially solved by implementing standard protocols

and parameters for the image acquisition procedures [FSB+08, GMT+12, SON+17,

CVZ+18].

A second group of confounding effects are those related to phenotypic data de-

rived from the heterogeneous population from which the MRI data is obtained,

86

i.e., clinical information of patients (e.g., taking medications, severity of disor-

der symptoms), instructions given to the subjects during testing (e.g., eyes open

or closed), as well as relevant demographic data (e.g., age range, IQ-range, gen-

der) [VHT09, DSMI11, BMP+13, CLC+14, VS13, AMR+17, RMMM+17, DBR+17,

FCS+18, BCVO+20, RLH21, RJF+21, BPP+22]. Some studies have implemented

stratification techniques [Par14] of the rs-fMRI data of the ABIDE sites to control

the confounding effects due to diverse phenotypic data. These stratification tech-

niques were used to generate sub-samples integrated by subjects sharing common

characteristics such as gender, age, right-handed, and eyes open, to obtain more ho-

mogeneous and suitable data sets for the statistical analysis of the static functional

connectivity derived from rs-fMRI multi-site data [CKM13, NZF+13, VMSS13,

CKJ+15, PBM15, Iid15, KFMB+16, AMDM+17, GDM+17, KSL17, SKB+17, PKF+18,

WXW19, KGX+19, KJKS19, LGD+20, SAS+20].

During the last decade, important research efforts have been dedicated to iden-

tifying the confounding variables and controlling the corresponding effects over the

statistical analysis of multi-site MRI data. Diverse studies implemented statistical

regression models to quantify and control the confounding effects over predictive

modeling using multi-site structural MRI data [RMMM+17], as well as rs-fMRI

data [DBR+17]. The harmonization models, also known as combined batch (Com-

Bat) harmonization models, are based on an empirical Bayes model, originally pro-

posed to control batch effects introduced by different samples in gene expression

microarrays experiments by Johnson et. al. [JLR07]. This model was reformu-

lated in the context of heterogeneous multi-site diffusion tensor imaging data by

Fortin et. al. [FPT+17], to remove confounding effects introduced by the tech-

nical differences of the scanners used by the different sites, while conserving the

variability introduced by selected phenotypic variables. Some studies also imple-

87

mented the ComBat harmonization models to correct site effects in the statistical

analysis of static functional connectivity computed from multi-site rs-fMRI data

[YLC+18, YYI+19, RLH21, TMA+21, CSP+22].

In this study, we used the ABIDE rs-fMRI data with the 17 international imaging

sites summarized in Table 5.1. The goals of our study were twofold i) the identifi-

cation of the phenotypic and imaging variables producing the confounding effects,

and ii) to control these confounding effects to maximize the classification scores

obtained from the machine learning analysis the rs-fMRI ABIDE multi-site data.

To achieve these goals, we proposed two sets of methods. The first set of methods

was implemented to generate new features for the machine learning models. These

new features were computed from the static functional connectivity values computed

from the rs-fMRI multi-site data. The first methods implemented in this set were

multiple linear regression (MLR) models mainly applicable to the identification of

the confounding variables, however, the experimental results showed that they were

also useful in maximizing the classification scores computed with the machine learn-

ing models (see Section 5.2.5). The second method implemented in this set was

ComBat harmonization models implemented to control the confounding effects and

to maximize the classification scores (see Section 5.2.6). Since the independent vari-

ables of the MLR and ComBat harmonization models give only a partial explanation

of the variability of the dependent variables, we also generated new features by using

normalization methods on which the confound variables were unknown (see Section

5.2.7). The second set of methods was based in the stratification techniques defined

by [Par14] and [Ney92] which basically consists of probability sampling methods on

which the subjects of the target population are divided into sub-samples or strata

where within each sub-sample the subjects have similar characteristics. These tech-

niques were implemented to generate homogeneous sub-samples of the 17 ABIDE

88

sites on which the subjects were in different ranges of age and/or full IQ (FIQ) (see

Section 5.2.8).

The main contribution of the work presented in this chapter is a comprehensive

approach to the solution of the problem of confounding effects over the machine

learning classification models of rs-fMRI multisite data, consisting of the sets of

proposed methods as well as the extensive set of experiments performed with these

methods. The experimental results were also thoroughly analyzed and compared to

evaluate the effectiveness of each one of the implemented methods. The proposed

approach can be used and improved by the neuroscience research community to help

in the diagnosis of brain disorders.

Table 5.1: International Imaging Sites from preprocessed ABIDE resting state
fMRI data (http://preprocessed-connectomes-project.org/abide/) used in this chap-
ter [CBC+13].
Sites: California Institute of Technology (Caltech), Carnegie Mellon University (CMU), Kennedy Krieger Institute

(KKI), University of Leuven (Leuven), Ludwig Maximilian University (MaxMun), Oregon Health and Science Uni-

versity (OHSU), Institute of Living at Hartford Hospital (Olin), University of Pittsburgh School of Medicine (Pitt),

Social Brain Lab (SBL), San Diego State University (SDSU), Stanford University (Stanford), Trinity Center for

Health Sciences (Trinity), University California Los Angeles (UCLA),University of Michigan (UM), University of

Utah School of Medicine (USM), and Child Study Center, Yale University (Yale).

MRI vendors: General Electric (GE), Phillips(P), Siemens(S)

Site C ASD Subjects Avg age Avg FIQ M/F MRI
Caltech 18 19 37 27.7 ± 10.3 111.5 ± 11.2 29/8 S
CMU 13 14 27 26.6 ± 5.6 114.6 ± 10.3 21/6 S
KKI 28 20 48 10.0 ± 1.3 106.2 ± 4.8 36/12 P

Leuven 34 29 63 18.0 ± 5.0 107.6 ± 18.0 55/8 P
MaxMun 28 24 52 25.3 ± 11.8 110.9 ± 11.4 48/4 S
NYU 100 75 175 15.3 ± 6.5 110.5 ± 14.9 139/36 S
OHSU 14 12 26 10.7 ± 1.8 111.0 ± 16.3 26/0 S
Olin 15 19 34 16.6 ± 3.4 113.2 ± 16.5 29/5 S
Pitt 27 29 56 18.9 ± 6.9 110.2 ± 12.1 48/8 S
SBL 15 15 30 34.4 ± 8.5 107.9 ± 9.4 30/0 P
SDSU 22 14 36 14.4 ± 1.8 109.4 ± 13.6 29/7 GE

Stanford 20 19 39 10.0 ± 1.6 111.4 ± 15.4 31/8 GE
Trinity 25 22 47 17.0 ± 3.4 110.0 ± 13.6 47/0 P
UCLA 44 54 98 13.0 ± 2.2 103.1 ± 12.7 86/12 S
UM 74 66 140 14.0 ± 3.2 106.9 ± 13.6 113/27 GE
USM 25 46 71 22.7 ± 8.3 105.2 ± 17.5 71/0 S
Yale 28 28 56 12.7 ± 2.9 99.8 ± 19.9 40/16 S

TOTAL 530 505 1035 878/157

89

5.2 Methods and materials

5.2.1 ABIDE resting fMRI multi-site data

Functional magnetic resonance imaging (fMRI) is based on the fact that hemoglobin,

the carrier of oxygen from the lungs to the tissues [MR06], changes its magnetic prop-

erties depending on its level of oxygenation. The neuronal activity of the brain re-

quires energy, which is supplied by glucose, and oxygen transported by hemoglobin.

Hence, in regions of intense neuronal activity, the oxygen carried by the hemoglobin

molecules is consumed, resulting in changes in the magnetic properties of these

molecules. Such oxygen dependence makes hemoglobin a sensitive magnetic marker

of the level of blood oxygenation, and consequently of neuronal activity. The dif-

ferent interactions of the oxygenated and deoxygenated hemoglobin with magnetic

fields can be detected as changes in the fMRI signal. This relationship between

neuronal activity in different regions of the brain and the fMRI signal is known as

the blood oxygenation level-dependent (BOLD) effect, and the resulting functional

imaging is known as BOLD fMRI. Since the rs-fMRI time series, recorded from

subjects who are at rest at the scanner, reflect dynamic changes in the brain due to

neuronal activity in different regions of the brain, they can be used to estimate the

functional connectivity between these regions [AGHP89, BZYHH95, vdVFP+04].

The rs-fMRI measured with the MRI scanners need to be preprocessed to cor-

rect for confounding effects such as magnetic field distortions and head motion,

as well as to improve the signal-to-noise ratio [JC18]. The preprocessed rs-fMRI

data used in this study was obtained from the 17 international imaging sites listed

in Table 5.1, publicly available in the ABIDE database, with a total of 530 con-

trol and 505 autism subjects [CBC+13, DMYL+14, DMOC+17]. The preprocessing

pipeline chosen for this data was the Configurable Pipeline for the Analysis of Con-

90

nectomes (CPAC), and the filt-global preprocessing strategy, on which the head mo-

tion correction is performed using a two-stage approach as described in https://fcp-

indi.github.io/docs/latest/user/quick.html and [CJ99]. The preprocessing pipeline

is described in detail in the ABIDE Preprocessed website (http://preprocessed-

connectomes-project.org/abide/index.html).

5.2.2 Human brain functional networks

In the last two decades, the graph theoretical analysis of functional connectivity

between brain regions, on which the rs-fMRI data is represented as human brain

functional networks, has been fundamental to identifying organizational principles in

the brain, as well to understanding the causes of brain disorders [SCKH04, STK05,

SR07, vdHSBP08, BB11, Spo12, BS17].

In this work, the human brain functional networks, which will be referred to as

functional networks for the rest of the chapter, were represented as weighted, undi-

rected graphs G = (V,E), where V is the finite set of nodes and E the set of edges.

Any pair (u, v) ∈ E implies that the vertices u and v in V are connected by an edge

in G, with the weights of the edges equal to the values of the static functional con-

nectivity between the regions of the brain represented by the corresponding nodes.

Nodes of the functional network

The first and most critical step in the construction of functional networks is the

definition of the network nodes. The voxel-based and the brain parcellation are

two of the most used methods for this definition. In the first method, the voxels,

small 3D volumes of the MRI images, are used to define the nodes of the functional

networks. One important limitation of this approach is that the voxels subdivided

91

the brain into regions that do not represent any biological structure. Furthermore,

since there are tens of thousands of voxels, the corresponding networks are very noisy

and with very high dimensionality, yielding functional connectivity features that are

unusable for an efficient machine learning analysis of the functional connectivity and

graph metrics derived from the rs-fMRI data.

The brain parcellation approach provides important information about the func-

tional and anatomical organization of the human brain by subdividing the brain into

a set of distinct and coherent regions of interest (ROI), where each ROI is formed

by a group of voxels with biological meaning. Each ROI corresponds to a node of

the functional network, and the rs-fMRI time series of each ROI is computed as

the average of the time series of all the voxels grouped in the region. The static

functional connectivity values are derived from these average rs-fMRI time series.

Hence, the computation of rs-fMRI time series at the ROI-level, results in a bio-

logically informed type of feature extraction, compressing the high dimensionality

of the time series of hundreds of thousands of voxels to the lower dimensionality of

the time series computed for the set of ROIS. These feature extraction procedures

are not only important to avoid over-fitting of the machine learning models used for

the analysis of rs-fMRI data, but also by providing a limited set of nodes for the

application of the mathematical tools of graph theory to the modeling and analysis

of brain connectivity.

In this study, we selected the brain parcellation, referred to as the brain atlas

for the rest of the chapter, for which the highest values of classification scores were

obtained from the machine learning analysis of the static functional connectivity

obtained from the average rs-fMRI time series of the 17 ABIDE sites given in Ta-

ble 5.1. We preselected three of the brain atlases provided by the ABIDE database.

The first one was the cc200 (200 nodes) brain atlas, which was derived from rs-fMRI

92

data [CJHI+12]. The other two were the Automated Anatomical Labeling (aal, 116

nodes) [TMLP+02], and the Harvard-Oxford (ho, 111 nodes) [ESM+05] brain at-

lases, both derived from structural anatomic information. Additional information

about these brain atlases is given in [EJCB12, YHX+15, AKM+18, Mes20]. We

computed the classification scores for each ABIDE site, using the values of func-

tional connectivity as features of ASD-DiagNet (see Section 5.2.3). The computed

classification scores showed that the cc200 brain atlas obtained the highest values of

the classification scores for most of the ABIDE sites, hence this atlas was selected

to represent the nodes of the functional networks from which all the experimental

results presented in this chapter were obtained [AS21b].

Edges of the functional network

In this study, the weights of edges, i.e., the elements of the static functional connec-

tivity adjacency matrix of the functional network, were obtained by computing the

linear correlation between the time series for all pairs of nodes, using the Pearson

correlation function available in the NumPy package (https://numpy.org) and given

by

FCuv =

∑T
t=1(tut − t̂u)(tvt − t̂v)√∑T

t=1(tut − t̂u)2
√∑T

t=1(tvt − t̂v)2
(5.1)

were tu and tv are the rs-fMRI time series, with length T, of the nodes u and v

of the cc200 brain atlas, and t̂u and t̂v the averages of these time series. Since

the static functional connectivity adjacency matrix is symmetric, and the diagonal

elements contain no relevant information, a common feature selection method is to

select the upper (or the lower) triangular part of this matrix, which are referred to

as functional connectivity (FCFCFC) for the rest of the chapter, reducing the size of the

features from N2 to N(N − 1)/2, where N is the number of ROIs of the brain atlas.

93

For the cc200 atlas, the number of nodes is N = 200, then, the number of values

of the functional connectivity is reduced from 40, 000 to 19, 990, less than half the

original size.

5.2.3 The machine learning models: ASD-DiagNet and ASD-

SAENet

For this study, we selected two state-of-the-art machine learning models: ASD-

DiagNet and ASD-SAENet to perform the experiments of classification of control

and autistic subjects, and to compare the corresponding results.

The classification scores computed in our experiments were: Accuracy which

measures the ratio of correctly classified patient subjects (true positive) and control

subjects (true negative) over the total number of subjects; sensitivity which measures

the ratio of the correctly classified as patient subjects over the total number of

patients (true positive plus false negative); and specificity which measures the ratio

of the correctly classified as control subjects over the total number of control subjects

(true negative plus false positive), more details about these scores are given in

[ZZW+10].

ASD-DiagNet

ASD-Diagnet was selected as one of the machine learning classifiers to compute the

experimental results included in this study. ASD-DiagNet is a GPU-based machine

learning model for classifying patients and control subjects by using only rs-fMRI

data. ASD-DiagNet was designed to implement a joint learning procedure using

an autoencoder for feature extraction, i.e., to compress the original feature space

into a lower dimensional space that contains useful patterns of the original data.

94

The lower dimensional data generated by the autoencoder was used as input for the

classification step performed by a single-layer perceptron (SLP) classifier. The fea-

tures selected for the training samples of ASD-DiagNet were 25 % of the maximum

weights and the same percentage of the minimum weights of the functional con-

nectivity values. For all our experiments, we used the data augmentation method

using linear interpolation implemented for ASD-DiagNet. A detailed description of

ASD-DiagNet is given in [EMF+19].

ASD-SAENet

ASD-SAENet was the other machine learning classifier used to perform a selected

set of experiments to compare their results with those computed with ASD-DiagNet.

ASD-SAENet is a GPU-based machine learning model for classifying patients and

control subjects by using only rs-fMRI data. ASD-SAENet was designed and im-

plemented as a sparse autoencoder (SAE) which results in optimized extraction of

features that can be used for classification. These features are then fed into a deep

neural network (DNN) to perform the classification of control and autistic subjects.

This model is trained to optimize the classifier while improving extracted features

based on both the reconstructed data error and the classifier error. The features se-

lected for the training samples of ASD-SAENet were 25 % of the maximum weights

and the same percentage of the minimum weights of the functional connectivity val-

ues. ASD-SAENet did not implement data augmentation to minimize overfitting.

A detailed description of ASD-DiagNet is given in [AS21a].

95

5.2.4 Generation of new features

We implemented a set of methods to generate new features for the machine learning

models. These new features were computed from the functional connectivity values

obtained from the rs-fMRI time series (see Section 5.2.2). The first two methods

were multiple linear regression models, and ComBat harmonization models, which

were implemented assuming that the variables responsible for the confounding effects

were known such as MRI scanner vendor, as well as some phenotypic variables like

age, FIQ, and gender. In the third group of methods included in this set, the new

features were obtained from normalization methods, for which we assumed that the

variables responsible for the confounding effects were unknown. Figure 5.1 illustrates

the workflow implemented in this study to generate the new features.

Figure 5.1: Workflow for the machine learning analysis of rs-fMRI data using new
features derived from the functional connectivity values to control the confounding
effects of multi-site rs-fMRI data.

A more detailed example of the computation of new features is illustrated by

the workflow of Figure 5.2, where the MLR models are included as an example.

The functional connectivity values as well as the phenotypic values of the ABIDE

96

subjects were the input data for the creation of a dictionary for each feature with

the values of the functional connectivity, subject ID, age, gender, FIQ and MRI

vendor of each subject. Then a list of dictionaries was obtained that was used to

compute the new features. Algorithm 5.1 shows the details of the computation of

this list of dictionaries.

Figure 5.2: Workflow for computation of new features for the machine learning
analysis of the ABIDE rs-fMRI data using the MLR models.

5.2.5 Multiple linear regression models

Multiple linear regression (MLR) models are fitted to random dependent variables

YYY = (Y1, Y2,, Yn), with corresponding observation values yyy = (y1, y2,, yn), to

remove the variance that can be explained by the independent or predictor variables.

97

Algorithm 5.1 Algorithm for the computation of dictionaries for each value of the
functional connectivity, and the age, gender, and FIQ of the corresponding subject,
as well as the MRI vendor. These dictionaries are appended to a list of dictionaries
whose elements are used to compute the new features for the machine learning
models described in Section 5.2.3.
1: Input: FCFCFC ▷ FC :FC :FC : FC values for all the subjects
2: Input: Subjects ▷ Subjects : list of ABIDE subjects
3: Output: FCld ▷ FCld : List of dictionaries
4: procedure FCdict(Subjects,FCFCFC)
5: m← 19900 ▷ m: number of features for cc200 brain atlas
6: for k → 1,m do
7: fc← []
8: age← []
9: gender← []
10: FIQ← []
11: MRI← []
12: sub← []
13: for SUB ∈ Subjects do
14: fc.append← FCFCFC(SUB)(k)
15: age.append← age(SUB)
16: gender.append← gender(SUB)
17: MRI.append←MRI(SUB)
18: sub.append← SUB
19: end for
20: fcs ← ′fc′ : fc, ′age′ : age, ′gender′ : gender, ′MRI′ : MRI, ′sub′ : sub
21: FCld.append← fcs
22: end for
23: return FCld

24: end procedure

The MLR model is given by

YYY =XXXβββ + ϵϵϵ (5.2)

where XXX is the design matrix of independent variables, βββ is a vector of unknown

parameters and ϵϵϵ = (ϵ1, ϵ2,, ϵn) a vector of random errors with E(ϵi) = 0. If the

inverse of the matrix X′X exists, then the ordinary least square (OLS) estimates of

the fitted value vector, ŷ̂ŷy, are given by

ŷ̂ŷy =X(X ′X)−1X ′X(X ′X)−1X ′X(X ′X)−1X ′yyy (5.3)

98

and the residual vector, ∆y∆y∆y, is obtained by removing the variance introduced by the

independent variables, represented by the fitted value vector, ŷ̂ŷy, from the observation

values, yyy, of the dependent variables [TD00]

∆y∆y∆y = yyy − ŷ̂ŷy (5.4)

We implemented the multiple linear regression (MLR) models given by Equations

5.2 to 5.4 to quantify the confounding effects of each of the independent variables:

age, FIQ, gender, and MRI vendor, as well as the effects of some combinations

of these variables. We obtained two sets of new features using the MLR models.

The first set was obtained using functional connectivity as the dependent variable,

and the second set using the Fisher z-transformation of the functional connectivity,

FCFZ (see Section 5.2.7), as the dependent variable. The fitted values are given by

Equations 5.5 and 5.6, and the new features by Equations 5.7 and 5.8, respectively.

F̂ ĈF ĈFC = (X(X ′X)−1X)(X(X ′X)−1X)(X(X ′X)−1X)FCFCFC (5.5)

F̂CFẐFCFẐFCFZ = (X(X ′X)−1X)(X(X ′X)−1X)(X(X ′X)−1X)FCFZFCFZFCFZ (5.6)

∆mlrXmlrXmlrX = FCFCFC − F̂ ĈF ĈFC (5.7)

∆mlrXmlrXmlrXFZ = FCFCFCFZ − F̂ ĈF ĈFCFZ (5.8)

The complete set of new features computed with the MLR model, and the corre-

sponding independent variables are given in Table 5.2.

