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by 
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Professor Peter Thompson, Major Professor 

The first essay developed a respondent model of Bayesian updating for a double-

bound dichotomous choice (DB-DC) contingent valuation methodology.  I demonstrated 

by way of data simulations that current DB-DC identifications of true willingness-to-pay 

(WTP) may often fail given this respondent Bayesian updating context.  Further 

simulations demonstrated that a simple extension of current DB-DC identifications 

derived explicitly from the Bayesian updating behavioral model can correct for much of 

the WTP bias.  Additional results provided caution to viewing respondents as acting 

strategically toward the second bid.  Finally, an empirical application confirmed the 

simulation outcomes. 

 The second essay applied a hedonic property value model to a unique water 

quality (WQ) dataset for a year-round, urban, and coastal housing market in South 

Florida, and found evidence that various WQ measures affect waterfront housing prices 

in this setting.  However, the results indicated that this relationship is not consistent 

across any of the six particular WQ variables used, and is furthermore dependent upon 

the specific descriptive statistic employed to represent the WQ measure in the empirical 
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analysis.  These results continue to underscore the need to better understand both the WQ 

measure and its statistical form homebuyers use in making their purchase decision. 

 The third essay addressed a limitation to existing hurricane evacuation modeling 

aspects by developing a dynamic model of hurricane evacuation behavior.  A household’s 

evacuation decision was framed as an optimal stopping problem where every potential 

evacuation time period prior to the actual hurricane landfall, the household’s optimal 

choice is to either evacuate, or to wait one more time period for a revised hurricane 

forecast.  A hypothetical two-period model of evacuation and a realistic multi-period 

model of evacuation that incorporates actual forecast and evacuation cost data for my 

designated Gulf of Mexico region were developed for the dynamic analysis.  Results 

from the multi-period model were calibrated with existing evacuation timing data from a 

number of hurricanes.  Given the calibrated dynamic framework, a number of policy 

questions that plausibly affect the timing of household evacuations were analyzed, and a 

deeper understanding of existing empirical outcomes in regard to the timing of the 

evacuation decision was achieved. 
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I. INTRODUCTION  

This dissertation comprises three essays, two of which are focused on the 

economic valuation of the environment, and another on economic decision making in the 

presence of an environmental disaster, i.e., hurricanes.   

The implementation by researchers of a double-bound dichotomous choice (DB-

DC) contingent valuation methodology (CVM) over a single-bound dichotomous choice 

(SB-DC) CVM suggests incentive incompatible respondent behavior, which leads to 

biased (typically downward) willingness-to-pay (WTP) estimates (Carson, et al., 2000).  

Various specifications exist for researchers to attempt to identify respondent true WTP by 

accounting for this apparent shift of respondents’ latent true WTP between responses to 

the first and second bid amounts, including models of structural shift (Alberini et al., 

1997) and starting-point bias (Herriges and Shogren, 1996).  This first essay develops a 

respondent model of Bayesian updating for a DB-DC CVM that is used to demonstrate 

how existing identifications of unbiased respondent WTP may often fail.  However, we 

also show that a simple extension of the structural shift model, which is derived explicitly 

from our Bayesian updating behavioral model, can correct for much of the WTP bias.  

While CVM respondents have been frequently modeled as Bayesian updaters 

(Horowitz, 1993; Herriges and Shogren, 1996; McLeod and Bergland, 1999; Whitehead, 

2002; Flores and Strong, 2004; and Aadland et al., 2005), updating in a DB-DC CVM is 

typically restricted to the asking of the second bid amount1.  If rational respondents are 

updating due to the second bid amount, we believe it is also reasonable to expect rational 

                                                 
1 Aadland et al. (2005) is an exception to this in the DB-DC case, allowing updating on both the first and 
second bid amounts. 
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respondents to be updating to the first bid amount, and we therefore develop a respondent 

model of Bayesian updating to allow for this.  Consequently, our model of respondent 

Bayesian updating behavior may be interpreted as an extension of the traditional starting-

point bias models where respondents do not update prior to responding to the first bid 

amount.   

Using our respondent model of Bayesian updating behavior, we derive structural 

shift specifications to allow for the identification of respondent true WTP in a DB-DC 

CVM given updating on the second bid amount only, as well updating on both bid 

amounts.  These specifications are comparable to the traditional structural shift model of 

Alberini et al., (1997) which only includes a dummy variable for the asking of the second 

bid amount   We show that even if respondent Bayesian updating is restricted only to 

occur with the asking of the second bid amount, the correct structural shift specification 

in this context includes an additional term that is a function of the second bid amount.  

When respondents Bayesian update on both bid amounts, we show that the correct 

structural shift specification in this context includes additional terms that are functions of 

the first and second bid amounts, and true WTP from the correctly specified structural 

shift model is not identifiable. 

 In order to demonstrate the extent of WTP bias in a respondent Bayesian updating 

context for the two identifiable structural shift models (the traditional model with only 

the dummy variable for the asking of the second bid amount, and the model we specify 

that also includes a term that is a function of the 2nd bid amount), we simulate 

respondents updating on the second bid amount only, as well updating on both bid 

amounts.  Our simulations show that the traditional structural shift estimation produces 
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biased estimates of the true WTP when researcher and respondent prior beliefs of the true 

WTP are not congruent, a result that places a heavy emphasis on the precision of the 

survey pre-test and bid selection.  Furthermore, this specification consistently produces 

biased estimates of the standard deviation of WTP.  Conversely, our simulations show 

that the incorporation of the term that is a function of the 2nd bid amount can correct for 

much of the WTP bias and standard deviation of WTP bias generated, except at high 

levels of respondent updating.  Moreover, an empirical application of both of the 

identifiable structural shift models to the Alaska Exxon Valdez DB-DC dataset confirms 

the simulation outcomes, with the key result being that our simple extension of the 

traditional structural shift model is significantly different from zero.                              

Given the continued use of DB-DC CVMs by researchers and practitioners, as 

well as the persistent notion that respondents are in fact uncertain about their true WTP 

(see, e.g., Li and Mattsson, 1995; Ready et al, 1995; Cameron and Englin, 1997; Wang, 

1997; Loomis and Ekstrand, 1998; Park, 2003), our results are noteworthy.  Indeed, a 

practical solution is offered that identifies true WTP for uncertain respondents that are 

rationally acting as Bayesian updaters in a DB-DC CVM (certainly for those suspected of 

only updating on the second bid amount).  The results also advise caution to the 

perception that respondents are acting strategically toward the asking of the second bid 

amount (Carson, et al., 2000), or as Aadland et al. (2005) state that, “Once one takes this 

Bayesian perspective of WTP formation, the recent discussion of the incentive 

incompatibility of DB-DC formats changes markedly.” 

Hedonic property value models are used to determine whether a relationship 

exists between an environmental amenity and housing prices, and if so, to impute implicit 
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prices for the environmental amenity that can be used for welfare analysis.  Although 

hedonic property value studies that utilize air or noise quality as the environmental 

amenity in the empirical analysis are more prevalent, a number of fairly recent studies 

that employ water quality (WQ) as the environmental amenity have been applied 

including Boyle et al. (1999), Leggett and Bockstael (2000), Michael et al. (2000), Poor 

et al. (2001), and Gibbs et al. (2002).  The purpose of this second essay is to add to this 

WQ literature by capitalizing on a unique WQ dataset for a year-round, urban, and 

coastal housing market in Martin County, Florida.  A major concern of this study is to 

assess the sensitivity of imputed valuations to the choice of WQ measure.   

Often, hedonic property studies are limited to available environmental measures 

that may not be related to homeowners’ perceptions (Michael et al. 2000).  Additionally, 

there are questions as to whether homebuyers are incorporating a more scientific but less 

easily understood objective measure of water quality, or a less scientific but more easily 

understood subjective measure of WQ into their purchase decision (Epp and Al-Ani, 

1979; Michael et al. 2000; Poor et al., 2001).  The nature of our unique dataset allows us 

to effectively deal with these issues.  Six WQ measures (temperature, pH, water 

visibility, salinity, dissolved oxygen, and location grade) have been produced and 

documented weekly since 1998 for nine separate monitoring locations in our study area, 

and these measures are readily available to homeowners/buyers via the local newspaper 

and the internet.  The sixth WQ measure, location grade, is a more easily understandable 

yet scientifically based objective measure of water quality with an A, B, C, D, or F letter 

grade and accompanying percentage (90–100%, 80-90%, 70-80%, 60-70%, and < 60% 

respectively) being assigned to each location depending upon the realized values of the 
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five other objective WQ measures.  In this way, results from the pure objective WQ 

measures are contrasted with the more easily understood yet objectively based WQ 

measure of location grade.       

Boyle et al. (1999), Michael et al. (2000), Poor et al. (2001), and Gibbs et al. 

(2002) all demonstrate that the minimum water clarity value for the year of the home sale 

matters for Maine and New Hampshire lakefront homebuyers.  However, these results are 

not easily transferable to an urban coastal housing market such as that of Martin County, 

FL.  Here, not only are the water body and urban vs. rural settings different, but so is the 

timing of sales, which occur year-round and not just primarily in the summer months.  

Given a year-round housing market, a homebuyer focus on a minimum water clarity 

value for the year of the sale may not be the most appropriate as it plausibly could be for 

a mostly summer housing market in the Northeastern United States2.  Therefore, in 

addition to employing minimum WQ values in the year of sale, we also incorporate other 

summary statistics that might matter in a year-round housing market such as the 

maximum, median, and statistical range.                 

In order to assess whether our various water quality measures affect waterfront 

housing prices in Martin County, FL we run pooled as well as time/location fixed effect 

regressions for our unbalanced panel dataset.  Results indicate that our various forms of 

water quality do in fact matter to Martin County waterfront homebuyers.  These results 

alone are especially relevant given the $1 billion Indian River Lagoon South (IRLS) 

Everglades restoration effort being conducted to improve water quality in this area, and 

                                                 
2 Leggett and Bockstael (2000) show that median fecal coliform for the year of the sale matters for a mixed 
urban and rural estuary/coastal setting in Maryland, but their data is also limited from April to September. 
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the lack of any formal economic benefit analysis conducted to-date (USACE/SFWMD, 

2002).  However, similar to Michael et al. (2000) no consistent relationship by either any 

of the six particular water quality variables, or by any of the four particular descriptive 

statistics used is found.  This further clearly indicates that more efforts need to be aimed 

at understanding what particular WQ variable and its statistical form homebuyers use in 

making their purchase decision if hedonic property models utilizing WQ measures are to 

be applied successfully.    

The 2005 hurricane season was the most active hurricane season on record and 

left in its wake many poignant reminders concerning the critical role of evacuation, 

including the floodwater trapped citizens of New Orleans due to Hurricane Katrina, as 

well as the evacuation gridlock outside Houston caused by the impending Hurricane Rita.  

Projections of future hurricane seasons currently indicate continued high levels of 

hurricane activity, further emphasizing the need to better understand evacuation behavior 

in order to attempt to avoid similar evacuation breakdowns.  Much of the evacuation 

research to date has focused on either the characteristics of those who evacuate, such as 

location/type of home, income level, etc., or the general difficulties associated with 

evacuating (Dash and Gladwin, 2005).  In their overview of social science research needs 

related to hurricane forecasts and warnings, Gladwin et al. (2005, pg. 9) highlight the 

need for research that leads to “… modeling of evacuation behavioral response in more 

precise and comprehensive ways”.  Enhanced hurricane evacuation modeling in regard to 

the incorporation of decision makers’ risk perceptions, beliefs, constraints, and abilities to 

decipher warning signals, as well as the dynamic nature of decision making in a non-
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linear communication environment are all repeated and accentuated themes resulting 

from the white papers associated with the Gladwin et al. (2005) report.   

The purpose of this third essay is to respond to one of the hurricane evacuation 

issues by developing a dynamic model of hurricane evacuation behavior.  Specifically, a 

household’s evacuation decision is framed as an optimal stopping problem where every 

potential evacuation time period prior to the actual hurricane landfall, the household’s 

optimal choice is either to evacuate, or to wait one more time period for a revised 

hurricane forecast.  Given this theoretical framework, relevant policy questions that affect 

the timing of the household evacuation decision are analyzed.   

In order to provide the intuition behind evacuation decision making in a dynamic 

framework, we present initial results from a simple, two-period model of evacuation.  By 

utilizing the two-period model to contrast a dynamic vs. static “now or never” view of the 

optimal 1st period evacuation decision, we show that the dynamic perspective results in 

1st period waiting being optimal for certain levels of evacuation costs, even thought 1st 

period evacuation is optimal from a static perspective.  We illustrate other distinct 

dynamic vs. static optimal waiting/evacuating results for a number of possible hurricane-

related policies such as a mitigation focus solely on potential damage from the more 

frequent, but less destructive minor hurricanes.  Further benefits of the use of a dynamic 

framework to analyze evacuation behavior are highlighted with the simple, two-period 

model including an analysis of households with heterogeneous evacuation costs, and the 

ability of the two-period results to provide a deeper understanding of existing evacuation 

timing empirical outcomes.   
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 However, as we ultimately want to better explain actual evacuation behavior, we 

extend our hypothetical two-period model to a realistic multi-period setting that is 

calibrated using existing forecast and evacuation cost data for a specific region, coastal 

areas on the Gulf of Mexico.  We show that the model does a good job of explaining 

actual evacuation behavior in specific hurricanes, as well as expected evacuation timing 

outcomes by various household types.  From this calibrated dynamic framework, a 

number of policy questions that plausibly affect the timing of household evacuations are 

analyzed.  For example, does building more shelters induce earlier evacuation?  

Additionally, the value of an improved hurricane forecast is an outcome of the policy 

analysis.           

Whitehead (2003) estimates the probability of evacuation for varying levels of 

hurricane intensity, but does so from a static perspective as the timing of the probability 

of an evacuation for any particular storm intensity level is not addressed.  However, the 

evacuation decision when faced by a hurricane threat has the three qualities of 

irreversibility, uncertainty, and the ability to wait for more information that characterize a 

decision process that is better understood from a dynamic modeling approach (Dixit and 

Pindyck, 1994).  Standard empirical results from the evacuation literature such as the 

traditional S-shaped evacuation response curves (USACE, 2006a) indicate certain 

households wait while others evacuate, and therefore further underscore the need for a 

dynamic perspective of evacuation behavior.  Likewise, only from a dynamic perspective 

can it be shown (as we do) that households may in fact be acting rationally by choosing 

to ignore evacuation warnings and waiting for more information, even though it could be 

the case that the benefits of evacuating (i.e., the expected avoided damage costs) 
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outweigh the evacuation costs for a particular static snapshot of time – a situation that 

seemingly perplexes public evacuation authorities.   

Moreover, modeling the evacuation decision process dynamically over many time 

periods with households having the ability to wait for more information, is analogous to a 

real-life evacuation decision situation where the National Hurricane Center (NHC) issues 

official forecast advisories every six hours once a tropical depression, tropical storm, or 

hurricane has developed.  While Fu and Wilmot (2004) utilize a sequential choice model 

to estimate the probability of a household evacuating or waiting in each period of their 

dynamic multi-period framework, and further use their dynamic model results to provide 

clarification to the standard evacuation timing empirical outcomes, their research differs 

from ours in a number of significant ways.  Importantly, we provide a theoretical model 

of dynamic evacuation behavior which is necessary for conducting policy analysis.  

Furthermore, our dynamic model is calibrated with forecast data from a number of storms 

across a number of locations which coincides directly with the six hour NHC forecast 

advisory timeline, and we explicitly address the costs of evacuation in a household’s 

evacuation decision.  Our research then serves as a contrast to the existing models of 

hurricane evacuation behavior by utilizing a theoretically-driven dynamic modeling 

approach that provides a more realistic interpretation to the multi-period evacuation 

decision process through the use of forecast and evacuation cost data, thereby helping to 

further bridge the knowledge gap between hurricane forecasts and evacuation timing 

behaviors.   
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II. WILLINGNESS-TO-PAY BIAS IN DICHOTOMOUS CHOICE SURVEYS 

 
II.I.  Introduction 

The implementation by researchers of a double-bound dichotomous choice (DB-

DC) contingent valuation methodology (CVM) over a single-bound dichotomous choice 

(SB-DC) CVM suggests incentive incompatible respondent behavior, which leads to 

biased (typically downward) willingness-to-pay (WTP) estimates (Carson, et al., 2000).  

Various specifications exist for researchers to attempt to identify respondent true WTP by 

accounting for this apparent shift of respondents’ latent true WTP between responses to 

the first and second bid amounts, including models of structural shift (Alberini et al., 

1997) and starting-point bias (Herriges and Shogren, 1996).  This paper develops a 

respondent model of Bayesian updating for a DB-DC CVM that is used to demonstrate 

how existing identifications of unbiased respondent WTP may often fail.  However, we 

also show that a simple extension of the structural shift model, which is derived explicitly 

from our Bayesian updating behavioral model, can correct for much of the WTP bias.  

While CVM respondents have been frequently modeled as Bayesian updaters 

(Horowitz, 1993; Herriges and Shogren, 1996; McLeod and Bergland, 1999; Whitehead, 

2002; Flores and Strong, 2004; and Aadland et al., 2005), updating in a DB-DC CVM is 

typically restricted to the asking of the second bid amount3.  If rational respondents are 

updating due to the second bid amount, we believe it is also reasonable to expect rational 

respondents to be updating to the first bid amount, and we therefore develop a respondent 

model of Bayesian updating to allow for this.  Consequently, our model of respondent 

                                                 
3 Aadland et al. (2005) is an exception to this in the DB-DC case, allowing updating on both the first and 
second bid amounts. 
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Bayesian updating behavior may be interpreted as an extension of the traditional starting-

point bias models where respondents do not update prior to responding to the first bid 

amount.   

Using our respondent model of Bayesian updating behavior, we derive structural 

shift specifications to allow for the identification of respondent true WTP in a DB-DC 

CVM given updating on the second bid amount only, as well updating on both bid 

amounts.  These specifications are comparable to the traditional structural shift model of 

Alberini et al., (1997) which only includes a dummy variable for the asking of the second 

bid amount   We show that even if respondent Bayesian updating is restricted only to 

occur with the asking of the second bid amount, the correct structural shift specification 

in this context includes an additional term that is a function of the second bid amount.  

When respondents Bayesian update on both bid amounts, we show that the correct 

structural shift specification in this context includes additional terms that are functions of 

the first and second bid amounts, and true WTP from the correctly specified structural 

shift model is not identifiable. 

 In order to demonstrate the extent of WTP bias in a respondent Bayesian updating 

context for the two identifiable structural shift models (the traditional model with only 

the dummy variable for the asking of the second bid amount, and the model we specify 

that also includes a term that is a function of the 2nd bid amount), we simulate 

respondents updating on the second bid amount only, as well updating on both bid 

amounts.  Our simulations show that the traditional structural shift estimation produces 

biased estimates of the true WTP when researcher and respondent prior beliefs of the true 

WTP are not congruent, a result that places a heavy emphasis on the precision of the 
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survey pre-test and bid selection.  Furthermore, this specification consistently produces 

biased estimates of the standard deviation of WTP.  Conversely, our simulations show 

that the incorporation of the term that is a function of the 2nd bid amount can correct for 

much of the WTP bias and standard deviation of WTP bias generated, except at high 

levels of respondent updating.  Moreover, an empirical application of both of the 

identifiable structural shift models to the Alaska Exxon Valdez DB-DC dataset confirms 

the simulation outcomes, with the key result being that our simple extension of the 

traditional structural shift model is significantly different from zero.                              

 Given the continued use of DB-DC CVMs by researchers and practitioners, as 

well as the persistent notion that respondents are in fact uncertain about their true WTP 

(see, e.g., Li and Mattsson, 1995; Ready et al, 1995; Cameron and Englin, 1997; Wang, 

1997; Loomis and Ekstrand, 1998; Park, 2003), our results are noteworthy.  Indeed, a 

practical solution is offered that identifies true WTP for uncertain respondents that are 

rationally acting as Bayesian updaters in a DB-DC CVM (certainly for those suspected of 

only updating on the second bid amount).  The results also advise caution to the 

perception that respondents are acting strategically toward the asking of the second bid 

amount (Carson, et al., 2000), or as Aadland et al. (2005) state that, “Once one takes this 

Bayesian perspective of WTP formation, the recent discussion of the incentive 

incompatibility of DB-DC formats changes markedly.”       

 This paper is organized as follows: Section II outlines the respondent Bayesian 

updating model; Section III discusses the identification of true WTP given the Bayesian 

framework; Section IV provides an overview of the data simulation; Section V presents 
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the results of the estimation; Section VI applies both of the identifiable structural shift 

models to the Alaska DB-DC dataset ; and Section VII provides concluding comments. 

 

II.II.  Respondent Bayesian Updating Model 

 Each of the ith individual DB-DC CVM respondents has WTPi consisting of two 

components 

 
i i

WTP θ µ= +  [1] 

where θ is an unknown component that is common to all respondents, and µi is a known, 

idiosyncratic component.  A possible interpretation of [1] is that respondent i knows he 

values the natural resource that is the focus of the CVM by more or less than the average 

person, by an amount µi.  In this interpretation, the expectation over all individuals is 

simply E(µ) = 0.  Although respondent i does not know θ, he holds prior beliefs that it is a 

draw from a normal distribution with mean 
i

θ  and variance 2

θσ .   

Let bi1 and bi2 denote the first and second bid amounts offered to respondent i as 

per the DB-DC CVM standard protocol.  Given respondent i's WTP uncertainty, he 

interprets each of the j = 1,2 offered bids as a signal of the true value of θ such that he 

believes 

 ( )ij ij ij
b θ α ε= + +  [2] 

where αij is a constant known by individual i, and he assumes that ( )20,
ijij

N εε σ∼ .  That 

is, he interprets 
ij ij

b α−  as independent and unbiased signals of θ.     
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 From [1], respondent i's prior belief of WTPi is that it is normally distributed with 

mean 
i i

θ µ+  and variance 2

θσ .  Let WTPij denote E(WTPi) after receiving j offered bids. 

Then, 0i i i
WTP θ µ= + .  Using standard Bayesian formulae for normal conjugates4, i's 

posterior beliefs of WTPi after receiving the first bid, bi1, is normal with mean       

 
( )

( )

( )
1

1 1

2 2

1 1

1 2 2 2 2

i

i i

i i i

i i

b
WTP

ε θ

θ ε θ ε

θ σ α σ
µ

σ σ σ σ

⋅ − ⋅
= + +

+ +
 [3] 

and variance 

 
( )

1

1

2 2

2

1 2 2

i

i

i

θ ε

θ ε

σ σ
σ

σ σ

⋅
=

+
 [4] 

Given that the respondent is updating on both bid amounts under the reasonable 

assumption that they interpret both bids as being independent, when receiving the second 

bid, bi2, [3] and [4] become i's prior beliefs such that the posterior beliefs after hearing bi2 

are also normal with mean 

 
( )

( )
( )

( )
2

2 2

2 2
1 2 2 1

2 2 2 2 2

1 1

i

i i

i i i i i

i i

i i

WTP b
WTP

ε

ε ε

µ σ α σ
µ

σ σ σ σ

− ⋅ − ⋅
= + +

+ +
 [5] 

and variance 

  

 
( )

2

2

2 2

12

2 2 2

1

i

i

i

i

i

ε

ε

σ σ
σ

σ σ

⋅
=

+
 [6] 

Substituting for ( )1i iWTP µ−  and 2

1iσ  in [5] and [6] from [3] and [4], [5] and [6] can be 

rewritten such that  

                                                 
4 While other Bayesian updating representations could ostensibly be used, the normal conjugate 
importantly allows for tractable results 
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( ) ( )

( ) ( ) ( )
( ) ( )( ) ( )( )

( ) ( )( )
2 11

1 2 2 1 1 2 2 1

2 2 22 2

1 12 2

2 2 2 2 2 2 2 2 2 2 2

i ii

i i i i i i i i

i i ii i

i i

bb
WTP

ε θ εθ ε

θ ε ε ε ε θ ε ε ε ε

σ α σ θ σα σ σ
µ

σ σ σ σ σ σ σ σ σ σ

− +− ⋅
= + +

+ + + +

    [7] 

and  

 
( ) ( )( )

1 2

1 2 2 1

2 2 2

2

2 2 2 2 2 2

i i

i i i i

i

θ ε ε

θ ε ε ε ε

σ σ σ
σ

σ σ σ σ σ

⋅ ⋅
=

+ +
 [8] 

 

Using 0i i i
WTP θ µ= + , [3] and [7] can be simplified further to  

 
( )

( )
1

2

1 1

1 0 2 2

i

i i i

i i

b
WTP WTP

θ

θ ε

α θ σ

σ σ

− − ⋅
= +

+
 [9] 

and 

 
( )( )( ) ( )( )( )

( ) ( )( )
1 2

1 2 2 1

2 2 2 2

2 2 1 1

2 0 2 2 2 2 2

i i

i i i i

i i i i i i

i i

b b
WTP WTP

θ ε θ ε

θ ε ε ε ε

α θ σ σ α θ σ σ

σ σ σ σ σ

− − + − −
= +

+ +
 [10]  

 

II.III.  Identification of True WTP 

 In conducting a CVM, the goal of the researcher is to obtain the respondent’s 

prior beliefs of WTP, WTPi0.  For example, as Herriges and Shogren (1996, pg. 117) 

note, “... it is the household’s prior held beliefs that the policymaker should be interested 

in, not the posterior WTP estimates that are artificially influenced by an optimal bid 

design.”  Therefore, we consider the ability to identify a respondent’s true WTP, WTPi0, 

from our Bayesian updating framework for the three different possible respondent 

signaling perspectives of our model: 1) neither bid provides a signal; 2) only the 2nd bid 

provides a signal; or 3) both bids provide a signal.  
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Neither Bid Provides A Signal 

If respondent i believes that neither of the j = 1,2 offered bids contains a signal, 

then 2

ijεσ → ∞ .  If this is the case, then from [9] and [10], 2 1 0i i i
WTP WTP WTP= = .  

Therefore, true WTP can be identified from the responses to both questions by DB-DC 

estimation with associated efficiency gains over estimation using only responses to the 

first bid amount (Hanemann et al., 1991).     

 

2nd Bid Only Provides A Signal 

If it is the case that respondent i believes that information concerning θ is 

contained in the second bid only, then
1 2

2 2 and 
i iε εσ σ→ ∞ < ∞ .  From  [9] we see that 

1 0i i
WTP WTP= .  However, in this case WTPi2 does not follow from [10], as [3] and [4] no 

longer represent respondent i's prior beliefs when they receive bi2.  Instead, respondent i 

has prior beliefs with mean 
i

θ  and variance 2

θσ  when they receive bi2.  Thus, again using 

standard Bayesian formulae for normal conjugates, i's posterior beliefs of WTPi after 

receiving bi2 is normal with mean     

 
( )

( )

( )
2

2 2

2 2

2 2

2 2 2 2 2

i

i i

i i i

i i

b
WTP

ε θ

θ ε θ ε

θ σ α σ
µ

σ σ σ σ

⋅ − ⋅
= + +

+ +
 [11] 

which, again using 0i i i
WTP θ µ= + , can be simplified further to 

 
( )

( )
2

2

2 2

2 0 2 2

i

i i i

i i

b
WTP WTP

θ

θ ε

α θ σ

σ σ

− − ⋅
= +

+
 [12] 

In this case, it therefore follows from [9] and [12] that 2 1 0i i i
WTP WTP WTP≠ = .   