Algorithm 5.2 gives the steps to implement the multiple linear regression of the

functional connectivity values to compute the new feature ∆mlrAGMmlrAGMmlrAGM .

99

Algorithm 5.2 Algorithm to implement multiple linear regression of the functional
connectivity values as dependent variables, and age, gender and MRI vendor as inde-
pendent variables, to compute the new feature ∆mlrAGMmlrAGMmlrAGM , for the machine learning
models (Section 5.2.3). The variables and functions are from the statsmodels library
(https://www.statsmodels.org/stable/index.html).

1: Input: FCld ▷ FCld : FC list of dictionaries
2: Output: ∆mlrAGMmlrAGMmlrAGM ▷ ∆mlrAGMmlrAGMmlrAGM : New Feature
3: procedure mlr(FCld)
4: m← 19900 ▷ m: number of features for cc200 brain atlas
5: for k → 1,m do
6: y,Xy,Xy,X ← dmatrices(fc ∼ age + gender +MRI,data = FCld(k))
7: model← sm.OLS(y,Xy,Xy,X)
8: results← model.fit
9: ∆mlrAGMmlrAGMmlrAGM ← results.residuals
10: end for
11: return ∆mlrAGMmlrAGMmlrAGM

12: end procedure

Table 5.2: New features computed with the multiple linear regression models and
the ComBat harmonization models described in Sections 5.2.5 and 5.2.6.

MLR features ComBat features Independent variables

∆mlrAmlrAmlrA, ∆mlrAmlrAmlrAFZ cbAcbAcbA, cbAcbAcbAFZ age
∆mlrFmlrFmlrF , ∆mlrFmlrFmlrFFZ cbFcbFcbF , cbFcbFcbFFZ FIQ
∆mlrGmlrGmlrG, ∆mlrGmlrGmlrGFZ ——- gender
∆mlrMmlrMmlrM , ∆mlrMmlrMmlrMFZ ——- MRI vendor

∆mlrAGMmlrAGMmlrAGM , ∆mlrAGMmlrAGMmlrAGMFZ ——- age, gender, MRI vendor
——- cbAFGcbAFGcbAFG, cbAFGcbAFGcbAFGFZ age, FIQ, gender

5.2.6 ComBat harmonization models

In addition to the multiple linear regression models, we implemented the ComBat

harmonization models [JLR07, FPT+17, FCS+18, YLC+18], to remove confounding

effects introduced by the technical differences of the scanners used by the different

sites, while conserving the variability introduced by selected phenotypic and MRI

vendors variables, and to determine which of each of the independent variables: age,

gender, or FIQ, or combinations of these variables, should be preserved to maximize

100

the classification scores. A simplified form of the ComBat model is given by

YYY = µµµY +XXXβββ + γγγ + δδδϵϵϵ (5.9)

where µµµY is the mean value vector of YYY , and the vectors γγγ and δδδ are parameters

representing the additive and multiplicative site effects respectively [JLR07], the

rest of the variables are equal to those defined by Equation 5.2. The vector of site

adjusted values, ŷ̂ŷy, is

ŷ̂ŷy =
yyy − µ̂̂µ̂µy −XXXβ̂̂β̂β + γ∗γ∗γ∗

δ∗δ∗δ∗
+ µ̂̂µ̂µy +XXXβ̂̂β̂β (5.10)

where µ̂̂µ̂µy, β̂̂β̂β, γ
∗γ∗γ∗ and δ∗δ∗δ∗ are estimated values of the corresponding parameters. The

ComBat model removes the confounding effects introduced by site effects, and pre-

serves the variability introduced by the independent variables included in the the

design matrix XXX [FPT+17].

We computed two sets of new features using the ComBat harmonization mod-

els given by Equations 5.9 and 5.10. The first set was obtained using functional

connectivity as the dependent variable, and the second set using the Fisher z-

transformation of the functional connectivity, FCFCFCFZ (see Section 5.2.7), as the

dependent variable. The new features are given by Equations 5.11 and 5.12, re-

spectively.

cbXcbXcbX =
FCFCFC − µ̂̂µ̂µFC −XXXβ̂̂β̂β + γ∗γ∗γ∗

δ∗δ∗δ∗
+ µ̂̂µ̂µFC +XXXβ̂̂β̂β (5.11)

cbXcbXcbXFZ =
FCFCFCFZ − µ̂̂µ̂µFCFZ

−XXXβ̂̂β̂β + γ∗γ∗γ∗

δ∗δ∗δ∗
+ µ̂̂µ̂µFCFZ

+XXXβ̂̂β̂β (5.12)

The complete set of new features computed with the ComBat harmonization models

and the corresponding independent variables are given in Table 5.2.

101

Algorithm 5.3 shows the implementation of the ComBat models using the func-

tional connectivity values to compute the new feature cbAFGcbAFGcbAFG.

Algorithm 5.3 Algorithm to implement the ComBat models using the functional
connectivity values as dependent variables, and age, FIQ, and gender as independent
variables, to compute the new feature cbAFGcbAFGcbAFG, for the machine learning models
(Section 5.2.3). The variables and functions are from the NeuroCombat models
given in https://github.com/Jfortin1/neuroCombat.

1: Input: FCld ▷ FCld : FC list of dictionaries
2: Output: cbAFGcbAFGcbAFG ▷ cbAFGcbAFGcbAFG : New Feature (ComBat output)
3: procedure CB(FCld)
4: covars← FCld(age,FIQ,gender, scanner)
5: batchcol ← FCld(scanner)
6: data← FCld(FCFCFC)
7: combat← NeuroCombat(data, covars,batchcol)
8: cbAFGcbAFGcbAFG← combat.data
9: return cbAFGcbAFGcbAFG

10: end procedure

5.2.7 Normalization methods

Considering that the independent variables of the multiple linear regression models

and the ComBat harmonization models give only a partial explanation of the vari-

ability of the dependent variables, we also generated new features by implementing

normalization methods through the transformation of the functional connectivity

values in more statistically uniform new values, by reducing biases and outliers

introduced by unknown confound variables [SS20].

For the mathematical definition of the normalization methods implemented in

this study, we represented the functional connectivity, for the 1035 subjects of the

17 ABIDE sites (see Table 5.1), as a matrix with I = 1035 subjects as rows, and J

= 19990 features as columns.

The normalization methods presented in this section are the Fisher z-transformation,

as well as methods to compute new features by demeaning the functional connec-

102

tivity values. All these methods were implemented with the goal of maximizing

the classification scores by controlling the confounding effects of unknown variables

related to all the sites.

Fisher z-transformation

The Fisher z-transformation was proposed by Fisher [Fis15] to correct for skewness

(lack of symmetry) of the Pearson correlation coefficients, resulting in coefficients

approximately normally distributed. We implemented this method because in this

study, the functional connectivity values were computed as Pearson correlation co-

efficients, and any skewness of these values may be different between the data of the

ABIDE sites with some potential confounding effects. The Fisher z-transformation

is given by

FCFCFCFZ = arctanh(FCFCFC) (5.13)

The new features obtained with the Fisher z-transformation of the functional con-

nectivity, FCFCFCFZ , were computed as described in Sections 5.2.5 and 5.2.6, and sum-

marized in Table 5.2.

Demeaning the functional connectivity(FC) values

We implemented normalization methods by demeaning the functional connectivity

values with three different average values, resulting in three new corresponding

normalization features: ∆avgavgavg,∆avgSiteavgSiteavgSite, and ∆avgSubjavgSubjavgSubj.

The new features ∆avgavgavg are given by

∆avgavgavg = FCFCFC − µµµFC (5.14)

103

where the component µFC,j =
∑I

i=1 FCij/I of the vector µµµFC , is the average of the

jth component of the functional connectivity computed over all subjects of the 17

ABIDE sites. Algorithm 5.4 shows the computation of these new features.

The new features ∆avgSiteavgSiteavgSite are given by

∆avgSiteavgSiteavgSite = (∆avgavgavgsi1 ,∆avgavgavgsi1 ,,∆avgavgavgsi17) (5.15)

where ∆avgavgavgsik = FCFCFCsik − µsik is the new vector of features, FCFCFCsik is the functional

connectivity vector, and µsik , k ≤ 17, is the average of all the values of functional

connectivity, for the kth site. Algorithm 5.5 shows the computation of these new

features.

Algorithm 5.4 Algorithm to compute the new features ∆avgavgavg by demean-
ing the functional connectivity values with the average of the functional
connectivity computed over all the ABIDE subjects using the NumPy li-
brary(https://numpy.org/doc).

1: Input: FCFCFC ▷ FC :FC :FC : FC values for all the subjects
2: Input: Subjects ▷ Subjects : list of ABIDE subjects
3: Output: ∆avgavgavg ▷ ∆avgavgavg : New features
4: procedure FCavg(Subjects,FCFCFC)
5: fcfcfcavg ← [] ▷ fcfcfcavg: empty list
6: ∆FCFCFCavg ← [] ▷ ∆FCFCFCavg: empty list for new features
7: m← 19900 ▷ m: number of features for cc200 brain atlas
8: for k → 1,m do
9: fcfcfc← [] ▷ fc: empty list
10: for SUB ∈ Subjects do
11: fcfcfc.append← FCFCFC(SUB)(k)
12: end for
13: fcfcfcavg.append← numpy.mean(fcfcfc)
14: end for
15: for SUB ∈ Subjects do
16: ∆avgavgavg[SUB]← FCFCFC(SUB)− fcfcfcavg
17: end for
18: return ∆avgavgavg

19: end procedure

The new features ∆avgSubjavgSubjavgSubj are given by

∆avgSubjavgSubjavgSubj = FCFCFC − µµµFCSub
(5.16)

104

where the component µFCSubj,i
=

∑J
j=1 FCi,j/J of the vector µµµFCSubj

, is the average

of the functional connectivity values computed for the ith subject. Algorithm 5.6

shows the computation of these new features.

Algorithm 5.5 Algorithm to compute the new features ∆avgSiteavgSiteavgSite by demean-
ing the functional connectivity values with the average computed over all the
values of functional connectivity of an ABIDE site using the NumPy library
(https://numpy.org/doc).

1: Input: FCFCFC ▷ FC :FC :FC : FC values for all the subjects
2: Input: Sites ▷ Sites : list of ABIDE sites
3: Input: Subjects ▷ Subjects : list of ABIDE subjects
4: Output: ∆avgSiteavgSiteavgSite ▷ ∆avgSiteavgSiteavgSite : New features
5: procedure FCavgSite(Sites,Subjects,FCFCFC)
6: for SITE ∈ Sites do
7: fcfcfc← [] ▷ fcfcfc: empty list
8: fcfcfcavg ← [] ▷ fcfcfcavg: empty list
9: for SUB ∈ SITE(Subjects) do
10: fcfcfc.append← FC(SUB)
11: end for
12: fcfcfcavg.append← numpy.mean(fcfcfc)
13: for SUB ∈ SITE(Subjects) do
14: ∆avgSiteavgSiteavgSite(SUB)← FCFCFC(SUB)− fcfcfcavg
15: end for
16: end for
17: return ∆avgSiteavgSiteavgSite

18: end procedure

5.2.8 Sub-samples selection

A common practice in machine learning analysis is to compare computed classifica-

tion accuracies with those obtained by chance level, i.e., by assuming the uniform

distribution that a subject may be classified as patient or control. For this binary

classification problem, the chance level is equal to 50 %, if the sample has infinite

size. Reference [CJ15] showed that for small data sets (less than 200 samples), the

empirical chance level computed from random classification was greater than the

theoretical chance level for an infinite sample, for example, for a sample size of 100,

105

the chance level accuracy was 58.0 % at a significance level of p < 0.05, and for a

sample size of 60 was 60 % at a significance level of p < 0.05. Considering these

limits, the sizes of a high percentage of the selected sub-samples presented in this

paper were greater than 100 subjects, and when the sub-samples contained less than

100 subjects, the corresponding accuracies were much greater than 58 % (see Table

5.6).

Algorithm 5.6 Algorithm to compute the new features ∆avgSubjavgSubjavgSubj by demean-
ing the functional connectivity values with the average computed for each ABIDE
subject using the Numpy library (https://numpy.org/doc).

1: Input: FCFCFC ▷ FC :FC :FC : FC values for all the subjects
2: Input: Subjects ▷ Subjects : list of ABIDE subjects
3: Output: ∆avgSubjavgSubjavgSubj ▷ ∆avgSubjavgSubjavgSubj : New features
4: procedure FCavgSub(Subjects,FCFCFC)
5: fcfcfc← [] ▷ fcfcfc: empty list
6: fcfcfcavg ← [] ▷ fcfcfcavg: empty list
7: for SUB ∈ Subjects do
8: fcfcfc.append← FC(SUB)
9: end for
10: fcfcfcavg.append← numpy.mean(fcfcfc)
11: for SUB ∈ Subjects do
12: ∆avgSubjavgSubjavgSubj(SUB)← FCFCFC(SUB)− fcfcfcavg(SUB)
13: end for
14: return ∆avgSubjavgSubjavgSubj

15: end procedure

The stratification methods used to generate the baseline and the homogeneous

sub-samples implemented in this study were based on the stratification techniques

defined by [Par14] and [Ney92], which basically consists of probability sampling

methods on which the subjects of the target population are divided into sub-samples

or strata where within each sub-sample the subjects have similar characteristics.

The criteria used to select the sites or subjects included in these sub-samples were

suitable to accomplish the goal of maximizing the classification scores computed

with the machine learning analysis of the rs-fMRI multi-site data. These criteria

106

were defined in a different and simplified way than those established in the works of

[Par14] and [Ney92].

Homogeneous sub-samples selection

In this study, we selected homogeneous sub-samples integrated with subjects clas-

sified by ranges of age and ranges of full IQ (FIQ). The first eight homogeneous

sub-samples given in Table 5.3 were formed by grouping subjects with the same

range of ages, or of FIQ, the last two sub-samples were formed with the intersection

of subjects with selected ranges of these phenotypic values.

Algorithm 5.7 shows an example of the computation of the total number of sub-

jects, the number of patients, and the number of control subjects in a homogeneous

sub-sample with ABIDE subjects with ages between 10 and 20 years.

Table 5.3: Homogeneous sub-samples formed by grouping subjects with the same
range of ages, FIQ, or gender as described in Section 5.2.8.

Sub-sample Acronym C/A/T

0 < age < 10 age-10 74/69/143
10 < age ≤ 15 age-1015 209/203/412
15 < age ≤ 20 age-1520 115/110/225
10 < age ≤ 20 age-1020 324/313/637

20 < age age-20 132/123/255
0 < FIQ ≤ 89 FIQ-89 24/92/116
89 < FIQ ≤ 110 FIQ-89110 238/215/453

110 < FIQ FIQ-110 268/198/466

(10 < age ≤ 20) ∩ (0 < FIQ ≤ 89) age-1020-FIQ-89 21/67/88
(10 < age ≤ 20) ∩ (89 < FIQ ≤ 110) age-1020-FIQ-89110 153/138/291

107

Algorithm 5.7 Algorithm to compute the total number of subjects, the number
of patients, and the number of control subjects in a homogeneous sub-sample with
ABIDE subjects with ages between 10 and 20 years.

1: Input: Sites ▷ Sites : list of ABIDE sites
2: Input: Subjects ▷ Subjects : list of ABIDE subjects
3: Output: ages, agesc, agesa ▷ counters with the number of subjects/site in the

sub-sample
4: Output: age, agec, agea ▷ counters with the total number of subjects in the

sub-sample
5: procedure age(Sites,Subjects)
6: for SITE ∈ Sites do
7: for SUB ∈ SITE(Subjects) do
8: if SUB is autistic then
9: if 10 < SUB(age) ≤ 20 then
10: ages ← age+ 1
11: agesa ← agea + 1
12: end if
13: else
14: if 10 < SUB(age) ≤ 20 then
15: ages ← age+ 1
16: agesc ← agec + 1
17: end if
18: end if
19: end for
20: age← age+ ages
21: agea ← agea + agesa
22: agec ← agec + agesc
23: return ages, agesc, agesa
24: end for
25: return age, agec, agea
26: end procedure

Baseline sub-samples selection

We formed a baseline set of sub-samples by progressively selecting the sites with the

greatest values of accuracy computed with ASD-DiagNet, i.e., the sub-sample with

4 sites was integrated by the first four sites of Table 5.4. The baseline classification

scores computed with ASD-DiagNet, using the functional connectivity values of the

subjects grouped in these sub-samples, are given in Table 5.5, on which the number

of control (C), autistic (A) and total (T) subjects are included to compare the sizes

108

Table 5.4: Values and standard deviations of the classification scores computed with
ASD-DiagNet (see Section 5.2.3) for each ABIDE site, where the functional connec-
tivity values were used as features, and cc200 as the brain atlas. The classification
scores computed with the whole 17 ABIDE sites are included for comparison.

Site Accuracy Sensitivity Specificity

Olin 81.2 ± 2.7 90.5 ± 2.7 70.0 ± 4.5
OHSU 76.8 ± 2.4 92.7 ± 2.0 63.0± 4.6

whole 17 sites 70.2 ± 0.1 68.8 ± 0.6 71.6 ± 0.2

KKI 70.1 ± 1.7 29.5 ± 1.5 98.7 ± 2.2
USM 70.0 ± 1.4 92.4 ± 2.2 28.8 ± 3.0
NYU 66.8 ± 1.1 51.6 ± 2.1 78.2 ± 1.7
UCLA 66.4 ± 0.9 72.9 ± 1.2 58.8 ± 1.7
Yale 64.6 ± 2.1 58.7 ± 1.6 70.2 ± 4.3

Stanford 63.9 ± 3.4 47.3 ± 3.7 81.0 ± 4.9
CMU 63.8 ± 4.7 60.7 ± 10.0 66.0 ± 5.3
UM 63.4 ± 0.6 48.9 ± 1.2 76.5 ± 0.9

Leuven 62.4 ± 2.7 55.2 ± 3.5 68.7 ± 3.4
Pitt 61.4 ± 2.4 67.0 ± 3.7 55.4 ± 2.7

SDSU 55.9 ± 1.7 15.3 ± 3.1 82.6 ± 1.2
SBL 55.0 ± 3.7 54.7 ± 4.0 55.3 ± 5.2

MaxMun 54.0 ± 1.5 24.2 ± 1.8 81.8 ± 1.7
Caltech 52.1 ± 2.1 58.7 ± 2.3 48.5 ± 3.7
Trinity 44.6 ± 1.8 21.6 ± 2.7 65.2 ± 2.6

of the sub-samples. The last row of Table 5.5 shows the classification scores obtained

with the machine learning models presented in [HFC+18] for 17 ABIDE sites. These

results showed the existence of confounding effects affecting the classification scores

between sites. Furthermore, the baseline classification scores computed with the

sub-samples were always greater than the scores computed with the whole 17 sites.

The baseline sub-samples and the corresponding baseline classification scores

provided a convenient framework by comparing the classification scores obtained

with the new features defined in Sections 5.2.5, 5.2.6 and 5.2.7.

109

Table 5.5: Values and standard deviations of the baseline classification scores (ac-
curacy (Ac), sensitivity (Se), and specificity (Sp)) computed with ASD-DiagNet.

Sub-sample C/A/T Ac Se Sp

10-sites 361/353/714 73.5 ± 0.6 71.6 ± 0.5 75.5 ± 0.8
8-sites 274/273/547 73.2 ± 0.7 73.3 ± 1.1 73.2 ± 0.5
9-sites 287/287/574 72.8 ± 0.4 72.2 ± 0.9 73.5 ± 0.2
4-sites 82/97/179 72.8 ± 0.3 76.5 ± 0.7 68.5 ± 0.3
7-sites 254/254/508 72.6 ± 0.4 73.2 ± 0.8 71.9 ± 0.3
13-sites 444/425/869 72.4 ± 0.3 69.7 ± 0.5 74.9 ± 0.3
6-sites 226/226/452 72.1 ± 0.7 71.5 ± 0.5 72.6 ± 1.0
11-sites 395/382/777 71.7 ± 0.1 68.9 ± 0.3 74.5 ± 0.3
14-sites 459/440/899 71.5 ± 0.2 70.1 ± 0.5 72.8 ± 0.7
15-sites 487/464/951 71.4 ± 0.1 69.2 ± 0.2 73.5 ± 0.3
5-sites 182/172/354 71.2 ± 0.9 70.1 ± 0.5 72.1 ± 1.3
12-sites 422/411/833 71.4 ± 0.2 68.7 ± 0.3 74.1 ± 0.4
16-sites 505/483/988 70.8 ± 0.3 69.1 ± 0.7 72.4 ± 0.2

whole 17 sites 530/505/1035 70.2 ± 0.1 68.8 ± 0.6 71.6 ± 0.6

Heinsfeld et.al. 530/505/1035 70 74 63

5.2.9 Methods for the statistical comparison of experimen-

tal results computed with the new features

Considering the strong dependence of the classification scores on the new features

used to compute them, we performed statistical tests and computed the Wasserstein

distance to compare the baseline classification scores, with those scores computed

with the new features obtained with the models and the normalization methods

described in Sections 5.2.5, 5.2.6, and 5.2.7, respectively. All these classification

scores were computed with the ASD-DiagNet machine learning classifier (see Section

5.2.3).

To ensure the consistency of the statistical results, three statistical test methods

were implemented to perform this statistical analysis. The chosen methods were:

The parametric t-test (tt), and two nonparametric tests: the Kolmogorov–Smirnov

test (kst), and the Mann–Whitney U test (mwt). The t-test was used to determine

if the means of two sets of data were statistically different from each other. The

110

nonparametric tests computed several test statistics to determine if two sets of data

are samples of the same distribution. All the statistics methods were implemented

in the stats sub-package of the SciPy library in Python (https://scipy.org), more

details about these methods in [TD00, CF14, SS16].

The main limitation of the statistical tests described above was that the com-

parison of the classification scores ignored the strong dependence of these scores on

the sub-samples. Hence, to rank the new features according to the corresponding

values of the classification scores for each sub-sample, we computed the percentage

difference, for each sub-sample, between the classification scores (CSnf) computed

with the new features and the baseline classification scores (CSbl), namely:

∆∆∆ = (CSnf −CSbl)/CSbl ∗ 100 (5.17)

The following positive and negative ranges for these differences were defined: 0 <

∆∆∆ ≤ 2.0(p1), 2.0 < ∆∆∆ ≤ 3.0(p2), 3.0 < ∆∆∆ ≤ 4.0(p3), 4.0 < ∆∆∆(p4), 0 > ∆∆∆ ≥

−2.0(n1), −2.0 > ∆∆∆ ≥ −3.0(n2), −3.0 > ∆∆∆ ≥ −4.0(n3), and −4.0 > ∆∆∆(n4). We

then binned the number of values falling in each range in positive and negative

bins. The values in these bins allowed us to rank the classification scores obtained

with the new features, with the maximum rank assigned to those with the greatest

number of values in the positive bins.

5.3 Results

We performed a comprehensive set of experiments to compute the classification

scores with the new features obtained with the models and methods described in

Sections 5.2.5, 5.2.6 and 5.2.7, using ASD-DiagNet as the machine learning classi-

fier. For these experiments, we used a total of nineteen new features, as well as the

111

fourteen baseline sub-samples given in Table 5.5, to obtain a total of 266 indepen-

dent experimental results. We compared these results using the statistical methods

described in Section 5.2.9. We also selected the sub-sample with which we obtained

the maximum value of the classification scores obtained with each feature. We also

presented the classification scores computed for the ten homogeneous sub-samples

given in Table 5.3. To compare the experimental results with a different machine

learning model, we computed classification scores with ASD-SAENet (see Section

5.2.3) using a selected set of the new features. Since, as far as we know, it is the first

time our proposed baseline and homogeneous sub-samples have been implemented

and used in this type of study, there are no similar published results to compare our

experimental results. A detailed analysis of all the computed results is given in the

following sections.

All the experiments presented in this work were performed on a Linux server

with Ubuntu operating system version 16.04.6, 22 Intel Xeon Gold 6152 processors,

a clock speed 2.1 GHz, and 125 GB of RAM. The GPU in this server was an NVIDIA

Titan Xp, with 30 SM, 128 cores/SM, maximum clock rate of 1.58 GHz, 12196 MB

of global memory, and CUDA version 11.4 with CUDA capability of 6.1.

5.3.1 Experimental results: Homogeneous sub-samples

Table 5.6 shows the values and standard deviations of the classification scores, com-

puted with ASD-DiagNet for each of the homogeneous sub-samples of the 17 ABIDE

sites given in Table 5.3. These values were computed using the values of functional

connectivity as features, and the cc200 as the brain atlas. Only the sub-samples

for which the accuracy was equal to or greater than 70 % are included. In general,

the accuracy and sensitivity scores obtained with these sub-samples were greater

112

than the baseline scores computed with the whole 17 ABIDE sites. The first two

Table 5.6: Values and standard deviations of the classification scores, computed
with ASD-DiagNet for each of the homogeneous sub-samples of the 17 ABIDE sites
given in Table 5.3 and described in Section 5.3.1. The baseline classification scores
computed for the whole 17 ABIDE sites are included for comparison. The number
of control (C), autistic (A), and total (T) subjects are included to compare the sizes
of the sub-samples.

Sub-sample C/A/T Accuracy Sensitivity Specificity

FIQ-89 24/92/106 85.9 ± 0.2 98.9 ± 0.1 34.2± 1.6
age-1020-FIQ-89 21/67/88 84.6 ± 0.3 99.6 ± 0.4 36.8 ± 2.7

age-1020-FIQ-89-bal 65/67/132 76.4 ± 0.7 82.3 ± 0.7 68.5 ± 0.8
FIQ-89-bal 58/92/150 76.0 ± 0.4 82.9 ± 0.3 65.1 ± 0.7
age-1520 115/110/225 72.0 ± 0.2 70.9 ± 0.5 73.1 ± 0.8
age-1020 324/313/637 71.9 ± 0.1 71.4 ± 0.4 72.4 ± 0.2

FIQ-89-110 238/215/453 70.3 ± 0.5 64.7 ± 0.8 75.4 ± 0.4

whole 17 sites 530/505/1035 70.2 ± 0.1 68.8 ± 0.6 71.6 ± 0.6

sub-samples of Table 5.6, which include subjects with 0 < FIQ ≤ 89 obtained

the maximum values of accuracy (85.9 %) and sensitivity (99.6 %), but they were

unbalanced in the number of autistic and control subjects, inducing overfitting of

the machine learning model and unbalanced sensitivity and specificity scores. We

performed experiments to correct these unbalances by increasing the number of

control subjects, randomly selected out of the FIQ-89 and age-10-20-FIQ-89

sub-samples. The classification scores computed with 34 and 44 additional control

subjects in the sub-samples FIQ-89-bal, age-10-20-FIQ-89-bal sub-samples in

Table 5.6, respectively, showed how these classification scores were lower but more

balanced than those obtained with the original sub-samples. These sub-samples

also obtained the maximum values of accuracy (76.4 %, 8.8 % above the baseline

accuracy) and sensitivity (82.9 %, 20.5 % above the baseline sensitivity) among all

the classification scores presented in this study.

113

5.3.2 Statistical comparison of experimental results com-

puted with the new features

Table 5.7 shows the P-values obtained from statistical tests and the Wasserstein

distance (wa-d) to compare the baseline classification scores, with those scores

computed with the new features as defined in Section 5.2.9. Only the new features

for which at least two P-values were less than 0.05 were included.

To rank the new features accordingly to the corresponding values of the classifi-

cation scores for each sub-sample (see Section 5.2.9), the total values in the positive

and negative bins obtained for the accuracy, sensitivity, and specificity scores, com-

puted for each new feature, are summarized in Figure 5.3, which provides an efficient

visualization of the rank of the classification scores obtained with the new features

relative to the baseline classification scores.

Figure 5.3: Summary of total counts of the number of values in the positive and
negative bins in the ranges defined in Section 5.2.9, corresponding to the classifica-
tion scores computed with ASD-DiagNet with the new features.

114

5.3.3 Experimental results: New features

We implemented a total of nineteen new features, ten of them using the multiple

linear regression models defined in Section 5.2.5 and six using the ComBat harmo-

nization models described in Section 5.2.6 (See Table 5.2). We also implemented

three new features with the normalization methods described in Section 5.2.7. These

new features were used to perform experiments to compute the classification scores

with ASD-DiagNet for each of the baseline sub-samples described in Section 5.2.8,

for which the baseline classification scores, obtained from the functional connectivity

values, are given in Table 5.5. Table 5.8 summarizes the maximum values of these

classification scores obtained with each new feature and with the corresponding

baseline sub-sample.

Experimental results: Multiple linear regression models

The classification scores computed with the new features obtained with the multiple

linear regression models (Section 5.2.5) on which each one of the individual inde-

pendent variables age, FIQ, gender or MRI vendor were regressed out to obtain the

new MLR features of Table 5.2, are given in Figures 5.4 and 5.5, on which they are

compared to the baseline classification scores given in Table 5.5.

Three of the maximum accuracy scores and four of the maximum sensitivity

scores (see Table 5.8) were obtained with the new features computed with the mul-

tiple linear regression models. Seven of these features were among the first eight

features with the maximum counts in the positive bins for sensitivity (see Figure

5.3).

115

Table 5.7: P-values obtained from statistical tests and the Wasserstein distance
(wa-d) defined in Section 5.2.9. All the classification scores were computed with
ASD-DiagNet for the sub-samples of Table 5.5. Only the features for which at least
two P-values were less than 0.05 were included.

Feature Score kst tt mwt Wa-d

∆mlrAmlrAmlrA Accuracy 0.92 0.78 0.73 0.002
Sensitivity 0.15 0.14 0.18 0.014
Specificity 0.15 0.04 0.04 0.018

∆mlrAmlrAmlrAFZ Accuracy 0.34 0.07 0.12 0.003
Sensitivity 0.15 0.06 0.05 0.017
Specificity 0.15 0.03 0.03 0.019

∆mlrFmlrFmlrF Accuracy 10−7 10−10 10−5 0.041
Sensitivity 0.06 0.02 0.01 0.02
Specificity 10−6 10−8 10−5 0.061

∆mlrFmlrFmlrFFZ Accuracy 10−7 10−10 10−5 0.045
Sensitivity 0.02 0.01 0.01 0.024
Specificity 10−6 10−9 10−5 0.066

∆mlrGmlrGmlrG Accuracy 0.15 0.05 0.1 0.011
Sensitivity 0.06 0.91 0.54 0.014
Specificity 0.001 0.001 0.001 0.024

∆mlrGmlrGmlrGFZ Accuracy 0.34 0.14 0.21 0.007
Sensitivity 0.92 0.53 0.45 0.006
Specificity 0.06 0.01 0.01 0.02

∆mlrMmlrMmlrM Accuracy 0.34 0.04 0.06 0.009
Sensitivity 0.64 0.28 0.26 0.012
Specificity 0.001 0.002 0.0004 0.029

∆mlrMmlrMmlrMFZ Accuracy 0.34 0.04 0.06 0.009
Sensitivity 0.34 0.37 0.37 0.009
Specificity 0.001 0.003 0.001 0.027

∆mlrAGMmlrAGMmlrAGM Accuracy 0.15 0.24 0.16 0.006
Sensitivity 0.64 0.33 0.26 0.011
Specificity 0.005 0.005 0.002 0.019

∆mlrAGMmlrAGMmlrAGMFZ Accuracy 0.15 0.24 0.18 0.007
Sensitivity 0.64 0.3 0.28 0.01
Specificity 0.02 0.01 0.002 0.021

cbAcbAcbA Accuracy 0.15 0.01 0.02 0.013
Sensitivity 0.34 0.07 0.09 0.016
Specificity 0.34 0.18 0.19 0.01

cbAcbAcbAFZ Accuracy 0.06 0.02 0.02 0.011
Sensitivity 0.34 0.05 0.14 0.015
Specificity 0.64 0.45 0.40 0.007

∆avgavgavg Accuracy 0.34 0.11 0.14 0.008
Sensitivity 0.34 0.43 0.30 0.01
Specificity 0.005 0.003 0.001 0.023

116

Table 5.8: The maximum values of the classification scores (accuracy (Ac), sensitiv-
ity (Se) and specificity (Sp)) computed with ASD-DiagNet using the new features
obtained with the MLR models, ComBat models, and normalization methods, and
the corresponding baseline sub-samples (SS) (see Table 5.5). The percentage differ-
ence between the results obtained with the new features and the baseline classifica-
tion scores obtained for the whole 17 sites are included. The five greatest values for
each classification score are highlighted in bold.

Feature Ac(SS) % Se(SS) % Sp(SS) %

∆mlrAGMmlrAGMmlrAGM 74.3± 0.2(7) 5.8 75.2 ± 0.3(7) 9.3 73.5 ± 0.3(7) 2.7
∆mlrAGMmlrAGMmlrAGMFZ 74.2 ± 0.7(8) 5.7 76.4 ± 0.5(4) 11.1 72.7 ± 0.7(8) 1.5
∆mlrAmlrAmlrAFZ 74.1 ± 0.3(10) 5.6 78.1 ± 0.5(4) 13.5 73.8 ± 0.2(10) 3.1
cbAFGcbAFGcbAFGFZ 74.1 ± 0.1(10) 5.6 74.4± 0.5(4) 8.1 76.7 ± 0.4(12) 7.1
∆avgSiteavgSiteavgSite 73.8 ± 0.2(10) 5.1 77.1 ± 0.6(4) 12.1 77.0 ± 0.2(10) 7.5
∆mlrAmlrAmlrA 73.6 ± 0.2(8) 4.8 77.1 ± 1.0(4) 12.1 73.4 ± 0.2(10) 2.5
∆avgavgavg 73.5 ± 0.3(9) 4.8 77.4 ± 0.2(4) 12.5 73.4 ± 0.4(9) 2.5

∆mlrGmlrGmlrGFZ 73.1 ± 0.2(10) 4.1 78.1 ± 0.5(4) 13.5 73.4 ± 0.6(12) 2.5
cbFcbFcbF 73.0 ± 0.2(10) 4.0 75.3 ± 0.6(4) 9.4 76.0 ± 0.8(13) 6.1

∆avgSubjavgSubjavgSubj 72.8 ± 0.1(9) 3.7 74.2 ± 0.4(4) 7.8 74.4 ± 1.2(14) 3.9
∆mlrGmlrGmlrG 72.7 ± 0.2(9) 3.6 78.6 ± 1.2(4) 14.2 72.8 ± 0.3(13) 1.7
∆mlrMmlrMmlrM 72.7 ± 0.1(8) 3.6 78.0 ± 0.4(4) 13.4 72.7± 0.4(11) 1.6

∆mlrMmlrMmlrMFZ 72.7 ± 0.1(9) 3.6 76.5 ± 0.7(4) 11.2 72.9 ± 0.4(13) 1.8
cbAFGcbAFGcbAFG 72.7 ± 0.1(10) 3.6 75.6 ± 0.5(4) 9.9 75.0 ± 0.1(15) 4.8
cbAcbAcbAFZ 72.7 ± 0.1(10) 3.6 71.9 ± 0.6(4) 4.5 74.2± 0.2(10) 3.6
cbFcbFcbFFZ 72.6 ± 0.1(10) 3.4 76.7 ± 0.6(4) 11.5 75.6 ± 0.5(14) 5.6
cbAcbAcbA 72.5 ± 0.5(10) 3.3 74.1 ± 1.1(4) 7.7 74.8 ± 0.5(13) 4.5

∆mlrFmlrFmlrF 70.0 ± 0.4(10) -0.3 73.8 ± 1.3(4) 7.3 69.9± 0.6(13) -2.4
∆mlrFmlrFmlrFFZ 69.6 ± 0.3(10) -0.9 73.5 ± 1.4(4) 6.8 69.5 ± 0.2(13) -2.9

FC(whole)FC(whole)FC(whole) 70.2 68.8 71.6

Our experiments also showed that the specificity scores computed with the new

features obtained with the multiple linear regression models, were below the baseline

specificity scores for almost all the sub-samples, except sub-sample 7, as shown in

Figures 5.4 and 5.5. More details about the results obtained with these features

follow.

The first main result obtained with the multiple linear regression models was that

all the classification scores computed with the new features ∆mlrFmlrFmlrF and ∆mlrFmlrFmlrF FZ

obtained when the FIQ variables were regressed out (see Table 5.2), were smaller

117

Figure 5.4: Classification scores computed with ASD-DiagNet, using selected new
features obtained from the multiple linear regression models with individual indepen-
dent variables described in Section 5.2.5, compared with the baseline classification
scores (FC) given in Table 5.5. The baseline values for the whole 17 sites are indi-
cated by the dashed line, while the maximum values are indicated by the continuous
line.

than the baseline classification scores shown in Figure 5.4. This result was also

confirmed by the p-values given in Table 5.7, and the counts in the negative bins

summarized in Figure 5.3, obtained by the classification scores computed with these

features.

The second main result was the quantification of the confounding effects of the

variables age, gender, or MRI vendor. The results of the experiments showed that

the new features on which age was regressed out, ∆mlrAmlrAmlrA and ∆mlrAmlrAmlrAFZ , were among

the first six features with the maximum accuracy values given in Table 5.8. These

features were also among the first six features and the first two features with the

maximum counts in the positive bins for accuracy and sensitivity given in Figure

5.3, respectively. Figure 5.4 shows that the accuracy scores computed with the

feature ∆mlrAmlrAmlrAFZ were greater than six of the baseline accuracy scores and that

the sensitivity scores computed with this feature were greater than all the baseline

sensitivity scores, with a maximum value of sensitivity, computed for the sub-sample

4, of 78.1 %, 13.5 % above the baseline value for the whole 17 sites (see Table 5.8).

118

The results of the experiments also showed that the new feature on which the

gender variable was regressed out, ∆mlrGmlrGmlrGFZ , was among the first eight features with

the maximum accuracy values given in Table 5.8. This feature was also among the

first seven features with the maximum counts in the positive bins for the sensitivity

score given in Figure 5.3. Figure 5.4 shows that the sensitivity scores computed

with this feature were greater than ten of the baseline sensitivity scores. Another

important result was that the sensitivity score computed with the feature ∆mlrGmlrGmlrG

obtained a maximum value among all the sensitivity scores obtained with the new

features, computed for the sub-sample 4, of 78.6 %, 14.2 % above the baseline value

for the whole 17 sites (see Table 5.8).

Table 5.8 shows that the sensitivity score computed with the new feature on

which the MRI vendor variable was regressed out, ∆mlrMmlrMmlrM , was among the first

three maximum sensitivity values given in the table. This feature was also among

the first seven features with the maximum counts in the positive bins for sensitivity

given in Figure 5.3. Figure 5.4 shows that the sensitivity scores computed with this

feature were greater than eleven of the baseline sensitivity scores, with a maximum

sensitivity score for the sub-sample 4, of 78.0 %, 13.4 % above the baseline value for

the whole 17 sites (see Table 5.8).

Additional and important results were computed with the new features ∆mlrAGMmlrAGMmlrAGM

and ∆mlrAGMmlrAGMmlrAGMFZ which were obtained with the multiple linear regression models

with age, gender and MRI vendor as independent variables. The accuracy scores

computed with these features were the maximum values of accuracy among all the

features (see Table 5.8), with a maximum value of 74.3 % (5.8 % above the baseline

value) for the sub-sample with 7 sites. Figure 5.5 shows that the sensitivity scores

computed with these features were greater than eleven of the baseline sensitivity

scores, with a maximum value of 76.4 % (11.1 % above the baseline value) shown in

119

Table 5.8. In general, all the results obtained with the new features computed with

the multiple linear regression models were confirmed by the P-values given in Table

5.7.

Classification scores computed with ASD-SAENet: Figure 5.6 gives an ex-

ample of the classification scores computed with ASD-SAENet using selected new

features. The comparison of these results with those obtained with ASD-DiagNet

using the same features (see Figure 5.5), showed that the classification scores ob-

tained in these experiments were strongly dependent on the machine learning model

used for these computations.

Figure 5.5: Classification scores computed with ASD-DiagNet using selected new
features obtained from the multiple linear regression models described in Section
5.2.5, compared with the baseline classification scores given in Table 5.5. The base-
line values for the whole 17 sites are indicated by the dashed line, while the maximum
values are indicated by the continuous line.

Experimental results: ComBat harmonization models

The classification scores computed with the new features obtained with the ComBat

harmonization models (Section 5.2.6) given in Table 5.2, are shown in Figure 5.7

on which they are compared to the baselines classification scores given in Table 5.5.