Consequently, WTP estimates derived from the responses to the first bid are able to 



 17 

provide a consistent estimation of true WTP, but estimates derived from responses to 

both bids will be inconsistent unless an adequate control for the second response is 

introduced.   

Alberini et al.’s (1997) structural shift dummy variable, adapted to our notation, is 

specified as 

 
1 0

2 0

i i i

i i i i

WTP WTP

WTP WTP

η

δ η

= +

= + +
 [13] 

where δi is the coefficient on a structural shift dummy variable that takes on the value one 

for responses to the second question.  However, it is clear from [12] that the correct 

specification in a Bayesian updating context should also include an interaction term 

between δi and the magnitude of bi2 
5, that is   

 
( ) ( )

1 0

2 0 2 2

i i i

i i i i i i i i

WTP WTP

WTP WTP b

η

α θ δ δ η

= +

′ ′= − + + +
 [14] 

where ( )
2

2 2 2/
ii θ θ εδ σ σ σ′ = + .  Because 

i2

2 2

2 ,  ,   and i i θ εα θ σ σ  are not observable, 

( )2  and 
i i i i

α θ δ δ′ ′− + are two individual-specific parameters.  Assuming they are common 

to all individuals (Alberini et al., 1997) such that 
i

δ δ′ = , yields the system   

 
( )

1 0

0 1

2 0 2 2 2

i i i

i i i i

WTP WTP

WTP WTP I I b

η

δ δ η

= +

= + + +
 [15] 

where I2 is a dummy variable indicating the asking of the second bid amount.  From [15] 

we see that in a respondent Bayesian updating context, the correct structural shift 

specification is dependent upon the size of the second bid amount.  Therefore, true WTP 

                                                 
5 Alberini et al. (1997, pg. 319) note that “δ could also be a function of additional explanatory variables 
including the cost amount or the change in cost amounts.” 
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is able to be identified from the responses to both questions with the appropriate dummy 

variable specification by stacking the data and estimating a conventional single-bound 

model (SB-DC) that has two observations for each respondent.      

  

Both Bids Provide A Signal 

Finally, if it is the case that respondent i believes that information concerning θ is 

contained in both bid amounts, then
1 2

2 2 and 
i iε εσ σ< ∞ < ∞ .  If this is the case, from [9] 

and [10] we have 2 1 0i i i
WTP WTP WTP≠ ≠ .  Consequently, unbiased estimates of WTP will 

only be able to be derived if an adequate control for both responses is implemented in the 

estimation.   

Again, adapting Alberini et al.’s (1997) structural shift dummy variable to our 

notation with respondent updating on both bid amounts we have that 

 
1 0 1

2 0 2

i i i i

i i i i

WTP WTP

WTP WTP

δ η

δ η

= + +

= + +
 [16]   

where δi1 is a coefficient on a structural shift dummy variable that takes on the value one 

for responses to the first question, and δi2 is a coefficient on a structural shift dummy 

variable that takes on the value one for responses to the second question.  Allowing the 

δi’s to be functions of the bid amounts (which naturally follows from our respondent 

Bayesian updating context as per the second term on the right-hand side of both [9] and 

[10]) [16] can now be specified as  

 
( ) ( )

( ) ( ) ( ) ( )

1 0 1 1 1 1

2 0 2 2 2 2 1 2 2 1

i i i i i i i i

i i i i i i i i i i i i i

WTP WTP b

WTP WTP b b

α θ δ δ η

α θ δ δ α θ δ δ η

′ ′= − + + +

′ ′ ′′ ′′= − + + − + + +
 [17] 
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where ( )
1

2 2 2

1 /
ii θ θ εδ σ σ σ′ = + , ( ) ( ) ( ) ( )( )

1 1 2 2 1

2 2 2 2 2 2 2

2 /
i i i i ii θ ε θ ε ε ε εδ σ σ σ σ σ σ σ′ = + + , and 

( ) ( ) ( ) ( )( )
2 1 2 2 1

2 2 2 2 2 2 2

2 /
i i i i ii θ ε θ ε ε ε εδ σ σ σ σ σ σ σ′′ = + + .  Assuming the individual-specific 

parameters are common to all individuals, the following system is specified 

 
( )

( ) ( )

0 1

1 0 1 1 1

2 3 4 5

2 0 2 2 2 2 2 1

i i i i

i i i i i

WTP WTP I I b

WTP WTP I I b I I b

δ δ η

δ δ δ δ η

= + +

= + + + + +
 [18] 

There are restrictions on these parameters, for example, if 2 3 4 5

1 2 , then / /
i i

α α δ δ δ δ= = .  

But despite these potential restrictions, it is clear that WTPi0 cannot be identified.   

  

For the three different possible respondent signaling perspectives of our Bayesian 

updating model, we have shown that the identification of true WTP is only possible for 

two of them given that the appropriate WTP estimation model has been specified.  Since 

in conducting a CVM it is the goal of the researcher to obtain the respondent’s true WTP, 

it is essential to understand the extent of bias (and if possible to correct for it) inherent in 

the estimated WTP if it is the case that respondents are updating on both bids and the 

researcher cannot specify the correct WTP estimation model, or where respondents are 

only updating on the second bid but the researcher has specified a WTP estimation model 

that does not contain the appropriate dummy variable specification.           

 

II.IV.  Data Simulation 

In order to demonstrate the extent of WTP bias in a respondent Bayesian updating 

context for the two identifiable structural shift models (the traditional model, [13], and 

our extension of this model, [15]), we simulate respondents updating on the second bid 
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amount only, as well updating on both bid amounts.  Faced with a randomly selected bid 

amount, a CVM respondent will say yes to bij when WTPij is greater than bij, and no when 

it is less.  Therefore, in a DB-DC CVM when respondents are updating on bi2 only, 

yes/no responses are generated according to: 

 

( )

( )

( )

( )

2
2 2

2 2

2

2
2 2

2 2

2

2 0 2
1 0 1

1 2

1 0 1
2 0 2
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i
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i i i

i i
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WTP WTP b
WTP WTP b
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WTP WTP b WTP WTP b

θ
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θ

θ ε

α θ σ

σ σ

α θ σ

σ σ

− − ⋅

+

− − ⋅

+

 = + >
= > 

= = 
= <  = + <
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where 0i i i
WTP θ µ= + .  And, when respondents are updating on both bi1 and bi2, yes/no 

responses are generated according to: 
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where 0i i i
WTP θ µ= + .   

We specify our values for 2 2, , , , ,  and 
iji i ij ij

bθ εθ µ σ α σ  as summarized in Table 1.6  

For each of the eight specified 
1iεσ  values, per each of the three specified bi1 mean values 

of Table 1, we generate 1000 samples each of sample size 1000.  Given the generated 

sample data, yes/no responses follow from [19] and [20].   Figure 1 provides an example 

of generated DB-DC yes/no responses for an illustrative respondent that does not 

                                                 
6 Typical CVM initial bids are centered around a single value with specified increments (e.g., 25, 50, 75, 
100, 125, 150, 200).  We have not specified any such increments in drawing our initial bids from a normal 
distribution.  We do not feel this comprises the analysis.   
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Bayesian update on either bid, updates on the second bid only (
2

2 10
iεσ = ), and updates 

on both bids (
1 2

2 210,  and 10
i iε εσ σ= = ).     

 

II.V.  Estimation and Results 

In addition to the generated DB-DC yes/no responses and associated bid amounts 

from the data simulation, an intercept (the only independent variable used in order to 

represent WTPi) and the appropriate bi2 dummy variable(s) from [13] and [15] complete 

the datasets to be estimated.  The introduction of the structural shift dummy variable(s) 

requires the data to be stacked, and therefore maximum likelihood estimation of WTP 

follows from the conventional SB-DC model of Cameron and James (1987), but with two 

observations for each respondent.  We perform probit and logit maximum likelihood 

estimation for the 1000 samples for each specification.  Because probit and logit 

simulations are qualitatively similar, only logit estimation results are presented below.       

 

Structural Shift Model with only the Dummy Variable for the Asking of the Second Bid 

 Figures 2(a) and 2(b) illustrate the results from  [13] for the estimated mean WTP 

and standard deviation of WTP respectively, when the initial bid value is drawn from a 

normal distribution that is centered on the true WTP of 100, and the respondents are 

updating on both bid amounts.  Estimates of the 97.5 and 2.5 percentiles of mean WTP 

and standard deviation of WTP are also illustrated in Figures 2(a) and 2(b) respectively as 

a measure of the variability of these estimates across the eight specified 
1iεσ  values7.  

                                                 
7 Results for 

1iε
σ = 1000 are not shown but are approximate to the results for 

1iε
σ = 100.  
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Furthermore, although the results presented are based upon the simulated responses to 

both bid amounts, for high levels of 
1iεσ  (denoted sig eps_1 in the figures) along the x-

axis, the results can be interpreted as respondents updating only on the second bid 

amount.  In this way, the figures simultaneously present the results for the estimated 

mean WTP, standard deviation of WTP, and the associated 97.5 and 2.5 percentiles in 

both of the respondent Bayesian updating contexts.8   

While Figure 2(a) shows that the results of estimated mean WTP are unbiased9 vs. 

the true value of 100, Figure 2(b) indicates that the estimated standard deviation of WTP 

is biased upward vs. the true value of 20 for all levels of 
1iεσ .  These general bias results 

hold whether the respondent is updating on either both bid amounts, or only the second 

bid amount.  However, the upward bias of the standard deviation of WTP becomes larger 

as less updating is occurring on the first bid amount.  Additionally, while the variability 

of the estimates of mean WTP remains relatively constant over the specified levels of 

1iεσ , the variability of the estimates of standard deviation of WTP increases with higher 

levels of 
1iεσ (i.e., with less updating on the first bid amount).  Therefore, in the case 

where researchers select initial bid amounts from a distribution that is centered on 

respondent’s prior beliefs of true WTP = 100, unbiased estimates of mean WTP with 

relatively constant variability are generated, although the standard deviation of the these 

estimates is biased upward with both the bias and the variability of the standard deviation 

estimates increasing as respondents update less on the first bid amount.     

                                                 
8 This is true for all of the other estimation figures associated with this model, namely Figures 3(a) and 3(b) 
 
9 T-tests at the 1% level are used to confirm the presence of bias for all estimation results of mean WTP and 
standard deviation of WTP unless otherwise noted. 
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But what about the case where researchers prior beliefs of true WTP do not match 

to those of respondents, a case that seems to be more likely to occur in the 

implementation of a CVM?  Figures 3(a) and 3(b) illustrate the results from  [13] for the 

estimated mean WTP and standard deviation of WTP respectively when the initial bid 

value is drawn from a normal distribution that is not centered on the true WTP, i.e., 50 < 

100, and the respondents are updating on both bid amounts10.  In this case, both the 

estimates of the mean WTP and the standard deviation of WTP are biased when 

respondents are updating on both bid amounts, and also when respondents are updating 

only on the second bid amount.  From Figure 3(a) we see that for strong updating on both 

bid amounts (low levels of 
1iεσ ), mean WTP is biased downward from true WTP = 100 

with little variability in the estimates.  In fact, for complete updating on the first bid 

amount (
1iεσ =0), estimated WTP is the mean of the bid distribution = 50.  However, with 

less updating on the first bid amount, estimated mean WTP is biased upward from true 

WTP = 100 and contains more variability in the estimates.  Estimated standard deviation 

of WTP is again biased upward vs. the true value of 20 for all levels of 
1iεσ , but in this 

case the upward bias and variability of the standard deviation estimates are more constant 

over the specified levels of 
1iεσ .     

To better understand the source of the bias, Table 2 illustrates the shifts in the 

percentages of Yes-Yes, Yes-No, No-Yes, and No-No responses between respondents not 

updating on either bid, and those updating on both bids when 
1iεσ =2 and 

2iεσ =10.  When 

respondents do not update on either bid presented to them, and given that the presented 

                                                 
10 The opposite mean WTP graph is produced when the initial bid value is drawn from a normal distribution 
with mean exceeding the true WTP, i.e., 150 > 100  
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initial bid value is drawn from a normal distribution that is not centered on the true WTP, 

i.e., 50 < 100, more than 90% of the DB-DC responses fall into either the Yes-Yes or 

Yes-No vote categories as would be expected.  Due to the high levels of Yes votes in this 

non-updating scenario, responses primarily fall into bounded intervals only above the 

initial bid amount = 50, and estimated mean WTP is able to move to the true WTP = 100.  

However, when respondents are updating (relatively strongly) on both bid amounts, there 

is a remarkable decrease in Yes-Yes votes and corresponding increase in No-Yes and No-

No votes.  As can be inferred from the Bayesian updating example of Figure 1, for strong 

enough updating as well as relatively close true WTP and initial bid amounts, initial yes 

responses in a non-updating context are easily reversed.  Therefore, responses no longer 

primarily fall into bounded intervals only above the initial bid amount = 50, and 

estimated mean WTP is not able to approach true WTP = 100.   

These overall estimation results for the traditional structural shift model indicate 

that, in a respondent Bayesian updating context, this model fails to generate unbiased 

estimates of mean WTP unless the initial bid amount is centered on respondent’s prior 

beliefs.  Unfortunately, achieving initial bid amounts that are centered on respondent’s 

prior beliefs is a case that would appear to be seemingly rare in practice, or at the very 

least places a heavy burden on the typical CVM pre-test.  That is, it is reasonable to 

assume that pre-test respondents would also be Bayesian updating, and therefore results 

from a pre-test would not provide any further insight into how to adjust the bid amounts 

to be centered on respondent’s prior beliefs of what is true WTP.  Moreover, these overall 

estimation results for the traditional structural shift model indicate that, in a respondent 
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Bayesian updating context, this model always fails to generate unbiased estimates of the 

standard deviation of WTP.       

 
Structural Shift Model that also Includes a Term that is a Function of the Second Bid 

Figures 4(a) and 4(b) illustrate the results from  [15] for the estimated mean WTP 

and standard deviation of WTP respectively when the initial bid value is drawn from a 

normal distribution that is centered on the true WTP of 100, and the respondents are 

updating on both bid amounts.  Estimates of the 97.5 and 2.5 percentiles of mean WTP 

and standard deviation of WTP are also illustrated in Figures 4(a) and 4(b) respectively as 

a measure of the variability of these estimates across the eight specified 
1iεσ  values11.  

Furthermore, although the results presented are based upon the simulated responses to 

both bid amounts, for high levels of 
1iεσ  (denoted sig eps_1 in the figures) along the x-

axis, the results can be interpreted as respondents updating only on the second bid 

amount.  In this way, the figures simultaneously present the results for the estimated 

mean WTP, standard deviation of WTP, and the associated 97.5 and 2.5 percentiles in 

both of the respondent Bayesian updating contexts.12     

While Figure 4(a) shows that the results of estimated mean WTP are still unbiased 

vs. the true value of 100, Figure 4(b) indicates that the previous bias in the standard 

deviation of WTP = 20 from the traditional structural shift model of Figure 2(b) has 

dissipated.  Furthermore, the variability of both the estimated mean WTP and standard 

deviation of WTP has decreased significantly as evidenced by the tighter 97.5 and 2.5 

                                                 
11 Results for 

1i
ε

σ = 1000 are not shown, but are approximate to the results for 
1i

ε
σ = 100.  

 
12 This is true for all of the other estimation figures associated with this model, namely Figures 5(a) and 
5(b) 
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percentile lines.  However, we do start to see evidence of increased variability of mean 

WTP estimates, as well as evidence of bias and increased variability of estimates for the 

standard deviation of WTP for high levels of updating on bid 1 (low levels of 
1iεσ )13.  

These results at the least therefore indicate that this specification does a better job then 

the traditional structural shift model in producing unbiased estimates of the standard 

deviation of WTP when it is believed that respondents update only on the second bid 

amount.   

    Figures 5(a) and 5(b) illustrate results from [15] for the estimated mean WTP 

and standard deviation of WTP respectively when the initial bid value is drawn from a 

normal distribution that is not centered on the true WTP, i.e., 50 < 100, and the 

respondents are updating on both bid amounts.  Contrasting Figures 5(a) and 5(b) with 

Figures 3(a) and 3(b) we clearly see the improvement in reduced bias over the traditional 

structural shift model for both the estimates of mean WTP and the standard deviation of 

WTP.  We also see improvements in the variability of both the estimated mean WTP and 

standard deviation of WTP as evidenced by the tighter 97.5 and 2.5 percentile lines.  We 

again, however, start to see evidence of increased variability of mean WTP estimates, as 

well as evidence of bias and increased variability of estimates for the standard deviation 

of WTP for high levels of updating on bid 1 (low levels of 
1iεσ )14.        

                                                 
13 Convergence issues at these low levels (i.e., 

1i
ε

σ < 10) prevent us at this time from making a more 

definitive statement concerning bias and depicting the results graphically.  
  
14 Convergence issues at these low levels (i.e., 

1i
ε

σ < 10) prevent us at this time from making a more 

definitive statement concerning bias and depicting the results graphically.   
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These overall estimation results for the structural shift model we specify that also 

includes a term that is a function of the 2nd bid amount indicate that in a respondent 

Bayesian updating context, unbiased and less variable estimates of mean WTP and 

standard deviation of WTP can be generated.  The results certainly hold well for the case 

where respondents are only updating on the second bid amount as is typically perceived 

in the DB-DC CVM literature.  For the case where respondents are updating on both bids, 

even though there is some indication of bias for high levels of updating on bid 1, obvious 

improvement over the traditional structural shift model in terms of reduced bias estimates 

of mean WTP and standard deviation of WTP is demonstrated.    

 

Investigating Respondent Strategic Behavior 

DB-DC WTP bias from a structural shift model is typically indicated as being 

downward due to the estimated negative δ coefficient (Alberini et al., 1997; Whitehead, 

2002).  Furthermore, Carson et al. (2000) have discussed various strategic behavior 

theories as to how agents may interpret this second price signal in order to explain the 

WTP downward bias.  We show, in fact that it is the asymmetry induced by the standard 

DB-DC CVM protocol of halving bi1 for an initial no response, and doubling bi1 for an 

initial yes response that generates the negative δ coefficient in a respondent Bayesian 

updating context, not necessarily respondent strategic behavior.   

Table 3 presents results from two different estimations of  [13] when the initial 

bid value is drawn from a normal distribution that is centered on the true WTP of 100, 

and the respondents are updating on both bid amounts with 
1 2

2 225,  and 10
i iε εσ σ= = .  In 

the first estimation, bi2 is generated by halving bi1 for an initial no response, and doubling 
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bi1 for an initial yes response (the standard DB-DC CVM protocol).  In the second 

estimation, bi2 is generated as (bi1 – 60) for an initial no response, and (bi1 + 60) for an 

initial yes response.  We do generate a (-) δ coefficient in the standard halving/doubling 

bi2 generation, but the (-) δ coefficient disappears in our [bi1 (+)/(–) 60] estimation.  

Clearly, respondent strategic behavior cannot be inferred simply from the generation of a 

(-) δ coefficient for a DB-DC CVM where bi2 is generated by halving bi1 for an initial no 

response, and doubling bi1 for an initial yes response and respondents are acting as 

Bayesian updaters.       

 Our simulation results already presented in Figures 2(a) – 5(b) have all assumed 

the respondent’s known constant of the signal, 
ij

α , from  [2] to equal 0.  If believing that 

respondents are in fact acting strategically similarly to one of the Carson et al. (2000) 

strategic behavior theories, allowing 
ij

α  ≠ 0 allows for investigation of bias in this 

strategic behavior context.  For example, if respondents feel that the researcher has 

placed them into a bargaining situation they will feel that the bij presented to them has 

been purposefully inflated.  In this case, 
ij

α  < 0 in order to counteract the perceived bid 

inflation.   

 Figures 6(a) – 7(b) present mean WTP simulation results15 with 
ij

α  = -20 for both 

structural shift identifications of [13] and [15], as well as where bi1 = true WTP = 100 and 

where bi1 = 50 < true WTP = 100.  In this strategic behavior context, we now see upward 

bias being generated for the case where researcher priors are compatible with respondent 

                                                 
15 Standard deviation of WTP graphical results are not presented, but are still biased as was the case where 

ij
α  = 0. 
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priors of true WTP =100 as shown by Figure 6(a).  The structural shift specification 

including the term for bi2 still appears to be able to correct for the generated bias as 

shown by Figure 7(a), although not at as low of levels of 
1iεσ  as when 

ij
α  = 0.  These 

results indicate that the specification of  [15] is even more important in a possible 

strategic behavior Bayesian updating context.                              

 

II.VI.  Empirical Application 

 Carson et al. (1992) conducted a DB-DC CVM for the State of Alaska in order to 

obtain a WTP value “to prevent another Exxon Valdez type oil spill”.  Median WTP = 

$31 was estimated from respondents’ answers to both CVM questions using an interval 

DB-DC model assuming a Weibull distribution.  As a check on the sensitivity of the 

estimated DB-DC median WTP value, median WTP = $41 was also estimated from 

answers to the first question only using a SB-DC model assuming a log-normal 

distribution.  Given the disparity between the SB-DC and DB-DC WTP estimates, they 

conclude that a slight downward bias exists between respondents’ answers to only the 

first bid amount and answers to both bid amounts.  Indeed, Carson et al. (2003) note that 

the structural shift model of Alberini et al. (1997) could be used to account for this 

downward bias.  We therefore use the Alaska dataset to estimate WTP from the two 

identifiable structural shift models of this paper (the traditional model, [13], and our 

extension of this model, [15]). 

Table 4 presents the maximum likelihood estimates following from the 

conventional SB-DC model of Cameron and James (1987) using the Alaska study 

responses to the first bid amount only.  Additionally, Table 4 presents the maximum 
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likelihood estimates for the two identifiable structural shift models of [13] and [15] using 

the Alaska study responses to both bid amounts with the data being stacked to account for 

the introduction of the structural shift dummy variable(s).  Only an intercept and the 

appropriate bi2 dummy variable(s) from [13] and [15] are used in the estimation, and a 

log-normal distribution has been assumed in order to follow the results of Carson et al. 

(1992).     

 Our SB-DC estimation produces an estimate of 3.73 for the intercept, equating to 

a median WTP16 = $41.58, with the standard deviation of WTP estimated at 3.15.  This 

WTP result closely mirrors the median WTP = $41.44 of Carson et al. (1992).  The 

traditional structural shift model of [13] produces an estimate of 4.18 for the intercept, 

equating to median WTP = $65.54, and 19.73 for the standard deviation of WTP.  Also, 

although a negative coefficient is generated for the 2nd question dummy variable, it is 

significant only up to the 10% level.  The structural shift model of [15] that we specify 

that also includes a term that is a function of the 2nd bid amount produces an estimate of 

3.83 for the intercept, equating to median WTP = $46.14, and 7.01 for the standard 

deviation of WTP.  Importantly, the additional term that is a function of the 2nd bid 

amount is significant at the 1% level.   A standard likelihood ratio test between [13] and 

[15] indicates that [15] in fact fits the Alaska data better.   

 This empirical application demonstrates, similar to our simulations, that if one 

believes respondents are only updating on the second bid amount and hence true WTP is 

represented by SB-DC estimates, than the structural shift model of [15] does a better job 

of estimating a less biased true WTP when utilizing a DB-DC CVM approach compared 

                                                 
16 Given the log-normal distribution, median WTP = exp(βx’) with βx’ being the intercept.  
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to the traditional structural shift model of [13].  Of course, if respondents are updating on 

both bid amounts, true WTP may not be identifiable as has been shown. 

     

II.VII. Conclusions 

  We have shown why existing structural shift models used to estimate unbiased 

WTP from a DB-DC CVM are theoretically incapable of doing so in a Bayesian updating 

context due to misspecification and identification issues.  Through our data simulations 

we have demonstrated the extent of the WTP bias when the identifiable, yet misspecified 

structural shift model is used.  The results are most serious when researcher and 

respondent prior beliefs of true WTP are not congruent.  We suggest a more properly 

specified structural shift model following from the respondent Bayesian updating 

behavioral model that includes an additional term that is a function of the second bid 

amount.  Our data simulations show that this specification can correct for much of the 

potential WTP bias.  An empirical application to the Alaska Exxon Valdez DB-DC 

dataset confirms the simulation outcomes, with the key result being that our simple 

extension of the traditional structural shift model is significantly different from zero. 

The results of the paper also offer an alternative to the perception that respondents 

act strategically in a DB-DC CVM, and that their responses are not incentive compatible 

between questions.  Rather, uncertain respondents act rationally by incorporating 

information signaled to them through both of the presented bid amounts.  Not accounting 

for this possibility in the structural shift estimation leads to biased estimates of the 

respondent’s true WTP.              
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Table II.1. Specified Values for 2 2, , , , ,  and 
iji i ij ij

bθ εθ µ σ α σ  Used In the Data Simulation 

 

Category Variable SpecifiedValue 

i
θ  100  i∀  

WTPi0 
i

µ  ~N(0,σ) and σ=20 

Standard Deviation 
of Prior Beliefs θσ  20  

Signal known 
constant ij

α  0  

1iεσ  1000, 100, 50, 25, 10, 5, 2, 0 
Strength of 
Updating 

2iεσ  10 

bi1 ~N(100,σ), ~N(50,σ), ~N(150,σ) and σ=30 
Bids 

bi2 (bi1)*2, or (bi1)*1/2 for yes or no to bi1 respectively 

 

 
 

Table II.2. % of YY, YN, NY, NN Responses for 2 0 2 2i i i
WTP WTP Iδ η= + +  

DB-DC  
Response 

No 
Updating 

Updating on  
Both Bids 

YY 50% 8% 

YN 42% 43% 

NY 8% 34% 

NN 0% 15% 
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Table II.3.  δ Coefficient Results For Halving/Doubling, And (+)/(-) 60 bi2 Generation 
 

 
Estimates 

halving/doubling 
Estimates 
(+)/(-) 60 

WTP 100.1 100.0 

δ -18.9 0.2 

σ 93.7 135.3 

 
 
 
 
 

Table II.4: Alaska Study Maximum Likelihood Estimates 
 

Parameter SB-DC 
Traditional  

Structural Shift 
Structural Shift  

with Bid Interaction 
    

intercept 
3.7276 
(29.91) 

4.1827 
(5.064) 

3.8316 
(13.784) 

    

δ
0  

-7.7975 
(-1.723) 

-4.1345 
(-4.232) 

    

δ
1   

0.0216 
(4.606) 

    

σ 
3.1493 
(7.293) 

19.7323 
(1.785) 

7.0067 
(3.886) 

    

    

log L -695.52 -1400.00 -1392.07 

n 1043 2086 2086 

 
 Note: t-statistics are in parenthesis 
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Figure II.1.  An Example of Generated Yes/No Responses Based Upon No Bayesian 
Updating, Updating on the Second Bid Only, and Updating on Both Bids for a Single 

Respondent 
 

 

 

 
 

Yes/No Results:          Bid 1            Bid 2 
Non-Bayes     1      1 
Bayes (both)       1       0 

Bayes (2nd)       1      0 
 

Non-Bayes 
96 > 46 

Yes 

Bayes (both bids) 
WTPi1 = 54 > 46 

Yes 

Bayes (2nd bid) 
WTPi1 = 96 > 46 

Yes 

WTPi0 = 96, bi1 = 46 

bi2 = (46)*(2) = 92 

Bayes (2nd bid) 
WTPi2 = 91 < 92 

No 

Bayes (both bids) 
WTPi2 = 70 < 92 

No 

Non-Bayes 
96 > 92 

Yes 
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 Figure II.2. Simulation results for 2 0 2 2i i i
WTP WTP Iδ η= + + , where 

E(bi1)=E(WTPi0)=100.  (a) Mean WTP, (b) Standard Deviation of WTP 
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 Figure II.3. Simulation results for 2 0 2 2i i i
WTP WTP Iδ η= + + , where E(bi1)=50 < 

E(WTPi0)=100  (a) Mean WTP, (b) Standard Deviation of WTP 
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 Figure II.4. Simulation results for ( )0 1

2 0 2 2 2 2i i i iWTP WTP I I bδ δ η= + + + , 

E(bi1)=E(WTPi0)=100.   (a) Mean WTP, (b) Standard Deviation of WTP 
 

Updating Both Bids - Structural Shift with Bid Interaction (bid = 100, alpha 
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Figure II.5. Simulation results for ( )0 1

2 0 2 2 2 2i i i iWTP WTP I I bδ δ η= + + + , where 

E(bi1)=50 < E(WTPi0)=100. (a) Mean WTP, (b) Standard Deviation of WTP 
 

Updating Both Bids - Structural Shift with Bid Interaction (bid = 50, alpha 
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 Figure II.6. Mean WTP Simulation results for 2 0 2 2i i i
WTP WTP Iδ η= + + , and 

ij
α  = - 20 . 