One of the maximum accuracy scores and four of the maximum specificity scores

(see Table 5.8) were obtained with the new features computed with the ComBat

120

Figure 5.6: Classification scores computed using selected new features obtained from
the multiple linear regression models described in Section 5.2.5, compared with the
baseline classification scores computed with the functional connectivity values and
the sub-samples given in Table 5.5. All the classification scores were computed with
the ASD-SAENet machine learning model (see Section 5.2.3). The baseline values
for the whole 17 sites are indicated by the dashed line, while the maximum values
are indicated by the continuous line.

models. Two of these features were also among the first three features and four of

them were among the first five features with the maximum counts in the positive

bins for accuracy and specificity (see Figure 5.3), respectively. More details about

the results obtained with these features follow. The new feature cbAFGcbAFGcbAFGFZ obtained

Figure 5.7: Classification scores computed with ASD-DiagNet using selected new
features obtained from the ComBat harmonization models described in Section 5.2.6,
compared with the baseline classification scores (FC) given in Table 5.5. The base-
line values for the whole 17 sites are indicated by the dashed line, while the maximum
values are indicated by the continuous line.

with the ComBat models (see Table 5.2) on which the variability introduced by the

phenotypic variables age, FIQ, and gender was conserved, was among the first four

features with maximum accuracy and maximum specificity values given in Table 5.8.

121

Figure 5.7 shows that the accuracy scores computed with this feature were greater

than the baseline accuracy scores computed with sub-samples 10 to 16, as well as

with the whole 17 sites. The specificity scores computed with this feature were

greater than ten of the baseline specificity scores, obtaining the second maximum

value of 76.7 % (7.1 % above the baseline value) shown in Table 5.8. This feature

also obtained the maximum value of the counts in the positive bins for accuracy and

the second maximum value for specificity given in Figure 5.3. The fifth maximum

value of the specificity score, 75.0 % (4.8 % above the baseline value) given in Table

5.8 was computed with the new feature cbAFGcbAFGcbAFG. This feature was also among the

first four features with the maximum values of the counts in the positive bins for

specificity given in Figure 5.3.

The new feature cbFcbFcbF obtained with the ComBat models (see Table 5.2) on which

the variability introduced by the FIQ variable was conserved, was among the first

four features with maximum specificity values given in Table 5.8. Figure 5.7 shows

that the specificity scores computed with this feature were greater than seven of

the baseline specificity scores, obtaining the third maximum value of 76.0 % (6.1 %

above the baseline value) shown in Table 5.8. The new feature cbFcbFcbF FZ obtained the

third maximum value of the counts in the positive bins for accuracy and specificity

given in Figure 5.3, obtaining the fourth maximum value of specificity, 75.6 % (5.1

% above the baseline value), given in Table 5.8.

An important result was that the classification scores computed using the new

features cbAcbAcbA and cbAcbAcbAFZ obtained with the ComBat harmonization models, on which

the variability introduced by the age variable was conserved, obtained the maximum

values of the counts in the negative bins given in Figure 5.3 among all the new

features obtained with the ComBat models. This result was also confirmed by the

P-values given in Table 5.7 for these features.

122

Experimental results: Normalization methods

Figure 5.8 shows the classification scores computed with ASD-DiagNet, using the

new features obtained from the normalization methods described in Section 5.2.7,

on which they are compared to the baseline classification scores given in Table 5.5.

The maximum value of specificity among all the features (see Table 5.8), of 77.0

% (7.5 % above the baseline value), was obtained with the new feature, ∆avgSiteavgSiteavgSite,

for the sub-sample with 10 sites, which also obtained the maximum counts in the

positive bins for specificity (see Figure 5.3). The specificity scores computed with

this feature were also greater than ten of the baseline specificity scores given in

Figure 5.8. This feature also obtained an accuracy score of 73.8 % (5.1 % above

the baseline value), which was among the first five maximum accuracy values given

in Table 5.8, and obtained the second maximum counts in the positive bins for

accuracy given in Figure 5.3. The experimental results also showed that the feature

Figure 5.8: Classification scores computed with ASD-DiagNet, using the new fea-
tures obtained from the normalization methods described in Section 5.2.7, compared
with the baseline classification scores (FC) given in Table 5.5. The baseline values
for the whole 17 sites are indicated by the dashed line, while the maximum values
are indicated by the continuous line.

∆avgavgavg was among the first five features with the maximum counts in the positive

bins for sensitivity given in Figure 5.3, with sensitivity scores greater than eight of

the baseline sensitivity scores, obtaining the fifth maximum value of 77.4 % (12.5

% above the baseline value) among the sensitivity values shown in Table 5.8. This

123

feature also obtained the maximum counts in the negative bins for the specificity

scores given in Figure 5.3, this result was confirmed by the p-values given in Table

5.7 for this feature.

The results for specificity scores also showed that the feature ∆avgSubjavgSubjavgSubj, was

among the first six features with the maximum counts in the positive bins for the

specificity scores, and among the first five features with the maximum counts in the

positive bins for accuracy given in Figure 5.3, respectively.

5.4 Summary

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive

imaging technique widely used in neuroscience to understand the functional connec-

tivity of the human brain. While rs-fMRI multi-site data can help to understand

the inner workings of the brain, the data acquisition and processing of this data

has many challenges. One of the challenges is the variability of the data associated

with different acquisitions sites, and different MRI machines vendors. Other fac-

tors such as population heterogeneity among different sites, with variables such as

age and gender of the subjects, must also be considered. Given that most of the

machine-learning models are developed using these rs-fMRI multi-site data sets, the

intrinsic confounding effects can adversely affect the generalizability and reliability

of these computational methods, as well as the imposition of upper limits on the

classification scores.

The goals of the study presented in this chapter were twofold i) the identification

of the phenotypic and imaging variables producing the confounding effects, and ii)

to control these confounding effects to maximize the classification scores obtained

from the machine learning analysis the rs-fMRI ABIDE multi-site data. To achieve

124

these goals, we proposed a comprehensive approach for controlling the confounding

effects on the machine learning analysis of rs-fMRI multi-site data. Our approach

consisted of a novel combination of stratification techniques to produce a suitable

set of homogeneous sub-samples, as well as the generation of new features for the

machine learning analysis through multiple linear regression models, ComBat har-

monization models, and normalization methods. The new features obtained with

the multiple linear regression models were designed to identify and quantify the ef-

fects of phenotypic and imaging variables on the confounding effects. Furthermore,

the new features obtained with the ComBat models and the normalization methods

were implemented to maximize the classification scores computed with the machine

learning analysis performed with our existing state of the art machine-learning mod-

els ASD-DiagNet and ASD-SAENet.

The main results obtained with our proposed models and methods were an ac-

curacy of 76.4 %, sensitivity of 82.9 %, and specificity of 77.0 %, which are 8.8 %,

20.5 %, and 7.5 % above the baseline classification scores obtained from the machine

learning analysis of the static functional connectivity computed from the ABIDE

rs-fMRI multi-site data. These experimental results demonstrated the effectiveness

of our proposed approach to quantify the confounding effects of the phenotypic and

imaging variables, as well as to maximize the classification scores that were obtained

with the proposed statistical models and methods. The codes to implement the algo-

rithms proposed in this chapter are available at https://github.com/pcdslab/ASD-

DiagNet-Confounds.

The main conclusion obtained from the comprehensive approach and results

presented in this chapter is that the control of the confounding effects, intrinsic

to rs-fMRI multisite data, over the machine learning analysis of this type of data,

is an essential step towards discovering the functions and structure of the human

125

brain, detecting brain disorders, and defining useful and effective biomarkers for the

diagnosis of these disorders. We hope that our approach will be used and improved

by the neuroscience research community to maximize the classification scores of the

machine learning analysis of rs-fMRI multi-site data.

Our future work will include the use of different sets of rs-fMRI multi-site data,

different preprocessing pipelines, as well as, the implementation of data-driven brain

parcellations derived from the fMRI data [AKM+18, Mes20] to define the nodes of

the functional networks [FEJ+20, FBS22]. We also propose to apply alternative

methods to the Pearson correlation to compute the functional connectivity matri-

ces such as mutual information and coherence methods [SMD04, WBQ+14, BS16].

Furthermore, we will explore the application of novel methods for the determina-

tion of optimal sub-samples to reduce the confounding effects by using, for example,

between-group effect size methods.

126

CHAPTER 6

ASSESSMENT OF TIME-VARYING FUNCTIONAL

CONNECTIVITY IN A MULTI-SITE RS-FMRI DATA

FRAMEWORK

In this chapter, we present a preliminary assessment of time-varying functional

connectivity in a multi-site rs-fMRI data framework.

6.1 Introduction

At the macroscopic scale, functional connectivity (FC) can be measured as the sta-

tistical correlations between rs-fMRI time series recorded at different brain regions

(see Section 5.2.1). Static functional connectivity (sFC) is computed by assuming

that functional connectivity is constant in time, i.e., computed within the entire

rs-fMRI scanning session, capturing instantaneous statistical relationships between

brain areas within a scanning session.

The assessment of sFC on multiple studies spanning the last two decades, has

increased our knowledge of the functional organization of the human brain, includ-

ing improvements in the classification of control subjects and subjects with brain

disorders [SCKH04, STK05, SR07, vdHSBP08, BB11, Spo12, EMF+19, AS21a].

Considering that the human brain is a complex non-linear dynamic system

[BT02], the assumption of static functional connectivity is an important limita-

tion to advancing our knowledge of the dynamic functional brain. Considering this

limitation, recent research has evolved to use the concept of time-varying functional

connectivity (tvFC), i.e., functional connectivity, measured as the statistical cor-

relations between the rs-fMRI time series recorded at different brain regions, that

vary as a function of time. tvFC can be computed within given segments of the

rs-fMRI scanning session, shorter than the entire scanning session, capturing in-

127

stantaneous statistical relationships between brain areas within each given segment

of the scanning session.

There is no consensus if the true non-linear dynamics of the functional brain can

be obtained from the tvFC computed from rs-fMRI time series [ZFC+14, ADP+14,

ADM+17, NVD+17, KEFK+17] , or if the variations in tvFC are due to confound

factors like head motion [LSM+17]. Despite this controversy, there are a growing

number of studies using tvFC to detect non-linear dynamics of the functional brain

[CG10, TVWM+12, HWG+13, ADP+14, HB18, MMO19], and also for improved

classification of control and diseased subjects with schizophrenia [SPK+10, RAD+16,

FIT+21, GCK+20], autism [FTD+19, ZXS+22, GSC+22], mild cognitive impairment

[ZZC+17], bipolarity [RAD+16, DZL+21], stroke [IAV+23], and Alzheimer’s disease

[JVM+12]. More details about the results and methods related to tvFC studies are

described in references [HWA+13, CMPA14, PBVDV17, LKB+20].

In this study, we used functional networks as defined in Section 5.2.2, with the

nodes representing brain regions, defined by the cc200 brain atlas. The rs-fMRI time

series were obtained from the sites of the ABIDE multi-site data shown in Table 6.1.

The rs-fMRI time series of each brain region were segmented using a sliding time

window technique [BK86, SPK+10, ADP+14, LVDV15], and then the time-varying

functional connectivity (tvFC) was obtained as a time-sequence of static functional

connectivity (sFC) values computed for each segment. The computed tvFC repre-

sented the time-varying weights of the edges of temporal functional networks. We

performed statistical tests to each tvFC representing each ABIDE subject, to deter-

mine if the time-variability of each tvFC represents the non-linear dynamics of the

functional brain. The test statistics for the null hypothesis used for the statistical

tests were obtained from surrogate data [TEL+92] generated from the rs-fMRI time

series of each node.

128

An important factor to consider in tvFC studies is that the sliding time window

represents a low-pass filter in the frequency domain, with a cutoff frequency inversely

proportional to the window width in seconds, hence the size of window width has

an important impact in these studies which should be carefully evaluated [LVDV15,

SLK16, ZB15].

Global signal regression is a procedure on which the global average time series of

all the voxels in the brain is removed through linear regression from the time series

of each individual voxel [MF17], and bandpass filtering, 0.01-0.1 Hz for the ABIDE

rs-fMRI data, to remove noise and scanner drift from the rs-fMRI signals usually

with frequencies below 0.01 Hz [BSB17, SMM+16], are two standard stages in the

preprocessing of ABIDE rs-fMRI data. Some studies have shown that the global

signal regression and the bandpass filtering of rs-fMRI data have an impact on the

non-linear dynamics of the functional brain network contained in the tvFC values

[MF17, LNF17, XSQ+18]. Small head movements during the scanning process of

the brain produce noise that can also impact the results of studies related to time-

varying functional connectivity [PSP15, CWP+17, PBVDV17].

Considering all the factors described above, we define as the goal of this pre-

liminary study, the assessment of the effects of the width in seconds of the time

windows, the bandpass filtering and global signal regression, and the head motion

over the non-linear dynamics of the functional brain network contained in the tvFC

values obtained from the rs-fMRI data for each subject of the ABIDE sites given in

Table 6.1.

129

6.2 Methods and materials

Table 6.1: International Imaging Sites from preprocessed ABIDE resting state
fMRI (http://preprocessed-connectomes-project.org/abide/) used in this chapter
[CBC+13].
Sites: California Institute of Technology (Caltech), Carnegie Mellon University (CMU), Kennedy Krieger Institute

(KKI), University of Leuven (Leuven), Ludwig Maximilian University (MaxMun), Oregon Health and Science Uni-

versity (OHSU), Institute of Living at Hartford Hospital (Olin), University of Pittsburgh School of Medicine (Pitt),

Social Brain Lab (SBL), San Diego State University (SDSU), Stanford University (Stanford), Trinity Center for

Health Sciences (Trinity), University California Los Angeles (UCLA),University of Michigan (UM), University of

Utah School of Medicine (USM), and Child Study Center, Yale University (Yale).

MRI vendors: General Electric (GE), Phillips(P), Siemens(S)

Site C ASD Subjects Avg age Avg FIQ M/F MRI
Caltech 18 19 37 27.7 ± 10.4 111.5 ± 11.5 29/8 S
KKI 27 12 39 9.9 ± 1.2 106.8 ± 14.9 29/10 P

Leuven 34 27 61 18.1 ± 5.0 112.2 ± 13.0 54/7 P
MaxMun 24 18 42 27.9 ± 11.2 112.5 ± 11.7 38/4 S
NYU 98 73 171 15.4 ± 6.6 110.3 ± 14.8 136/35 S
OHSU 11 12 23 10.9 ± 1.8 109.8 ± 17.8 23/0 S
Olin 11 14 25 17.1 ± 3.5 114.7 ± 16.7 20/5 S
Pitt 23 22 45 19.2± 6.9 111.4 ± 11.1 38/7 S
SBL 12 14 26 34.9 ± 8.7 109.2 ± 13.6 26/0 P
SDSU 21 12 33 14.6 ± 1.8 110.8 ± 13.3 27/6 GE

Stanford 19 17 36 10.0 ± 1.6 112.3 ± 15.8 28/8 GE
Trinity 23 21 44 17.3 ± 3.4 109.6 ± 13.9 44/0 P
UCLA 39 36 75 13.3 ± 2.2 104.5 ± 11.7 67/8 S
UM 65 48 113 14.5 ± 3.2 108.4 ± 13.4 88/25 GE
USM 23 38 61 23.7 ± 8.3 105.7 ± 18.3 61/0 S
Yale 26 22 48 12.9 ± 2.9 99.9 ± 21.2 34/14 S

TOTAL 474 405 879 742/137

6.2.1 ABIDE resting fMRI multi-site data

The preprocessed rs-fMRI multi-site data used in this study was obtained from the

16 international imaging sites listed in Table 6.1, publicly available in the ABIDE

database, with a total of 474 control and 405 autism subjects [CBC+13, DMYL+14,

DMOC+17]. The preprocessing pipeline chosen for this data was the Configurable

Pipeline for the Analysis of Connectomes (CPAC).

To assess the effects of the global signal regression (global) and bandpass filtering

(filt) stages of the preprocessing ABIDE pipelines over the non-linear dynamics of

130

the functional brain network represented by the tvFC values, we selected four sets of

data with the preprocessing strategies: filt-global, nofilt-global, filt-noglobal, nofilt-

noglobal. The preprocessing pipeline and the strategies are described in detail in the

ABIDE Preprocessed website (http://preprocessed-connectomes-project.org/abide).

6.2.2 Time-varying functional connectivity

To access the effect of the window width (seconds) and the corresponding cutoff

frequency of the low-pass filter over the non-linear dynamics of the functional brain

network contained in the tvFC values, we selected two groups of time windows. For

the first group we selected a constant number of time windows, and for the second

we selected constant time widow widths in seconds, both selections applicable to all

the ABIDE sites.

Considering that the number of brain volumes of the rs-fMRI data for each

ABIDE site is different, we selected for the first group, a constant number of 30-

and 60-time windows (nw) applicable to all the sites, with a step (s) of 1 volume

between consecutive windows. The widow width in volumes,w(v), was given by

w(v) = v − (nw − 1) ∗ s (6.1)

where v is the number of brain volumes of the rs-fMRI data. Table 6.2 shows the

widths of the time windows in volumes and in seconds, as well as the corresponding

cutoff frequencies, f = 1/w(s), which accounts for the low-pass filtering introduced

by the time windows and defined in reference [LVDV15, MAS+19]. In this Table,

TR is the scan repeat time, i.e., the amount of time needed to record a single brain

volume [BSB17, JMS+01], w(vol) is the width of the time window in volumes, and

w(s) = w(vol)*TR, the width of the time window in seconds.

131

Table 6.2: Widths of the time windows and cutoff frequency(f = 1/w(s)) for the
segmentation of the rs-fMRI time-series of the ABIDE sites given in Table 6.1, using
30 and 60 time windows. TR is the scan repeat time, w30(v), w60(v) are the width of
the time windows in volumes, and w(s) = w(v)*TR, the width of the time windows
in seconds.

Site v w30(v) w60(v) TR(s) w30(s) w60(s) f30(Hz) f60(Hz)

Caltech 146 117 87 2.0 234 174 0.0043 0.0057
KKI 152 123 93 2.5 308 233 0.0032 0.0043

Leuven 246 217 187 2.0 434 374 0.0023 0.0027
MaxMun 116 87 57 3.0 261 171 0.0038 0.0058
NYU 176 147 117 2.0 294 234 0.0034 0.0043
OHSU 78 49 19 2.5 123 48 0.0081 0.0208
Olin 206 177 147 1.5 266 221 0.0038 0.0045
Pitt 196 167 137 1.5 251 206 0.004 0.0049
SBL 196 167 137 2.2 367 301 0.0027 0.0033
SDSU 176 147 117 2.0 294 234 0.0034 0.0043

Stanford 176 147 117 2.0 294 234 0.0034 0.0043
Trinity 146 117 87 2.0 234 174 0.0043 0.0057
UCLA 116 87 57 3.0 261 171 0.0038 0.0058
UM 296 267 237 2.0 534 474 0.0019 0.0021
USM 236 207 177 2.0 414 354 0.0024 0.0028
Yale 196 167 137 2.0 334 274 0.003 0.0036

Table 6.3: Number of time-windows (nw50, nw100), and window width in volumes
(w50(v),w100(v)), for the segmentation of the rs-fMRI time-series of the ABIDE sites
given in Table 6.1, using window widths of 50 and 100 seconds, respectively.

Site v nw50 nw100 w50(v) w100(v)

Caltech 146 122 97 25 50
KKI 152 133 113 20 40

Leuven 246 222 197 25 50
MaxMun 116 100 84 17 33
NYU 176 152 127 25 50
OHSU 78 59 39 20 40
Olin 206 174 140 33 67
Pitt 196 164 130 33 67
SBL 196 174 152 23 45
SDSU 176 152 127 25 50

Stanford 176 152 127 25 50
Trinity 146 122 97 25 50
UCLA 116 100 84 17 33
UM 296 272 247 25 50
USM 236 212 183 25 50
Yale 196 172 147 25 50

132

For the second group of time windows, we selected window widths of 50 and

100 seconds, widths that have been applied in several studies [CG10, SPK+10,

HRGCB12, HWG+13, ADP+14, HAM+16, MAS+19]. Table 6.3 shows the num-

ber of time-windows (nw50, nw100), and window width in volumes (w50(v),w100(v)),

for the segmentation of the rs-fMRI time-series of the ABIDE sites given in Table

6.1, using window widths of 50 and 100 seconds, respectively.

Figure 6.1 compares the cutoff frequencies for the low-pass filtering corresponding

to the constant number of time windows selected in the first group, and constant

width of the time windows in seconds selected in the second group of time windows.

Figure 6.1: Comparison of cutoff frequencies, f = 1/w(s), for the low-pass filtering
corresponding to the constant number of time windows, and constant width of the
time windows in seconds.

133

After segmenting the rs-fMRI time series of each node (brain region) of the

cc200 brain atlas, we computed the static functional connectivity (sFC) for each

segment, as the linear correlation between the time series for all pairs of brain

regions, using the Pearson correlation function described in Section 5.2.2. The

time-varying functional connectivity (tvFC) was obtained as the time-sequence of

the sFC values computed for each segment. The tvFC represented the time-varying

weights of the edges of temporal functional networks.

6.2.3 Statistical analysis of the time-varying functional con-

nectivity

In this study, the time-varying functional connectivity computed from rs-fMRI data

was considered a sample of tvFC of an unknown population. The claim to be

proved is that the variability of the sample tvFC represents non-linear dynamics

of the functional connectivity (DFC) of the brain of this population. The classical

hypothesis testing formulation of this problem is

H0 : No DFC

H1 : DFC (6.2)

where H0 is the null hypothesis assumed to be true, and H1 the alternative hypoth-

esis, representing the claim to be proved [TD00].

Since the null hypothesis H0 was the claim that the variability of tvFC is due to

measurement noise, we needed to obtain the test statistics of the null distribution

to verify whether the test statistics of the tvFC, obtained from the rs-fMRI time

series, are inside or outside the test statistics of the null distribution. Since the

amount of the ABIDE rs-fMRI data is very limited to compute the test statistics

134

of the null distribution, a solution is to generate this distribution from surrogate

data [TEL+92]. The surrogate data approach computes the test statistics of the

null distribution from a set of constructed (surrogates) data that match the linear

properties of the original rs-fMRI time series, but do not possess the nonlinear

dynamics which is being tested. In this study, each surrogate was a random copy of

the original rs-fMRI time series, on which the static functional connectivity and the

frequency spectrum of the rs-fMRI time series were conserved, but any non-linear

properties were not conserved. A technique based on the Fourier transform (FT)

was applied to generate the required surrogate data [TEL+92].

Figure 6.2: Workflow to compute the percentile of the pooled variance of tvFC
(pvartvFC) in the distribution of the pooled variance (pvarcorr−surr).

135

In this study, we used the pooled variance (pvar) over all windows as test statis-

tics. The pooled variance is computed as the average of all the variances of the tvFC

components over all windows, namely

pvar =
i=nw∑
i=1

vari
nw

(6.3)

where nw is the number of time-windows.

Considering the test statistics given by Equation 6.3, we reformulate the hy-

potheses of Equation 6.2 for each subject as the following one-sided test

H0 : pvartvFC = pvarcorr−surr

H1 : pvartvFC > pvarcorr−surr (6.4)

where pvartvFC is the pooled variance of tvFC, and pvarcorr−surr is the pooled vari-

ance of the linear correlation between brain areas computed from the surrogate

data.

To test the null hypothesis H0 in Equation 6.4, we computed the percentile of the

pooled variance pvartvFC in the distribution of the pooled variance of the surrogate

data, pvarcorr−surr. If the percentile of pvartvFC is, for example, 95 %, then H0 is

rejected with an observed level of significance or P-value of 0.05.

The workflow given in Figure 6.2 shows the steps needed to compute the per-

centile of the pooled variance of tvFC (pvartvFC) in the distribution of the pooled

variance (pvarcorr−surr), for each ABIDE subject of the sites given in Table 6.1.

The first five steps of the workflow, show the computation of the copies of sur-

rogate time series which were random, due to the multiplication of the Fourier

transform of the rs-fMRI time series by random phases, but conserving the linear

correlation between brain areas, and the frequency spectrum of the rs-fMRI time

series. In the sixth step, we segmented the surrogate data of each node of the cc200

136

brain atlas, with the time windows given in Table 6.2, and computed the linear

correlation between the time series for all pairs of brain regions, for each segment,

using the Pearson correlation function described in Section 5.2.2. In the next steps,

we computed the pooled variance over all windows (Equation 6.3), the correlation

value of each copy of the surrogate data (corr-surr), and the percentiles of this

pooled variance using the percentages ([90,95,96,97,98,99,100]), which correspond

to P-values of [0.1,0.05,0.04,0.03,0.02,0.01,0.0], respectively.

From the rs-fMRI time series for each ABIDE subject, shown in Figure 6.2, we

also computed the pooled variance over all windows (Equation 6.3) of the tvFC

obtained from the rs-fMRI time series. Finally, we computed the percentile of

the pooled variance of tvFC (pvartvFC) in the distribution of the pooled variance

(pvarcorr−surr), by comparing the pvartvFC values with the percentile of pvarcorr−surr,

if a pvartvFC value was, for example, equal or greater than the percentile 95 and less

than the percentile 94 of pvarcorr−surr, then the percentile of the pvartvFC value was

equal to 95, and therefore, H0 was rejected with a P-value of 0.05. As experimental

result, we selected the minimum P-value for the percentile of each pvartvFC value of

each subject.

6.2.4 Assessment of the effect of head motion over the vari-

ability of tvFC

One of the measures of subject head motion used in the quality assessment (QA)

of the preprocessed ABIDE rs-fMRI data is the mean framewise displacement (FD)

which compares the motion between the current and previous volumes of the scan-

ning session [PSP15]. There are two other measures derived from the FD measure:

The number of FD greater than 0.2 mm, i.e., the number of volumes with displace-

137

ment greater than 2 mm, and the percentage of FD greater than 0.2 mm, i.e., the

percentage of volumes with displacement greater than 2 mm. A detailed description

of these measures is given on the ABIDE website: http://preprocessed-connectomes-

project.org/abide/quality-assessment.html.

In this study, we used the percentage of FD greater than 0.2 mm, as a metric

to assess the effect of head motion over the non-linear dynamics of the functional

brain network contained in the tvFC values. We created a histogram by counting

the number of subjects for which the null hypothesis was rejected, and which have

a head motion less than a given range of values of percentages of FD.

6.3 Results

In this study, we performed experiments to assess the impact of the time-window

width, the filtering and global signal regression, and the head motion over the non-

linear dynamics of the functional brain network contained in the tvFC values ob-

tained from the rs-fMRI data for each subject of the ABIDE sites given in Table 6.1.

For these experiments, we generated 250 copies of the surrogate data and computed

the percentile of the pooled variance of tvFC (pvartvFC) in the distribution of the

pooled variances (pvarcorr−surr) of all the surrogate copies, using the steps shown

in Figure 6.2. We computed the pooled variance over all time windows (Equation

6.3), the correlation value of each copy of the surrogate data (corr-surr), and the

percentiles of this pooled variance using the percentages ([90,95,96,97,98,99,100]),

which correspond to P-values of [0.1,0.05,0.04,0.03,0.02,0.01,0.0], respectively.

These experimental results were obtained for all the 879 ABIDE subjects sum-

marized in Table 6.1, using the strategies for the ABIDE pipelines described in

Section 6.2.1.

138

6.3.1 Experimental results

This section presents the experimental results obtained using: 1) a constant number

of time windows, 2) time windows with constant width, and 3) the percentage of

FD greater than 0.2 mm to assess the effect of head motion.

Constant number of time windows: Experimental results

This section presents the experimental results obtained using 30 and 60-time win-

dows for all ABIDE subjects, as described in Section 6.2.2.

Figure 6.3: Comparison between the number of subjects for which H0 was rejected
with P-values equal to or less than 0.1, obtained for 30 time windows, and for the
four strategies of the CPAC ABIDE pipeline given in Section 6.2.1.

139

Figure 6.4: Comparison between the number of subjects for which H0 was rejected
with P-values equal to or less than 0.1, obtained for 60-time windows, and for the
four strategies of the CPAC ABIDE pipeline given in Section 6.2.1.

Figures 6.3 and 6.4 present a comparison between the number of subjects for

which H0 was rejected with P-values equal or less than 0.1, obtained for 30 and 60-

time windows respectively, and for the four strategies of the CPAC ABIDE pipeline

given in Section 6.2.1. These results showed that the two greatest number of subjects

for which the null hypothesis H0 was rejected, were obtained for the no-filtering

strategies (nofilt-global and nofilt-noglobal) of the CPAC pipeline, respectively. We

also showed that due to the greater cutoff frequencies corresponding to 60-time

windows compared to the frequencies obtained for 30-time windows (see Figure

6.1), the maximum number of subjects rejecting H0 was 209 subjects for 60-time

windows (24 % of all ABIDE subjects in Table 6.1), 69 % greater than the 124

140

subjects obtained for 30-time windows. These maximum results were obtained for

the nofilt-global strategy. These results also allowed us to that for these maximum

numbers, the null hypothesis H0, i.e., the claim that the variability of tvFC is due

to measurement noise, was rejected with a P-value of 0.1, and, therefore there is

sufficient evidence, at a P-value of 0.1, to support the claim that the variability of

tvFC represents non-linear dynamics of the functional connectivity (DFC) of the

brain.

Figure 6.5: Comparison between the percentage of subjects for which H0 was re-
jected per ABIDE site, for the four strategies of the CPAC ABIDE pipeline given
in Section 6.2.1, and for 30 and 60-time windows. The sites in red are those with
the maximum number of subjects for which H0 was rejected with P-values equal to
or less than 0.1.

Figure 6.5 presents a comparison between the percentage of subjects for which

H0 was rejected per ABIDE site, for the four strategies of the CPAC ABIDE pipeline

given in Section 6.2.1, and for 30 and 60-time windows. These results were highly

dependent on the site, with the sites in red (OHSU, Pitt, SBL, UM, and USM),

obtaining the maximum percentages of subjects for which H0 was rejected with P-

values equal to or less than 0.1. An important result was that the maximum cutoff

141

frequency of 0.0208 Hz (see Table 6.1) corresponded to the OHSU site that also

obtained the maximum percentage (39 %) of subjects for which H0 was rejected.

These results also showed that the maximum percentage of subjects rejecting H0

corresponded to the 60-time windows, due to the greater cutoff frequencies compared

to the corresponding frequencies of the 30-time windows case. We also confirmed

that the maximum results were obtained for the no-filtering strategies (nofilt-global

and nofilt-noglobal) of the CPAC pipeline and that these results were consistent for

all the P-values and all the sites, respectively.

Figure 6.6: Comparison between the number of subjects for which H0 was rejected
with P-values equal to or less than 0.1, obtained for time windows with a width
size of 50 seconds, and for the four strategies of the CPAC ABIDE pipeline given in
Section 6.2.1.

142

Time windows with constant width sizes: Experimental results

This section presents the experimental results obtained using time windows with

width sizes of 50 and 100 seconds for all ABIDE subjects, as described in Section

6.2.2.

Figure 6.7: Comparison between the number of subjects for which H0 was rejected
with P-values equal to or less than 0.1, obtained for time windows with a width size
of 100 seconds, and for the four strategies of the CPAC ABIDE pipeline given in
Section 6.2.1.

Figures 6.6 and 6.7 present a comparison between the number of subjects for

which H0 was rejected with P-values equal or less than 0.1, obtained for time win-

dows with width sizes of 50 and 100 seconds respectively, and for the four strategies

of the CPAC ABIDE pipeline given in Section 6.2.1. These results showed that

the two greatest number of subjects for which the null hypothesis H0 was rejected,

143

were obtained for the no-filtering strategies (nofilt-global and nofilt-noglobal) of the

CPAC pipeline, respectively. We also showed that due to the greater cutoff frequen-

cies corresponding to time windows with a width size of 50 seconds compared to the

frequencies obtained for a width size of 100 seconds (see Figure 6.1), the maximum

number of subjects rejecting H0 was 801 subjects for a width size of 50 seconds (91

% of all ABIDE subjects in Table 6.1), 35 % greater than the 594 subjects obtained

for a width size of 100 seconds. These maximum results were obtained for the nofilt-

global strategy. These results also allowed us to conclude that for these maximum

numbers, the null hypothesis H0, i.e., the claim that the variability of tvFC is due

to measurement noise, was rejected with a P-value of 0.1, and, therefore there is

sufficient evidence, at a P-value of 0.1, to support the claim that the variability of

tvFC represents non-linear dynamics of the functional connectivity (DFC) of the

brain.

Figure 6.8: Comparison between the percentage of subjects for which H0 was re-
jected per ABIDE site, for the four strategies of the CPAC ABIDE pipeline given
in Section 6.2.1, and for time windows with width sizes of 50 and 100 seconds. The
sites in red are those with the maximum number of subjects for which H0 was re-
jected with P-values equal to or less than 0.1.

144

Figure 6.8 presents a comparison between the percentage of subjects for which

H0 was rejected per ABIDE site, for the four strategies of the CPAC ABIDE pipeline

given in Section 6.2.1, and for time windows with width sizes of 50 and 100 seconds.

These results were highly dependent on the site, with the sites in red (KKI, Stanford,

UM, and USM), obtaining the maximum percentages of subjects for which H0 was

rejected with P-values equal to or less than 0.1. These results also showed that due

to the greater cutoff frequencies obtained for the width size of 50 seconds compared

to the corresponding frequencies of the width size of 100 seconds, the maximum

percentages of subjects rejecting H0 corresponded to the width size of 50 seconds.

Furthermore, we demonstrated that the maximum percentages were obtained for the

nofilt-global strategy of the CPAC pipeline and that these results were consistent

for all the P-values and all the sites, respectively.

Effect of head motion: Experimental results

This section presents the experimental results obtained to assess the effect of head

motion over the non-linear dynamics of the functional brain network contained in the

tvFC values using the percentages of the mean framewise displacement (FD) greater

than 0.2 mm for all the ABIDE subjects. We created a histogram by counting the

cumulative percentage of subjects for which the null hypothesis was rejected, and

which have a head motion less than a given range of values of percentages of FD. The

range of percentages of FD were [0.0, 3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0], on

which, for example, 0.0 corresponds to the cumulative percentage of subjects for

which the null hypothesis was rejected with percentages of FD less than 3.0 %, and

3.0 to the cumulative percentage of subjects with percentages of FD less than 6.0%,

and so forth.

145

Figure 6.9: Histogram showing the ranges of percentages of FD for the cumulative
percentage of subjects rejecting H0, for the nofilt-global strategy of the CPAC
pipeline, and for time windows with a constant width of 50 seconds.

Figure 6.9 shows the ranges of percentages of FD for the cumulative percentage of

subjects rejecting H0. The histogram was obtained for the nofilt-global strategy of

the CPAC pipeline and for time windows with a constant width of 50 seconds. This

histogram showed that for about 45 % of the subjects rejecting H0, the percentage

of FD greater than 0.2 mm was less than 3 %, and for 80 % of the subjects this

percentage was less than 12 %. These results allowed us to conclude that the effect

of the head motion over the non-linear dynamics of the functional brain network

contained in the tvFC values had an upper bound determined by the percentages

of FD greater than 0.2 mm. This upper bound, for example, was less than 12 %

for 80 % of the subjects rejecting H0, hence, for these subjects, a high percentage

146

of the variability of the tvFC values represented the non-linear dynamics of the

functional brain network, with the corresponding levels of significance determined

by the P-values given in Section 6.3.1.

6.4 Summary

Considering that the human brain is a complex non-linear dynamic system [BT02],

the assumption of static functional connectivity is an important limitation to ad-

vancing our knowledge of the dynamic functional brain. Considering this limitation,

recent research has evolved to use the concept of time-varying functional connec-

tivity (tvFC), i.e., functional connectivity, measured as the statistical correlations

between rs-fMRI time series recorded at different brain regions, that vary as a func-

tion of time.

In this study, we used functional networks with the nodes representing brain

regions. The rs-fMRI time series of each brain region was segmented using a slid-

ing time-window technique, then the time-varying functional connectivity (tvFC)

was obtained as a time-sequence of static functional connectivity (sFC) values com-

puted for each segment. We performed statistical tests on the tvFC for each ABIDE

subject, to determine if the time-variability of each tvFC represents non-linear dy-

namics of the functional brain. The test statistics for the null hypothesis used for

the statistical tests were obtained from surrogate data generated from the rs-fMRI

time series of each node.

The goal of this preliminary study was the assessment of the effects of the width

in seconds of the time windows, the bandpass filtering and global signal regression,

and the head motion over the non-linear dynamics of the functional brain network

contained in the tvFC values obtained from the ABIDE rs-fMRI data.

147

Our experimental results showed that the two greatest number of subjects for

which the null hypothesis H0 was rejected, were obtained for the no-filtering strate-

gies (nofilt-global and nofilt-noglobal) of the CPAC pipeline, respectively. We also

showed that due to the greater cutoff frequencies corresponding to time windows

with a width size of 50 seconds compared to the frequencies obtained for a width

size of 100 seconds, the maximum number of subjects rejecting H0 was 801 sub-

jects for a width size of 50 seconds (91 % of all ABIDE subjects in Table 6.1), 35

% greater than the 594 subjects obtained for a width size of 100 seconds. These

maximum results were obtained for the nofilt-global strategy of the CPAC pipeline.

Furthermore, these results also allowed us to conclude that for these maximum num-

bers, the null hypothesis H0, i.e., the claim that the variability of tvFC is due to

measurement noise, was rejected with a P-value of 0.1, and, therefore there is suffi-

cient evidence, at a P-value of 0.1, to support the claim that the variability of tvFC

represents non-linear dynamics of the functional connectivity (DFC) of the brain.

Finally, we concluded that the effect of the head motion over the non-linear dynam-

ics of the functional brain network contained in the tvFC values had an upper bound

determined by the percentages of FD greater than 0.2 mm. This upper bound, for

example, was less than 12 % for 80 % of the subjects rejecting H0, hence, for these

subjects, a high percentage of the variability of the tvFC values represented the

non-linear dynamics of the functional brain network, with the corresponding levels

of significance determined by the P-values.

Our future work will include the use of different sets of rs-fMRI multi-site data,

different preprocessing pipelines, as well as, the implementation of data-driven brain

parcellations derived from the fMRI data [AKM+18, Mes20]. We also propose to

apply alternative methods to the Pearson correlation to compute the functional

connectivity such as mutual information and coherence methods [SMD04, WBQ+14,

148

BS16], as well as additional methods for the definition of the nodes of the functional

networks [FEJ+20, FBS22], such as data-driven weighted brain parcellations, based

on independent component analysis (ICA), which has been used as an alternative to

a priory brain parcellations (such as cc200) in the analysis of functional connectivity

[BS04, Shl14, DF13, DFS+20]. Furthermore, we will explore the application of novel

methods for the determination of optimal sub-samples to reduce the confounding

effects by using, for example, between-group effect size methods.

149

CHAPTER 7

CURRENT AND FUTURE WORK

Modern neuroscience research is mainly focused on understanding the function and

structure of the complex dynamic of the human brain. The continuously increasing

availability of human brain imaging data, and the development of advanced com-

putational and mathematical techniques for the analysis of complex networks, have

propelled important research efforts to improve the analysis and modeling of this

data, to increase our understanding of the dynamics of the human brain [KSBB18].

However, this research approach is mainly descriptive and has limitations in explain-

ing the dynamics of the different spatial scales of the human brain [GB14, HB18].

To overcome this limitation, generative dynamic models of functional connectivity

have been proposed and developed by applying the mathematical models and the-

ories provided by modern dynamic system analysis [Bre04, BS05, Bre17, CKD17].

One of the main goals of these research efforts is to develop dynamic models of the

neuronal activity of the brain and understand how these models may provide expla-

nations of the non-linear variability of imaging data [HB18]. An ambitious goal of

current neuroscience research is to develop a comprehensive non-linear model that

will eventually provide the association between the dynamic physical brain and the

imaging data [Bre17].

A very active area of neuroscience research is related to brain network commu-

nication, strongly linked to the dynamics of the human brain. The main goal is to

understand the mechanisms through which the neuronal components at the different

spatial scales of the brain, communicate and exchange information to perform the

complex functions of the human brain, a comprehensive review of the challenges,

methods, and future developments of this area of research are given in reference

[SSZ23].

150

We propose as the future work of this dissertation to develop and implement

a comprehensive approach to determine to which extent the time-variability of the

time-varying functional connectivity, computed from rs-fMRI multi-site data, rep-

resents non-linear dynamics of the functional brain. We also propose to use the

time-varying functional connectivity as features of machine learning models for the

diagnosis of brain disorders.

Furthermore, we propose the development and implementation of high-performance

algorithms to compute the mathematical models needed to understand the dynamic

and communication networks of the human brain. This contribution may help to

provide the link between the dynamic physical brain and the imaging data, a promis-

ing and state-of-the-art area of research.

Another research project which naturally emerges from this dissertation, is the

implementation of a comprehensive library of high-performance algorithms for com-

puting graphs metrics applicable to the analysis of human brain networks, using

modern technologies like multiple GPUs.