(a) E(bi1)=E(WTPi0)=100 , (b) E(bi1)=50 < E(WTPi0)=100 
 

Updating Both Bids - Structural Shift (bid = 100, alpha = [-20])
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 Figure II.7. Mean WTP Simulation results for ( )0 1

2 0 2 2 2 2i i i iWTP WTP I I bδ δ η= + + + , and 

ij
α  = - 20  (a) E(bi1)=E(WTPi0)=100 , (b) E(bi1)=50 < E(WTPi0)=100 

 

Updating Both Bids - Structural Shift with Bid Interaction (bid = 100, alpha = [-20])
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III.  DOES WATER QUALITY MATTER TO SOUTH FLORIDA 
HOMEBUYERS?  EVIDENCE FROM A  HEDONIC ANALYSIS 
 

III.I. Introduction 

Hedonic property value models are used to determine whether a relationship 

exists between an environmental amenity and housing prices, and if so, to impute implicit 

prices for the environmental amenity that can be used for welfare analysis.  Although 

hedonic property value studies that utilize air or noise quality as the environmental 

amenity in the empirical analysis are more prevalent, a number of fairly recent studies 

that employ water quality (WQ) as the environmental amenity have been applied 

including Boyle et al. (1999), Leggett and Bockstael (2000), Michael et al. (2000), Poor 

et al. (2001), and Gibbs et al. (2002).  The purpose of this paper is to add to this WQ 

literature by capitalizing on a unique WQ dataset for a year-round, urban, and coastal 

housing market in Martin County, Florida.  A major concern of this study is to assess the 

sensitivity of imputed valuations to the choice of WQ measure.   

Often, hedonic property studies are limited to available environmental measures 

that may not be related to homeowners’ perceptions (Michael et al. 2000).  Additionally, 

there are questions as to whether homebuyers are incorporating a more scientific but less 

easily understood objective measure of water quality, or a less scientific but more easily 

understood subjective measure of WQ into their purchase decision (Epp and Al-Ani, 

1979; Michael et al. 2000; Poor et al., 2001).  The nature of our unique dataset allows us 

to effectively deal with these issues.  Six WQ measures (temperature, pH, water 

visibility, salinity, dissolved oxygen, and location grade) have been produced and 

documented weekly since 1998 for nine separate monitoring locations in our study area, 



 42 

and these measures are readily available to homeowners/buyers via the local newspaper 

and the internet.  The sixth WQ measure, location grade, is a more easily understandable 

yet scientifically based objective measure of water quality with an A, B, C, D, or F letter 

grade and accompanying percentage (90–100%, 80-90%, 70-80%, 60-70%, and < 60% 

respectively) being assigned to each location depending upon the realized values of the 

five other objective WQ measures.  In this way, results from the pure objective WQ 

measures are contrasted with the more easily understood yet objectively based WQ 

measure of location grade.       

Boyle et al. (1999), Michael et al. (2000), Poor et al. (2001), and Gibbs et al. 

(2002) all demonstrate that the minimum water clarity value for the year of the home sale 

matters for Maine and New Hampshire lakefront homebuyers.  However, these results are 

not easily transferable to an urban coastal housing market such as that of Martin County, 

FL.  Here, not only are the water body and urban vs. rural settings different, but so is the 

timing of sales, which occur year-round and not just primarily in the summer months.  

Given a year-round housing market, a homebuyer focus on a minimum water clarity 

value for the year of the sale may not be the most appropriate as it plausibly could be for 

a mostly summer housing market in the Northeastern United States17.  Therefore, in 

addition to employing minimum WQ values in the year of sale, we also incorporate other 

summary statistics that might matter in a year-round housing market such as the 

maximum, median, and statistical range.                 

                                                 
17 Leggett and Bockstael (2000) show that median fecal coliform for the year of the sale matters for a 
mixed urban and rural estuary/coastal setting in Maryland, but their data is also limited from April to 
September. 
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In order to assess whether our various water quality measures affect waterfront 

housing prices in Martin County, FL we run pooled as well as time/location fixed effect 

regressions for our unbalanced panel dataset.  Results indicate that our various forms of 

water quality do in fact matter to Martin County waterfront homebuyers.  These results 

alone are especially relevant given the $1 billion Indian River Lagoon South (IRLS) 

Everglades restoration effort being conducted to improve water quality in this area, and 

the lack of any formal economic benefit analysis conducted to-date (USACE/SFWMD, 

2002).  However, similar to Michael et al. (2000) no consistent relationship by either any 

of the six particular water quality variables, or by any of the four particular descriptive 

statistics used is found.  This further clearly indicates that more efforts need to be aimed 

at understanding what particular WQ variable and its statistical form homebuyers use in 

making their purchase decision if hedonic property models utilizing WQ measures are to 

be applied successfully.    

This paper is organized as follows: Section II provides an overview of the hedonic 

pricing theory and various water quality measures; Section III presents the compilation of 

the study data used; Section IV gives the empirical model and predictions while Section 

V gives the results; Section VI has the concluding comments. 

III.II.  Background 

Hedonic Pricing Theory
18 

 The underlying premise behind hedonic pricing theory is that the value of some 

market differentiated good is a function of each of its attributes.  In this way, the market 

                                                 
18 We present a brief overview here, for a more detailed overview please see either Freeman (2003) or 
Taylor (2003). 
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differentiated good is able to serve as a “revealed” market for each of its attributes, with 

the price differences of the heterogeneous market good indicating implicit prices for the 

varying levels of its attributes.  The hedonic price function (HPF) mathematically 

captures this relationship by expressing the price of a differentiated good as a function of 

its attributes whereby the partial derivative of the HPF with respect to any of its attributes 

gives the marginal implicit price (hedonic price) of the attribute.   

Hedonic pricing theory can be applied to the housing market through the hedonic 

property value model.  Under a number of assumptions, including a single market for 

housing where the HPF can be thought of as the locus of equilibria  between housing bids 

(demand) and housing offers (supply), the rental price of the jth residential location can 

be taken to be a function of structural, neighborhood, and environmental amenities such 

that: 

 ( ), ,
j j j j

R R S N Q=  (21) 

where ( )R i  is the hedonic price function, 
j

S  is a vector of structural characteristics, 
j

N  

is a vector of neighborhood characteristics, and 
j

Q  is a vector of location-specific 

environmental amenities.  Here, letting q be an element of 
j

Q , /R q∂ ∂  is the marginal 

implicit price of the environmental amenity selected.  It can be shown from a utility 

maximization framework that the derived hedonic prices are equal to an individual’s 

maximum willingness-to-pay, and hence it is possible to use them to conduct welfare 

analysis19.          

 

                                                 
19 A separate second-stage estimation is usually required in order to derive the complete MWTP function 
necessary for an appropriate welfare analysis. 
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Water Quality 

 Direct effects on a water body due to poor WQ levels are decreased light 

availability, algal dominance changes, and increased organic matter decomposition.  

These direct effects can in turn lead to other significant indirect effects such as loss of 

submerged aquatic vegetation, harmful algae blooms, and low dissolved oxygen levels 

(Bricker et al., 1999).  The direct and indirect effects due to poor WQ can then result in 

significant adverse impacts to a water body such as loss of habitat, increase of algal 

toxins, fish kills, and offensive odors which would subsequently impair use and aesthetic 

values (Bricker et al., 1999)20.  For example, fish kills would curtail use of the water body 

for any commercial or recreational fishing, while offensive odors would most likely 

lower any aesthetic values or tourist related activities.   

     There are various WQ measures used in order to monitor the health of a water 

body including temperature, pH, water visibility, salinity, and dissolved oxygen.  The 

Florida Oceanographic Society (FOS, 2004) provides an overview of each of these 

measures: 

Temperature – “dramatically affects the rates of chemical and biological 
reactions” including “the solubility of chemical compounds in water, distribution 
and abundance of organisms, rate of growth of biological organisms, water 
density, mixing of different water densities, and current movements”.  Inversely 
related to dissolved oxygen, and interrelated to salinity.  Undergoes wide seasonal 
variations. 
 

pH – measure of the acidity or excess alkali of a water body where on a scale of 1 
to 14, 7 is neutral, < 7 is acidic, and > 7 has excess alkali.  “Affects the solubility 
of minerals in water.  The buffering capacity of water, its ability to resist changes 
in pH, is critical to aquatic life”, where aquatic organism survival greatly 

                                                 
20 Bricker et al. (1999) are specifically referring to eutrophication (i.e., the result of excessive organic 
matter loading) of a waterbody causing these direct, indirect, and hence adverse impacts.  For ease of 
exposition here, I interchange poor WQ levels for eutrophication. 
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decreasing with pH < 5 or pH > 9.  Most of the extreme situations will be found in 
low salinity situations. 
 
Water Visibility (Water Clarity) – “material that becomes mixed or suspended in 
water will cause the water to become more turbid and reduce the clarity of the 
water.  As the water clarity decreases, light will not be able to penetrate as far 
below the water’s surface.  If light levels become too low, photosynthesis of 
plants below the water may stop, and the plants will die.  These plants produce 
oxygen and habitat for aquatic life.”  Secchi disks are typically used to measure 
visibility levels.  
 
Salinity – “the concentration of dissolved salt in water normally expressed in parts 
per thousand.  While in any given location salinity levels will vary, extreme 
salinity changes can affect the well-being and distribution of biological 
populations”.  Undergoes wide seasonal variations. 
 
Dissolved Oxygen (DO) – “one of the most important indicators of water quality, 
as it is essential for the survival of fish and other aquatic life.  When levels are too 
low, aquatic life cannot survive.  The colder the water is, the more oxygen it can 
hold and vice versa.  Also, as water becomes more fresh (lower salinity), more 
oxygen can dissolve into the water.  Fish kills occur with DO < 3 mg/L.”  
Exhibits high seasonal as well as daily variations stemming from its inverse 
relationship to temperature.    

 
Overall, these five WQ measures can be used to monitor the health of a water body, but 

they are plainly interrelated and also susceptible to wide seasonal variations.   

 

III.III. Study Area and Associated Data 

Study Area 

 Martin County is located on the Southeastern Atlantic coast of Florida.   Figure 1 

indicates the Northeastern portion of the county and its accompanying waterfront housing 

market located on the St. Lucie River, St. Lucie Estuary, and Indian River Lagoon, which 

is the housing market analyzed for this study.  Analogous to Leggett and Bockstael 

(2000), this area is well-suited for a hedonic analysis of water quality due to the 

substantial and sufficiently varied number of waterfront properties, the lively housing 
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market in the area, as well as the variation in water quality across the St. Lucie River, St. 

Lucie Estuary, and the Indian River Lagoon.   

The specific home sale data used for the analysis are sales of Martin County 

waterfront properties from January 2000 to August 2004 as supplied by the Martin 

County property appraiser’s office.  The sales price is adjusted to 2nd quarter 2004 

values21 using the Office of Federal Housing Enterprise Oversight (OFHEO, 2004) 

housing index for the Fort Pierce-Port St. Lucie Metropolitan Statistical Area.22  After 

deleting a total of 288 sales from the original data set due to missing sale dates/sales 

prices, non-single family homes, missing structural data, structural data that is dated after 

the date of the sale, missing water quality data, and otherwise strange-looking data23, a 

total of 743 observations remained.   

509 of the homes were sold exactly once over this timeframe, with 108 homes 

sold two or more times, with a maximum of four sales.  Each of the sales is inputted by 

parcel into a geographical information systems (GIS) database, with each parcel 

converted into a point as depicted in  Figure 2.  Table 1 presents the number of waterfront 

sales per month from January 2000 to August 2004.  Clearly the waterfront housing 

market in Martin County is a year-round market with no one month accounting for more 

                                                 
21 Despite having July and August 2004 sales data, a 2nd-quarter index is chosen (the last complete quarter 
of home sales) such that April through August 2004 home sale prices were not adjusted. 
 
22 It should be noted that this index did experience a significant overall increase of 56% between 3rd quarter 
2001 and 2nd quarter 2004 as compared to a 15% increase from 4th quarter 1998 to 3rd quarter 2001, a prior 
but similar length of time.  These results do raise some concerns in regard to the equilibrium assumptions 
of the hedonic model as described in section II.   
    
23 This included separate sales booked on the same day or within 1-2 days with significant decreases in sale 
price; extremely low sales prices; sales price – appraised value < 0. 



 48 

than 13.5% of the total waterfront sales during any one year, and no one month 

accounting for more than 11.5% of the total waterfront sales during the study timeframe.      

     

Water Quality 

 Water quality data for the Martin County waterfront area is tracked on a weekly 

basis by the Florida Oceanographic Society (FOS, 2004) for nine separate locations as 

depicted in Figure 3.  Beside the public availability of data on the FOS website, this data 

is also published weekly in local newspapers and therefore it is reasonable to consider 

this a known, important, and readily available source of water quality data.  The specific 

water quality locations tracked and used for this study include 2. North Fork, 3. South 

Fork, 5. Wide Middle River, 6. Narrow Middle River, 7. Manatee Pocket, 8. Inlet Area, 

and 9. IRL.24 

 Figure 4 presents an example of the weekly WQ data available by location.  A 

total of five distinct objective water quality variables are collected and published weekly 

– temperature, pH, water visibility, salinity, and dissolved oxygen (DO); as well as one 

objectively based compiled measure of water quality – location grade.  Furthermore, all 

of the distinct objective water quality measures, excluding temperature, are briefly 

explained in the published data and given corresponding labels of poor, fair, and good 

over specified ranges of values.  All six of the published numeric WQ measures are used 

as inputs for the hedonic analysis with data collected from January 2000 to December 

2004.  As can be seen in Figure 4, not all locations report WQ data every week.  

                                                 
24 Location 1. Winding North Fork is a part of St. Lucie County for which home sales were not collected, 
and no home sales from the original data were provided for location 4. Winding South Fork 
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Significant gaps occurred with 6. Narrow Middle River, 7. Manatee Pocket, 8. Inlet Area, 

and 9. IRL in 2004, as well as 8. Inlet Area for 2000, 2001, and 2003.  Consequently, 

corresponding location waterfront home sales during these time periods were excluded 

from the analysis.           

Section II indicated that the above five distinct WQ measures are interrelated and 

are susceptible to wide seasonal variations.  Correlation analysis results based upon all of 

the weekly data used in the analysis are shown in Table 2 where correlations > 0.5  are 

highlighted. As expected, a strong negative correlation exists between temperature and 

DO, while a strong positive correlation exists between pH and salinity.  Strong 

correlations also exist between salinity and water visibility, as well as between location 

grade, water visibility, and salinity.   Figure 5 illustrates the seasonal and locational 

variations of the data for the study period, using the weekly changes in DO levels by 

location as an example.    

Each home sale is manually assigned to a water quality location by viewing the 

actual location of the home through the use of both the constructed GIS database and 

Martin County property appraiser website (MCPA, 2004) overlaid upon the given water 

quality location map of Figure 3.  Figure 6 presents the home sales as per their assigned 

WQ locations.  The associated WQ data for that location is then assigned to each home 

by the date of the sale matched to the weekly WQ publication date.  In this way, all 

homes assigned to the same location receive the same annual WQ data for an equal sale 

year.  For example, if one home located on the western end of location 5 Wide Middle 

River sold in 2000, and another home located on the eastern end of location 5 (near to 

location 6) also sold in 2000, equal annual WQ values would be assigned to each home 
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despite the distances between the two homes.  There are 16 homes located directly in the 

middle of the North and South Forks that are assigned to a created location of 2.5 with 

associated WQ data taken to be the average of the two North and South Forks locations. 

Sufficient variation exists in the WQ data across locations.  For example, Figure 

7a illustrates the variation in the median annual values of water visibility by location over 

time, while Figure 7b illustrates variation in the minimum, average, and maximum water 

visibility values by location for the entire study timeframe.  Similar variation exists for 

the other five WQ measures.  Given the year-round housing market for our study area, it 

is also useful to understand where the timing of minimum and maximum values for our 

WQ measures occur throughout the year.  Table 3 illustrates that for North Fork the 

minimum annual values for DO occur in the summer months while the maximum annual 

values occur in the winter months as would be expected given the inverse relationship 

between water temperature and DO.  Similar timing of maximum and minimum WQ 

values exists for the other WQ locations.   

Importantly though, we do not know exactly when homeowners saw the location 

for the first time, or what particular statistical descriptor they tend to focus on in their 

purchase decision.  Because of this, including only the minimum values in the empirical 

analysis may not truly reflect a homebuyer’s decision making efforts in a year-round 

housing market.  Therefore, we include the statistical descriptors of the minimum, 

median, maximum, and statistical range for our WQ measures in the empirical analysis.         
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Structural, Neighborhood, and Macroeconomic 

Structural and neighborhood characteristics chosen are based on a review of 

previous studies as well as availability of data.  Structural variables included in the 

estimation are square footage of both land and house, age of the house, and the number of 

bathrooms.  House size and age of the home are also squared to allow for non-linearity in 

these variables.  A series of dummy variables are also included to indicate whether the 

house has a pool, boat lift, dock, etc25.  Other dummies indicated whether the house had 

more than one structure26, whether the house had been sold more than once during the 

time period, and notably the type of exterior wall (1=concrete block) due to the frequency 

of hurricanes in Florida.        

 Three neighborhood variables are selected in order to capture ethnicity (percent 

white), age (percent older than 65), and socio-economic demographics (percent of 

household owners).  This neighborhood information is obtained from the 2000 census 

data (FGDL, 2004), and using the constructed GIS database, each home is spatially 

joined to its corresponding census tract level.  Lastly, we also include the mortgage 

interest rate27 which is commonly thought to be one of the main drivers of housing sales 

and prices.  Despite the significance of interest rates in purchasing a home, this is 

typically not included in the environmental hedonic models reviewed in the literature.  

Table 4 provides descriptive statistics for each of the variables included in the empirical 

                                                 
25 These data were listed under improvements on the property appraiser website and no date for the 
improvement was given.  Therefore, it was assumed that if an improvement was listed it was there as the 
time of sale. 
 
26 If the home did have more than one structure, the square footage and number of baths were summed and 
the other dummy variables were taken from the largest structure listed. 
 
27 Monthly national interest rate for a 30 year fixed rate mortgage as provided by HSH Associates (HSH, 
2004) 
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analysis, while Table 5 provides definitions along with their expected signs in the 

hedonic regressions.   

 

III.IV. Model Estimation 

 We select a semi-log functional form for our model estimation with the natural 

log of sales price taken to be the dependent variable.  A common assumption of hedonic 

property models is that data from one specific urban area, such as our study data, 

represents a single geographic market (Taylor, 2003).  In this way, separate ordinary least 

squares regressions are repeated for each measure of WQ for our pooled dataset.  

However, location and time aspects of a hedonic dataset are important since if in fact 

location and/or time submarkets exist within the data, estimating a single HPF for that 

market will lead to incorrect parameter estimates and imputed prices (Freeman, 2003).  

So, while our study data comes from a relatively distinct area of Martin County, we can 

easily incorporate location and time dummies to account for any possible location and/or 

time submarkets existing within our unbalanced panel dataset.    

We create N=3 location dummies based upon the three distinct waterbodies of the 

study area and their associated WQ monitoring locations such that individual home sales 

occurring in locations 2. North Fork, 3. South Fork, and the created location of 2.5 

correspond to a river location submarket; locations 5. Wide Middle River, 6. Narrow 

Middle River, and 7. Manatee Pocket correspond to an estuary location submarket; and 

locations 8. Inlet Area and 9. IRL correspond to a lagoon location submarket.28  T=5 time 

                                                 
28 Given that our data is already from a relatively small geographical area, grouping by the main waterbody 
types seemed reasonable for a submarket breakdown vs. having a separate submarket for each individual 
WQ location.  Futhermore, WQ and housing data across the defined submarkets is similar. 
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dummies are simply for each possible sale year from 2000 to 2004.  By adding (N-1) 

location and (T-1) time intercept dummies the following fixed-effect model29 is created 

for our unbalanced panel dataset to again be estimated by ordinary least squares:        
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where 1
River

D =  if the observation belongs to the river submarket, 0 otherwise; 

1
Estuary

D =  if the observation belongs to the estuary submarket, 0 otherwise; 2000 1D =  for 

an observation in year 2000, 0 otherwise; 2001 1D =  for an observation in year 2001, 0 

otherwise; 2002 1D =  for an observation in year 2002, 0 otherwise; 2003 1D =  for an 

observation in year 2003, 0 otherwise; and the dummy variables for the lagoon location 

and the year 2004 are excluded in order to avoid perfect multicollinearity issues.         

 

III.V.  Results 

Pooled Model 

 Results of the pooled regression are given in Tables 6, 7, 8, and 9 for the 

minimum, median, statistical range, and maximum WQ measures respectively.  Breusch-

Pagan test statistics for all regressions indicate the presence of heteroscedasticity in the 

data.  This result was expected due to an initial scatterplot analysis that was conducted of 

explanatory variables vs. sales price, which pointed to the likely presence of 

                                                 
29 A formal Hausman test for fixed effect vs. random effect model was not conducted.  Given our small 
number of cross-sectional and time units, the straightforward fixed-effect approach was preferred. 
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heteroscedasticity in the data, as well as the frequent finding of heteroscedasticity from 

the literature (Leggett and Bockstael, 2000), (Gibbs et al., 2002), (Stevenson, 2004).  

Hence, White’s robust t-statistics are used.      

 All models explain approximately 56% of the variation in the Martin County 

waterfront housing sales prices.  Across all specifications of the different WQ measures, 

housing square footage, housing square footage squared, interest rates, and the dummy 

variables for whether the property sold more than once over the data time period, a 

pool/patio enclosure, an in-ground pool, a boat lift, and a waterfront dock are consistently 

significant at the 1% level with both of the housing square footage variables, interest 

rates and the dummies for pool, boat lift, and dock having the expected signs.  There 

were no prior expectations on the sign of whether a home sold more than once over our 

study time-period, but the negative sign on pool/patio enclosure was not expected.  

Notably, the significance of pool, boat lift, and dock variables highlights the importance 

of water-related structural variables to housing prices, and hence plausibly the importance 

of good WQ in order to better enjoy any water-related activities associated with these 

water-related structural variables.  One could argue that housing square footage is 

capturing the significance of other related structural variables one would expect to be 

significant such as land square footage and the number of bathrooms.  Given the 

prominence of hurricane threats in this area, the non-significance of our exterior wall 

dummy variable is surprising.  The fact that none of our neighborhood variables is 

consistently significant is also unexpected, although the percentage of the population 

older than 65 is significant at the 10% level in some of the regressions.             
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As the semi-log functional form is used for estimation, the estimated coefficient is 

interpreted as the percentage change in the mean sales price for an additional unit of the 

variable.  The existence of one of the water-related structural variables increases a 

home’s value in our study area by approximately 10-12% per structure.  Likewise, a 1% 

increase in interest rates results in a 14-17% drop in the mean sale price.  The mean sale 

price is used to derive hedonic prices from our regression coefficients.  For example, the 

derived hedonic price for one square foot of home across all models is approximately 

(0.54/1000)*$868,000 = $468 per square foot.  This derived amount is relatively close to 

the average cost per square foot of home from Table 5 of $333.  Excluding the coefficient 

estimates for a pool/patio enclosure, estimated coefficients and derived hedonic prices for 

our other significant structural and neighborhood variables are reasonable.             

 While our coefficient estimate results for the structural and neighborhood 

variables are consistent across the various WQ variables specifications, the WQ 

coefficient estimate results are not.  Table 10 illustrates the inconsistency of the 

significance of the WQ measures depending upon which statistical descriptor is being 

utilized.  For example, while we also find that water visibility is significant when the 

minimum value as per the year of the sale is the statistical descriptor used in the 

regression as did Boyle et al. (1999), Michael et al. (2000), Poor et al. (2001), and Gibbs 

et al. (2002), it is not significant when the median or statistical range descriptors are used, 

and also not as significant (1% vs. 5% levels) when the maximum value as per the year of 

the sale is used.  Similar results emerge for the other WQ measures in that none is 

significant across all statistical descriptors, and also that the strength of significance 

varies by descriptor.  No WQ measures are significant when the statistical range 
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descriptor is utilized, and pH is not significant in any model.  Only water visibility is 

significant when minimum values are used, while three of the six measures and five of 

the six measures are significant when median and maximum values are used respectively.  

Importantly, these results show that the significance of the WQ measure used is 

dependent upon the statistical descriptor chosen in the empirical analysis.   

 Table 11 presents the derived hedonic prices for our significant WQ measures.  

All signs are correct except for location grade using the median value of the year of the 

sale and DO for the maximum value of the year of the sale.  The derived hedonic prices 

vary from 0.3% to 3.5% of the total home value and are comparable to those derived 

from previous studies.  These hedonic prices can potentially be used as an input to a 

welfare analysis of the IRLS restoration effort.   

Finally, location grade does not provide any additional insight over the other 

objective WQ measures.  While it is significant in the regressions using the median and 

maximum statistical descriptors for our WQ measures, so too are the other measures it is 

highly correlated with, salinity and water visibility.  Also, its derived hedonic prices are 

in-line with the other derived hedonic prices, even having an unexpected negative 

coefficient for the median annual value.    

 

Fixed Effect Model 

 Adjusted R2 values indicate our fixed effect models explaining approximately 

58% of the variation in the Martin County waterfront housing sales prices.  While this is 

not a radical improvement over the pooled model results, restricted F-tests indicate that 

the restricted pooled regressions are invalid at the 1% level.  Breusch-Pagan test statistics 
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for all regressions again indicate the presence of heteroscedasticity in the data, and 

consequently White’s robust t-statistics are once more used.         

 As the structural and neighborhood variable coefficient results from the fixed 

effect models are very similar to the pooled model results, complete model results are not 

presented here.  Once again, across all specifications of the different WQ measures, 

housing square footage, housing square footage squared, interest rates, and the dummy 

variables for whether the property sold more than once over the data time period, a 

pool/patio enclosure, an in-ground pool, a boat lift, and a waterfront dock are consistently 

significant at the 1% level with both of the housing square footage variables, interest 

rates and the dummies for pool, boat lift, and dock having the expected signs.  Coefficient 

estimates reconfirm that the existence of one of the water-related structural variables 

increases a home’s value in our study area by approximately 10-12% per structure.  One 

notable exception between the pooled and fixed effect models is the significance of some 

of the neighborhood explanatory variables.  The fixed effect models have the percentage 

of the population older than 65 and the percentage of owner occupied homes as being 

consistently significant at the 10% level or higher for nearly all of the estimated models.  