151

BIBLIOGRAPHY

[AAMS23] Oswaldo Artiles, Zeina Al Masry, and Fahad Saeed. Confounding
effects on the performance of machine learning analysis of static func-
tional connectivity computed from rs-fmri multi-site data. Neuroin-
formatics, pages 1–18, 2023.

[ACD+20] Mohsen Aznaveh, Jinhao Chen, Timothy A Davis, Bálint Hegyi,
Scott P Kolodziej, Timothy G Mattson, and Gábor Szárnyas. Parallel
graphblas with openmp. In 2020 Proceedings of the SIAM Workshop
on Combinatorial Scientific Computing, pages 138–148. SIAM, 2020.

[ACG+09] Frederico AC Azevedo, Ludmila RB Carvalho, Lea T Grinberg,
José Marcelo Farfel, Renata EL Ferretti, Renata EP Leite, Wilson Ja-
cob Filho, Roberto Lent, and Suzana Herculano-Houzel. Equal num-
bers of neuronal and nonneuronal cells make the human brain an
isometrically scaled-up primate brain. Journal of Comparative Neu-
rology, 513(5):532–541, 2009.

[ADM+17] Anees Abrol, Eswar Damaraju, Robyn L Miller, Julia M Stephen,
Eric D Claus, Andrew RMayer, and Vince D Calhoun. Replicability of
time-varying connectivity patterns in large resting state fmri samples.
Neuroimage, 163:160–176, 2017.

[ADP+14] Elena A Allen, Eswar Damaraju, Sergey M Plis, Erik B Erhardt, Tom
Eichele, and Vince D Calhoun. Tracking whole-brain connectivity
dynamics in the resting state. Cerebral cortex, 24(3):663–676, 2014.

[AGHP89] AM Aertsen, GL Gerstein, MK Habib, and GwtcoPGK Palm. Dy-
namics of neuronal firing correlation: modulation of” effective con-
nectivity”. Journal of neurophysiology, 61(5):900–917, 1989.

[AKM+18] Salim Arslan, Sofia Ira Ktena, Antonios Makropoulos, Emma C.
Robinson, Daniel Rueckert, and Sarah Parisot. Human brain map-
ping: A systematic comparison of parcellation methods for the human
cerebral cortex. NeuroImage, 170:5–30, 2018. Segmenting the Brain.

[AMDM+17] Alexandre Abraham, Michael P Milham, Adriana Di Martino,
R Cameron Craddock, Dimitris Samaras, Bertrand Thirion, and Gael
Varoquaux. Deriving reproducible biomarkers from multi-site resting-
state data: An autism-based example. NeuroImage, 147:736–745,
2017.

152

[AMR+17] Hyeong Su An, Won-Jin Moon, Jae-Kyun Ryu, Ju Yeon Park,
Won Sung Yun, Jin Woo Choi, Geon-Ho Jahng, and Jang-Yeon Park.
Inter-vender and test-retest reliabilities of resting-state functional
magnetic resonance imaging: Implications for multi-center imaging
studies. Magnetic resonance imaging, 44:125–130, 2017.

[AS19] Oswaldo Artiles and Fahad Saeed. Gpu-sfft: A gpu based parallel
algorithm for computing the sparse fast fourier transform (sfft) of k-
sparse signals. In 2019 IEEE International Conference on Big Data
(Big Data), pages 3303–3311. IEEE, 2019.

[AS21a] Fahad Almuqhim and Fahad Saeed. Asd-saenet: A sparse autoen-
coder, and deep-neural network model for detecting autism spectrum
disorder (asd) using fmri data. Frontiers in Computational Neuro-
science, 15:27, 2021.

[AS21b] Oswaldo Artiles and Fahad Saeed. A multi-factorial assessment of
functional human autistic spectrum brain network analysis. In 2021
IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 3526–3531. IEEE, 2021.

[AS21c] Oswaldo Artiles and Fahad Saeed. Turbobc: A memory efficient and
scalable gpu based betweenness centrality algorithm in the language of
linear algebra. In 50th International Conference on Parallel Processing
Workshop, pages 1–10, 2021.

[AS21d] Oswaldo Artiles and Fahad Saeed. Turbobfs: Gpu based breadth-first
search (bfs) algorithms in the language of linear algebra. In 2021
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 520–528. IEEE, 2021.

[BAP12] Scott Beamer, Krste Asanovic, and David Patterson. Direction-
optimizing breadth-first search. In SC’12: Proceedings of the Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis, pages 1–10. IEEE, 2012.

[Bav48] Alex Bavelas. A mathematical model for group structures. Applied
Anthropology, 7(3):16–30, 1948.

[BB11] Edward T. Bullmore and Danielle S. Bassett. Brain graphs: Graphical
models of the human brain connectome. Annual Review of Clinical
Psychology, 7(1):113–140, 2011. PMID: 21128784.

153

[BBAP13] Scott Beamer, Aydin Buluc, Krste Asanovic, and David Patterson.
Distributed memory breadth-first search revisited: Enabling bottom-
up search. In 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, pages 1618–1627.
IEEE, 2013.

[BCVO+20] AmanPreet Badhwar, Yannik Collin-Verreault, Pierre Orban, Sebas-
tian Urchs, Isabelle Chouinard, Jacob Vogel, Olivier Potvin, Simon
Duchesne, and Pierre Bellec. Multivariate consistency of resting-state
fmri connectivity maps acquired on a single individual over 2.5 years,
13 sites and 3 vendors. NeuroImage, 205:116210, 2020.

[BFG+06] David A Bader, John Feo, John Gilbert, Jeremy Kepner, David
Koester, Eugene Loh, Kamesh Madduri, Bill Mann, and Theresa
Meuse. Hpcs scalable synthetic compact applications 2 graph analysis.
SSCA, 2:v2, 2006.

[BG08] Nathan Bell and Michael Garland. Efficient sparse matrix-vector mul-
tiplication in cuda. Technical Report NVR-2008-004, NVIDIA, 2008.

[BH12] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented
library for cuda. In GPU computing gems Jade edition, pages 359–
371. Elsevier, 2012.

[BK86] David S Broomhead and Gregory P King. Extracting qualitative dy-
namics from experimental data. Physica D: Nonlinear Phenomena,
20(2-3):217–236, 1986.

[BMM+17] Aydin Buluç, Tim Mattson, Scott McMillan, Jose Moreira, and Carl
Yang. Design of the graphblas api for c. In 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 643–652, New Orleans, Lousianna, 2017. IEEE
Press.

[BMP+13] Rasmus M Birn, Erin K Molloy, Rémi Patriat, Taurean Parker, Tim-
othy B Meier, Gregory R Kirk, Veena A Nair, M Elizabeth Meyerand,
and Vivek Prabhakaran. The effect of scan length on the reliability
of resting-state fmri connectivity estimates. Neuroimage, 83:550–558,
2013.

[BMS+11] Gregory G Brown, Daniel H Mathalon, Hal Stern, Judith Ford, Bryon
Mueller, Douglas N Greve, Gregory McCarthy, James Voyvodic, Gary

154

Glover, Michele Diaz, et al. Multisite reliability of cognitive bold data.
Neuroimage, 54(3):2163–2175, 2011.

[BMZ+10] Bharat B Biswal, Maarten Mennes, Xi-Nian Zuo, Suril Gohel, Clare
Kelly, Steve M Smith, Christian F Beckmann, Jonathan S Adelstein,
Randy L Buckner, Stan Colcombe, et al. Toward discovery science
of human brain function. Proceedings of the National Academy of
Sciences, 107(10):4734–4739, 2010.

[BPP+22] Oualid Benkarim, Casey Paquola, Bo-yong Park, Valeria Kebets,
Seok-Jun Hong, Reinder Vos de Wael, Shaoshi Zhang, BT Thomas
Yeo, Michael Eickenberg, Tian Ge, et al. Population heterogeneity in
clinical cohorts affects the predictive accuracy of brain imaging. PLoS
biology, 20(4):e3001627, 2022.

[BPS13] Bonnie Berger, Jian Peng, and Mona Singh. Computational solutions
for omics data. Nature Reviews Genetics, 14(5):333–346, 2013.

[Bra08] Ulrik Brandes. On variants of shortest-path betweenness centrality
and their generic computation. Social Networks, 30(2):136–145, 2008.

[Bre04] Michael Breakspear. “dynamic” connectivity in neural systems. Neu-
roinformatics, 2(2):205–224, 2004.

[Bre17] Michael Breakspear. Dynamic models of large-scale brain activity.
Nature neuroscience, 20(3):340–352, 2017.

[BS04] Christian F Beckmann and Stephen M Smith. Probabilistic indepen-
dent component analysis for functional magnetic resonance imaging.
IEEE transactions on medical imaging, 23(2):137–152, 2004.

[BS05] Michael Breakspear and Cornelis J Stam. Dynamics of a neural system
with a multiscale architecture. Philosophical Transactions of the Royal
Society B: Biological Sciences, 360(1457):1051–1074, 2005.

[BS09] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theo-
retical analysis of structural and functional systems. Nature reviews
neuroscience, 10(3):186–198, 2009.

[BS16] André M Bastos and Jan-Mathijs Schoffelen. A tutorial review of
functional connectivity analysis methods and their interpretational
pitfalls. Frontiers in systems neuroscience, 9:175, 2016.

155

[BS17] Danielle S Bassett and Olaf Sporns. Network neuroscience. Nature
Neuroscience, 20(3):353–364, 2017.

[BSB17] Janine Bijsterbosch, Stephen M Smith, and Christian F Beckmann.
An introduction to resting state fMRI functional connectivity. Oxford
University Press, 2017.

[BSV+07] Katy Börner, Soma Sanyal, Alessandro Vespignani, et al. Network
science. Annu. rev. inf. sci. technol., 41(1):537–607, 2007.

[BT02] M Breakspear and JR Terry. Nonlinear interdependence in neural
systems: motivation, theory, and relevance. International Journal of
Neuroscience, 112(10):1263–1284, 2002.

[BWB+09] Jason W Bohland, Caizhi Wu, Helen Barbas, Hemant Bokil, Mi-
hail Bota, Hans C Breiter, Hollis T Cline, John C Doyle, Peter J
Freed, Ralph J Greenspan, et al. A proposal for a coordinated effort
for the determination of brainwide neuroanatomical connectivity in
model organisms at a mesoscopic scale. PLoS computational biology,
5(3):e1000334, 2009.

[BZYHH95] Bharat Biswal, F Zerrin Yetkin, Victor M Haughton, and James S
Hyde. Functional connectivity in the motor cortex of resting hu-
man brain using echo-planar mri. Magnetic resonance in medicine,
34(4):537–541, 1995.

[CBC+13] Cameron Craddock, Yassine Benhajali, Carlton Chu, Francois
Chouinard, Alan Evans, András Jakab, Budhachandra Singh Khun-
drakpam, John David Lewis, Qingyang Li, Michael Milham, et al. The
neuro bureau preprocessing initiative: open sharing of preprocessed
neuroimaging data and derivatives. Frontiers in Neuroinformatics,
7:3, 2013.

[CF14] Gregory W Corder and Dale I Foreman. Nonparametric statistics: A
step-by-step approach. John Wiley and Sons, Hoboken, New Jersey.,
2014.

[CG10] Catie Chang and Gary H Glover. Time–frequency dynamics of resting-
state brain connectivity measured with fmri. Neuroimage, 50(1):81–
98, 2010.

156

[CJ99] Robert W Cox and Andrzej Jesmanowicz. Real-time 3d image reg-
istration for functional mri. Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance
in Medicine, 42(6):1014–1018, 1999.

[CJ15] Etienne Combrisson and Karim Jerbi. Exceeding chance level by
chance: The caveat of theoretical chance levels in brain signal clas-
sification and statistical assessment of decoding accuracy. Journal of
neuroscience methods, 250:126–136, 2015.

[CJHI+12] R Cameron Craddock, G Andrew James, Paul E Holtzheimer III,
Xiaoping P Hu, and Helen S Mayberg. A whole brain fmri atlas
generated via spatially constrained spectral clustering. Human brain
mapping, 33(8):1914–1928, 2012.

[CJY+13] R Cameron Craddock, Saad Jbabdi, Chao-Gan Yan, Joshua T Vogel-
stein, F Xavier Castellanos, Adriana Di Martino, Clare Kelly, Keith
Heberlein, Stan Colcombe, and Michael P Milham. Imaging human
connectomes at the macroscale. Nature methods, 10(6):524–539, 2013.

[CKD17] Joana Cabral, Morten L. Kringelbach, and Gustavo Deco. Func-
tional connectivity dynamically evolves on multiple time-scales over a
static structural connectome: Models and mechanisms. NeuroImage,
160:84–96, 2017. Functional Architecture of the Brain.

[CKJ+15] Colleen P Chen, Christopher L Keown, Afrooz Jahedi, Aarti Nair,
Mark E Pflieger, Barbara A Bailey, and Ralph-Axel Müller. Diag-
nostic classification of intrinsic functional connectivity highlights so-
matosensory, default mode, and visual regions in autism. NeuroImage:
Clinical, 8:238–245, 2015.

[CKM13] Colleen Pam Chen, Christopher Lee Keown, and Ralph-Axel Müller.
Towards understanding autism risk factors: a classification of brain
images with support vector machines. Int. J. Semantic Comput.,
7(2):205, 2013.

[CLC+14] Jiayu Chen, Jingyu Liu, Vince D Calhoun, Alejandro Arias-Vasquez,
Marcel P Zwiers, Cota Navin Gupta, Barbara Franke, and Jessica A
Turner. Exploration of scanning effects in multi-site structural mri
studies. Journal of neuroscience methods, 230:37–50, 2014.

157

[CLRS22] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clif-
ford Stein. Introduction to algorithms. MIT press, 2022.

[CLW67] James W Cooley, Peter AW Lewis, and Peter D Welch. Histori-
cal notes on the fast fourier transform. Proceedings of the IEEE,
55(10):1675–1677, 1967.

[CM14] John Cheng and Ty McKercher. Professional CUDA C programming.
John Wiley and Sons, Indianapolis, IN, 2014.

[CMPA14] Vince D Calhoun, Robyn Miller, Godfrey Pearlson, and Tulay Adalı.
The chronnectome: time-varying connectivity networks as the next
frontier in fmri data discovery. Neuron, 84(2):262–274, 2014.

[Coo10] Stephen Coombes. Large-scale neural dynamics: simple and complex.
NeuroImage, 52(3):731–739, 2010.

[cor21] NVIDIA corporation. Cuda c++ programming guide. Technical Re-
port PG-02829-001-v11.3, NVIDIA, April 2021.

[CSP+22] Andrew A Chen, Dhivya Srinivasan, Raymond Pomponio, Yong Fan,
Ilya M Nasrallah, Susan M Resnick, Lori L Beason-Held, Christos
Davatzikos, Theodore D Satterthwaite, Dani S Bassett, et al. Harmo-
nizing functional connectivity reduces scanner effects in community
detection. NeuroImage, 256:119198, 2022.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics of computation,
19(90):297–301, 1965.

[CVZ+18] Sofia Chavez, Joseph Viviano, Mojdeh Zamyadi, Peter B Kingsley,
Peter Kochunov, Stephen Strother, and Aristotle Voineskos. A novel
dti-qa tool: Automated metric extraction exploiting the sphericity of
an agar filled phantom. Magnetic resonance imaging, 46:28–39, 2018.

[CWP+17] Rastko Ciric, Daniel H Wolf, Jonathan D Power, David R Roalf,
Graham L Baum, Kosha Ruparel, Russell T Shinohara, Mark A El-
liott, Simon B Eickhoff, Christos Davatzikos, et al. Benchmarking
of participant-level confound regression strategies for the control of
motion artifact in studies of functional connectivity. Neuroimage,
154:174–187, 2017.

158

[DA05] Peter Dayan and Laurence F Abbott. Theoretical neuroscience: com-
putational and mathematical modeling of neural systems. MIT press,
2005.

[DBR+17] Christian Dansereau, Yassine Benhajali, Celine Risterucci,
Emilio Merlo Pich, Pierre Orban, Douglas Arnold, and Pierre
Bellec. Statistical power and prediction accuracy in multisite
resting-state fmri connectivity. Neuroimage, 149:220–232, 2017.

[DF13] Yuhui Du and Yong Fan. Group information guided ica for fmri data
analysis. NeuroImage, 69:157–197, 2013.

[DFS+20] Yuhui Du, Zening Fu, Jing Sui, Shuang Gao, Ying Xing, Dongdong
Lin, Mustafa Salman, Anees Abrol, Md Abdur Rahaman, Jiayu Chen,
et al. Neuromark: An automated and adaptive ica based pipeline to
identify reproducible fmri markers of brain disorders. NeuroImage:
Clinical, 28:102375, 2020.

[DH11] Timothy A Davis and Yifan Hu. The university of florida sparse
matrix collection. ACM Transactions on Mathematical Software
(TOMS), 38(1):1–25, 2011.

[DL42] Gordon Charles Danielson and Cornelius Lanczos. Some improve-
ments in practical fourier analysis and their application to x-ray scat-
tering from liquids. Journal of the Franklin Institute, 233(5):435–452,
1942.

[DMOC+17] Adriana Di Martino, David O’connor, Bosi Chen, Kaat Alaerts, Jef-
frey S Anderson, Michal Assaf, Joshua H Balsters, Leslie Baxter,
Anita Beggiato, Sylvie Bernaerts, et al. Enhancing studies of the
connectome in autism using the autism brain imaging data exchange
ii. Scientific data, 4(1):1–15, 2017.

[DMYL+14] Adriana Di Martino, Chao-Gan Yan, Qingyang Li, Erin Denio, Fran-
cisco X Castellanos, Kaat Alaerts, Jeffrey S Anderson, Michal As-
saf, Susan Y Bookheimer, Mirella Dapretto, et al. The autism brain
imaging data exchange: towards a large-scale evaluation of the intrin-
sic brain architecture in autism. Molecular psychiatry, 19(6):659–667,
2014.

159

[DS00] Jack Dongarra and Francis Sullivan. Guest editors introduction to the
top 10 algorithms. Computing in Science & Engineering, 2(01):22–23,
2000.

[DSMI11] Juergen Dukart, Matthias L Schroeter, Karsten Mueller, and
Alzheimer’s Disease Neuroimaging Initiative. Age correction in
dementia–matching to a healthy brain. PloS one, 6(7):e22193, 2011.

[DZL+21] Mengjiao Du, Li Zhang, Linling Li, Erni Ji, Xue Han, Gan Huang,
Zhen Liang, Li Shi, Haichen Yang, and Zhiguo Zhang. Abnormal tran-
sitions of dynamic functional connectivity states in bipolar disorder:
A whole-brain resting-state fmri study. Journal of affective disorders,
2021.

[EJCB12] Alan C Evans, Andrew L Janke, D Louis Collins, and Sylvain Baillet.
Brain templates and atlases. Neuroimage, 62(2):911–922, 2012.

[EMF+19] Taban Eslami, Vahid Mirjalili, Alvis Fong, Angela R. Laird, and Fa-
had Saeed. Asd-diagnet: A hybrid learning approach for detection of
autism spectrum disorder using fmri data. Frontiers in Neuroinfor-
matics, 13:70, 2019.

[ESM+05] Simon B Eickhoff, Klaas E Stephan, Hartmut Mohlberg, Christian
Grefkes, Gereon R Fink, Katrin Amunts, and Karl Zilles. A new
spm toolbox for combining probabilistic cytoarchitectonic maps and
functional imaging data. Neuroimage, 25(4):1325–1335, 2005.

[FBS22] Joshua Faskowitz, Richard F Betzel, and Olaf Sporns. Edges in brain
networks: Contributions to models of structure and function. Network
Neuroscience, 6(1):1–28, 2022.

[FCS+18] Jean-Philippe Fortin, Nicholas Cullen, Yvette I Sheline, Warren D
Taylor, Irem Aselcioglu, Philip A Cook, Phil Adams, Crystal Cooper,
Maurizio Fava, Patrick J McGrath, et al. Harmonization of corti-
cal thickness measurements across scanners and sites. Neuroimage,
167:104–120, 2018.

[FD10] Karl J Friston and Raymond J Dolan. Computational and dynamic
models in neuroimaging. Neuroimage, 52(3):752–765, 2010.

[FEJ+20] Joshua Faskowitz, Farnaz Zamani Esfahlani, Youngheun Jo, Olaf
Sporns, and Richard F. Betzel. Edge-centric functional network rep-

160

resentations of human cerebral cortex reveal overlapping system-level
architecture. Nature Neuroscience, 23(12):1644–1654, 2020.

[FFF93] KJ Friston, CD Frith, and RSJ Frackowiak. Time-dependent changes
in effective connectivity measured with pet. Human Brain Mapping,
1(1):69–79, 1993.

[FFLF93] Karl J Friston, Chris D Frith, Peter F Liddle, and Richard SJ Frack-
owiak. Functional connectivity: the principal-component analysis of
large (pet) data sets. Journal of Cerebral Blood Flow & Metabolism,
13(1):5–14, 1993.

[FGC+06] Lee Friedman, Gary H Glover, Fbirn Consortium, et al. Reducing
interscanner variability of activation in a multicenter fmri study: con-
trolling for signal-to-fluctuation-noise-ratio (sfnr) differences. Neu-
roimage, 33(2):471–481, 2006.

[Fis15] Ronald A Fisher. Frequency distribution of the values of the cor-
relation coefficient in samples from an indefinitely large population.
Biometrika, 10(4):507–521, 1915.

[FIT+21] Zening Fu, Armin Iraji, Jessica A Turner, Jing Sui, Robyn Miller,
Godfrey D Pearlson, and Vince D Calhoun. Dynamic state with
covarying brain activity-connectivity: On the pathophysiology of
schizophrenia. Neuroimage, 224:117385, 2021.

[FMG+14] Jennifer K Forsyth, Sarah C McEwen, Dylan G Gee, Carrie E Bear-
den, Jean Addington, Brad Goodyear, Kristin S Cadenhead, Heline
Mirzakhanian, Barbara A Cornblatt, Doreen M Olvet, et al. Reliabil-
ity of functional magnetic resonance imaging activation during work-
ing memory in a multi-site study: analysis from the north american
prodrome longitudinal study. Neuroimage, 97:41–52, 2014.

[FPT+17] Jean-Philippe Fortin, Drew Parker, Birkan Tunç, Takanori Watanabe,
Mark A Elliott, Kosha Ruparel, David R Roalf, Theodore D Satterth-
waite, Ruben C Gur, Raquel E Gur, et al. Harmonization of multi-site
diffusion tensor imaging data. Neuroimage, 161:149–170, 2017.

[Fre77] Linton C. Freeman. A set of measures of centrality based on between-
ness. Sociometry, 40(1):35–41, March 1977.

161

[Fri07] KJ Friston. Statistical parametric mapping: the analysis of funtional
brain images. EBSCO eBooks, 2007.

[Fri11] Karl J Friston. Functional and effective connectivity: a review. Brain
connectivity, 1(1):13–36, 2011.

[FSB+08] Lee Friedman, Hal Stern, Gregory G Brown, Daniel H Mathalon, Jes-
sica Turner, Gary H Glover, Randy L Gollub, John Lauriello, Kelvin O
Lim, Tyrone Cannon, et al. Test–retest and between-site reliability in
a multicenter fmri study. Human brain mapping, 29(8):958–972, 2008.

[FSF+15] Rogier A Feis, Stephen M Smith, Nicola Filippini, Gwenaëlle Douaud,
Elise GP Dopper, Verena Heise, Aaron J Trachtenberg, John C van
Swieten, Mark A van Buchem, Serge ARB Rombouts, et al. Ica-
based artifact removal diminishes scan site differences in multi-center
resting-state fmri. Frontiers in neuroscience, 9:395, 2015.

[FTD+19] Zening Fu, Yiheng Tu, Xin Di, Yuhui Du, Jing Sui, Bharat B Biswal,
Zhiguo Zhang, Nina de Lacy, and Vincent D Calhoun. Transient in-
creased thalamic-sensory connectivity and decreased whole-brain dy-
namism in autism. Neuroimage, 190:191–204, 2019.

[FZB15] Alex Fornito, Andrew Zalesky, and Michael Breakspear. The connec-
tomics of brain disorders. Nature Reviews Neuroscience, 16(3):159–
172, 2015.

[FZB16] Alex Fornito, Andrew Zalesky, and Edward Bullmore. Fundamentals
of brain network analysis. Academic Press, Cambridge, MA 02139,
USA, 2016.

[GB14] Leonardo L Gollo and Michael Breakspear. The frustrated brain:
from dynamics on motifs to communities and networks. Philo-
sophical Transactions of the Royal Society B: Biological Sciences,
369(1653):20130532, 2014.

[GCK+20] George Gifford, Nicolas Crossley, Matthew J Kempton, Sarah Mor-
gan, Paola Dazzan, Jonathan Young, and Philip McGuire. Resting
state fmri based multilayer network configuration in patients with
schizophrenia. NeuroImage: Clinical, 25:102169, 2020.

[GDM+17] Xinyu Guo, Kelli C Dominick, Ali A Minai, Hailong Li, Craig A Erick-
son, and Long J Lu. Diagnosing autism spectrum disorder from brain

162

resting-state functional connectivity patterns using a deep neural net-
work with a novel feature selection method. Frontiers in neuroscience,
11:460, 2017.

[GGI+02] Anna C Gilbert, Sudipto Guha, Piotr Indyk, Shanmugavelayutham
Muthukrishnan, and Martin Strauss. Near-optimal sparse fourier rep-
resentations via sampling. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 152–161, 2002.

[GGW+10] Victoria Gradin, Viktoria-Eleni Gountouna, Gordon Waiter, Trevor S
Ahearn, David Brennan, Barrie Condon, Ian Marshall, David J McGo-
nigle, Alison D Murray, Heather Whalley, et al. Between-and within-
scanner variability in the calibrain study n-back cognitive task. Psy-
chiatry Research: Neuroimaging, 184(2):86–95, 2010.

[GI10] Anna Gilbert and Piotr Indyk. Sparse recovery using sparse matrices.
Proceedings of the IEEE, 98(6):937–947, 2010.

[GJM+10] Viktoria-Eleni Gountouna, Dominic E Job, Andrew M McIntosh,
T William J Moorhead, G Katherine L Lymer, Heather C Whalley,
Jeremy Hall, Gordon D Waiter, David Brennan, David J McGonigle,
et al. Functional magnetic resonance imaging (fmri) reproducibility
and variance components across visits and scanning sites with a finger
tapping task. Neuroimage, 49(1):552–560, 2010.

[GMS05] Anna C Gilbert, Shan Muthukrishnan, and Martin Strauss. Im-
proved time bounds for near-optimal sparse fourier representations.
In Wavelets XI, volume 5914, pages 398–412. SPIE, 2005.

[GMT+12] Gary H Glover, Bryon A Mueller, Jessica A Turner, Theo GM
Van Erp, Thomas T Liu, Douglas N Greve, James T Voyvodic,
Jerod Rasmussen, Gregory G Brown, David B Keator, et al. Func-
tion biomedical informatics research network recommendations for
prospective multicenter functional mri studies. Journal of Magnetic
Resonance Imaging, 36(1):39–54, 2012.

[GOB+10] Nils Gehlenborg, Seán I O’donoghue, Nitin S Baliga, Alexander Goes-
mann, Matthew A Hibbs, Hiroaki Kitano, Oliver Kohlbacher, Heiko
Neuweger, Reinhard Schneider, Dan Tenenbaum, et al. Visualization
of omics data for systems biology. Nature methods, 7(Suppl 3):S56–
S68, 2010.

163

[GSC+22] Yanyan Gao, Jiawei Sun, Lulu Cheng, Qihang Yang, Jing Li, Zeqi
Hao, Linlin Zhan, Yuyu Shi, Mengting Li, Xize Jia, et al. Altered
resting state dynamic functional connectivity of amygdala subregions
in patients with autism spectrum disorder: A multi-site fmri study.
Journal of Affective Disorders, 2022.

[Gui20] Design Guide. Cuda c++ best practices guide. 2020.

[Hag05] Patric Hagmann. From diffusion mri to brain connectomics. Technical
report, EPFL, 2005.

[HAM+16] Rikkert Hindriks, Mohit H Adhikari, Yusuke Murayama, Marco
Ganzetti, Dante Mantini, Nikos K Logothetis, and Gustavo Deco. Can
sliding-window correlations reveal dynamic functional connectivity in
resting-state fmri? Neuroimage, 127:242–256, 2016.

[Has18] Haitham Hassanieh. The Sparse Fourier Transform. Morgan & Clay-
pool, 2018.

[HB18] Stewart Heitmann and Michael Breakspear. Putting the “dynamic”
back into dynamic functional connectivity. Network Neuroscience,
2(02):150–174, 2018.

[HFC+18] Anibal Sólon Heinsfeld, Alexandre Rosa Franco, R Cameron Crad-
dock, Augusto Buchweitz, and Felipe Meneguzzi. Identification of
autism spectrum disorder using deep learning and the abide dataset.
NeuroImage: Clinical, 17:16–23, 2018.

[HIKP12] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Sparse
fast fourier transform code documentation (sfft 1.0 and 2.0). In STOC,
2012.

[HRGCB12] Daniel A Handwerker, Vinai Roopchansingh, Javier Gonzalez-
Castillo, and Peter A Bandettini. Periodic changes in fmri connec-
tivity. Neuroimage, 63(3):1712–1719, 2012.

[HWA+13] R Matthew Hutchison, Thilo Womelsdorf, Elena A Allen, Pe-
ter A Bandettini, Vince D Calhoun, Maurizio Corbetta, Stefania
Della Penna, Jeff H Duyn, Gary H Glover, Javier Gonzalez-Castillo,
et al. Dynamic functional connectivity: promise, issues, and interpre-
tations. Neuroimage, 80:360–378, 2013.

164

[HWG+13] R Matthew Hutchison, Thilo Womelsdorf, Joseph S Gati, Stefan Ev-
erling, and Ravi S Menon. Resting-state networks show dynamic func-
tional connectivity in awake humans and anesthetized macaques. Hu-
man brain mapping, 34(9):2154–2177, 2013.

[IAV+23] Sebastian Idesis, Michele Allegra, Jakub Vohryzek, Yonatan
Sanz Perl, Joshua Faskowitz, Olaf Sporns, Maurizio Corbetta, and
Gustavo Deco. A low dimensional embedding of brain dynamics en-
hances diagnostic accuracy and behavioral prediction in stroke. Sci-
entific Reports, 13(1):15698, 2023.

[Iid15] Tetsuya Iidaka. Resting state functional magnetic resonance imaging
and neural network classified autism and control. Cortex, 63:55–67,
2015.

[JBB13] Heidi Johansen-Berg and Timothy EJ Behrens. Diffusion MRI: from
quantitative measurement to in vivo neuroanatomy. Academic Press,
2013.

[JC18] Mark Jenkinson and Michael Chappell. Introduction to neuroimaging
analysis. Oxford University Press, 2018.

[JLH+12] Yuntao Jia, Victor Lu, Jared Hoberock, Michael Garland, and John C.
Hart. Chapter 2 - edge v. node parallelism for graph centrality met-
rics. In GPU Computing Gems Jade Edition, Applications of GPU
Computing Series, pages 15–28. Morgan Kaufmann, Boston, 2012.

[JLR07] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch
effects in microarray expression data using empirical bayes methods.
Biostatistics, 8(1):118–127, 2007.

[JMS+01] Peter Jezzard, Paul M Matthews, Stephen M Smith, et al. Functional
MRI: an introduction to methods, volume 61. Oxford university press
Oxford, 2001.

[JVM+12] David T Jones, Prashanthi Vemuri, Matthew C Murphy, Jeffrey L
Gunter, Matthew L Senjem, Mary M Machulda, Scott A Przybel-
ski, Brian E Gregg, Kejal Kantarci, David S Knopman, et al. Non-
stationarity in the “resting brain’s” modular architecture. PloS one,
7(6):e39731, 2012.

165

[JWBW16] Wenjun Jiang, Guojun Wang, Md Zakirul Alam Bhuiyan, and Jie
Wu. Understanding graph-based trust evaluation in online social
networks: Methodologies and challenges. Acm Computing Surveys
(Csur), 49(1):1–35, 2016.

[KAA+18] Robert E Kass, Shun-Ichi Amari, Kensuke Arai, Emery N Brown,
Casey O Diekman, Markus Diesmann, Brent Doiron, Uri T Eden,
Adrienne L Fairhall, Grant M Fiddyment, et al. Computational neu-
roscience: Mathematical and statistical perspectives. Annual review
of statistics and its application, 5:183–214, 2018.

[KAB+19] Scott P. Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David,
Timothy A. Davis, Matthew Henderson, Yifan Hu, and Read Sand-
strom. The suitesparse matrix collection website interface. Journal of
Open Source Software, 4(35):1244, 2019.

[KAD+14] Daniel Kostro, Ahmed Abdulkadir, Alexandra Durr, Raymund Roos,
Blair R Leavitt, Hans Johnson, David Cash, Sarah J Tabrizi, Rachael I
Scahill, Olaf Ronneberger, et al. Correction of inter-scanner and
within-subject variance in structural mri based automated diagnos-
ing. NeuroImage, 98:405–415, 2014.

[KD18] Nikolaus Kriegeskorte and Pamela K Douglas. Cognitive computa-
tional neuroscience. Nature neuroscience, 21(9):1148–1160, 2018.

[KD20] Morten L Kringelbach and Gustavo Deco. Brain states and transi-
tions: insights from computational neuroscience. Cell Reports, 32(10),
2020.

[KEFK+17] Aya Kabbara, W El Falou, M Khalil, F Wendling, and M Hassan. The
dynamic functional core network of the human brain at rest. Scientific
reports, 7(1):2936, 2017.

[KFMB+16] Pegah Kassraian-Fard, Caroline Matthis, Joshua H Balsters, Mar-
loes H Maathuis, and Nicole Wenderoth. Promises, pitfalls, and ba-
sic guidelines for applying machine learning classifiers to psychiatric
imaging data, with autism as an example. Frontiers in psychiatry,
7:177, 2016.

[KG11] Jeremy Kepner and John Gilbert. Graph Algorithms in the Language
of Linear Algebra. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2011.

166

[KGX+19] Yazhou Kong, Jianliang Gao, Yunpei Xu, Yi Pan, Jianxin Wang,
and Jin Liu. Classification of autism spectrum disorder by combining
brain connectivity and deep neural network classifier. Neurocomput-
ing, 324:63–68, 2019.

[KJKS19] Meenakshi Khosla, Keith Jamison, Amy Kuceyeski, and Mert R
Sabuncu. Ensemble learning with 3d convolutional neural networks
for functional connectome-based prediction. NeuroImage, 199:651–
662, 2019.

[KSBB18] Ankit N Khambhati, Ann E Sizemore, Richard F Betzel, and
Danielle S Bassett. Modeling and interpreting mesoscale network dy-
namics. NeuroImage, 180:337–349, 2018.

[KSL17] Tae-Eui Kam, Heung-Il Suk, and Seong-Whan Lee. Multiple func-
tional networks modeling for autism spectrum disorder diagnosis. Hu-
man brain mapping, 38(11):5804–5821, 2017.

[KWM16] David B Kirk and W Hwu Wen-Mei. Programming massively parallel
processors: a hands-on approach. Morgan kaufmann, 2016.

[LAT+05] Lun Li, David Alderson, Reiko Tanaka, John C. Doyle, and Walter
Willinger. Towards a theory of scale-free graphs: Definition, prop-
erties, and implications (extended version). Technical Report CIT-
CDS-04-006, California Institute of Technology, 2005.

[LGD+20] Xiaoxiao Li, Yufeng Gu, Nicha Dvornek, Lawrence H Staib, Pamela
Ventola, and James S Duncan. Multi-site fmri analysis using privacy-
preserving federated learning and domain adaptation: Abide results.
Medical Image Analysis, 65:101765, 2020.

[LK14] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large net-
work dataset collection, 2014.

[LKB+20] Daniel J Lurie, Daniel Kessler, Danielle S Bassett, Richard F Betzel,
Michael Breakspear, Shella Kheilholz, Aaron Kucyi, Raphaël Liégeois,
Martin A Lindquist, Anthony Randal McIntosh, et al. Questions and
controversies in the study of time-varying functional connectivity in
resting fmri. Network Neuroscience, 4(1):30–69, 2020.

167

[LNF17] Thomas T Liu, Alican Nalci, and Maryam Falahpour. The global
signal in fmri: Nuisance or information? Neuroimage, 150:213–229,
2017.

[LS16] Jure Leskovec and Rok Sosic. Snap: A general-purpose network anal-
ysis and graph-mining library. ACM Trans. Intell. Syst. Technol.,
8(1):1–20, 2016.

[LSM+17] Timothy O Laumann, Abraham Z Snyder, Anish Mitra, Evan M
Gordon, Caterina Gratton, Babatunde Adeyemo, Adrian W Gilmore,
Steven M Nelson, Jeff J Berg, Deanna J Greene, et al. On the stability
of bold fmri correlations. Cerebral cortex, 27(10):4719–4732, 2017.

[LVDV15] Nora Leonardi and Dimitri Van De Ville. On spurious and real fluc-
tuations of dynamic functional connectivity during rest. Neuroimage,
104:430–436, 2015.

[MAS+19] Fatemeh Mokhtari, Milad I Akhlaghi, Sean L Simpson, Guorong Wu,
and Paul J Laurienti. Sliding window correlation analysis: Modu-
lating window shape for dynamic brain connectivity in resting state.
Neuroimage, 189:655–666, 2019.

[MB14] Adam McLaughlin and David A. Bader. Scalable and high perfor-
mance betweenness centrality on the gpu. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, pages 572–583, New Orleans, Louisana, 2014.
IEEE Press.

[Mes20] Arnaud Messé. Parcellation influence on the connectivity-based
structure–function relationship in the human brain. Human Brain
Mapping, 41(5):1167–1180, 2020.

[MF17] Kevin Murphy and Michael D Fox. Towards a consensus regarding
global signal regression for resting state functional connectivity mri.
Neuroimage, 154:169–173, 2017.

[MMO19] Teppei Matsui, Tomonari Murakami, and Kenichi Ohki. Neuronal ori-
gin of the temporal dynamics of spontaneous bold activity correlation.
Cerebral Cortex, 29(4):1496–1508, 2019.

[MNS+16] Hengameh Mirzaalian, Lipeng Ning, Peter Savadjiev, Ofer Pasternak,
Sylvain Bouix, O Michailovich, Gerald Grant, Christine E Marx, Ra-

168

jendra A Morey, Laura A Flashman, et al. Inter-site and inter-scanner
diffusion mri data harmonization. NeuroImage, 135:311–323, 2016.

[MR06] Alain J Marengo-Rowe. Structure-function relations of human
hemoglobins. In Baylor University Medical Center Proceedings, vol-
ume 19, pages 239–245. Taylor & Francis, 2006.

[MWBV18] Sarah E. Morgan, Simon R. White, Edward T. Bullmore, and Pe-
tra E. Vértes. A network neuroscience approach to typical and atypi-
cal brain development. Biological Psychiatry: Cognitive Neuroscience
and Neuroimaging, 3(9):754–766, 2018. Computational Methods and
Modeling in Psychiatry.

[Ney92] Jerzy Neyman. On the two different aspects of the representative
method: the method of stratified sampling and the method of purpo-
sive selection. In Breakthroughs in statistics, pages 123–150. Springer,
1992.

[NSF+17] Stephanie Noble, Dustin Scheinost, Emily S Finn, Xilin Shen,
Xenophon Papademetris, Sarah C McEwen, Carrie E Bearden, Jean
Addington, Bradley Goodyear, Kristin S Cadenhead, et al. Multisite
reliability of mr-based functional connectivity. Neuroimage, 146:959–
970, 2017.

[NVD+17] Jason S Nomi, Shruti Gopal Vij, Dina R Dajani, Rosa Steimke, Eswar
Damaraju, Srinivas Rachakonda, Vince D Calhoun, and Lucina Q Ud-
din. Chronnectomic patterns and neural flexibility underlie executive
function. Neuroimage, 147:861–871, 2017.

[NVI] CUDA NVIDIA. Programming guide, cusparse, cublas, and cufft
library user guides.

[NZF+13] Jared A Nielsen, Brandon A Zielinski, P Thomas Fletcher, Andrew L
Alexander, Nicholas Lange, Erin D Bigler, Janet E Lainhart, and
Jeffrey S Anderson. Multisite functional connectivity mri classification
of autism: Abide results. Frontiers in human neuroscience, 7:599,
2013.

[OAS10] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality
in weighted networks: Generalizing degree and shortest paths. Social
Networks, 32(3):245–251, 2010.