This neighborhood variable result further substantiates the inclusion of the location 

submarket dummy variables.   

 Results of the fixed effect regressions for the WQ variables and the location and 

time dummy variables are presented in Tables 12, 13, 14, and 15 for the minimum, 

median, statistical range, and maximum WQ measures respectively.  T-statistics indicate 

that the location submarkets are significant.  Coefficient estimates on the dummy 

variables for a river location are consistently significant at the 1% level and negative.  
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Coefficient estimates on the dummy variable for an estuary location are not as 

consistently significant as those of the river location dummy, but generally are significant 

at the 5% level and positive.  Time submarket significance exists primarily for years 2002 

and 2003, but is clearly not consistent across estimations.   

 Table 16 illustrates a similar WQ measure significance inconsistency as we saw 

with our pooled model results of Table 10.  While DO and Grade are significant across 

nearly all statistical descriptors used, the same results do not hold for the remaining WQ 

variables.  For example, water visibility is highly significant when median values as per 

the year of the sale are used, but is an insignificant variable for all other statistical 

descriptors used.  Our fixed effect results again importantly show that the significance of 

the WQ measure used is dependent upon the statistical descriptor chosen in the empirical 

analysis.   

While the derived hedonic prices across the pooled and fixed effect models are 

similar, there are some important differences between our pooled and fixed effect WQ 

results.  One troubling difference is that coefficient estimates in the fixed effect models 

are mainly negative, while coefficient expectations for both models and the actual pooled 

model results are mostly positive.  Another notable result is that regressions using the 

distribution of the WQ variable in the year of the sale indicate the significance of the WQ 

variables in the fixed effect model, while these were entirely insignificant in the pooled 

model results.  Also, WQ variables are significant for different descriptors depending 

upon the model.  For example, in the pooled model salinity is significant for the median 

and maximum values, but in the fixed effect model it is now significant for the minimum 

and distribution values.  Lastly, location grade appears to play a more important role in 
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the fixed effect regressions as it is significant in three of the four statistical descriptor 

estimations.  However, its sign in each regression is inconsistent with expectations.  

 

III.VI. Conclusions 

 We capitalize on a unique WQ dataset for a year-round, urban, and coastal 

housing market in Martin County, Florida and through the use of a hedonic property 

value model find evidence that various WQ measures affect waterfront housing prices in 

this setting.  However, our results indicate that this relationship is not consistent across 

any of the six particular WQ variables used, and is furthermore importantly dependent 

upon the specific descriptive statistic employed to represent the WQ measure in the 

empirical analysis.  Additionally, while our dataset contains a more easily understood yet 

scientifically based objective measure of water quality (i.e., location grade), no distinct 

advantage is gained in using this measure over a traditional pure objective measure of 

water quality that may not be as easily understood by homebuyers such as dissolved 

oxygen.  Our results continue to advance the current notion in the WQ hedonic literature 

that more efforts need to be aimed at understanding what particular WQ variable and its 

statistical form homebuyers use in making their purchase decision if hedonic property 

models utilizing WQ measures are to be applied successfully. 
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Table III.1. Waterfront Sales by Month from Jan 2000 to Aug 2004 

Month 
of Sale 2000 2001 2002 2003 2004 Total 

% of 
Total 

1 10 8 17 10 2 47 6.3% 

2 15 10 13 14 12 64 8.6% 

3 21 14 15 11 8 69 9.3% 

4 18 21 22 11 10 82 11.0% 

5 19 15 26 9 16 85 11.4% 

6 20 11 14 8 7 60 8.1% 

7 10 18 17 9 4 58 7.8% 

8 12 17 22 9 7 67 9.0% 

9 11 12 13 11   47 6.3% 

10 11 14 13 13   51 6.9% 

11 19 7 16 9   51 6.9% 

12 19 9 14 20   62 8.3% 

Total 185 156 202 134 66 743 100% 
 
 
 
 
 

Table III.2. Correlation of WQ Measures  

  

Water 

Temp. pH 

Water 

Visibility Salinity 

Dissolved 

Oxygen 

Location 

Grade 

Water Temp. 1      

pH -0.08 1     

Water Visibility -0.05 0.32 1    

Salinity -0.08 0.54 0.63 1   

Dissolved Oxygen -0.50 0.34 0.01 0.00 1  

Location Grade -0.21 0.44 0.63 0.59 0.21 1 
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Table III.3. DO Levels Statistical Descriptors by Month for Location 2. North Fork 

Month 
of Sale 2000 2001 2002 2003 2004 

1  Max Max Max  

2      

3      

4      

5      

6      

7  Min Min   

8 Min     

9    Min Min 

10      

11      

12 Max    Max 
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Table III.4. Data Descriptive Statistics 

Variable Mean  Stnd Deviation Minimum Maximum 
Sales Price ($000’s) 868.0 791.3 68.1 7224.5 

Land SqFt (000’s) 24.9 39.0 1.0 883.7 

Home SqFt (000’s) 2.6 1.4 0.4 13.4 

Age 26.4 14.7 0.0 100.0 

Bath 2.8 1.2 1.0 10.0 

Repeat Sale 0.34       

> 1 Structure 0.05       

Exterior Wall 0.49       

Fireplace 0.37       

Enclosure 0.22       

Pool 0.52       

Boat Lift 0.31       

Dock 0.73       

Special 0.29       

Water Temperature 75.9 2.7 71.6 80.6 

pH 8.0 0.1 7.8 8.2 

Water Visibility (%) 55.5 20.9 31.2 100.0 

Salinity (ppt) 17.4 8.6 1.0 34.0 

Dissolved Oxygen 6.3 0.5 5.3 7.7 

Location Grade (%) 83.8 9.9 63.0 100.0 

% White 95.4 6.6 41.7 99.1 

% 65 33.5 8.9 14.8 51.3 

% Owner 80.9 8.9 36.6 92.6 

IntRate (%) 7.0 0.9 5.4 8.7 

 

Note: WQ Measure data are for the annual median values 
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Table III.5. Names and Descriptions of Variables 

Variable Description Expected Sign 
Price04 Sales price of home adjusted to Q2 2004 value  

LSqFt Total Square footage of land parcel + 

HSqFt Total housing square footage + 

HSqFt2
 Total housing square footage squared - 

Age Age of home = (Year of sale – Year built) - 

Age2 Age of home squared - 

Bath 
Total # of bathrooms = # of Full baths + # of half 
baths 

+ 

ReSale 
Dummy variable for whether the property sold 
more than once over the data time period 
(1 = 2 or more sales of same home, 0 = 1 sale only) 

? 

Struct 

Dummy variable for >1 residence structure on the 
property 
(1 = >1 residence structure, 0 = 1 residence 
structure 

? 

ExtrW 
Dummy variable for exterior walls 
( 1= concrete block, 0 = otherwise) 

+ 

Fire 
Dummy variable for fireplace 
(1 = Yes, 0 = No) 

+ 

Enclsr 
Dummy variable for pool/patio enclosure 
(1 = Yes, 0 = No) 

+ 

Pool 
Dummy variable for in-ground pool 
(1 = Yes, 0 = No) 

+ 

BLift 
Dummy variable for boat lift 
(1 = Yes, 0 = No) 

+ 

Dock 
Dummy variable for waterfront dock 
(1 = Yes, 0 = No) 

+ 

Special 

Dummy variable for home special feature 
including carport, jacuzzi, BBQ, boathouse, 
gazebo, tennis court, and fountain  
(1 = Yes, 0 = No) 

+ 

Min Med 
[Max-
Min] Max 

WQ: 
 

• Wtemp 

• pH 

• Wvis 

• Salinit 

• DO 

• Grade 

 
Median , minimum, maximum and [maximum – 
minimum] values by designated water quality area 
for year of sale 
 

+ 
+ 
+ 
+ 
+ 
+ 

? 
? 
+ 
+ 
+ 
+ 

- 
- 
- 
- 
- 
- 

- 
- 
+ 
+ 
+ 
+ 

White 
% of population that is white at the 2000 census 
tract level 

+ 

65 
% of population that is age 65 or over at the 2000 
census tract level 

? 

Own 
% of households that are owner occupied at the 
2000 census tract level 

+ 

Int 
National 30 year fixed interest rate in month and 
year of sale 

- 
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Table III.6. Pooled OLS Results Minimum WQ 

Variable WTemp pH WVis Salinit DO Grade

intercept 12.955*** 12.313*** 12.99*** 13.055*** 13.066*** 13.02***

(31.612) (19.693) (37.873) (38.432) (38.753) (38.14)

Lsqft (000s) 0.001 0.001 0.001 0.001 0.001 0.001

(1.316) (1.344) (1.315) (1.321) (1.321) (1.305)

Hsqft (000s) 0.544*** 0.544*** 0.532*** 0.545*** 0.546*** 0.542***

(13.474) (13.534) (13.035) (13.503) (13.421) (13.412)

Hsqft2 (000s) -0.029*** -0.029*** -0.028*** -0.028*** -0.029*** -0.028***

(-9.587) (-9.67) (-9.241) (-9.583) (-9.615) (-9.6)

Age 0.004 0.004 0.003 0.004 0.004 0.004

(1.038) (1.077) (0.947) (1.111) (1.073) (1.088)

Age2 0.000 0.000 0.000 0.000 0.000 0.000

(-0.941) (-0.968) (-0.887) (-0.994) (-0.985) (-1.022)

Bath 0.024 0.024 0.021 0.021 0.025 0.024

(0.893) (0.877) (0.761) (0.791) (0.908) (0.872)

Repeat -0.083** -0.084** -0.083** -0.084** -0.082** -0.084**

(-2.323) (-2.356) (-2.337) (-2.349) (-2.292) (-2.349)

#rsdnc -0.193 -0.197 -0.208 -0.2 -0.192 -0.192

(-1.341) (-1.358) (-1.455) (-1.394) (-1.331) (-1.332)

ExtrW 0.023 0.024 0.029 0.028 0.022 0.026

(0.617) (0.654) (0.79) (0.759) (0.594) (0.716)

Fire 0.034 0.029 0.03 0.029 0.033 0.032

(0.764) (0.657) (0.684) (0.635) (0.751) (0.724)

Enclsr -0.196*** -0.191*** -0.187*** -0.191*** -0.196*** -0.192***

(-4.149) (-4.121) (-4.073) (-4.132) (-4.14) (-4.094)

Pool 0.125*** 0.123*** 0.132*** 0.126*** 0.124*** 0.123***

(3.087) (3.049) (3.297) (3.107) (3.067) (3.044)

Blift 0.102*** 0.105*** 0.107*** 0.107*** 0.103*** 0.104***

(2.66) (2.772) (2.818) (2.845) (2.675) (2.73)

Dock 0.115*** 0.115*** 0.117*** 0.122*** 0.115*** 0.117***

(2.599) (2.605) (2.655) (2.735) (2.599) (2.643)

Special 0.05 0.049 0.041 0.047 0.051 0.046

(1.088) (1.052) (0.898) (0.997) (1.096) (0.973)

WQ 0.001 0.102 0.005*** 0.004 -0.003 0.001

(0.442) (1.628) (2.67) (1.264) (-0.268) (1.152)

White -0.001 0.000 0.000 -0.001 -0.001 -0.001

(-0.291) (-0.093) (-0.13) (-0.288) (-0.318) (-0.28)

65 -0.003 -0.003 -0.004* -0.003 -0.003 -0.003

(-1.312) (-1.303) (-1.76) (-1.351) (-1.276) (-1.388)

Own 0.002 0.002 0.003 0.002 0.002 0.002

(0.842) (0.852) (1.26) (0.816) (0.78) (0.86)

Int -0.157*** -0.168*** -0.174*** -0.159*** -0.155*** -0.161***

(-8.186) (-8.883) (-8.764) (-8.514) (-7.488) (-8.239)

R
2

0.56 0.56 0.56 0.56 0.56 0.56

BP ~ 37.57 44.85 44.91 48.36 46.33 47.85 52.06  

White’s robust t-values are in parentheses 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 
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Table III.7. Pooled OLS Results Median WQ  

Variable WTemp pH WVis Salinit DO Grade

intercept 11.879*** 13.037*** 12.953*** 13.376*** 13.311***

(15.756) (37.831) (37.96) (31.172) (36.172)

Lsqft (000s) 0.001 0.001 0.000 0.001 0.001

(1.333) (1.312) (1.217) (1.356) (1.287)

Hsqft (000s) 0.540*** 0.545*** 0.527*** 0.547*** 0.543***

(13.513) (13.532) (12.971) (13.506) (13.607)

Hsqft2 (000s) -0.028*** -0.029*** -0.027*** -0.029*** -0.029***

(-9.655) (-9.698) (-9.219) (-9.653) (-9.712)

Age 0.005 0.004 0.003 0.004 0.004

(1.096) (1.091) (0.831) (1.116) (1.003)

Age2 0.000 0.000 0.000 0.000 0.000

(-1.033) (-1.007) (-0.754) (-1.003) (-0.907)

Bath 0.027 0.024 0.021 0.024 0.027

(0.967) (0.894) (0.771) (0.884) (1.008)

Repeat -0.080** -0.083** -0.086** -0.081** -0.077**

(-2.236) (-2.315) (-2.447) (-2.265) (-2.15)

#rsdnc -0.200 -0.196 -0.215 -0.201 -0.186

(-1.378) (-1.364) (-1.512) (-1.408) (-1.313)

ExtrW 0.026 0.025 0.037 0.021 0.015

(0.697) (0.674) (1.000) (0.572) (0.413)

Fire 0.031 0.033 0.025 0.033 0.035

(0.699) (0.732) (0.565) (0.741) (0.788)

Enclsr -0.189*** -0.193*** -0.174*** -0.196*** -0.194***

(-4.070) (-4.163) (-3.826) (-4.164) (-4.087)

Pool 0.126*** 0.125*** 0.129*** 0.124*** 0.12***

(3.137) (3.079) (3.24) (3.063) (2.969)

Blift 0.103*** 0.104*** 0.112*** 0.102*** 0.097**

(2.691) (2.753) (2.988) (2.675) (2.535)

Dock 0.117*** 0.118*** 0.134*** 0.12*** 0.107**

(2.649) (2.628) (3.041) (2.692) (2.364)

Special 0.045 0.048 0.04 0.052 0.052

(0.973) (1.01) (0.874) (1.114) (1.127)

WQ 0.013* 0 0.009*** -0.041 -0.003*

(1.911) (0.535) (3.613) (-1.052) (-1.892)

White -0.001 -0.001 0.000 -0.001 0.000

(-0.170) (-0.332) (0.153) (-0.395) (-0.219)

65 -0.004 -0.003 -0.004* -0.003 -0.002

(-1.643) (-1.398) (-1.859) (-1.276) (-1.095)

Own 0.003 0.002 0.002 0.002 0.002

(1.138) (0.887) (0.969) (0.715) (0.789)

Int -0.143*** -0.159*** -0.178*** -0.159*** -0.151***

(-7.110) (-8.173) (-9.276) (-8.414) (-7.887)

R
2

0.56 0.56 0.57 0.56 0.56

BP ~ 37.57 46.99 49.36 48.33 44.14 44.87  

White’s robust t-values are in parentheses 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 

Results for pH are excluded due to multicollinearity issues between median pH values and the constant 
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Table III.8. Pooled OLS Results Statistical Range of WQ 

Variable WTemp pH WVis Salinit DO Grade

intercept 13.015*** 13.075*** 13.199*** 12.921*** 13.155*** 13.117***

(35.716) (38.859) (38.368) (36.807) (36.666) (37.435)

Lsqft (000s) 0.001 0.001 0.001 0.001 0.001 0.001

(1.314) (1.306) (1.326) (1.253) (1.305) (1.316)

Hsqft (000s) 0.545*** 0.545*** 0.543*** 0.538*** 0.54*** 0.543***

(13.51) (13.536) (13.46) (13.102) (13.384) (13.453)

Hsqft2 (000s) -0.029*** -0.029*** -0.028*** -0.029*** -0.028*** -0.029***

(-9.639) (-9.675) (-9.523) (-9.676) (-9.455) (-9.627)

Age 0.004 0.004 0.004 0.003 0.003 0.004

(1.091) (1.048) (1.001) (0.892) (0.95) (1.079)

Age2 0.000 0.000 0.000 0.000 0.000 0.000

(-1.005) (-0.942) (-0.891) (-0.859) (-0.867) (-1)

Bath 0.025 0.024 0.022 0.027 0.025 0.024

(0.923) (0.896) (0.813) (0.989) (0.905) (0.885)

Repeat -0.082** -0.083** -0.085** -0.083** -0.084** -0.084**

(-2.296) (-2.327) (-2.373) (-2.324) (-2.353) (-2.337)

#rsdnc -0.191 -0.193 -0.193 -0.192 -0.193 -0.192

(-1.324) (-1.34) (-1.347) (-1.33) (-1.343) (-1.334)

ExtrW 0.023 0.024 0.022 0.021 0.022 0.024

(0.616) (0.648) (0.584) (0.583) (0.599) (0.648)

Fire 0.033 0.032 0.033 0.037 0.035 0.033

(0.755) (0.71) (0.751) (0.82) (0.793) (0.747)

Enclsr -0.195*** -0.193*** -0.198*** -0.193*** -0.194*** -0.194***

(-4.143) (-4.135) (-4.193) (-4.055) (-4.08) (-4.129)

Pool 0.124*** 0.123*** 0.126*** 0.123*** 0.123*** 0.123***

(3.068) (3.046) (3.117) (3.044) (3.019) (3.048)

Blift 0.103*** 0.104*** 0.104*** 0.1*** 0.102*** 0.104***

(2.68) (2.72) (2.697) (2.623) (2.65) (2.703)

Dock 0.115*** 0.116*** 0.115*** 0.114** 0.117*** 0.117***

(2.6) (2.618) (2.582) (2.566) (2.638) (2.628)

Special 0.05 0.049 0.052 0.05 0.051 0.049

(1.072) (1.039) (1.128) (1.08) (1.099) (1.044)

WQ 0.001 -0.046 -0.002 0.004 -0.009 0

(0.388) (-0.76) (-1.278) (1.153) (-0.987) (-0.638)

White -0.001 0.000 0.000 0.000 0.000 -0.001

(-0.298) (-0.227) (-0.248) (-0.199) (-0.272) (-0.299)

65 -0.003 -0.003 -0.003 -0.004 -0.003 -0.003

(-1.328) (-1.324) (-1.19) (-1.565) (-1.387) (-1.326)

Own 0.002 0.002 0.002 0.003 0.002 0.002

(0.768) (0.853) (0.734) (1.029) (0.825) (0.81)

Int -0.158*** -0.156*** -0.157*** -0.157*** -0.161*** -0.158***

(-8.333) (-8.241) (-8.273) (-8.28) (-7.934) (-8.255)

R
2

0.56 0.56 0.56 0.56 0.56 0.56
BP ~ 37.57 44.44 49.07 44.51 46.80 48.03 50.82  

White’s robust t-values are in parentheses 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 
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Table III.9. Pooled OLS Results Maximum WQ 

Variable WTemp pH WVis Salinit DO Grade

intercept 11.851*** 12.137*** 12.786*** 12.789*** 13.465*** 12.443***

(15.248) (14.472) (34.952) (35.791) (34.901) (25.489)

Lsqft (000s) 0.001 0.001 0.001 0.001 0.001 0.001

(1.288) (1.374) (1.301) (1.202) (1.332) (1.274)

Hsqft (000s) 0.543*** 0.543*** 0.54*** 0.533*** 0.54*** 0.544***

(13.476) (13.521) (13.436) (13.085) (13.503) (13.533)

Hsqft2 (000s) -0.029*** -0.029*** -0.029*** -0.028*** -0.028*** -0.029***

(-9.775) (-9.658) (-9.678) (-9.41) (-9.642) (-9.732)

Age 0.004 0.004 0.004 0.003 0.003 0.004

(1.056) (1.116) (1.106) (0.839) (0.91) (1.057)

Age2 0.000 0.000 0.000 0.000 0.000 0.000

(-0.986) (-1.034) (-1.064) (-0.79) (-0.812) (-0.976)

Bath 0.025 0.025 0.026 0.022 0.025 0.026

(0.921) (0.901) (0.961) (0.828) (0.917) (0.94)

Repeat -0.082** -0.083** -0.08** -0.086** -0.084** -0.079**

(-2.292) (-2.323) (-2.239) (-2.413) (-2.352) (-2.213)

#rsdnc -0.191 -0.195 -0.2 -0.209 -0.194 -0.191

(-1.32) (-1.343) (-1.388) (-1.449) (-1.352) (-1.325)

ExtrW 0.031 0.02 0.028 0.033 0.018 0.027

(0.833) (0.53) (0.75) (0.889) (0.48) (0.724)

Fire 0.034 0.034 0.032 0.03 0.036 0.032

(0.758) (0.763) (0.729) (0.672) (0.819) (0.715)

Enclsr -0.192*** -0.196*** -0.187*** -0.181*** -0.194*** -0.194***

(-4.077) (-4.169) (-4.049) (-3.898) (-4.113) (-4.129)

Pool 0.129*** 0.126*** 0.125*** 0.126*** 0.118*** 0.125***

(3.207) (3.094) (3.123) (3.153) (2.914) (3.118)

Blift 0.104*** 0.102*** 0.103*** 0.108*** 0.102*** 0.101***

(2.705) (2.671) (2.696) (2.845) (2.656) (2.636)

Dock 0.116*** 0.114*** 0.118*** 0.125*** 0.121*** 0.113***

(2.6) (2.587) (2.662) (2.826) (2.731) (2.535)

Special 0.044 0.054 0.042 0.042 0.054 0.045

(0.947) (1.146) (0.897) (0.895) (1.175) (0.967)

WQ 0.014* 0.122 0.003** 0.008** -0.035** 0.006*

(1.73) (1.273) (1.994) (2.543) (-2.047) (1.709)

White 0.000 0.000 -0.001 0.000 -0.001 0.000

(-0.127) (-0.255) (-0.29) (-0.076) (-0.323) (-0.254)

65 -0.003 -0.003 -0.004* -0.005* -0.003 -0.003

(-1.456) (-1.249) (-1.73) (-1.94) (-1.413) (-1.506)

Own 0.002 0.002 0.003 0.003 0.002 0.002

(0.938) (0.694) (1.167) (1.24) (0.699) (0.958)

Int -0.171*** -0.171*** -0.168*** -0.162*** -0.158*** -0.165***

(-7.964) (-8.316) (-8.368) (-8.576) (-8.331) (-8.367)

R
2

0.56 0.56 0.56 0.56 0.56 0.56
BP ~ 37.57 47.63 50.71 46.53 53.66 44.88 44.52  

White’s robust t-values are in parentheses 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 
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Table III.10. Pooled WQ Measure Results by Statistical Descriptor 

 WQ Measure For Year of Sale 

 Minimum Median Range Maximum 

WTemp   *   * 

pH         

WVis ***     ** 

Salinity   ***   ** 

DO       ** 

Grade   *   * 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 

Table III.11. Pooled WQ Measure Hedonic Prices by Statistical Descriptor 

 WQ Measure For Year of Sale 

 Minimum Median Range Maximum 

WTemp   
 $11,284  
(1.3%)  

  
 $12,152  
(1.4%)  

pH         

WVis 
 $4,340 
(0.5%)  

    
 $2,604  
(0.3%)  

Salinit   
 $7,812  
(0.9%)  

  
 $6,944  
(0.8%)  

DO       
 $-30,380  

(3.5%)  

Grade   
 $-2,604  
(0.3%)  

  
 $5,208   
(0.6%)   

The % change in the mean sales price for an additional unit of each variable is given in parentheses, i.e., the 
estimated coefficient for the respective WQ measure as per Tables 6 to 9. 
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Table III.12. Fixed Effect OLS Results Minimum WQ 

Variable WTemp pH WVis Salinit DO Grade

WQ -0.004 -0.219** -0.003 -0.025*** 0.005 -0.005***

(-0.779) (-2.387) (-1.211) (-4.043) (0.335) (-2.993)

d_river -0.211*** -0.268*** -0.284*** -0.652*** -0.224*** -0.308***

(-3.079) (-4.03) (-3.417) (-5.576) (-3.28) (-4.203)

d_estry 0.186** 0.188** 0.144* -0.16 0.155* 0.127

(2.049) (2.221) (1.667) (-1.468) (1.786) (1.499)

d_2000 0.029 0.164 0.068 0.137 0.013 0.089

(0.203) (1.046) (0.451) (0.942) (0.088) (0.604)

d_2001 -0.071 -0.004 -0.051 -0.057 -0.077 -0.067

(-0.791) (-0.049) (-0.559) (-0.64) (-0.819) (-0.751)

d_2002 -0.064 0.018 -0.037 -0.067 -0.089 -0.03

(-0.994) (0.235) (-0.539) (-1.092) (-1.268) (-0.483)

d_2003 -0.049 0.058 -0.012 -0.008 -0.027 -0.016

(-0.845) (0.922) (-0.25) (-0.168) (-0.552) (-0.34)  

White’s robust t-values are in parentheses 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 

 

Table III.13. Fixed Effect OLS Results Median WQ 

Variable WTemp pH WVis Salinit DO Grade

WQ -0.015 -0.004*** -0.003 -0.132*** -0.011***

(-1.359) (-3.014) (-0.522) (-2.732) (-3.657)

d_river -0.237*** -0.419*** -0.292* -0.157** -0.375***

(-3.486) (-4.323) (-1.814) (-2.252) (-4.716)

d_estry 0.187** 0.008 0.131 0.266*** 0.003

(2.157) (0.08) (1.187) (2.819) (0.037)

d_2000 0.037 0.087 0.043 -0.061 0.004

(0.258) (0.603) (0.285) (-0.407) (0.027)

d_2001 -0.056 -0.045 -0.04 -0.124 -0.17*

(-0.623) (-0.501) (-0.363) (-1.296) (-1.704)

d_2002 -0.006 -0.048 -0.062 -0.184** -0.049

(-0.082) (-0.799) (-0.895) (-2.484) (-0.8)

d_2003 0.032 -0.034 -0.038 -0.128** -0.169***

(0.484) (-0.695) (-0.755) (-1.995) (-2.831)  

White’s robust t-values are in parentheses 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 

Results for pH are excluded due to multicollinearity issues between median pH values and the constant 
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Table III.14. Fixed Effect OLS Results Statistical Range of WQ 

Variable WTemp pH WVis Salinit DO Grade

WQ -0.002 0.197** 0.001 0.018*** -0.023** 0.004***

(-0.485) (2.567) (0.591) (2.763) (-1.987) (2.916)

d_river -0.228*** -0.269*** -0.226*** -0.303*** -0.227*** -0.288***

(-3.19) (-4.043) (-3.361) (-4.566) (-3.408) (-4.055)

d_estry 0.151* 0.178** 0.165* 0.006 0.146* 0.137

(1.721) (2.128) (1.953) (0.067) (1.754) (1.617)

d_2000 0.02 0.096 0.019 0.037 -0.019 0.059

(0.139) (0.657) (0.132) (0.259) (-0.133) (0.406)

d_2001 -0.067 0.008 -0.076 -0.204** -0.102 -0.096

(-0.749) (0.088) (-0.83) (-2.03) (-1.105) (-1.047)

d_2002 -0.086 0.013 -0.074 -0.165** -0.146** -0.038

(-1.313) (0.186) (-1.19) (-2.518) (-2.07) (-0.608)

d_2003 -0.025 0.053 -0.04 0.004 -0.024 -0.048

(-0.496) (0.906) (-0.784) (0.083) (-0.487) (-0.982)  

White’s robust t-values are in parentheses 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 

 

Table III.15. Fixed Effect OLS Results Maximum WQ 

Variable WTemp pH WVis Salinit DO Grade

WQ -0.033*** 0.031 -0.001 -0.006 -0.054*** -0.003

(-2.773) (0.264) (-0.542) (-1.034) (-2.928) (-0.565)

d_river -0.282*** -0.22*** -0.234*** -0.303*** -0.188*** -0.229***

(-3.912) (-3.249) (-3.173) (-2.685) (-2.756) (-3.299)

d_estry 0.193** 0.161* 0.153* 0.135 0.206** 0.157*

(2.258) (1.895) (1.743) (1.455) (2.384) (1.861)

d_2000 0.057 0.013 0.041 0.046 0.016 0.038

(0.399) (0.089) (0.27) (0.322) (0.114) (0.255)

d_2001 -0.059 -0.066 -0.056 -0.015 -0.065 -0.051

(-0.662) (-0.724) (-0.603) (-0.157) (-0.723) (-0.521)

d_2002 -0.084 -0.077 -0.068 -0.041 -0.12* -0.074

(-1.368) (-1.255) (-1.079) (-0.623) (-1.905) (-1.211)

d_2003 -0.133** -0.028 -0.01 -0.035 -0.03 -0.008

(-2.124) (-0.578) (-0.17) (-0.727) (-0.633) (-0.144)  

White’s robust t-values are in parentheses 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 
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Table III.16. Fixed Effect WQ Measure Results by Statistical Descriptor 

 
WQ Measure For Year of Sale 

 Minimum Median Range Maximum 

WTemp      *** 

pH **    **   

WVis  ***    

Salinity ***   ***   

DO   ***  **  *** 

Grade *** *** ***  

 

*, **, and *** denote significance at the 0.10, 0.05 and 0.01 levels respectively 
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 Figure III.1. Study Area of Martin County, FL 
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Figure III.2. Martin County Waterfront Transactions January 2000 to August 2004 

 

Note: Homes that sold more than one time over the study timeframe are only depicted once in the above 
figure  
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 Figure III.3. Water Quality Monitoring Locations  

 

 
1: Winding North Fork  6: Narrow Middle River 
2: North Fork    7: Manatee Pocket 
3: South Fork    8: Inlet Area 
4: Winding South Fork  9: Indian River Lagoon 
5: Wide Middle River 

 
(Source: FOS, 2004) 
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 Figure III.4. Example of Martin County Available Weekly Water Quality Data 

St. Lucie River Estuary Water Quality Outlook 

Overall Grade: 84%  C+ 
Posted: 2/11/2004 

 

 

(Source: Modified from FOS, 2004) 
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 Figure III.5. DO Levels by WQ Monitoring Location from Jan 2000 to Dec 2004 
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 Figure III.6. Waterfront Home Sales by WQ Monitoring Location 
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 Figure III.7. a) Median Water Visibility by Year & Location; b) Min, Avg, & Max Water 
Visibility by Location for Jan 2000 to Dec 2004  
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IV.  IS IT TIME TO GO YET?  DYNAMICALLY MODELING HURRICANE   
            EVACUATION DECISIONS 
 
 
IV.I.  Introduction 

The 2005 hurricane season was the most active hurricane season on record and 

left in its wake many poignant reminders concerning the critical role of evacuation, 

including the floodwater trapped citizens of New Orleans due to Hurricane Katrina, as 

well as the evacuation gridlock outside Houston caused by the impending Hurricane Rita.  

Projections of future hurricane seasons currently indicate continued high levels of 

hurricane activity, further emphasizing the need to better understand evacuation behavior 

in order to attempt to avoid similar evacuation breakdowns.  Much of the evacuation 

research to date has focused on either the characteristics of those who evacuate, such as 

location/type of home, income level, etc., or the general difficulties associated with 

evacuating (Dash and Gladwin, 2005).  In their overview of social science research needs 

related to hurricane forecasts and warnings, Gladwin et al. (2005, pg. 9) highlight the 

need for research that leads to “… modeling of evacuation behavioral response in more 

precise and comprehensive ways”.  Enhanced hurricane evacuation modeling in regard to 

the incorporation of decision makers’ risk perceptions, beliefs, constraints, and abilities to 

decipher warning signals, as well as the dynamic nature of decision making in a non-

linear communication environment are all repeated and accentuated themes resulting 

from the white papers associated with the Gladwin et al. (2005) report.   

The purpose of this paper is to respond to one of the hurricane evacuation issues 

by developing a dynamic model of hurricane evacuation behavior.  Specifically, a 

household’s evacuation decision is framed as an optimal stopping problem where every 
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potential evacuation time period prior to the actual hurricane landfall, the household’s 

optimal choice is either to evacuate, or to wait one more time period for a revised 

hurricane forecast.  Given this theoretical framework, relevant policy questions that affect 

the timing of the household evacuation decision are analyzed.   

In order to provide the intuition behind evacuation decision making in a dynamic 

framework, we present initial results from a simple, two-period model of evacuation.  By 

utilizing the two-period model to contrast a dynamic vs. static “now or never” view of the 

optimal 1st period evacuation decision, we show that the dynamic perspective results in 

1st period waiting being optimal for certain levels of evacuation costs, even thought 1st 

period evacuation is optimal from a static perspective.  We illustrate other distinct 

dynamic vs. static optimal waiting/evacuating results for a number of possible hurricane-

related policies such as a mitigation focus solely on potential damage from the more 

frequent, but less destructive minor hurricanes.  Further benefits of the use of a dynamic 

framework to analyze evacuation behavior are highlighted with the simple, two-period 

model including an analysis of households with heterogeneous evacuation costs, and the 

ability of the two-period results to provide a deeper understanding of existing evacuation 

timing empirical outcomes.   

 However, as we ultimately want to better explain actual evacuation behavior, we 

extend our hypothetical two-period model to a realistic multi-period setting that is 

calibrated using existing forecast and evacuation cost data for a specific region, coastal 

areas on the Gulf of Mexico.  We show that the model does a good job of explaining 

actual evacuation behavior in specific hurricanes, as well as expected evacuation timing 

outcomes by various household types.  From this calibrated dynamic framework, a 
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number of policy questions that plausibly affect the timing of household evacuations are 

analyzed.  For example, does building more shelters induce earlier evacuation?  

Additionally, the value of an improved hurricane forecast is an outcome of the policy 

analysis.           

Whitehead (2003) estimates the probability of evacuation for varying levels of 

hurricane intensity, but does so from a static perspective as the timing of the probability 

of an evacuation for any particular storm intensity level is not addressed.  However, the 

evacuation decision when faced by a hurricane threat has the three qualities of 

irreversibility, uncertainty, and the ability to wait for more information that characterize a 

decision process that is better understood from a dynamic modeling approach (Dixit and 

Pindyck, 1994).  Standard empirical results from the evacuation literature such as the 

traditional S-shaped evacuation response curves (USACE, 2006a) indicate certain 

households wait while others evacuate, and therefore further underscore the need for a 

dynamic perspective of evacuation behavior.  Likewise, only from a dynamic perspective 

can it be shown (as we do) that households may in fact be acting rationally by choosing 

to ignore evacuation warnings and waiting for more information, even though it could be 

the case that the benefits of evacuating (i.e., the expected avoided damage costs) 

outweigh the evacuation costs for a particular static snapshot of time – a situation that 

seemingly perplexes public evacuation authorities.   

Moreover, modeling the evacuation decision process dynamically over many time 

periods with households having the ability to wait for more information, is analogous to a 

real-life evacuation decision situation where the National Hurricane Center (NHC) issues 

official forecast advisories every six hours once a tropical depression, tropical storm, or 
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hurricane has developed.  While Fu and Wilmot (2004) utilize a sequential choice model 

to estimate the probability of a household evacuating or waiting in each period of their 

dynamic multi-period framework, and further use their dynamic model results to provide 

clarification to the standard evacuation timing empirical outcomes, their research differs 

from ours in a number of significant ways.  Importantly, we provide a theoretical model 

of dynamic evacuation behavior which is necessary for conducting policy analysis.  

Furthermore, our dynamic model is calibrated with forecast data from a number of storms 

across a number of locations which coincides directly with the six hour NHC forecast 

advisory timeline, and we explicitly address the costs of evacuation in a household’s 

evacuation decision.  Our research then serves as a contrast to the existing models of 

hurricane evacuation behavior by utilizing a theoretically-driven dynamic modeling 

approach that provides a more realistic interpretation to the multi-period evacuation 

decision process through the use of forecast and evacuation cost data, thereby helping to 

further bridge the knowledge gap between hurricane forecasts and evacuation timing 

behaviors.   

The remainder of the paper is organized as follows: Section II provides an 

overview of the uncertainty inherent in hurricane forecasts and its effect on the timing of 

evacuations; Section III presents and solves a two-period evacuation decision model, 

building the intuition for the results to the multi-period model; Section IV describes the 

optimal stopping problem for the multi-period evacuation decision setting; Section V 

discusses the calibration of this model’s inputs and parameters; Section VI provides the 

model’s recursive solution and results; Section VII discusses policy implications from the 

multi-period results; and Section VIII gives the concluding comments. 
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IV.II.  The Uncertain Nature of Hurricane Forecasts and Evacuation Timing 

Once a tropical depression, tropical storm, or hurricane has developed, the NHC 

issues an official forecast advisory every six hours at 5:00 a.m., 11:00 a.m., 5:00 p.m., 

and 11:00 p.m.30.  While the accuracy of the information contained in the NHC forecast 

advisories has improved, and continues to improve over time, the existing science around 

forecasting hurricane tracks and intensity levels is such that forecasts contain much 

uncertainty31.  Assuming that for any particular six-hour time period prior to a hurricane’s 

landfall with an associated NHC forecast advisory, households are using the information 

contained in the current forecast advisory to decide whether to evacuate immediately, or 

to wait for the next advisory containing an updated hurricane forecast, it is not surprising 

to see empirical evidence suggesting heterogeneous evacuation behaviors among 

households where some evacuate while others wait32.  This heterogeneous evacuation 

behavior is a function of the inherent uncertainty contained in the NHC forecast 

information that accordingly places a great deal of uncertainty into a household’s 

decision to evacuate during any particular time-period.       

                                                 
30 Occasionally, an additional intermediate advisory will be issued as a storm is getting closer to landfall.  
As this is a rare occurrence, and furthermore as not all of the forecast information contained in the 
intermediate advisory changes from the normal six-hour advisory, we do not consider it further.  
 
31 We consider only the intrinsic technical uncertainty of the forecast in our analysis.  However, in addition 
to the technical uncertainty of each forecast, it needs to be pointed out that there is also a level of subjective 
uncertainty that is a function of the hurricane forecasting process.  Each official forecast released by the 
NHC is ultimately a compilation of a number of different forecasting models available to the NHC 
forecaster responsible for that particular storm.  Of course, all of these models are never in full agreement 
on exactly what the storm will do.  The forecaster consequently places a subjective level of confidence on 
what he believes to be the most correct information coming from the various available models, and also 
based on his past forecasting experience.   
     
32 Regardless of whether households are using the NHC forecast advisories to base their evacuation 
decision upon, whatever source of information they are using will still contain some level of uncertainty.  
Furthermore, it is the case that “… almost all hurricane forecast information the public receives is a 
repackaged form of NHC data” (Regnier, pg. 3, 2006).    
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NHC Forecast Advisories 

The most critical aspects of information contained in the NHC forecast advisory 

(which are also distinct from information contained in any of the other hurricane products 

issued by the NHC) include a 12, 24, 36, 48, 72, 96, and 120 hour forecast33 of an 

approaching hurricane’s center position (track forecast), maximum one-minute (i.e., 

sustained) wind speeds (intensity forecast), non-sustained wind speed gusts, and 

asymmetrical maximum wind radii from the storm’s center of minimum tropical storm 

strength (34 KT), strong tropical storm strength (50 KT), and hurricane force (64 KT) 

winds34 (NHC, 2006).  An example of this information from Hurricane Dennis’s forecast 

advisory #19 issued at 5:00 a.m. on July 9, 2004 is presented in Figure 1, with the 

“forecast valid” at 09/1800Z, 10/0600Z, 10/1800Z, 11/0600Z, 12/0600Z, 13/0600Z, and 

14/0600Z denoting the 12, 24, 36, 48, 72, 96, and 120 hour forecast respectively35.  In 

addition to this forecast information, other information contained in the NHC forecast 

advisories (which is mostly non-distinct from information contained in any of the other 

hurricane products issued by the NHC), includes any watches and warnings issued, as 

well as the current center location, center accuracy, movement, pressure, eye diameter, 

maximum winds, and wind radii. 

The track and intensity forecasts are subsequently evaluated against “best-track” 

storm data during a post-storm analysis, where track forecast error and forecast intensity 

                                                 
33 96 and 120 hour forecasts began in 2001, but were not made part of the official forecast advisory 
available to the public until 2003 (http://www.nhc.noaa.gov/verification/verify2.shtml?) 
 
34 Radii distance is given in nautical miles, and the maximum wind radii are not given for the 96 and 120 
hour forecasts. 
 
35 One will note that the 09/1800Z 12 hour forecast equates to 2:00 p.m., whereas the current advisory is for 
5:00 a.m., which is a 9 hour difference, not 12 hours.  This is because the forecast is actually based on 
synoptic time data which is collected three hours prior to the advisory time (Norcross, 2006).   
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error are determined.  Track forecast error is defined as “as the great-circle distance 

between a cyclone's forecast position and the best track position at the forecast 

verification time”, and forecast intensity error is defined as “the absolute value of the 

difference between the forecast and best track intensity at the forecast verifying time” 

(NHC, 2006).  Figure 2 provides the annual average official track forecast errors for 

Atlantic basin tropical storms and hurricanes from 1970 through 200536, and Figure 3 

provides the annual average intensity errors for Atlantic basin tropical cyclones from 

1990 through 200537. 

Figure IV.1. Hurricane Dennis Forecast Advisory #19 

REPEAT...CENTER LOCATED NEAR 23.9N  82.9W AT 09/0900Z 

AT 09/0600Z CENTER WAS LOCATED NEAR 23.4N  82.5W 

  

FORECAST VALID 09/1800Z 25.3N  84.1W 

MAX WIND  90 KT...GUSTS 110 KT. 

64 KT... 55NE  35SE  20SW  30NW. 

50 KT... 90NE  75SE  30SW  55NW. 

34 KT...150NE 150SE  75SW 140NW. 

  

FORECAST VALID 10/0600Z 27.5N  85.7W 

MAX WIND 100 KT...GUSTS 120 KT. 

64 KT... 55NE  45SE  25SW  35NW. 

50 KT... 90NE  80SE  40SW  60NW. 

34 KT...150NE 150SE  80SW 150NW. 

  

FORECAST VALID 10/1800Z 29.8N  87.1W 

MAX WIND 110 KT...GUSTS 135 KT. 

64 KT... 55NE  45SE  25SW  35NW. 

50 KT... 90NE  80SE  40SW  60NW. 

34 KT...150NE 150SE  80SW 150NW. 

  

FORECAST VALID 11/0600Z 32.5N  88.5W...INLAND 

MAX WIND  45 KT...GUSTS  55 KT. 

34 KT... 75NE  75SE  50SW  50NW. 

  

FORECAST VALID 12/0600Z 36.0N  90.0W...INLAND 

MAX WIND  30 KT...GUSTS  40 KT. 

  

EXTENDED OUTLOOK. NOTE...ERRORS FOR TRACK HAVE AVERAGED NEAR 250 NM 

ON DAY 4 AND 325 NM ON DAY 5...AND FOR INTENSITY NEAR 20 KT EACH DAY 

  

OUTLOOK VALID 13/0600Z 38.0N  89.5W...INLAND 

MAX WIND  20 KT...GUSTS  25 KT. 

  

OUTLOOK VALID 14/0600Z 39.1N  85.0W...INLAND 

MAX WIND  20 KT...GUSTS  25 KT.  

(Source: NHC, 2006) 

                                                 
36 Track forecast errors for the Eastern North Pacific Basin are similar (NHC, 2006)  
 
37 Intensity errors for the Eastern North Pacific Basin are similar (NHC, 2006)  
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While it can be seen in Figure 2 that the track forecast errors have improved over 

time, there is still a high amount of variability in the accuracy of the forecast track as the 

number of hours prior to landfall increases.  For example, from Figure 2 in 2004 the 

average track forecast error decreases nearly 80% from 323 miles 120 hours out from 

landfall, to 62 miles 24 hours out from landfall.  A further illustration of the magnitude of 

the track forecast errors over time is shown through an example of the NHC’s well-

known forecast cone in Figure 4.  Using the 12, 24, 36, 48, 72, 96, and 120 hour forecast 

as the center point of the storm, the forecast cone is simply constructed by drawing a 

circle with radius equal to the average track forecast error over the previous five years 

around each forecast point (Norcross, 2006).  Figure 4 clearly shows how the diameter of 

the cone expands with forecast time, where 120 hours out from potential landfall it is 

wide enough to come into contact with four out of the possible five states along the Gulf 

Coast!          

Figure IV.2. NHC Official Annual Average Track Errors, Atlantic Basin Storms 
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Similarly for intensity errors, the same accuracy variability story arises.  Storm 

intensity is measured through the five category levels of the Saffir-Simpson hurricane 

scale (SSHS) as presented in Table 1.  In 2004, 120 hours from landfall the average 

intensity error is 26 mph, which is sufficient magnitude to plausibly cross three categories 

on the SSHS.  24 hours out from landfall, the intensity error has decreased by nearly 55% 

to approximately 11.5 mph, which, despite the error decrease, is still enough to straddle 

two SSHS category levels. 

Table IV.1. Saffir-Simpson Hurricane Scale 

Hurricane 
Category Level Wind Speed (mph) Damage 

1 74-95 Minimal 

2 96-110 Moderate 

3 111-130 Extensive 

4 131-155 Extreme 

5 > 155 Catastrophic 

 (Source: NHC, 2006) 
 

Figure IV.3. NHC Official Annual Avg Intensity Errors Atlantic Basin Tropical Cyclones 
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Figure IV.4. NHC Average Error Cone Example 

 
(Source: NHC, 2006) 

Given that recommended safe evacuation times for major coastal communities are 

at least 30 hours in advance of a hurricane’s expected landfall (Lindell et al., 2005a), 

these figures highlight the significant amount of uncertainty inherent in the hurricane 

forecast that households must use to make evacuation decisions during this recommended 

safe evacuation timeframe.  For example, the 36 hour forecast in 2005 had a track 

forecast error of 90 miles, and an intensity error of 15 mph.  Imagine a location that is 

within the average error forecast cone for the 36 hour forecast, but it is located 80 miles 

east of the forecasted center of the storm, and is therefore on the far eastern side of the 
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cone (assume the hurricane and hence the cone are moving south to north).  Let the 36 

hour forecast call for an intensity of 105 mph at landfall, which is a category 2 (CAT 2) 

hurricane.  Assuming the storm actually stays within the cone 36 hours later38, it could 

potentially make landfall 170 miles west of our imagined location (i.e., 90 miles west of 

the forecasted storm center), placing our location out of harm’s way39.  Furthermore, even 

if the storm does head directly toward our location it could make landfall anywhere from 

90 mph to 120 mph, or from a CAT 1 up to a CAT 3 hurricane.  As CAT 1 hurricanes are 

classified as causing minimal damage, and CAT 3 hurricanes as causing extensive 

damage, the difference in potential damage is significant.   

Undoubtedly, a household’s evacuation decision 36 hours from landfall knowing 

that a CAT 3 storm will be tracking directly over it, or a CAT 1 storm will be tracking 

170 miles west of it, would be different.  And the fact that the storm is forecasted to 

potentially fall anywhere in between these two extremes leads to inevitable uncertainty in 

regard to a household’s decision to evacuate during this 36 hour time period.             

 

NHC Products Addressing Forecast Uncertainty 

Strike probabilities are an additional product issued by the NHC every six hours 

in conjunction with the forecast advisories which provide households with probabilistic 

information concerning the storm tracking over their specific location that the forecast 

advisory and the average error cone do not provide.  A strike probability on a location is 

defined as “the percent chance that the center of the storm will cross within 65 nautical 

                                                 
38 In fact, storms only stay within the cone 70% of the time (Norcross, 2006) 
 
39 Regnier (pg.1, 2006) states that “hurricanes affect about 150 miles of coastline per landfall” 
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miles (75 miles) of a location” (NHC, 2006).  The strike probabilities by their very nature 

are meant to convey the uncertainty intrinsic to the hurricane forecasts, and for 

households to use this information to assist in making their decision to evacuate.       

A graphical example from HURREVAC software of the provided strike 

probabilities for the 7/9/2005 5:00 a.m. Hurricane Dennis advisory #19 is given in Figure 

5.  From Figure 5, it is clear that the probability of a strike on a location is not limited to 

only those locations falling within the 3-day average error forecast cone, or that the strike 

probabilities add up to 100% across all locations.  Another important point to note about 

the strike probabilities is that they are constrained by the NHC.  For the 12, 24, 36, 48, 

and 72 hour forecasts, the maximum strike probability issued by the NHC is 60-80%, 35-

50%, 20-25%, 13-18%, and 10% respectively (HURREVAC).  Strike probabilities are 

not provided beyond 72 hours out from a storm. 

Starting in 2006 the strike probabilities have been replaced by the NHC’s new 

wind speed probabilities product.  The wind speed probability product not only provides 

the probability of the storm tracking over a location, but also combines this information 

with wind intensity level information.  In this way, the new product gives “the probability 

of winds of a certain strength affecting a given location” (Norcross, pg.114, 2006).  

Additionally, the new product is constructed based on simulated data rather than 

historical data, and provides information on tropical storm force winds instead of solely 

hurricane strength winds.  Accompanying the new wind speed probabilities product is 

also the new wind speed probability table.  This table conveys the uncertainty inherent in 

the intensity forecasts by providing the probability of winds being dissipated, becoming 
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tropical strength, and achieving various levels of hurricane strength for the 12, 24, 36, 48, 

and 72 hour forecasts.                 

 Even though the NHC issues products meant to address the uncertainty of the 

hurricane forecasts, this does not mean that either household uncertainty or 

heterogeneous evacuation behaviors disappear.  Each household will ultimately interpret 

this information in their own subjective way40, and this information is constantly 

changing with every new forecast advisory.  What should be clear from the above 

discussion is that hurricane forecasts are intrinsically uncertain, and that there are 

products issued by the NHC aimed at alleviating the extent of this uncertainty in order to 

facilitate a household’s decision to evacuate or wait.   

Figure IV.5. HURREVAC Strike Probabilities for Hurricane Dennis Advisory #19 

 
(Source: HURREVAC 2000) 

                                                 
40 We do not attempt to address the subjective beliefs of households in regard to forecasts in this study. 
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Heterogeneous Evacuation Behavior 

Again, the intrinsic and significant uncertainty of hurricane forecasts accordingly 

places a great deal of uncertainty into a household’s decision to evacuate during any 

particular forecast time-period, and it is therefore not surprising to see empirical evidence 

suggesting heterogeneous evacuation behaviors amongst households where some 

evacuate while others wait.  For example, Baker (2005b) found that for Hurricane Ivan 

more than 68 hours elapsed from the time the first person evacuated to the time the last 

person evacuated in the Gulf region, which equates to nearly eleven NHC forecast 

advisories spanning the course of three days.  As he states in regard to the timing of 

evacuations, “… it must be recognized that evacuation is a several day process …” (pg. 

64, 2005b).             

Post-storm assessments for a number of hurricanes are completed by FEMA and 

the USACE (USACE 2006b), where a section on evacuation timing is typically included.  

The cumulative evacuation timing curves that are produced as a part of these post-storm 

assessments always indicate heterogeneous evacuation behavior of varying degrees by 

those surveyed households that had decided to evacuate.  On October 4, 1995 at 

approximately 5:00 p.m., Hurricane Opal made landfall as a strong CAT 3 hurricane over 

Pensacola, FL, and Figure 6 presents the cumulative evacuation response curve from the 

Hurricane Opal post-storm assessment.  In this case, while the first households to 

evacuate left nearly 42 hours before landfall on Oct 3, clearly the vast majority of 

households left between 11:00 p.m. on Oct 3 and 11:00 a.m. on Oct. 4.  Despite this 

relatively late evacuation response, the curve still takes on the traditionally assumed S-

shape.   
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Other empirical evidence has found sharp increases in evacuation response rates 

in relation to an official evacuation order being issued (USACE 2006a), with response 

rates designated as fast, medium, and slow.  Figure 7 provides an example of the 

traditional S-shaped behavioral evacuation response curves for cumulative households 

depicting fast, medium, and slow evacuation response rates in relation to an official 

evacuation order.  So not only do some households wait while others evacuate, but their 

rate of waiting and evacuating vary as well.   

Figure IV.6. Hurricane Opal Cumulative Evacuation Response Curve  
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Figure IV.7. Fast, Medium, & Slow S-Shaped Evacuation Response Curves  
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(Source: Adapted from USACE 2006a) 

 

Additionally, other empirical results indicate that these different rates of fast, 

medium, and slow waiting/evacuating are shown to be dependent upon either household 

location, or household type.  Figure 8 presents evacuation timing results from the 

Hurricane Jeanne post-storm assessment for the three different Florida aggregated county 

locations of East Central, Treasure Coast, and Non-Coastal.  In this particular instance, 

although the storm eventually made landfall over the Treasure Coast around 11:00 p.m. 

on Sept. 25, 2004, East Central generally had a faster rate of evacuation41.  The Non-

Coastal location had the slowest rate of evacuation as might be expected.  Figure 9 

presents fast, medium, and slow evacuation response rates for hurricanes as a function of 

household type, where households are classified as transient, resident/home, or 

                                                 
41 The 5:00 a.m. 9/24/04 forecast advisory (42 hours before landfall) had the center of the storm making 
landfall north of the Treasure Coast in the East Central location. 
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resident/work (Frieser, 2004).  Residents with at least one household member working 

are the most constrained of the three types, and accordingly have the slowest evacuation 

response time.  

Figure IV.8. Hurricane Jeanne Evacuation Response Curve by Household Location  
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Figure IV.9. Hurricane Evacuation Response Rate by Household Type 
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Lindell et al. (2005b) further stress location of households (proximity to water 

sources induces early evacuation), while Fu and Wilmot (2004) further emphasize 

household type (high risk homes in low-lying areas evacuate earlier) in explaining the 

heterogeneous timing of evacuations.  But, beyond a household’s response to an official 

evacuation order, household location, or household type, there are other factors that 

emerge from the empirical evacuation literature that provide insight to the variable timing 

of evacuations.  In regard to the starting time of evacuations, Dow and Cutter (pg. 15, 

2002) state that the “majority of evacuation trips begin during normal waking hours on 

the 2 days prior to anticipated landfall”, and Lindell et al. (2005a) stress the importance 

of psychological preparation in initiating the decision to evacuate.  Fu and Wilmot 

(2004), and Lindell et al. (2005b) highlight heightened rates of evacuation occurring 

during the daylight hours, and subsequent slowdowns during the night.  Lastly, Lindell et 

al. (2005b) indicate that the steadier is the track of a storm, the earlier will evacuations be 

induced.  

While heterogeneous evacuation behaviors are clearly shown in the existing 

empirical results, and some insight concerning what is driving these behaviors can also be 

gained from them, the empirical results do not apply to all general evacuation timing 

outcomes, nor are they able to sufficiently explain specific evacuation timing outcomes.  