169

[OLNG90] Seiji Ogawa, Tso-Ming Lee, Asha S Nayak, and Paul Glynn.
Oxygenation-sensitive contrast in magnetic resonance image of ro-
dent brain at high magnetic fields. Magnetic resonance in medicine,
14(1):68–78, 1990.

[OMT+93] Seiji Ogawa, RS Menon, David W Tank, SG Kim, H Merkle, JM Eller-
mann, and K Ugurbil. Functional brain mapping by blood oxygena-
tion level-dependent contrast magnetic resonance imaging. a compar-
ison of signal characteristics with a biophysical model. Biophysical
journal, 64(3):803–812, 1993.

[Par14] Van L Parsons. Stratified sampling. Wiley StatsRef: Statistics Refer-
ence Online, pages 1–11, 2014.

[PBG+12] Jean-Baptiste Poline, Janis L Breeze, Satrajit Ghosh, Krzysztof Gor-
golewski, Yaroslav O Halchenko, Michael Hanke, Christian Hasel-
grove, Karl G Helmer, David B Keator, Daniel S Marcus, et al. Data
sharing in neuroimaging research. Frontiers in neuroinformatics, 6:9,
2012.

[PBM15] Mark Plitt, Kelly Anne Barnes, and Alex Martin. Functional connec-
tivity classification of autism identifies highly predictive brain features
but falls short of biomarker standards. NeuroImage: Clinical, 7:359–
366, 2015.

[PBVDV17] Maria Giulia Preti, Thomas AW Bolton, and Dimitri Van De Ville.
The dynamic functional connectome: State-of-the-art and perspec-
tives. Neuroimage, 160:41–54, 2017.

[PF13] Hae-Jeong Park and Karl Friston. Structural and functional brain
networks: from connections to cognition. Science, 342(6158), 2013.

[PKF+18] Sarah Parisot, Sofia Ira Ktena, Enzo Ferrante, Matthew Lee, Ricardo
Guerrero, Ben Glocker, and Daniel Rueckert. Disease prediction us-
ing graph convolutional networks: application to autism spectrum
disorder and alzheimer’s disease. Medical image analysis, 48:117–130,
2018.

[PSP15] Jonathan D Power, Bradley L Schlaggar, and Steven E Petersen. Re-
cent progress and outstanding issues in motion correction in resting
state fmri. Neuroimage, 105:536–551, 2015.

170

[PWW+17] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and J. D.
Owens. Multi-gpu graph analytics. In 2017 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pages 479–490,
Orlando, Florida, 2017. IEEE Press.

[RAD+16] Barnaly Rashid, Mohammad R Arbabshirani, Eswar Damaraju,
Mustafa S Cetin, Robyn Miller, Godfrey D Pearlson, and Vince D
Calhoun. Classification of schizophrenia and bipolar patients using
static and dynamic resting-state fmri brain connectivity. Neuroim-
age, 134:645–657, 2016.

[RJF+21] Maya A Reiter, Afrooz Jahedi, AR Fredo, Inna Fishman, Barbara Bai-
ley, and Ralph-Axel Müller. Performance of machine learning classifi-
cation models of autism using resting-state fmri is contingent on sam-
ple heterogeneity. Neural Computing and Applications, 33(8):3299–
3310, 2021.

[RLH21] Alexandra M Reardon, Kaiming Li, and Xiaoping P Hu. Improving
between-group effect size for multi-site functional connectivity data
via site-wise de-meaning. Frontiers in computational neuroscience,
15(762781):111, 2021.

[RMMM+17] Anil Rao, Joao M Monteiro, Janaina Mourao-Miranda,
Alzheimer’s Disease Initiative, et al. Predictive modelling using
neuroimaging data in the presence of confounds. NeuroImage,
150:23–49, 2017.

[RS10] Mikail Rubinov and Olaf Sporns. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage, 52(3):1059–1069,
2010.

[RyC06] Santiago Ramón y Cajal. The structure and connexions of neurons.
Nobel Lecture, 12, 1906.

[SAS+20] Zeinab Sherkatghanad, Mohammadsadegh Akhondzadeh, Soorena
Salari, Mariam Zomorodi-Moghadam, Moloud Abdar, U Rajendra
Acharya, Reza Khosrowabadi, and Vahid Salari. Automated detec-
tion of autism spectrum disorder using a convolutional neural network.
Frontiers in neuroscience, 13:1325, 2020.

[SB13] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph pro-
cessing framework for shared memory. In Proceedings of the 18th

171

ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 135–146, Shenzhen, China, 2013. ACM.

[SCKH04] Olaf Sporns, Dante R Chialvo, Marcus Kaiser, and Claus C Hilgetag.
Organization, development and function of complex brain networks.
Trends in cognitive sciences, 8(9):418–425, 2004.

[SHK07] Olaf Sporns, Christopher J Honey, and Rolf Kötter. Identification and
classification of hubs in brain networks. PloS one, 2(10):e1049, 2007.

[Shl14] Jonathon Shlens. A tutorial on independent component analysis.
arXiv preprint arXiv:1404.2986, 2014.

[SI06] JO Smith III. Mathematics of the discrete fourier transform with
audio applications. Booksurge LLC, 2006.

[SJD+23] Caio Seguin, Maciej Jedynak, Olivier David, Sina Mansour, Olaf
Sporns, and Andrew Zalesky. Communication dynamics in the hu-
man connectome shape the cortex-wide propagation of direct electri-
cal stimulation. Neuron, 111(9):1391–1401, 2023.

[SKB+17] Masoumeh Sadeghi, Reza Khosrowabadi, Fatemeh Bakouie, Hoda
Mahdavi, Changiz Eslahchi, and Hamidreza Pouretemad. Screening
of autism based on task-free fmri using graph theoretical approach.
Psychiatry Research: Neuroimaging, 263:48–56, 2017.

[SKSC13] Ahmet Erdem Sariyuce, Kamer Kaya, Erik Saule, and Umit V.
Catalyurek. Betweenness centrality on gpus and heterogeneous ar-
chitectures. In Proceedings of the 6th Workshop on General Purpose
Processor Using Graphics Processing Units, pages 76–85, Houston,
Texas, USA, 2013. ACM.

[SLK16] Sadia Shakil, Chin-Hui Lee, and Shella Dawn Keilholz. Evaluation
of sliding window correlation performance for characterizing dynamic
functional connectivity and brain states. Neuroimage, 133:111–128,
2016.

[SMD04] Felice T Sun, Lee M Miller, and Mark D’esposito. Measuring interre-
gional functional connectivity using coherence and partial coherence
analyses of fmri data. Neuroimage, 21(2):647–658, 2004.

172

[SMM+16] José M Soares, Ricardo Magalhães, Pedro S Moreira, Alexandre
Sousa, Edward Ganz, Adriana Sampaio, Victor Alves, Paulo Mar-
ques, and Nuno Sousa. A hitchhiker’s guide to functional magnetic
resonance imaging. Frontiers in neuroscience, 10:515, 2016.

[SON+17] Russell T Shinohara, Jiwon Oh, Govind Nair, Peter A Calabresi,
Christos Davatzikos, Jimit Doshi, Roland G Henry, Gloria Kim,
Kristin A Linn, Nico Papinutto, et al. Volumetric analysis from a
harmonized multisite brain mri study of a single subject with multi-
ple sclerosis. American Journal of Neuroradiology, 38(8):1501–1509,
2017.

[SP14] Jörn Schumacher and Markus Püschel. High-performance sparse fast
fourier transforms. In 2014 IEEE Workshop on Signal Processing
Systems (SiPS), pages 1–6. IEEE, 2014.

[SPK+10] Ünal Sakoğlu, Godfrey D Pearlson, Kent A Kiehl, Y Michelle Wang,
Andrew M Michael, and Vince D Calhoun. A method for evaluating
dynamic functional network connectivity and task-modulation: appli-
cation to schizophrenia. Magnetic Resonance Materials in Physics,
Biology and Medicine, 23(5):351–366, 2010.

[Spo11] Olaf Sporns. The human connectome: a complex network. Annals of
the new York Academy of Sciences, 1224(1):109–125, 2011.

[Spo12] Olaf Sporns. From simple graphs to the connectome: Networks in
neuroimaging. NeuroImage, 62(2):881–886, 2012. 20 YEARS OF
fMRI.

[Spo13] Olaf Sporns. Structure and function of complex brain networks. Di-
alogues in clinical neuroscience, 15(3):247, 2013.

[Spo18] Olaf Sporns. Graph theory methods: applications in brain networks.
Dialogues in clinical neuroscience, 20(2):111, 2018.

[SR07] Cornelis J. Stam and Jaap C. Reijneveld. Graph theoretical analysis of
complex networks in the brain. Nonlinear Biomedical Physics, 1(1):3,
2007.

[SS16] Peter Sprent and Nigel C Smeeton. Applied nonparametric statistical
methods. CRC press, Boca Raton, FL, 33487-2742, 2016.

173

[SS20] Dalwinder Singh and Birmohan Singh. Investigating the impact of
data normalization on classification performance. Applied Soft Com-
puting, 97:105524, 2020.

[SSZ23] Caio Seguin, Olaf Sporns, and Andrew Zalesky. Brain network com-
munication: concepts, models and applications. Nature Reviews Neu-
roscience, pages 1–18, 2023.

[STK05] Olaf Sporns, Giulio Tononi, and Rolf Kötter. The human connectome:
a structural description of the human brain. PLoS computational
biology, 1(4):e42, 2005.

[SZ11] Zhiao Shi and Bing Zhang. Fast network centrality analysis using
gpus. BMC Bioinformatics, 12(1):149, 2011.

[TD00] Ajit Tamhane and Dunlop Dunlop. Statistics and data analysis: from
elementary to intermediate. Prentice-Hall, Upper Sadle River, NJ
07458, 2000.

[TEL+92] James Theiler, Stephen Eubank, André Longtin, Bryan Galdrikian,
and J Doyne Farmer. Testing for nonlinearity in time series: the
method of surrogate data. Physica D: Nonlinear Phenomena, 58(1-
4):77–94, 1992.

[TMA+21] Mahbaneh Eshaghzadeh Torbati, Davneet S Minhas, Ghasan Ahmad,
Erin E O’Connor, John Muschelli, Charles M Laymon, Zixi Yang,
Ann D Cohen, Howard J Aizenstein, William E Klunk, et al. A multi-
scanner neuroimaging data harmonization using ravel and combat.
NeuroImage, 245:118703, 2021.

[TMLP+02] Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanas-
siou, Fabrice Crivello, Olivier Etard, Nicolas Delcroix, Bernard Ma-
zoyer, and Marc Joliot. Automated anatomical labeling of activations
in spm using a macroscopic anatomical parcellation of the mni mri
single-subject brain. Neuroimage, 15(1):273–289, 2002.

[TVWM+12] Enzo Tagliazucchi, Frederic Von Wegner, Astrid Morzelewski, Verena
Brodbeck, and Helmut Laufs. Dynamic bold functional connectivity
in humans and its electrophysiological correlates. Frontiers in human
neuroscience, 6:339, 2012.

174

[vdHSBP08] Martijn P van den Heuvel, Cornelis J Stam, Maria Boersma, and
HE Hulshoff Pol. Small-world and scale-free organization of voxel-
based resting-state functional connectivity in the human brain. Neu-
roimage, 43(3):528–539, 2008.

[vdVFP+04] Vincent G van de Ven, Elia Formisano, David Prvulovic, Christian H
Roeder, and David EJ Linden. Functional connectivity as revealed by
spatial independent component analysis of fmri measurements during
rest. Human brain mapping, 22(3):165–178, 2004.

[VG20] Todd Vanderah and Douglas Gould. Nolte’s The Human Brain E-
Book: An Introduction to its Functional Anatomy. Elsevier Health
Sciences, 2020.

[VHT09] John Darrell Van Horn and Arthur W Toga. Multisite neuroimaging
trials. Current opinion in neurology, 22(4):370, 2009.

[VMSS13] S Vigneshwaran, BS Mahanand, Sundaram Suresh, and Ramaswamy
Savitha. Autism spectrum disorder detection using projection based
learning meta-cognitive rbf network. In IEEE, editor, The 2013 Inter-
national Joint Conference on Neural Networks (IJCNN), pages 1–8,
New York, USA, 2013. IEEE, IEEE Press.

[VS13] Tyler J VanderWeele and Ilya Shpitser. On the definition of a con-
founder. Annals of statistics, 41(1):196, 2013.

[WBQ+14] Huifang EWang, Christian G Bénar, Pascale P Quilichini, Karl J Fris-
ton, Viktor K Jirsa, and Christophe Bernard. A systematic framework
for functional connectivity measures. Frontiers in neuroscience, 8:405,
2014.

[WCC16] Cheng Wang, Sunita Chandrasekaran, and Barbara Chapman. cusfft:
A high-performance sparse fast fourier transform algorithm on gpus.
In 2016 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pages 963–972. IEEE, 2016.

[WDP+16] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. Gunrock: A high-performance graph pro-
cessing library on the gpu. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
1–12, Barcelona, Spain, 2016. ACM.

175

[WXW19] Canhua Wang, Zhiyong Xiao, and Jianhua Wu. Functional
connectivity-based classification of autism and control using svm-rfecv
on rs-fmri data. Physica Medica, 65:99–105, 2019.

[XSQ+18] Huaze Xu, Jianpo Su, Jian Qin, Ming Li, Ling-Li Zeng, Dewen Hu,
and Hui Shen. Impact of global signal regression on characterizing dy-
namic functional connectivity and brain states. Neuroimage, 173:127–
145, 2018.

[YBO22] Carl Yang, Aydın Buluç, and John D Owens. Graphblast: A high-
performance linear algebra-based graph framework on the gpu. ACM
Transactions on Mathematical Software (TOMS), 48(1):1–51, 2022.

[yC97] Santiago Ramón y Cajal. Leyes de la morfoloǵıa y dinamismo de las
células nerviosas. N. Moya, 1897.

[YHX+15] Zhijun Yao, Bin Hu, Yuanwei Xie, Philip Moore, and Jiaxiang Zheng.
A review of structural and functional brain networks: small world and
atlas. Brain informatics, 2(1):45–52, 2015.

[YKK17] Noriaki Yahata, Kiyoto Kasai, and Mitsuo Kawato. Computational
neuroscience approach to biomarkers and treatments for mental dis-
orders. Psychiatry and clinical neurosciences, 71(4):215–237, 2017.

[YLC+18] Meichen Yu, Kristin A Linn, Philip A Cook, Mary L Phillips, Melvin
McInnis, Maurizio Fava, Madhukar H Trivedi, Myrna M Weissman,
Russell T Shinohara, and Yvette I Sheline. Statistical harmoniza-
tion corrects site effects in functional connectivity measurements from
multi-site fmri data. Human brain mapping, 39(11):4213–4227, 2018.

[YYI+19] Ayumu Yamashita, Noriaki Yahata, Takashi Itahashi, Giuseppe Lisi,
Takashi Yamada, Naho Ichikawa, Masahiro Takamura, Yujiro Yoshi-
hara, Akira Kunimatsu, Naohiro Okada, et al. Harmonization of
resting-state functional mri data across multiple imaging sites via the
separation of site differences into sampling bias and measurement bias.
PLoS biology, 17(4):e3000042, 2019.

[ZB15] Andrew Zalesky and Michael Breakspear. Towards a statistical test
for functional connectivity dynamics. Neuroimage, 114:466–470, 2015.

[ZFC+14] Andrew Zalesky, Alex Fornito, Luca Cocchi, Leonardo L Gollo, and
Michael Breakspear. Time-resolved resting-state brain networks. Pro-

176

ceedings of the National Academy of Sciences, 111(28):10341–10346,
2014.

[ZXS+22] Lei Zhao, Shao-Wei Xue, Yun-Kai Sun, Zhihui Lan, Ziqi Zhang,
Yichen Xue, Xuan Wang, and Yuxin Jin. Altered dynamic functional
connectivity of insular subregions could predict symptom severity of
male patients with autism spectrum disorder. Journal of Affective
Disorders, 299:504–512, 2022.

[ZZC+17] Yu Zhang, Han Zhang, Xiaobo Chen, Seong-Whan Lee, and Ding-
gang Shen. Hybrid high-order functional connectivity networks using
resting-state functional mri for mild cognitive impairment diagnosis.
Scientific reports, 7(1):6530, 2017.

[ZZW+10] Wen Zhu, Nancy Zeng, Ning Wang, et al. Sensitivity, specificity, accu-
racy, associated confidence interval and roc analysis with practical sas
implementations. NESUG proceedings: health care and life sciences,
Baltimore, Maryland, 19:67, 2010.

177

APPENDIX A: CODE AVAILABILITY

All the software codes implemented to compute the experimental results included in

this dissertation are available as open-source software as indicated in the following

list.

1. GPU-SFFT, chapter 2,

https://github.com/pcdslab/gpu-sfft, Languages: CUDA, C.

2. TurboBFS, chapter 3,

https://github.com/pcdslab/TurboBFS, Languages: CUDA, C.

3. TurboBC, chapter 4,

https://github.com/pcdslab/TurboBC, Languages: CUDA, C.

4. ASD-DiagNet-Confounds, chapter 5,

https://github.com/pcdslab/ASD-DiagNet-Confounds, Language: Python.

5. Time-varying-FC, chapter 6,

Language: Python, development stage.

178

APPENDIX B: DATA AVAILABILITY

The ABIDE preprocessed rs-fMRI multi-site database used in this dissertation is

available at the website (http://preprocessed-connectomes-project.org/abide).

179

APPENDIX C: COMPUTING RESOURCES AND FUNDING

COMPUTING RESOURCES The work presented in this dissertation used the

Raptor and Dragon High-Performance Computing cluster resources at the Florida

International University supported by the NIH Supplemental Award: 3R01GM134384-

02S1.

FUNDING The work presented in this dissertation was funded by the National

Science Foundation (NSF) award No. OAC 2312599, and by grant of the National

Institute of Health (NIH) No. R01GM134384. Any opinions, findings, and conclu-

sions or recommendations expressed in the content of this dissertation are solely

the responsibility of the author and do not necessarily represent the views of the

National Science Foundation (NSF) and/or the National Institute of Health (NIH).

180

VITA

OSWALDO ARTILES

Born, Caracas, Venezuela

1970 Electrical Engineering degree,
Universidad Central de Venezuela,
Caracas, Venezuela

1970-2003 Engineer and manager of
EDELCA, electrical utility,
owner of one of the biggest
hydroelectric complex in the world,
Bolivar, Venezuela

1977 MsC in Power systems enginnering,
University of Manchester Institute
of Science and Technology (UMIST),
Manchester, England

2017 PhD, Physics,
Florida International University,
Miami, Florida, USA

2023 PhD, Computer Science,
Florida International University,
Miami, Florida, USA

181

PUBLICATIONS AND PRESENTATIONS

1. Artiles, Oswaldo, Zeina Al Masry, and Fahad Saeed. Confounding Effects
on the Performance of Machine Learning Analysis of Static Functional Con-
nectivity Computed from rs-fMRI Multi-site Data. Neuroinformatics (2023):
1-18.

2. Artiles, Oswaldo, and Fahad Saeed. A Multi-Factorial Assessment of Func-
tional Human Autistic Spectrum Brain Network Analysis. 2021 IEEE Inter-
national Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2021.

3. Artiles, Oswaldo, and Fahad Saeed. TurboBC: A Memory Efficient and Scal-
able GPU Based Betweenness Centrality Algorithm in the Language of Lin-
ear Algebra. 50th International Conference on Parallel Processing Workshop.
2021.

4. Artiles, Oswaldo, and Fahad Saeed. TurboBFS: GPU based breadth-first search
(BFS) algorithms in the language of linear algebra. 2021 IEEE International
Parallel and Distributed Processing SymposiumWorkshops (IPDPSW). IEEE,
2021.

5. Artiles, Oswaldo, and Fahad Saeed. GPU-SFFT: A GPU based parallel algo-
rithm for computing the Sparse Fast Fourier Transform (SFFT) of k-sparse
signals. 2019 IEEE International Conference on Big Data (Big Data). IEEE,
2019.

6. Artiles, Oswaldo. Multinucleon Short-range Correlation Model for Nuclear
Spectral Functions. PhD Dissertation, arXiv preprint arXiv:1805.02778 (2018).

7. Artiles, Oswaldo, and Misak M. Sargsian. Multinucleon short-range corre-
lation model for nuclear spectral functions: theoretical framework, Physical
Review C 94.6 (2016): 064318.

182

	Statistical and Machine Learning Analysis of the Human Brain Functional Network in a Multi-Site Resting-State Functional MRI Database Framework
	Recommended Citation

	tmp.1706041117.pdf.F4Il1