For example, the evacuation timing graphs from Hurricane Ivan’s post-storm assessment 

illustrate increased levels of evacuation beginning to occur during the nighttime hours, as 

opposed to slowdowns (Baker, 2005b).  Dow and Cutter (2002) are at a loss to explain as 

to why for Hurricane Floyd (in 1999) 48% of evacuees left between a 9:00 a.m. to 3:00 

p.m. window, with so few leaving before and after this period?  Also, as no primary 
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factor for the timing of evacuations is identified from the empirical evidence, 

extrapolating which factor is actually driving evacuation timing for a specific outcome is 

difficult when interactions between the various factors occur, such as the issuance of 

evacuation orders during daylight hours for coastal communities (Dow and Cutter, 2002; 

Lindell et al., 2005b).    

It is evident from the above discussion that uncertainty and a household’s ability 

to wait for more information are two qualities that characterize the decision to evacuate 

when facing the threat of a hurricane.  We further assume that the hurricane evacuation 

decision is irreversible42, and therefore the hurricane evacuation decision process is better 

understood from a dynamic perspective (Dixit and Pindyck, 1994).  Our dynamic 

framework provides the basis for understanding specific evacuation timing outcomes, as 

they are ultimately driven by an economic cost-benefit rationale.  We start by building 

the intuition for the dynamic perspective through the use of a simple, two-period model 

of evacuation in the next section.     

 

IV.III. A Two-Period Model of Hurricane Evacuation 

The Model 

We initially frame our household hurricane evacuation decision in a simple two-

period model, where in each of the two periods evacuation is possible with households in 

a particular location receiving a forecast of the hurricane intensity at landfall for their 

                                                 
42 For example, mean evacuation distance traveled for Hurricane Ivan was 182 miles (Baker, 2005b) – 
clearly not an easily reversible distance to cover. 
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location43.  Let T denote the known44 landfall time of the hurricane such that period 1 < 2 

< T, where evacuation in period 1 or 2 is feasible, but evacuation beyond period 2 is not 

feasible.  Furthermore, if evacuation is initiated in either period 1 or 2, it cannot be 

reversed. 

Let θt denote the hurricane landfall intensity forecast for period t= 1, 2, T.  The 

random variable θ2 has a distribution conditional on θ1, while the random variable θT has 

a distribution conditional on θ2; and θT is no longer a forecast but rather a realized value.  

Therefore, the household evacuation decision in period 1 is either to evacuate 

immediately given θ1, or to wait one period for more information from the expected 

updated forecast in period 2.  Similarly for those households that did not evacuate in 

period 1, the household evacuation decision in period 2 is either to evacuate immediately 

given the now realized updated forecast of 2θ , or to wait and simply ride out the storm at 

T based upon the severity of the storm which is a random variable with distribution 

conditioned by θ2.  Since period 2 is the last feasible period to evacuate, waiting to 

receive information from a further updated forecast beyond period 2 would not matter to 

the period 2 evacuation decision.              

Thus, in both periods 1 and 2 households ultimately decide to either evacuate or 

wait, and we assume that households base this evacuation decision in each of the t=1,2 

periods by comparing each period’s costs of evacuation, denoted 
( )tEVc , vs. the costs of 

waiting, denoted 
( )tWc .  In either period, 

( )tEVc  are incurred immediately and therefore are 

                                                 
43 For our two-period model we are not incorporating any uncertainty in regard to the track of the storm, 
and therefore forecasts only contain information regarding the intensity of the storm at landfall.  We do 
allow for track uncertainty in our multi-period model.   
 
44 Uncertainty in regard to the timing of landfall is also not incorporated into our two-period model. 
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assumed to be known with certainty.  However, 
( )tWc  are a function of how tθ  evolves 

into 1tθ +  for t = 1, 2, T, and given the intrinsic uncertainty of forecasts as presented in 

section II, 
( )tWc are consequently uncertain.  Therefore, risk neutral, expenditure 

minimizing households faced with an impending hurricane decide to evacuate in period 1 

when ( )
(1) 1 2 1EV W

c E c θ θ <   , and similarly decide to evacuate in period 2 when 

( )
(2 ) 2 2EV T W

c E c θ θ <    

( )tEV
c  include (but are not limited to) evacuation travel and time costs, direct costs 

incurred while away (food, lodging, entertainment), lost wages, and the disutility from 

not being able to protect and/or access one’s home (Whitehead, 2003).  While some of 

these immediate evacuation costs, such as lost wages and portions of direct costs, may 

actually decrease with waiting as t approaches T, we assume that certain costs, e.g., the 

crowdedness of the roads, distance needed to travel for adequate lodging, gasoline 

scarcity, etc., will increase rapidly enough so as to offset these declining costs.  

Therefore, we assume that the longer a household waits to evacuate, the more difficult, 

and hence more expensive the overall evacuation will become such that the costs of 

evacuating are increasing over time and consequently we have
(1) (2 )EV EV

c c< .  Indeed, if 

( )tEV
c  are not increasing over time, there would be an incentive for households to simply 

wait until the last possible minute to evacuate.  The empirical evidence from the S-shaped 

evacuation response curves presented in section II do not point to such a last minute 

evacuation result for all households.     
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A household’s decision not to evacuate carries the risk of being injured, or even 

killed, depending on the magnitude of the hurricane and given the hurricane ultimately 

striking their location.  The costs of not evacuating as a function of hurricane intensity 

therefore include (but are not limited to) the expected loss due to injury, death, and/or 

personal property damage45, as well as the expected utility loss from not being able to 

maintain a normal level of standard “comforts of home” such as electricity and hot water.   

Since in period 1 households wait for the updated forecast, 2θ , and the possibility 

of evacuating during period 2, but in period 2 households wait for the final evolution of 

the storm, 
T

θ , with no further possibility  of evacuating beyond period 2, the expected 

costs of waiting in each of these periods will be different.  In period 1, the expected costs 

of waiting are comprised of two components: the known costs of evacuating in the next 

period, 
(2)EV

c , which we have assumed to be increasing; and the costs of not evacuating, 

( )2 _N EV
c θ  such that:  

 
( ) ( ){ }

( ) ( ){ }
( 2) ( 2)

( 2)

1 2 1 2 1_

2 1 2 1_ _
                                   

EV EVW N EV

EVN EV N EV

E c c Pr c c

E c Pr c c

θ θ θ θ

θ θ θ θ

  = ∗ < 

 + ∗ >
 

 (23) 

In period 2, the expected costs of waiting only consist of the expected costs of not 

evacuating, ( ) 2_T N EV
E c θ θ 
 

, such that: 

 ( ) ( )2 2 2_T TW N EV
E c Pr cθ θ θ θ   =   

 (24) 

                                                 
45 Personal property here represents personal property that a household can take with them during the 
evacuation such as their automobile. 
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Importantly, the differences between (23) and (24) highlight the additional insight 

provided by a dynamic perspective.  In period 2, the evacuation decision is static as there 

is no ability to wait for more information that is actionable.  Here, a household weighs the 

costs of evacuating in period 2 vs. the expected damages at T of not evacuating and 

makes their cost-minimizing decision accordingly.  However, in period 1 the decision is 

truly dynamic as the household does have the ability to wait for more information that is 

actionable in period 2, the information is uncertain, and if they decide to evacuate in 

period 1, this decision cannot be reversed.  As can be seen in (23), the household not only 

weighs the costs of evacuating in period 1 against the expected damages at period 2 of 

not evacuating, but must also factor into its cost-minimizing decision the known 

increased costs of evacuating in period 2.   

Intuitively, then the value a household ascribes to waiting is that period 2 

evacuation may not be optimal due to the intrinsic uncertainty of the forecast, and hence 

households avoid the regret caused by unnecessary period 1 evacuation.  On the other 

hand, waiting may come at a cost to households if increased evacuation costs are incurred 

for period 2 evacuations that could have been completed in period 1 at lower evacuation 

cost levels, or if additional exposure to the costs of not evacuating are incurred in period 

2 due to increased evacuation costs that make period 2 evacuation no longer optimal 

when it would have been optimal if costs had not increased from the period 1 levels.  

When the regret from evacuating in period 1 is greater than the increased period 2 

evacuation costs incurred plus any additional exposure to the costs of not evacuating, a 

positive option value (OV) for waiting exists.        
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Model Solution and Hypothetical Results 

We investigate evacuation decisions in period 1 and period 2 given the potential 

for a CAT 1, CAT 2, or CAT 3 hurricane making landfall at our location with certainty.  

Let costs at landfall due to not evacuating for a CAT 2 hurricane be $450, increase by 

50% to $675 for a CAT 3 hurricane, and decrease by 50% to $225 for a CAT 1 

hurricane46.  The values for losses at landfall due to not evacuating are chosen to be 

comparable in magnitude to the costs of evacuation from Whitehead (2003), where 

evacuation costs for CAT 1, 2, and 3 hurricanes are $211, $233, and $273 respectively.  

Also, let the costs of evacuation increase by 25% from period 1 to period 2. 

We assume that θ2 does not contain any uncertainty regarding the strength of the 

hurricane, and therefore perfectly reveals the intensity level of the hurricane at T.  In this 

way, the period 2 forecast can be thought of as being close enough to T to allow for a 

nearly zero intensity forecast error, but far enough away to still allow for safe 

evacuation47.  Given the certainty of θ2, households decide to evacuate in period 2, or 

wait and simply ride out the storm at T by minimizing  

 ( ){ }
( 2) 2min ,EV W

c c θ  (25) 

Assuming 
(1)

$250EVc =  for a CAT 1, 2, or 3 hurricane, and given our assumption that the 

costs of evacuation increase by 25% from period 1 to period 2, 
(2 )

$310EVc ≈  for a CAT 1, 

                                                 
46 We have assumed uniform variance in the costs of not evacuating across Cat 1 to CAT 3 hurricanes for 
purposes of this example, although damage costs (typically property damage) associated with the SSHS are 
thought to increase exponentially.   
 
47 Typically there exists a degree of uncertainty surrounding the forecast at the last possible safe evacuation 
period as shown in Figures 2 and 3.  Our assumption is purely for simplification purposes and does not 
affect the results 
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2, or 3 hurricane48.  Therefore, given ( ) 2_
1 $225

T N EV
c CATθ θ = =   , 

( ) 2_
2 $450

T N EV
c CATθ θ = =   , ( ) 2_

3 $675
T N EV

c CATθ θ = =   , and 
(2 )

$310EVc ≈ , from 

(25) a household will choose to evacuate in period 2 for 2θ = CAT 2 and 2θ  = CAT 3, but 

choose not to evacuate in period 2 for 2θ  = CAT 1.   

Let us further assume that θ1 calls for a CAT 2 hurricane making landfall at time 

T with some inherent uncertainty, and that the inherent uncertainty contained in this 

period 1 forecast is understood to be with probability q = 0.34 that 2θ =CAT 2, with 

probability r = 0.33 that 2θ =CAT 3, and with probability (1-q-r) = 0.33 that 2θ =CAT 1.  

Given this inherent uncertainty of θ1, households must decide to evacuate in period 1, or 

wait one period for more information from the expected updated forecast, 2θ , and the 

possibility of evacuating during period 2 by minimizing  

 ( ){ }
(1) 1 2 1min ,EV W

c E c θ θ    (26) 

where following from (1) we have that 

 

( ) ( ){ }
( ){ }

( ) ( ){ }

( 2)

(2)

( 2)

1 2 1 2 1_

2 1_

2 1_

min , 2 2

                                min , 3 2

                                1 min , 1 2

EVW N EV

EV N EV

EV N EV

E c q c c CAT CAT

r c c CAT CAT

q r c c CAT CAT

θ θ θ θ

θ θ

θ θ

  = ∗ = = 

+ ∗ = =

+ − − ∗ = =

(27) 

From period 2 we know that the ( ){ }
( 2) 2_

min , 1EV T N EV
c c CATθ θ = =$225, 

( ){ }
( 2) 2_

min , 2EV T N EV
c c CATθ θ = =$310, and ( ){ }

( 2) 2_
min , 3EV T N EV

c c CATθ θ = =$310.  

                                                 
48 Costs of evacuation are assumed to be the same for CAT 1, 2, and 3 hurricanes in our two-period model, 
and are comparable to the range of the evacuation costs for CAT 1, 2, and 3 hurricanes from Whitehead 
(2003).  The costs will vary by CAT level in our multi-period model. 
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Since ( )2Tθ θ  and ( )2 1θ θ  we can substitute these min values from period 2 into (27) to 

obtain ( ) [ ] [ ] [ ]{ }1 2 1 .33*$225 .34*$310 .33*$310 $284
W

E c θ θ  = + + =   and solve (26) 

where 
(1)

$250EVc = .  Therefore, in period 1 given that θ1 calls for a CAT 2 hurricane 

making landfall at time T with probability q = 0.34 that 2θ =CAT 2, r = 0.33 that 

2θ =CAT 3, and (1-q-r) = 0.33 that 2θ =CAT 1, that 
(1)

$250EVc =  increasing by 25% to 

(2 )
$310EVc ≈ , and that ( ) 2_

1 $225
T N EV

c CATθ θ = =   , ( ) 2_
2 $450

T N EV
c CATθ θ = =   , 

( ) 2_
3 $675

T N EV
c CATθ θ = =   , it is rational for a household to evacuate in period 1.          

Viewing the decision to evacuate in period 1 from a static now or never 

perspective would also tell us that evacuation in period 1 is optimal when 
(1)

$250EVc = .  

This is because from a static perspective, a household decides to evacuate in period 1 by 

minimizing 

 ( ){ }(1) 1 2 1_
min ,

EV N EV
c E c θ θ 

 
 (28) 

where ( ) [ ] [ ] [ ]{ }1 2 1_
.33*$225 .34*$450 .33*$675 $450

N EV
E c θ θ  = + + =
 

. Figure 10 

therefore shows evacuation in period 1 being optimal up to 
(1)

$450
EV

c =  when the 

evacuation decision in period 1 is framed from a “now or never” static viewpoint. 

However, since a household has the ability to wait for more information that is 

actionable in period 2, a dynamic view of evacuation behavior in period 1 is more 

appropriate.  As 
(2 ) (1)

(1.25)*
EV EV

c c= , and given our model assumptions, we can solve 

(26) for various levels of 
(1)EV

c to contrast the difference between viewing the period 1 
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household evacuation decision from a dynamic vs. static perspective.  Figure 11 indicates 

that for 
(1)

$387
EV

c ≥  it is not optimal to evacuate in period 1, but rather it is optimal to 

wait for the updated period 2 forecast.  Thereby, Figure 11 illustrates that from a dynamic 

perspective 1st period waiting is optimal for certain levels of evacuation costs, 

specifically $387 to $450, where 1st period evacuation was optimal from a static 

perspective.   

Figure IV.10. A Static Perspective of Period 1 Evacuation 
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Figure IV.11. Dynamic vs. Static Perspective of Period 1 Evacuation 
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The dynamic results indicate that when relatively high levels of period 1 

evacuation costs, [$387 - $450], are combined with the assumed uncertainty of 1θ , the 

potential regret for evacuating in period 1 outweighs the additional incurred costs of 

waiting such that waiting for 2θ  is the optimal period 1 choice, and therefore a positive 

OV for waiting exists.  The increasing positive OV to waiting for the period 2 forecast is 

represented by the increasing difference between the expected value of waiting and cost 

of evacuating now curves of Figure 11 for 
(1)

$387
EV

c ≥ .  So even if there is a positive net 

benefit to evacuating now from a static perspective, e.g., when 
(1)

$400
EV

c =  a positive net 

benefit to evacuating now $450 - $400 > $0 exists, it is still rational for households to 

wait for the revised forecast due to the positive OV revealed from a dynamic decision 



 107 

framework.  The result that it is rational for households to wait in this situation is lost if 

not viewed from a dynamic perspective, leaving open the possibility of overestimation of 

period 1 evacuation response rates.  Finally, it should be clear that by lowering period 1 

evacuation costs below $387, the regret for evacuating during period 1 is reduced and 

hence so is the value of waiting, leading to more period 1 evacuation.    

 

Policy Implications             

 We can also use this two-period setup to better understand how the 

implementation of specific hurricane related policies will affect the levels of period 1 

evacuation.  For example, assume that more strict building codes are put into place in 

order to reduce the costs of not evacuating (i.e., expected loss due to injury, etc.) for all 

three hurricane CAT levels.  Let us further assume that given this structural mitigation 

effort, the costs at landfall due to not evacuating for a CAT 2 hurricane are reduced by 

33% to $300, while still increasing by 50% to $450 for a CAT 3 hurricane, and still 

decreasing by 50% to $150 for a CAT 1 hurricane.  Figure 12 shows that even from a 

static perspective less immediate period 1 evacuation should be affected, as the expected 

avoided damage curve shifts downward to $300, and therefore not evacuating becomes 

optimal for lower levels of period 1 evacuation costs.   

However, the dynamic perspective is the more correct way of framing the 

evacuation decision, and Figure 13 indicates even lower levels of period 1 evacuation 

than the static view of Figure 12 predicts.  This result is being driven by two separate 

effects caused by the structural mitigation effort: 1) lower costs of not evacuating, but 

also 2) an assumed slower rate of period 1 to period 2 cost of evacuation increases (20% 
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vs. 25%) for all CAT levels due to less overall people evacuating, which cannot be 

captured in a static now or never view.            

Figure IV.12. A Static Perspective of Period 1 Evacuation Given Structural Mitigation 
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Figure IV.13. A Dynamic Perspective of Period 1 Evacuation Given Structural Mitigation 
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A similar static vs. dynamic period 1 evacuation outcome can be shown for the 

scenario where less uncertainty in the forecasts is achieved for stronger storms.  Let the 

inherent uncertainty of 1θ  be such that the probability of Cat 3 storm increases from r = 

0.33 to r = 0.50, while decreasing q = 0.25 and (1-q-r) = 0.25.  Figure 14 shows that even 

from a static perspective more immediate period 1 evacuation should be affected, as the 

expected avoided damage curve shifts upward to $506, and therefore evacuating becomes 

optimal for higher levels of period 1 evacuation costs.  From a dynamic perspective, 

Figure 15 indicates slightly less significant increases to period 1 evacuation than the 

static view of Figure 14 predicts.  This result is being driven by two separate effects 

caused by the increased r value: 1) overall higher expected costs of not evacuating, but 

also 2) an assumed higher rate of period 1 to period 2 cost of evacuation increases for 

CAT 3 storms (25% to 30%) due to more overall people evacuating, combined with an 

assumed lower rate of period 1 to period 2 cost of evacuation increases for CAT 1 and 2 

storms (25% to 20%) due to less overall people evacuating, which again would not be 

captured in a static now or never view.    

Still, differences between the static and dynamic frameworks will for some 

questions be more substantive.  For example, assume the structural mitigation efforts are 

focused on minimizing damages from the more frequent, but relatively less destructive 

Cat 1 and Cat 2 hurricanes49.  In this scenario, we assume that the costs at landfall due to 

not evacuating for a CAT 2 hurricane remain at $450, but now increase by 75% to $788 

for a CAT 3 hurricane, and decrease by 75% to $113 for a CAT 1 hurricane.  Here, 

                                                 
49 CAT 1 hurricanes represent 40%, and CAT 2 represent 26%, of the total hurricanes with a direct hit on 
the United States Mainland (Blake et al., 2005). 
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results from a static perspective will show no changes to period 1 evacuation levels 

occurring because the expected avoided damages do not change, as 

( ) [ ] [ ] [ ]{ }1 2 1_
.33*$113 .34*$450 .33*$788 $450

N EV
E c θ θ  = + + =
 

.  But analyzing this 

policy from a dynamic viewpoint will result in lower levels of period 1 evacuation being 

predicted due to the downward shift of the expected value of waiting curve as shown in 

Figure 16.  Here, more waiting occurs as the chances of regretting period 1 evacuation 

increase due to the lower personal damage costs of not evacuating for CAT 1 storms, 

$225 vs. $113. 

Figure IV.14. A Static Perspective of Period 1 Evacuation Given Higher Probability of CAT 3     
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Figure IV.15. A Dynamic Perspective of Period 1 Evacuation Given Higher Probability of CAT 3 
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In yet other examples, the static framework may even yield responses that have 

the wrong sign.  For example, assume an “evacuation rebate” is given after the storm to 

those households that evacuated for up to 10% of evacuation costs.  In this way, period 1 

costs are effectively reduced by 10%, which causes a downward pivot of the realized 

period 1 evacuation cost curve as shown in Figure 17.  From a static viewpoint, more 

period 1 evacuation would be expected.  However, the dynamic perspective indicates a 

different result.  From this dynamic perspective, while period 1 evacuation would slightly 

increase vs. the earlier dynamic results presented in Figure 11, the increase would not be 

as significant as the static viewpoint seems to indicate, and clearly has waiting being 

optimal for costs levels where evacuation in period 1 is optimal from the static results.       
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  Figure IV.16. Dynamic View of Period 1Evac Given Mitigation Focus on Minor Hurricanes 
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Figure IV.17. A Dynamic Perspective of Period 1 Evacuation Given Evacuation Rebate 
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Thus far, our two-period analysis has derived results based upon households with 

homogeneous period 1 evacuation costs, 
(1)

$250
EV

c = , and θ1 calling for a CAT 2 

hurricane making landfall at time T with probability q = 0.34 that 2θ =CAT 2, r = 0.33 

that 2θ =CAT 3, and (1-q-r) = 0.33 that 2θ =CAT 1.  However, in our two-period model 

we can also analyze evacuation behavior between a high cost of evacuation household 

with 
(1)

$400
EV

c = , and a low cost of evacuation household with 
(1)

$200
EV

c = .  

Furthermore we can do this for different period 1 forecasts such that: when θ1 calls for a 

CAT 1 hurricane making landfall at time T, the inherent uncertainty contained in this 

period 1 forecast is understood to be with probability q = 0.4 that 2θ =CAT 2, with 

probability r = 0.2 that 2θ =CAT 3, and with probability (1-q-r) = 0.4 that 2θ =CAT 1; and 

when θ1 calls for a CAT 3 hurricane making landfall at time T, the inherent uncertainty 

contained in this period 1 forecast is understood to be with probability q = 0.4 that 

2θ =CAT 2, with probability r = 0.4 that 2θ =CAT 3, and with probability (1-q-r) = 0.2 

that 2θ =CAT 1. 

  Still assuming that evacuation costs increase by 25% from period 1 to period 2, 

that θ2 does not contain any uncertainty regarding the strength of the hurricane, and that   

( ) 2_
1 $225

T N EV
c CATθ θ = =   , ( ) 2_

2 $450
T N EV

c CATθ θ = =   , & 

( ) 2_
3 $675

T N EV
c CATθ θ = =   , we can again solve for the optimal period 2 and period 1 

evacuation or wait decisions for both the high evacuation cost and low evacuation cost 

household types following from (25) and (26) respectively.  Figure 18 shows the results 

by period for the two household evacuation cost types    where clearly different 
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evacuating and waiting results emerge depending on the household evacuation cost type.  

In period 2, while low cost types would evacuate for θ2 = CAT 2, high cost types would 

only evacuate given θ2 = CAT 3.  In period 1, the difference is more significant given the 

uncertainty in θ1 as low cost types would evacuate for θ1 = CAT 1, while again high cost 

types would only evacuate given θ1 = CAT 3.   

       Figure IV.18. Optimal Evacuation by Evacuation Cost Type 
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 Now let us assume that the government would like to try to make evacuation 

decisions more equitable between high cost and low cost of evacuation households, but 

has a hard time distinguishing household evacuation cost type, and therefore lowers the 

costs of evacuation by $50 per household regardless of cost type.  Following from our 

results from Figure 17 where lower evacuation costs may lead to more waiting for an 

average household, we further assume in this scenario that evacuation costs increase by 

20% from period 1 to period 2 as opposed to the original 25%.  Figure 19, illustrates the 
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results of this implemented policy where the evacuation region for high cost types has 

expanded to nearly equaling the low cost type evacuation region prior to the policy.  

However, the low cost evacuation region also expands in period 2 so divergent 

evacuation and waiting regions still exist between the household types.  The number of 

injuries avoided or lives saved due to the expanded evacuation regions could be used to 

determine whether the benefits of implementing this type of policy outweigh the costs.  

  Figure IV.19. Optimal Evac by Evacuation Cost Type Given $50 Evacuation Cost Reduction 
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 Finally, let us further assume again that due to a structural mitigation effort, the 

costs at landfall due to not evacuating for a CAT 2 hurricane are reduced by 33% to $300, 

thereby still increasing by 50% to $450 for a CAT 3 hurricane, and still decreasing by 

50% to $150 for a CAT 1 hurricane.  In order to achieve the same expanded evacuation 

region by household type that are achieved in Figure 19 from reducing evacuation costs 

by $50 per household, they now need to be reduced by $150 for the high cost type and by 

$75 for the low cost type.  Clearly the improved structural mitigation requires a larger 
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outlay per household by the government to offset the lower costs of not evacuating and 

therefore still induce evacuation in either period.             

Understanding Heterogeneous Evacuation Behavior 

 Results from a dynamic model are not only capable of illustrating the evacuation 

timing implications of implementing hurricane related policies, but also can provide 

additional clarity to some of the existing heterogeneous evacuation timing empirical 

results from Section II.  From (23), we have shown that households deciding from a 

dynamic perspective to evacuate or wait in period 1 must also factor into their cost 

minimizing decision the known increased costs of evacuating in period 2, which are not 

factored into a household’s period 1 decision to evacuate or wait from a static 

perspective.  We can therefore use different rates of cost of evacuation increases between 

period 1 and period 2 in an attempt to better understand some of the existing 

heterogeneous evacuation timing empirical results such as the different rates of fast, 

medium, and slow evacuations by household type.  

 Our dynamic results from Figure 11 assumed a 25% increase in the costs of 

evacuation between periods 1 and 2 and indicated that for 
(1)

$387
EV

c ≥  it is not optimal to 

evacuate in period 1, but rather that it is optimal to wait for the updated period 2 forecast.  

Figure 20 illustrates how the amount of period 1 waiting increases given that the costs of 

evacuation between periods 1 and 2 increase only by 10% as opposed to 25%.  In this 

scenario, the costs of waiting have decreased while the value of waiting has not changed, 

leading to more overall period 1 waiting. 
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  We interpret higher levels of period 1 waiting (e.g., as shown by Figure 20) as 

downward shifts in the traditional s-shaped evacuation response curves (slower 

evacuation rates), and higher levels of period 1 evacuating as upward shifts in the 

traditional s-shaped evacuation response curves (faster evacuation rates).  In section II, 

Figure 9 presented fast, medium, and slow evacuation response rates for transient, 

resident/home, or resident/work households respectively.  We combine these 

interpretations for a better understanding of the different evacuation rates of transients 

and residents.    

Figure IV.20. Optimal Waiting when Evacuation Costs Increase by 10% vs. 25%  
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Again, evacuation costs are comprised of travel and time costs, direct costs 

incurred while away (food, lodging, entertainment), and lost wages, and while some of 

these immediate evacuation costs may actually decrease with waiting, we have assumed 
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that the costs of evacuating are increasing over time.  Given this, the rate of increase for 

transients’ evacuation costs from one period to the next will be significant due to their 

limited options of evacuating, e.g., catching an earlier flight, leading to higher levels of 

period 1 evacuation, and hence fast evacuation response curves.  For non-working 

residents, while evacuation costs from one period to the next will not increase as 

significantly as transients, their overall increasing evacuation costs are not offset as much 

by the time decreasing evacuation cost of lost wages, leading to medium evacuation 

response rates.  The increase in evacuation costs for working residents will be at the 

lowest rate due to the offset caused by the possibility of lost wages, leading to the slow 

evacuation response rates. 

Baker (2002) found that when those that have evacuated are asked what they 

would do differently in the future, most respondents said they would still evacuate, only 

next time it would be earlier.  This finding indicates that the more appropriate research 

question moving forward is not who is going to evacuate, but rather when they will 

evacuate.  Results from our simple, two-period model of evacuation show the additional 

clarity that can be obtained in regard to when a household will evacuate, by appropriately 

framing the evacuation decision from a dynamic perspective.     

 

IV.IV.  A Multi-Period Model of Evacuation 

While our two-period model of evacuation from Section III is able to provide the 

intuition behind evacuation decision making in a dynamic framework, it does not 

represent a realistic evacuation decision situation.  Therefore, we extend our two-period 
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model to a realistic multi-period setup where households have the ability to wait for more 

information as supplied by the NHC official forecast advisories which were discussed in 

Section II.  This allows for the calibration of our multi-period evacuation decision model 

outcomes using actual forecast data.      

Again, once a tropical depression, tropical storm, or hurricane has developed, the 

NHC issues an official forecast advisory every six hours at 5:00 a.m., 11:00 a.m., 5:00 

p.m., and 11:00 p.m.  Consequently, we can think of households potentially affected by 

the storm as being placed into a discrete time multi-period evacuation decision situation, 

where each discrete evacuation decision time period is six hours and is associated with a 

mutually exclusive NHC forecast advisory, denoted θ.  We assume that a storm’s landfall 

at time T is known with certainty50, and that the last safe possible time period for a 

household to evacuate, denoted by T*, is six hours prior to T.  As the 120 hour forecast is 

the maximum forecast time issued, let n = 0, 1, …, 19 be the potential number of 

evacuation decision time periods from T* over the five-day forecast period such that we 

have (T*-19), (T*-18), …, (T*-1), T* potential evacuation decision time periods.          

Let the (T*-n) current period forecast advisory, θ(T*-n), be a vector of j possible 

states which describe a household’s current status as it affects its evacuation decision 

(Dixit and Pindyck, 1994).  At any (T*-n) current period the value of θ(T*-n) is known.  

However, as presented in Section II, hurricane forecasts contain a significant amount of 

uncertainty, with the degree of uncertainty decreasing as (T*-n) approaches T.  

Consequently, θ(T*-n) is a random variable which we assume follows a Markov process 

                                                 
50 Regnier (2006) shows that landfall timing uncertainty ranges from 8.8 to 11.5 hours.  We do not 
introduce this additional level of complexity into our model at this time.   



 120 

such that in the current period the probability that a particular realization of any of the 

possible j current states occurs, ( * )

j

T nθ − , depends only on the state in the previous period.  

For each pair of (i, j) states, the probability of moving from state i to j is 

j

, with 1
ij ij

p p =∑ .  For all states in each period, a Markov probability transition matrix 

is utilized to summarize all the information about the probability of θ(T*-n) moving across 

states from one period to the next (Adda, Cooper, 2003).  Due to the inherent decreasing 

degree of uncertainty for θ(T*-n) as (T*-n) approaches T, our multi-period evacuation 

decision model uses Markov probability transition matrices that are nonstationary.     

In each evacuation decision time period households face the binary choice of 

either to evacuate, or to wait one more time period for a revised hurricane forecast.  If at 

any (T*-n) period the decision has been made to evacuate, this decision is not reversible 

as evacuation is assumed to be immediate and costs are sunk.  For n = 1, ..., 19, the 

household evacuation decision in each (T*-n) period is either to evacuate immediately 

given ( * )T nθ − , or to wait one period for more information from the expected updated 

forecast of ( ) ( )( ) ( )* * 1 *T n T n T n
E θ θ

− − − −
 
 

 and the possibility of evacuating during period (T*-

n-1).  For n = 0 the household evacuation decision in period T* is either to evacuate 

immediately given the now realized updated forecast of *T
θ , or to wait and simply ride 

out the storm at T.  

Letting { }( * ) , ( * )
T n

V T nθ − −  denote the value at time (T*-n) of having a forecast of 

θ(T*-n), each household faces the following optimal stopping problem: 
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 { } ( ) ( ){ } ( ){ }( * )( * ) * * 1 *
, ( * ) min , , ( * 1)

T nT n EV T n T n T n
V T n c E V T nθ θ θ

−− − − − −
 − = − −
 

 (29) 

where ( ) ( ){ } ( )[ ] ( ) ( ){ } ( )* * 1 * * 1 ( * 1) ( * )
, ( * 1) , * 1 , ( * )

T n T n T n T n T n T n
E V T n V T n p T n

θ

θ θ θ θ θ
− − − − − − − − −

− − = − − −∑  

and ( )( * 1) ( * ), ( * )
T n T n

p T nθ θ− − −−  is the distribution of next period’s landfall forecast given 

this period’s landfall forecast.  Given the short time horizon, there is no discounting.     

 

Under specific cost of evacuating and waiting assumptions, we can show that a 

unique solution to (29) exists.  Let us assume that ( )( * 1) ( * ), ( * )
T n T n

p T nθ θ− − −−  is 

increasing in ( * )T n
θ −  for all ( * 1)T n

θ − − .  Thereby, ( ) ( ){ } ( )* * 1 *
, ( * 1)

T n T n T n
E V T nθ θ

− − − −
 − −
 

 is 

increasing in ( * )T n
θ −  for all ( * 1)T n

θ − − .  If we further assume that 
( * )T nEV

c
−

 are constant across 

( * )T n
θ −  (as we did in our two-period model), then we can show that ( ){ }*

, ( * )
T n

V T nθ
−

−  is 

increasing in θ(T*-n) and a unique solution to (29) exists, denoted EV(T*-n), such that 

waiting for another forecast is optimal if θ(T*-n) < EV(T*-n), and evacuation is chosen 

whenever θ(T*-n) ≥ EV(T*-n).  This result is illustrated below in Figure 2151.  Remember 

though that this uniqueness property of the solution to (29) depends on the assumed form 

of 
( * )T nEV

c
−

 and we do not present this as a general result.  Nevertheless, the intuition is 

such that for certain forms of 
( * )T nEV

c
−

a unique cutoff for households exists where waiting 

is optimal on one side of the forecast, and evacuating on the other.   

                                                 
51 While we have illustrated our curves as being linear, a smooth function would be expected 
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Figure IV.21. Unique Solution to Optimal Stopping Problem with Constant Costs of Evac 
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IV.V.  Model Inputs 

In order to solve our multi-period dynamic model of evacuation decision making, 

three main data inputs are needed: 1) for n = 0, 1, …, 19, vector of j possible forecast 

states, θ(T*-n), and their associated probability distributions, ( )( * 1) ( * ) , ( * )
T n T n

p T nθ θ− − − − ; 2) 

for n = 0, 1, …, 19, the costs of evacuation, 
( * )T nEV

c
−

; and 3) for T, the expected costs of 

not evacuating, 
( )_ TN EV

c .  The construction of these inputs is detailed below.    
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State Space 

We construct our multi-period model state space (state variables and associated 

probability distributions) for a representative Gulf of Mexico location from historical 

storm forecast advisory and realized landfall data affecting 15 coastal locations in the 

Gulf of Mexico.  Specifically, we use HURREVAC to stipulate a 900 nautical mile (NM) 

by 180 NM Gulf of Mexico region that includes the 15 coastal locations listed in Table 2.  

We select 19 historical storm tracks from 1992-2005 passing through this region, and 

these are listed in Table 3 and illustrated in Figure 2152.  The 15 coastal locations range 

between 28° to 31° North latitude and 82° to 97° West longitude, and are given explicit 

strike probabilities in HURREVAC as well as the NHC forecast archives.  For the years 

2004 and 2005 historical storm tracks for storms achieving either tropical storm or 

hurricane strength are identified, while for 1992-2003 only those storms making landfall 

as a hurricane are identified.  Although we are only utilizing data from 19 storms, a 

healthy mixture of storm intensity levels and storm tracks are included. 

 Each forecast advisory contains a 12, 24, 36, 48, 72, 96, and 120 hour forecast of 

an approaching hurricane’s center position (track forecast), maximum sustained surface 

wind speeds (intensity forecast), non-sustained wind speed gusts, and asymmetrical 

maximum wind radii from the storm’s center.  In order to construct the θ(T*-n) state space, 

we utilize the data related to the track and intensity forecasts, while ignoring the non- 

sustained wind speed and wind radii advisory information.  The track forecast is provided 

by the NHC in degrees latitude and longitude, and the intensity forecast is given in knots, 

                                                 
52 Figure 21 does not contain the storm track for Hurricane Charley, as Charley’s eventual landfall was just 
south of our defined Gulf of Mexico region.  However, most of Charley’s forecast tracks did go through 
our defined region, and this is why the storm is included in the analysis.  
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both of which are naturally continuous variables.  However, specifying a discrete state 

space facilitates computational analysis of the model.  Estimating exact solutions from a 

discrete state space must be weighed against a loss of information available from a 

continuous state space.  Given that track and intensity forecasts provided in the NHC 

advisory are already discretized, with track forecasts given in specific degrees of latitude 

and longitude, and intensity forecasts rounded to 5 knots, this loss of information is 

minimal.               

 We discretize the intensity forecast through the use of the SSHS as presented 

previously in Table 1 of Section II.  Not only does the SSHS naturally lend itself to this 

discretization, but it is reasonable in terms of the hurricane’s intensity to assume that 

households focus on the forecasted SSHS category level of the hurricane as opposed to 

the storm’s specific mph.  We discretize the track forecast through the use of the strike 

probabilities.  As discussed in Section II, the strike probabilities are issued in conjunction 

with the forecast advisories and are the percent chance that the center of the storm will 

cross within 75 miles of a location.  In this way, the strike probabilities are able to 

provide a discrete way to handle the latitude and longitude coordinates of the forecast 

track for any particular location.   

Through our discretization of the track and intensity forecasts we have two 

separate state variables: an intensity forecast state variable with 5 levels (the 5 category 

levels of SSHS); and a track forecast state variable with 100 levels.  Given that the size of 

the state space is formed as the product of the number of levels of all the identified state 

variables (Kristensen, 1996), we have a state space = 500 states.  That is, we have to  
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Table IV.2. 15 Coastal Gulf of Mexico Locations – County/Parish (Nearest Major City) 

 
# State Locations 
1 TX Calhoun County (Port Lavaca / Port O Connor) 
2  Brazoria County (Freeport) 
3  Galveston County (Galveston) 
4  Jefferson County (Port Arthur) 
5 LA Iberia Parish (New Iberia) 
6  St. Charles Parish (New Orleans) 
7  Plaquemines Parish (Buras) 
8 MS Harrison County (Gulfport) 
9 AL Mobile County (Mobile) 

10 FL Escambia County (Pensacola) 
11  Bay County (Panama City) 
12  Franklin County (Apalachicola) 
13  Wakulla County (St. Marks) 
14  Levy County (Cedar Key) 
15  Hillsborough County (Tampa) 

 
 
 

Table IV.3. 19 Identified Gulf of Mexico Storms 

# Year Storm 
Landfall 

CAT  
Max 
CAT 

1 2005 Arlene 0 0 
2  Cindy 0 0 
3  Dennis 3 4 
4  Katrina 4 5 
5  Rita 3 5 
6 2004 Bonnie 0 0 
7  Charley 4 4 
8  Frances 0 4 
9  Ivan 3 5 

10  Matthew 0 0 
11 2003 Claudette 1 1 
12 2002 Lili 1 4 
13 1998 Earl 1 2 
14  Georges 2 4 
15 1997 Danny 1 1 
16 1995 Allison 1 1 
17  Erin 1 1 
18  Opal 3 4 
19 1992 Andrew 3 5 

 

 



 126 

Figure IV.22. 19 Identified Gulf of Mexico Historical Storm Tracks 

 
(Source: HURREVAC 2000) 
(Note: Hurricane Charley is not included in this graphic) 
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solve (29) at 500 points in each evacuation time period, which creates a significant curse 

of dimensionality.  While a 500 point state space is perhaps not that large, dimensionality 

issues arise in the construction of our 500 point state space’s associated Markov 

probability transition matrix, which has dimensions of 500 x 500.  Given that we are 

working with a limited amount of data from 19 storms, and also that our transition 

matrices are nonstationary, the 500 x 500 dimensionality of the transition matrix creates 

significant difficulties.          

 In order to alleviate the dimensionality issues of the transition matrices, we 

construct a single discretized state variable which we call a hurricane forecast “risk 

index”.  The index combines the intensity and track forecast information into a scalar.  

Furthermore, this discretized risk index state variable is similar to the 2006 wind speed 

probability products issued by the NHC in that it provides a single and less complicated 

source of information on the probability of winds of a certain strength affecting a given 

location.  The hurricane forecast risk indices are constructed for each of the 15 coastal 

locations along the Gulf of Mexico for each (T*-n) period with n = 0, 1, …, 19.    

At landfall, our discretized risk index state variable is straightforward to illustrate 

as θ is no longer a forecast, but rather a realized value for any number of identified 

locations.  Thus, at landfall our discretization of θT not only includes states 1 through 5 

corresponding to the five SSHS CAT levels, but also a state 0 that corresponds to storms 

that either fall below the CAT 1 hurricane designation, or actual CAT 1-5 hurricanes that 

do not make landfall at a particular location.  For example, in 2005 Hurricane Dennis 

made landfall in Pensacola, FL as a CAT 3 hurricane.  Here, θT = 3 for Pensacola, but θT 

= 0 for all other locations along the Gulf Coast that at some point had the possibility of 
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being struck by Hurricane Dennis, such as Port Arthur, TX.  Table 4 presents the 6 

discretized state variable intervals we use in our model for period T only. 

Table IV.4. Discretized State Variable, θT 

State θT 
Hurricane 

Category Level 
Wind Speed 

(mph) 

0 0 < 74 

1 1 74-95 

2 2 96-110 

3 3 111-130 

4 4 131-155 

5 5 > 155 

 

While similar to the θT discretization, the discretization of θ(T*-n) for n = 0, 1, …, 

19 is more complex.  The detailed steps involved in the construction of the discretized 

risk index state variables, θ(T*-n) for n = 0, 1, …, 19,  and their associated probability 

transition matrices is as follows: 

Steps 1) to 5) – Incorporating Storm and Track Uncertainty 

1) For each 5:00 AM, 11:00 AM, 5:00 PM, and 11:00 PM NHC forecast advisory issued 

per day, through the life of each storm, the associated 12, 24, 36, 48, 72, 96, and 120 

hour intensity forecast of specific windspeed (mph) is collected from HURREVAC53 

2) The 12, 24, 36, 48, 72, 96, and 120 hour average intensity errors for 1996-2005 

(NHC, 2006) are added and subtracted to the specific 12, 24, 36, 48, 72, 96, and 120 

forecasted windspeeds collected from step 1) to determine an average range of 

probable wind speed values.   

                                                 
53 HURREVAC sources its forecast data from the NHC and transforms it to mph from kt.  As mentioned 
previously, prior to 2003 forecasts beyond 72 hours were not provided in the NHC forecast advisory.  Also, 
for the years 2003-2005 not every forecast advisory contains forecasts up to 120 hours.   
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The average intensity errors for 1996-2005 are presented in Table 5. 

Table IV.5. Average NHC 10-Year Intensity Forecast Errors (1996-2005) 

Forecast Hour Knots MPH 

0 2.2 2.5 

  6 * 4.3 4.9 

12 6.4 7.4 

24 10.1 11.6 

36 12.7 14.6 

48 14.9 17.1 

72 18.7 21.5 

96 19.8 22.8 

120 21.8 25.1 

* The 6 hour forecast is not from the NHC, but rather is an average of the 0 and 12 hour forecast errors 

 

3) From the average range of probable windspeed values generated in step 2), the 

percentage of the range that falls into the SSHS category 0, 1, 2, 3, 4, and 5 is 

calculated.      

An example of steps 1 to 3 for the 7/9/2005 5:00 AM Hurricane Dennis advisory 

(advisory #19) is given in Table 6.  Note, that while the 0 hour forecast indicated in Table 

6 is 5:00 AM, the actual data collected for this advisory occurs three hours prior to the 

advisory at 2:00 AM.  

4) Strike probabilities are collected from HURREVAC54 for the 15 coastal locations 

along the Gulf of Mexico.   

An example of the provided strike probabilities from HURREVAC for the 

7/9/2005 5:00 AM Hurricane Dennis advisory (advisory #19) was previously given in 

Figure 5 of Section II.         

                                                 
54 When HURREVAC strike probability information was missing, the strike probabilities were collected 
directly from the NHC Hurricane Season Tropical Cyclone Product Archives at 
http://www.nhc.noaa.gov/pastall.shtml, which is the source of the HURREVAC data 
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Table IV.6. Construction of Risk Indices, Steps 1) to 3) 

Forecast 
(hr) Date 

Wind 
(mph) 

Wind 
min 

Wind 
max 

Wind 
range  0 1 2 3 4 5 

0 7/09 5 AM 92           

12 7/09 2 PM 103 95.6 110.4 15.7  0% 2% 98% 0% 0% 0% 

24 7/10 2 AM 115 103.4 126.6 24.2  0% 0% 31% 69% 0% 0% 

36 7/10 2 PM 126 111.4 140.6 30.2  0% 0% 0% 65% 35% 0% 

48 7/11 2 AM 52 34.9 69.1 35.3  100% 0% 0% 0% 0% 0% 

72 7/12 2 AM 34 12.5 55.5 44.0  100% 0% 0% 0% 0% 0% 

96 7/13 2 AM 23 0.2 45.8 46.6  100% 0% 0% 0% 0% 0% 

120 7/14 2 AM 23 -2.1 48.1 51.2  100% 0% 0% 0% 0% 0% 
 

 

 

5) The strike probabilities for each location are then multiplied by the derived intensity 

error range from step 3) to obtain by location, a probability of a strike by CAT level 

per forecast hour, where CAT 0 indicates either a tropical storm direct hit on that 

location, or the center of the storm missing the location.   

 

An example of this for Pensacola, FL based on advisory #19 from Hurricane 

Dennis is given in Figure 23.  Following our methodology, Figure 23 indicates that 36 

hours from the 7/9/2005 5:00 AM advisory there is a 68% chance that Hurricane Dennis 

will miss Pensacola (the center of the storm will not come within 75 miles), but if it 

strikes Pensacola, there is a 21% chance it will strike as a CAT 3 hurricane, or an 11% 

chance it will strike as a CAT 4.   

 

1) 2) 3) Steps: 
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Figure IV.23. Example of the Determination of a Probability Of A Strike By CAT Level Per 
Forecast Hour 

 

Location

Strike 

Probability

Tampa 0.17

Cedar Key 0.18

St. Marks 0.24

Apalachicola 0.33

Panama City 0.34 Forecast hr 0 1 2 3 4 5

Pensacola 0.32 12 68% 1% 31% 0% 0% 0%

Mobile 0.28 24 68% 0% 10% 22% 0% 0%

Gulfport 0.24 36 68% 0% 0% 21% 11% 0%

Buras 0.17 48 100% 0% 0% 0% 0% 0%

New Orleans 0.14 72 100% 0% 0% 0% 0% 0%

New Iberia 0.05 96 100% 0% 0% 0% 0% 0%

Port Arthur 0 120 100% 0% 0% 0% 0% 0%

Galveston 0

Freeport 0

Port Lavaca 0  

 

So while steps 1) to 3) discretize the intensity forecast, step 4) discretizes the track 

forecast by location and step 5) combines the discretized intensity and track forecasts. 

Steps 6) to 8) – Creating per period, per storm risk indices by location  

6) Landfall, T, and the locations directly hit by the center of a storm are determined by 

stepping through the actual track of the storm in HURREVAC55.  The last safe 

possible time period to evacuate, T*, is the last official advisory preceding the 

determined T.  In nearly all cases, this is six hours preceding T.        

Figure 24 indicates the HURREVAC determined landfall at Pensacola, FL and Mobile, 

AL for Hurricane Dennis as shown by the 99% strike probabilities.  

                                                 
55 As this is accomplished through a visual inspection, this is ultimately a subjective determination.  
However, landfall by location was verified through other storm summaries/post-storm assessments where 
available. 
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Figure IV.24. Hurricane Dennis Landfall Locations 

 

  
(Source: HURREVAC 2000) 
 

7) Landfall forecasts for each of the other (T*-n) periods, n = 1, 2, 3, …, 19 are 

determined through a combination of visual inspection of landfall points from 

HURREVAC, and use of the NHC forecast advisory archives where the forecast of 

landfall is indicated as the storm being “inland”.  Note, this is not a determined 

landfall forecast for a particular location, but rather a generic indication of landfall 

somewhere within the Gulf region, as the specific landfall point is constantly 

changing within the region based upon the updated forecasts.   

 



 133 

Table 7 provides the step 7) determined generic Gulf Region landfall forecasts for 

Hurricane Dennis for periods T* to (T*-11).  Actual landfall occurred on 7/10/05 at 

approximately 3:00 PM.  T* is 7/10/05 at 11:00 AM, the last official NHC advisory 

preceding landfall.  Since the earliest available forecast at T* is 12 hours, which would be 

well past the point of landfall, we assume that households view T* as what to expect at 

landfall with an average intensity error being the average of the 0 hr and 12 hr forecasts.  

We see from Table 7 that all of the (T*-1) to (T*-11) forecasts indicate landfall on 7/10, 

with an average forecasted windspeed of 126 mph, which closely mirrors the actual 

landfall values.   

Table IV.7. Hurricane Dennis (T*-n) Forecasted Landfall Points 
 

(T*-n) 
Advisory Forecast (hr) Landfall Date MPHWind 

(T*-11) 72        7/10/2005 2 PM 121 

(T*-10) 72        7/10/2005 8 PM 115 

(T*-9) 48        7/10/2005 2 AM 132 

(T*-8) 48        7/10/2005 8 AM 132 

(T*-7) 48        7/10/2005 2 PM 126 

(T*-6) 48        7/10/2005 8 PM 115 

(T*-5) 36        7/10/2005 2 PM 126 

(T*-4) 24        7/10/2005 8 AM 109 

(T*-3) 24        7/10/2005 2 PM 126 

(T*-2) 12        7/10/2005 8 AM 138 

(T*-1) 12        7/10/2005 2 PM 144 

T*        7/10/2005 11 AM 138 

Landfall (T)         7/10/2005 3 PM 120 

 

However, Table 7 also illustrates a limitation in the analysis regarding the 

assumption that landfall is known with certainty.  While (T*-9) is 3 days out from the 

landfall, the landfall forecast period selected for (T*-9) is a 48 hour forecast.  Ostensibly, 

including all of the 12, 24, 36, etc. hour forecasts as an additional state variable in regard 
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to the timing of landfall could be an addition to the model, instead of selecting a known 

landfall forecast.  This would add an additional level of dimensionality complexity to our 

state space and we do not include it at this time.  

            

8) Risk indices per storm, per location, and per period are calculated by multiplying the 

probability of a strike by CAT level from step 5) for the selected landfall forecast 

periods from step 7) by the 0, 1, 2, 3, 4, and 5 SSHS CAT levels. 

Table 8 gives an example of the (T*-n) period, n = 0, 1, …, 11, generated risk 

indices for Pensacola, FL for Hurricane Dennis.  For example, the (T*-11) risk index is 

estimated by (0 x .82) + (1 x .0) + (2 x .05) + (3 x .08) + (4 x .05) + (5 x .0) = 0.54.  Table 

8 illustrates that while our generated risk indices are based upon the SSHS, the 

uncertainty in the intensity and track information does not allow for a direct comparison.  

For example, while the (T*-7) forecast is predicting a CAT 3 hurricane (126 mph) 

making landfall somewhere in the Gulf region, the constructed risk index by location 

which incorporates the uncertainty of the track and the average intensity errors for a 48 

hour forecast, equates to a 0.73 value for Pensacola, FL at the (T*-7) evacuation decision 

period.  For Pensacola, the risk index evolves from 0.54 at (T*-11) to 3.76 at (T*), with 

landfall being 3.00 at T.  A complete listing of the estimated risk indices per storm, per 

location, and per period is provided in a separate appendix. 
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Table IV.8. Pensacola, FL Risk Indices for Hurricane Dennis 

 

(T*-n) 
Advisory 

Forecast 
(hr) 

Landfall 
Date 

Wind 
(mph)  0 1 2 3 4 5  

Risk 
Index

(T*-11) 72 7/10 2 PM 121  82% 0% 5% 8% 5% 0%  0.54 

(T*-10) 72 7/10 8 PM 115  81% 1% 6% 9% 3% 0%  0.51 

(T*-9) 48 7/10 2 AM 132  82% 0% 0% 8% 10% 0%  0.64 

(T*-8) 48 7/10 8 AM 132  80% 0% 0% 9% 11% 0%  0.71 

(T*-7) 48 7/10 2 PM 126  78% 0% 1% 12% 8% 0%  0.73 

(T*-6) 48 7/10 8 PM 115  75% 0% 9% 14% 2% 0%  0.67 

(T*-5) 36 7/10 2 PM 126  68% 0% 0% 21% 11% 0%  1.07 

(T*-4) 24 7/10 8 AM 109  64% 0% 20% 16% 0% 0%  0.88 

(T*-3) 24 7/10 2 PM 126  65% 0% 0% 24% 11% 0%  1.16 

(T*-2) 12 7/10 8 AM 138  62% 0% 0% 1% 37% 0%  1.51 

(T*-1) 12 7/10 2 PM 144  50% 0% 0% 0% 50% 0%  2.00 

T*  7/10 11 AM 138  6% 0% 0% 0% 94% 0%  3.76 

Landfall (T)  7/10 3 PM 120          

 

 

 

These constructed hurricane forecast risk indices represent the discretized state 

variable, θ(T*-n) for n = 0, 1, …, 19, and capture the intensity and track forecast 

information in a single state variable that avoids dimensionality issues while allowing for 

a smooth transition into the landfall discretized state variables of θT.   However, the way 

the risk indices have been constructed introduces an additional loss of information.  For 

example, the (T*-1) risk index in Table 8 above is (CAT 0 x 50%) + (CAT 4 x 50%) = 

2.00.  One can imagine a multitude of other values that also equate to a 2.00 risk index, 

but that connotate a different level of risk to households such as CAT 1 = 50% and CAT 

Step 7) Step 5) Inputs: 
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3 = 50%, or CAT 1 = 25%, CAT 2 = 50%, and CAT 3 = 25%, etc.  We accept this risk 

information limitation to our constructed risk indices. 

         

Steps 9) to 11) – Creating the Total Transition Matrices from Individual Location Risk 

Indices      

9) For all 15 locations the risk indices are aggregated by year.  The total number of 

observations per year (based on the number of storms selected for that year) are 

assigned to the appropriate probability transition matrix categorization for each 

period.        

For example, in 2002 only Hurricane Lili was selected for our analysis.  Table 9 presents 

the final risk indices for all locations in 2002.  

Table IV.9. 2002 Risk Indices for All Locations 
 

Locations T T* (T*-1) (T*-2) (T*-3) (T*-4) (T*-5) (T*-6) (T*-7) (T*-8) (T*-9) (T*-10) (T*-11) 

Tampa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.15 

Cedar Key 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.12 

St. Marks 0.00 0.00 0.00 0.00 0.07 0.09 0.06 0.06 0.06 0.09 0.06 0.06 0.12 

Apalachicola 0.00 0.00 0.00 0.00 0.10 0.09 0.09 0.06 0.09 0.15 0.12 0.12 0.18 

Panama City 0.00 0.00 0.00 0.00 0.13 0.15 0.12 0.12 0.12 0.18 0.15 0.12 0.21 

Pensacola 0.00 0.00 0.08 0.24 0.33 0.33 0.27 0.24 0.24 0.30 0.24 0.18 0.24 

Mobile 0.00 0.09 0.44 0.56 0.50 0.42 0.36 0.33 0.30 0.36 0.27 0.21 0.24 

Gulfport 0.00 0.15 0.88 0.76 0.60 0.49 0.42 0.39 0.39 0.42 0.36 0.27 0.30 

Buras 0.00 0.09 1.12 0.80 0.66 0.55 0.52 0.51 0.48 0.48 0.45 0.36 0.39 

New Orleans 0.00 0.93 1.88 1.00 0.76 0.64 0.58 0.55 0.48 0.48 0.42 0.33 0.36 

New Iberia 1.00 2.49 2.72 1.48 0.96 0.79 0.70 0.64 0.55 0.51 0.45 0.36 0.39 

Port Arthur 0.00 0.63 0.64 1.24 0.89 0.76 0.70 0.64 0.55 0.48 0.45 0.36 0.36 

Galveston 0.00 0.00 0.00 0.76 0.73 0.64 0.64 0.61 0.55 0.45 0.42 0.36 0.36 

Freeport 0.00 0.00 0.00 0.36 0.56 0.52 0.55 0.55 0.51 0.42 0.42 0.36 0.33 

Port Lavaca 0.00 0.00 0.00 0.00 0.27 0.30 0.39 0.39 0.42 0.33 0.36 0.30 0.27 
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Hurricane Lili landfall occurred at the New Iberia location as a CAT 1 hurricane. Based 

upon the Table 9 data, Table 10 shows the aggregated probability transition matrix for T* 

to T in 2002.  As there is only one storm for 2002, each aggregated probability transition 

matrix per period, including T* to T, is based upon 15 observations.  In contrast, the 

yearly matrices for 2005 and 2004 are based upon 75 observations each, as data from five 

storms was collected for both of these years.      

Table IV.10. 2002 T* to T Aggregate Transition Matrix 

 T      

T* 0 1 2 3 4 5 

0 9      

0 - 0.5 3      

0.5 – 1 2      

1 - 1.5       

1.5 – 2       

2 - 2.5  1     

2.5 – 3       

3 - 3.5       

3.5 – 4       

4 - 4.5       

4.5 – 5       

 

Notice from Table 10 that the number of state levels vary by time period such that 

for T we have defined levels 0, 1, …, 5 which correspond directly to the SSHS, while for 

T* we have defined state levels 0, [0-0.5], [0.5-1], [1-1.5], …, [4.5-5] which correspond 

to the SSHS in a slightly altered way.  However, these states do change over time to 

reflect the inherent constraints of the strike probabilities, i.e., for the 12, 24, 36, 48, and 

72 hour forecasts, the maximum strike probability issued by the NHC is 60-80%, 35-

50%, 20-25%, 13-18%, and 10% respectively.  Therefore, the further the evacuation 
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decision period is from T*, the lower will be the observed risk indices such that states 0, 

[0-0.25], [0.25-0.5], [0.5-0.75], [0.75-1], [1-1.5], [1.5-2], [2-3], [3-4], and [4-5] are 

defined for periods (T*-2) to (T*-6), and states 0, [0-0.25], [0.25-0.5], [0.5-0.75], [0.75-

1], [1-2], [2-3], [3-4], and [4-5] are defined for periods (T*-7) to (T*-11). 

10) The yearly probability matrices from 1992 – 2005 are aggregated into the final 

probability transition matrices per each period. 

Table 11 provides an example of the Markov transition matrix for θ moving from 

T* to T that is used in our multi-period evacuation decision model.  From Table 11 we 

see that the probability of moving from our discretized T* state of [2–2.5] to state 3 at T 

is 8%.  Across all the yearly aggregated matrices of step 9), this final T* to T transition 

matrix is based upon 285 observations.  As not all the storms have forecast data going 

back to the (T*-11) period, the lowest total number of observations used to construct a 

transition probability matrix is 195, for the (T*-11) period.   

Table IV.11. Markov Transition Matrix for T* to T 

 

T* \ T 0 1 2 3 4 5 

0 100% 0% 0% 0% 0% 0% 

0 – 0.5 97% 3% 0% 0% 0% 0% 

0.5 – 1 78% 22% 0% 0% 0% 0% 

1 – 1.5 80% 15% 5% 0% 0% 0% 

1.5 – 2 63% 0% 25% 13% 0% 0% 

2 – 2.5 67% 5% 20% 8% 0% 0% 

2.5 – 3 22% 0% 0% 78% 0% 0% 

3 – 3.5 0% 0% 0% 80% 20% 0% 

3.5 – 4 0% 0% 0% 80% 20% 0% 

4 – 4.5 N/A N/A N/A N/A N/A N/A 

4.5 – 5 N/A N/A N/A N/A N/A N/A 
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Furthermore, notice from Table 11 that values for T* states [4.0-4.5] and [4.5-5.0] 

are not available.  This is due to both data limitations as well as the previously mentioned 

inherent constraints of the strike probabilities.  In fact, as n becomes larger, more states 

with unavailable and/or undefined values become more persistent in our probability 

transition matrices.  For example, in period (T*-4) the maximum state value is [1.0 – 1.5], 

while for period (T*-11) the maximum state value is [0.5 – 0.75]        

11) After reviewing these final matrices for each period, the matrices for T* to T, and 

(T*-1) to T* were slightly revised. 

The decision to revise these two matrices was made based upon the data 

limitations stemming from the use of 19 storms.  For example, prior to its revision the T* 

to T transition matrix had the probability of moving from state [1.0 – 1.5] at T* to state 

[0] at T being 100%.  However, state [0.5 – 1.0] at T* only transitioned to state [0] at T 

78% of the time, and 22% of the time to state [1.0].  Likewise, state [1.5 – 2] at T* 

transitioned to state [0] at T 63% of the time, state [2.0] 25% of the time, and state [3.0] 

the remaining 13% of the time.  Clearly, the 100% transition of state [1 – 1.5] at T* to 

state [0] at T is a limitation of the data, and is therefore modified.  The modified 

transition has state [1 – 1.5] at T* to state [0] at T 80% of the time, state [1.0] 15% of the 

time, and state [2.0] the remaining 5% of the time.  Similar, conservative modifications 

were done with other identified data limited states.  Note, however, that data were not 

added where previously there was unavailable or undefined data.  A complete listing of 

the probability transition matrices used in the multi-period model is provided in a 

separate appendix.   
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Costs of Evacuation  

As in the two-period model, we still assume that the longer a household waits to 

evacuate, the more difficult, and hence more expensive evacuation will become such that 

the costs of evacuation are increasing as (T*-n) approaches T.  We use the evacuation 

costs produced by Whitehead (2003), as well as the evacuation costs/data from a number 

of post-storm assessments (USACE, 2006b) to derive a household’s average costs of 

evacuation given a CAT 3 storm.  From these and other studies, information on the 

timing of evacuations is then used to determine how the specific aspects of the 

determined average CAT 3 evacuation costs increase and/or decrease from (T*-n) to T.  

Finally, data from Lindell et al., (2002) on the predicted increases in the number of cars 

and associated number of hours to evacuate along the Texas Gulf Coast for CAT 1 to 

CAT 5 hurricanes is used to estimate the varying levels of average CAT 1 to CAT 5 

evacuation costs from our derived average CAT 3 evacuation cost base.   

Because we use actual evacuation cost data from a number of previous studies as 

an input to our multi-period model, the data itself suffers from selection bias.  This is 

because the costs of evacuation are only collected from those households that actually 

evacuated during the storms.  Based upon our model assumptions where households 

evacuate when ( ) ( ) ( ){ }( * ) * * 1 *
, ( * 1)

T nEV T n T n T n
c E V T nθ θ

− − − − −
 < − −  

, by only collecting 

evacuation costs from households that actually evacuated, the costs of evacuation would 

likely be biased downward.  Despite this selection bias issue, we still assume that the 

existing evacuation cost data are a reasonable input for our multi-period model, but note 

that a survey that collects evacuation costs from both households that evacuated and 
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those that did not (and hence does not suffer from selection bias) is a more appropriate 

source of evacuation costs as an input to the multi-period model.          

Whitehead (2003) separates overall evacuation costs in North Carolina for 

Hurricane Bonnie into direct costs (food/lodging/entertainment), travel costs ($0.32 per 

mile driven to evacuate), and travel time costs (50% of wage rate traveling at 45 mph).  

From these data, the specific number of miles traveled and time to destination can be 

determined.  Although, not explicitly used in his analysis, lost income costs were given as 

$137 on average.  The overall evacuation costs were further segmented by evacuation 

destination such that direct costs, travel costs, and travel time costs were shown to vary 

by those that evacuated to a hotel/motel, a shelter, stayed with friends/family, and other.  

These evacuation costs (converted to 2004 dollars) are shown in Table 12. 

Table IV.12. Average Costs of Evacuation (2004 dollars) 
 

Hurricane Year 

T* 
CAT 
Level 

Miles 
Traveled 

Time to 
destination 

(hrs) 
Avg Daily 

Expenditure 

# of 
days 
gone 

Direct 
Costs 

Travel 
Costs  

Travel 
Time 
Costs Total 

Bonnie 1998 3                 

Hotel     331  7.4      $  319   $  123   $  103   $  545  

Shelter     109  2.4      $  100   $    41   $    25   $  166  

Friends/Family     219  4.9      $   61   $    81   $    59   $  202  

Other     203  4.5      $   23   $    75   $    64   $  162  

Ivan 2004 4 182 6.5  $      75.00  2.5  $  188   $    58   $    78   $  324  

Charley 2004 3 10 1.5  $      25.00  1.5  $   38   $     3   $    18   $   59  

Frances 2004 2 25 1  $      50.00  3  $  150   $     8   $    12   $  170  

Jeanne 2004 3 25 1  $      50.00  3  $  150   $     8   $    12   $  170  

Average  3 138 3.6    $ 128   $   50   $   46   $ 225  

 

 Available evacuation data from USACE (2006b) post-storm assessment studies 

for 2004 Hurricanes Charley, Frances, Ivan, Jeanne was used to compute similar overall 



 142 

evacuation costs56.  While evacuation costs in these studies were not explicitly given as 

direct costs, travel time costs, and travel costs, this information is derived from the 

available data.  For Hurricane Ivan, the mean number of miles traveled as well as the 

average number of hours to reach the final destination are explicitly given as 182 miles 

and 6.5 hours respectively.  For Hurricanes Charley, Frances and Jeanne, the average 

number of miles traveled, as well as the average number of hours to reach the final 

destination are determined from graphical evacuation information presented in the 

reports.  For example, graphical information is presented stating that out of 324 Tampa 

Bay respondents that evacuated for Hurricane Charley, 20% traveled > 50 miles, 38% 

traveled 11-50 miles, 14% traveled 6-10 miles, and 28% traveled 0-5 miles to reach their 

final destinations.  Analogous graphical information is also presented in regard to hours 

to reach final destination.   

The average number of miles traveled was then multiplied by $0.32 per mile to 

estimate the average travel costs for these studies, while the average time to reach the 

final destination was multiplied by 50% of hourly wage rate based on annual income of 

$50,000 to estimate the average travel time costs for the 2004 studies.  Similarly, for all 

four 2004 hurricanes, graphical information on the average daily expenditures and the 

number of days away from home that was presented in the reports was translated into 

average amounts representing the direct costs of evacuation for the 2004 studies.  Table 

12 presents the imputed average evacuation costs for the 2004 storms.  Compared to the 

Whitehead (2003) Hurricane Bonnie evacuation costs, the evacuation costs from the 2004 

                                                 
56 While evacuation cost data from Frances and Jeanne was used in the analysis, forecast data from Frances 
and Jeanne was not used for the construction of the probability transition matrices. 
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post-storm assessments are higher in regard to direct costs and significantly lower in 

regard to travel and travel time costs.   

 From the overall evacuation cost data of Table 12, we determine the average 

direct, travel, and travel time costs57 to be used in the analysis for a CAT 3 storm (which 

is also the average of the storm CAT level for these five storms).  We estimate total 

evacuation costs for a CAT 3 hurricane to be approximately $225, with the majority 

coming from direct costs.  This $225 compares to Whitehead’s $316 estimate (in 2004 

dollars) for CAT 3 storms.  While not as high as Whitehead’s estimate, our result is 

relatively comparable and is importantly derived from more evacuation cost data.  In 

addition to the direct, travel and travel time costs, we also include the lost income costs of 

$159 from the Whitehead study (in 2004 dollars), for total CAT 3 evacuation costs of 

$383.   

 However, again we are assuming that the overall costs of evacuation are 

increasing as (T*-n) approaches T.  In order to determine how travel, travel time, and 

portions of direct CAT 3 evacuation costs increase and/or decrease from (T*-n) to T in 

our model, data on the cumulative timing of evacuations from existing studies is used.  

Figures 25 to 32 below illustrate the cumulative evacuation graphs for Hurricanes 

Bonnie, Ivan, Charley, Frances, Jeanne, Lili, Opal, and Floyd respectively58.  Using 

HURREVAC, T and T* are determined for each of these storms and matched up to their 

                                                 
57 Ostensibly, we could also include an additional cost category related to the probability of injury from the 
actual evacuation, or the chance of not making to your destination before the arrival of the storm, e.g., 
deaths caused during the Hurricane Rita evacuation in 2005.  We abstract from this cost in this study, 
noting our assumption that T* is the last safe possible period to evacuate.  
 
58 These storms also average out to a CAT 3 hurricane 
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cumulative evacuation timing graphs.  Given  T and T*, periods (T*-n) for n = 1, 2, …, 

11 are then identified as illustrated in the figures below. 

Figure IV.25. Cumulative Evacuation Timing Hurricane Bonnie 
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(Source: Adapted from USACE 2006b) 

 

Figure IV.26. Cumulative Evacuation Timing Hurricane Ivan 
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Figure IV.27. Cumulative Evacuation Timing Hurricane Charley 
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(Source: Adapted from USACE 2006b) 
 

Figure IV.28. Cumulative Evacuation Timing Hurricane Frances 
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Figure IV.29. Cumulative Evacuation Timing Hurricane Jeanne 
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Figure IV.30. Cumulative Evacuation Timing Hurricane Lili 
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 Figure IV.31. Cumulative Evacuation Timing Hurricane Opal 
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(Source: Adapted from USACE 2006b) 

 
Figure IV.32. Cumulative Evacuation Timing Hurricane Floyd 
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For periods (T*-11) to T*, the average cumulative percentage of evacuees across 

all storms is determined from the graphs as summarized in Table 13.  For Hurricanes 

Ivan, Charley, Frances, Jeanne, and Floyd where evacuation rates for more than one 

location are provided, an average evacuation rate across all locations is used.  From Table 

13, we determine and highlight that the 50th percentile of cumulative evacuations is 

between periods (T*-4) and (T*-3), and we therefore assume the $383 average CAT 3 

costs of evacuation are incurred at this point.  That is, if the average costs of evacuating a 

CAT 3 storm is $383, and the average point of evacuating for a CAT 3 storm is (T*-4), 

we assume that if a average household evacuates accordingly at period (T*-4) they incur 

evacuation costs of $383. 

Table IV.13. Cumulative Evacuation Timing Summary 

 

 3rd Day 2nd Day 1st Day 

Hurricane (T*-11) (T*-10) (T*-9) (T*-8) (T*-7) (T*-6) (T*-5) (T*-4) (T*-3) (T*-2) (T*-1) T* 

Bonnie             0.09 0.19 0.48 0.68 0.7 0.79 

Ivan 0.03 0.04 0.06 0.06 0.08 0.18 0.31 0.36 0.42 0.65 0.85 0.94 

Charley           0.09 0.1 0.13 0.31 0.38 0.44 0.63 

Frances 0.26 0.35 0.43 0.45 0.46 0.54 0.73 0.77 0.77 0.82 0.92 0.94 

Jeanne         0.22 0.26 0.41 0.6 0.67 0.67 0.8 0.94 

Lili 0.09 0.11 0.17 0.26 0.35 0.43 0.65 0.88 0.91 0.93 0.96 1 

Opal             0.03 0.05 0.07 0.13 0.4 0.92 

Floyd 0.05 0.07 0.1 0.12 0.15 0.3 0.55 0.61 0.65 0.88 0.95 0.98 

             

Avg % 
Evacuated

11% 14% 19% 22% 25% 30% 36% 45% 54% 64% 75% 89% 

% Change 33% 33% 17% 13% 19% 20% 25% 19% 20% 17% 19% 

  

Additionally, from the cumulative evacuation data of Table 13, we determine the 

percentage change in the average cumulative percentage of evacuees per period.  For 

example, from period (T*-7) to (T*-6), the average percentage of evacuees increases by 
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approximately 20%, going from 25% in (T*-7) to 30% in (T*-6).  This percentage change 

is then used to dictate how the travel, travel time, and portions of direct costs increase 

from (T*-11) to T* based upon the average cost data being incorporated at period (T*-4).  

While we assume travel and travel time costs are increasing by these percentages each 

period over the three days from (T*-11) to T*, we assume direct costs are increasing by 

these percentages per period only in the last day out from landfall, or periods (T*-3) to 

T*.  Prior to (T*-3), direct costs are decreasing per day from three days to two days out 

from landfall.  That is, if one were to evacuate three days out from landfall, the direct 

costs of evacuation incurred at this point such as lodging and food would be greater than 

if one were to not evacuate three days out from landfall and instead evacuate two days 

out from landfall.  We assume direct costs increase by 50% per day from $128 for 

evacuation two days from landfall, to $193 for evacuation three days from landfall, and 

also increase each period from (T*-3) to T* to account for the increased numbers of 

evacuees.          

Similar to direct costs on three and two days out from landfall, we do not assume 

the $159 cost of lost income changing per period, but rather per day, and furthermore we 

do not assume lost wages ever increasing over time, but always decreasing.  Assuming 

the average $159 in lost income is also incurred at period (T*-4), indicates lost income 

being incurred two days out from landfall.  That is, if one were to evacuate three days 

from landfall, the lost income costs of evacuation incurred at this point would be greater 

than if one were to work the three days out from landfall and instead evacuate two days 

out from landfall.  We assume lost income costs of $159 for evacuation two days from 
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landfall increase by 50% to $238 for evacuation three days from landfall, and decrease by 

50% to $79 for evacuation one day from landfall59.   

Results of the costs increases and decreases by category are presented in Table 14, 

which illustrates that overall costs of evacuation for a CAT 3 hurricane increasing from 

$454 for evacuation at period (T*-11) to $526 for evacuation at period T*.  Importantly 

though, these overall evacuation costs are not increasing linearly.  In fact, given our 

assumption concerning decreasing direct and lost income costs, and the rates of increase 

for direct, travel, and time costs, we actually see a decline in overall costs between 

periods (T*-8) and (T*-7), as well as between periods (T*-4) and (T*-3).        

Table IV.14. Increasing/Decreasing Evacuation Costs 

CAT 3 (T*-11) (T*-10) (T*-9) (T*-8) (T*-7) (T*-6) (T*-5) (T*-4) (T*-3) (T*-2) (T*-1) T* 

Direct  $   193  $   193  $ 193  $ 193   $ 128   $ 128  $ 128   $ 128   $ 153   $ 184  $ 215   $ 256 
Travel 
Costs  $     12  $     16  $   21  $   25   $   28   $   33  $   40   $   50   $   59   $   71  $   83   $  99  

Travel Time  $     11  $     15  $   20  $   23   $   26   $   31  $   37   $   46   $   55   $   67  $   78   $  92  

Lost Wages  $   238  $   238  $ 238  $ 238   $ 159   $ 159  $ 159   $ 159   $   79   $   79  $   79   $  79  

Total  $   454  $   461  $ 472  $ 479   $ 341   $ 351  $ 364   $ 383   $ 347   $ 401  $ 456   $ 526 

  

Thus far, the overall increasing costs of evacuation that we have determined are 

for a CAT 3 hurricane.  But we also further assume that these costs would be less for 

CAT 1 & 2 and more for CAT 4 & 5 hurricanes because higher CAT levels induce more 

evacuees.  We use data from Lindell et al. (2002) to indicate the increased time to 

evacuate for CAT 1 to CAT 5 hurricanes.  Their data comes from a study of Texas Gulf 

                                                 
59 Given that travel time costs are based on a wage rate, one could make the argument that travel time costs 
should change in the same way lost income costs do.  We focus on increasing travel costs over time and 
abstract from this.   
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Coast evacuation response rates.  A summary of the estimated time to evacuate (ETE) by 

county is given in Table 15.  

Table IV.15. Texas Gulf Coast ETEs  

 ETEs by CAT Level   

Location 1 2 3 4 5 

VSA1 (Cameron South) 7 8 9 10 11 

VSA2 (Cameron North) 15 21 28 32 33 

VSA3 (Willacy) 7 7 7 8 8 

CSA1 (Kenedy/Kleberg) 7 7 8 9 9 

CSA2 (Nueces) 14 20 28 31 32 

CSA3 (Refugio/Aransas) 8 8 8 8 8 

CSA4 (San Patricio) 8 11 15 17 18 

MSA1 (Calhoun/Victoria) 8 8 9 10 10 

MSA2 (Calhoun/Jackson) 7 8 8 8 8 

MSA3 (Matagorda West) 7 8 8 9 9 

MSA4 (Matagorda East) 7 8 8 8 8 

MSA5 (Victoria)  7 7 7 7 

GSA1 (Brazoria) 7 9 13 15 15 

GSA2 (Galveston West/Harris South) 14 20 28 32 33 

GSA3 (Harris Central) 7 7 9 10 10 

GSA4 (Harris East) 8 12 17 19 20 

SSA1 (Chambers West) 7 7 7 8 8 

SSA2 (Chambers East/Galveston East) 10 13 17 19 19 

SSA3 (Hardin) 7 7 7 7 7 

SSA4 (Jasper) 7 7 7 7 7 

SSA5 (Jefferson/Orange West) 14 20 29 33 34 

SSA6 (Liberty)  7 7 7 7 

SSA7 (Newton)   7 9 9 

SSA8 (Orange East) 7 7 10 11 12 

      

Average ETE 8.4 10.0 12.2 13.5 13.9 

% change in average ETE 19% 22% 11% 3% 

 
 

 
The percentage changes in the average ETE from the bottom of Table 15 are used 

to determine how our direct, travel, and travel time CAT 3 evacuation costs increase and 
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decrease respectively60.  We do not change lost income costs between CAT levels.  For 

example, from Table 15 the average ETE for CAT 3 hurricane = 12.2 hours, increases by 

22% from the average ETE for a CAT 2 hurricane = 10.0 hours.  Therefore, we generate 

our CAT 2 direct, travel, and travel time costs of evacuation by decreasing our derived 

CAT 3 direct, travel, and travel time costs of evacuation by 22%.  Similar increases and 

decreases for CAT 1, 4 and 5 costs are completed based upon the percentage change data 

from Table 15.  Table 16 presents the costs of evacuation by period for each CAT level, 

and Figure 33 graphically illustrates the results of our cost of evacuation methodology.  

The difference in evacuation costs are most significant between moving from minor 

hurricanes (CAT 1&2) to a major hurricane, and the declines in overall costs for periods 

(T*-7) and (T*-3) are clearly illustrated.  

Table IV.16. Derived CAT 1 to CAT 5 Costs of Evacuation 

 CAT 1 CAT 2 CAT 3 CAT 4 CAT 5 

(T*-11)  $       387   $      415   $      454   $       478   $      485  

(T*-10)  $       392   $      421   $      461   $       486   $      493  

(T*-9)  $       399   $      429   $      472   $       497   $      505  

(T*-8)  $       404   $      435   $      479   $       505   $      513  

(T*-7)  $       284   $      308   $      341   $       361   $      367  

(T*-6)  $       292   $      317   $      351   $       373   $      379  

(T*-5)  $       300   $      327   $      364   $       387   $      393  

(T*-4)  $       313   $      343   $      383   $       408   $      416  

(T*-3)  $       264   $      299   $      347   $       377   $      386  

(T*-2)  $       301   $      343   $      401   $       436   $      447  

(T*-1)  $       339   $      388   $      456   $       497   $      510  

T*  $       387   $      446   $      526   $       575   $      590  

 

                                                 
60 While we are changing our evacuation cost amounts by the ETE percentage changes, we are not affecting 
the percentage change in the average cumulative percentage of evacuees per period at the bottom of Table 
13 which we used to determine how travel costs and portions of direct costs increased per period.  One 
could argue that the different storm CAT levels would affect these rates of costs increases per period.  
However, we do not have data at this level of specificity to incorporate these changes. 
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Figure IV.33. Derived CAT 1 to CAT 5 Costs of Evacuation 
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Finally, the derived costs of evacuation for all periods need to be modified in 

order to coincide with the defined state levels.  For example, the costs of evacuating in 

period T*, 
*TEV

c , have been derived for SSHS CAT levels 1 to 5 as provided in Table 16.  

However, in period T* we have states 0, [0-0.5], [0.5-1], [1.0-1.5], …, [4.5-5.0], and 

therefore 
*TEV

c  from Table 16 need to be modified in order to coincide with the identified 

T* states.  CAT 0 costs of evacuation are assumed for all periods to be 75% of CAT 1 

costs, which for T* therefore = $290, and costs for states [0-0.5], [1.0-1.5], etc are simply 

the average of the SSHS CAT level costs above and below them respectively.  For 
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example, the CAT 1 evacuation costs of $387 are associated with the [0.5-1.0] T* state, 

and the CAT 0 evacuation costs are $290.  Therefore, the evacuation costs for the [0-0.5] 

T* state are the average of these two values, or $339.  Similar averaging of the CAT 1 

through 5 evacuation costs is completed for all other periods.     

 

Expected Costs of Not Evacuating (Personal Hurricane Damage) 

 If a household chooses not to evacuate at T*, they will be forced to ride out the 

storm given that the hurricane ultimately makes landfall at their location.  The decision to 

ride out the storm has an associated probability of being injured, or even killed, 

depending on the magnitude of the hurricane.  We use existing data from the Multihazard 

Mitigation Council’s study to assess the future savings from mitigation activities (MMC, 

2005) to assign these probabilities for CAT 1 to CAT 5 hurricanes, and estimate the 

expected costs of not evacuating from a hurricane (or the value of avoided injury/death). 

 Similar to the evacuation cost data used, the expected costs of not evacuating 

from a hurricane also suffer from selection bias.  This is because the expected costs of not 

evacuating are determined based upon injury rates from those households that did not 

evacuate during a particular hurricane.  Assume that for households that had actually 

evacuated, they instead did not.  One would then expect that rates of injuries would go up 

significantly if all households were present at hurricane landfall.  Therefore, by only 

collecting injury rates from households that did not evacuate, the injury rates, and hence 

the expected costs of not evacuating would likely be biased downward.  Despite this 

selection bias issue, we still assume that the existing expected cost of not evacuating data 

is a reasonable input for our multi-period model, but note that a survey that collects the 
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probability of being injured during a hurricane from both households that evacuated and 

those that did not (and hence does not suffer from selection bias) is a more appropriate 

source for determining the expected costs of not evacuating as an input to the multi-

period model. 

 The purpose of the MMC study was to quantify the expected benefits of avoided 

hazard induced losses stemming from natural disasters such as floods, hurricanes, 

tornadoes, and earthquakes in order to conduct cost-benefit analyses on a number of 

related mitigation programs.  As part of the study, cost of injury data61 as well as rates of 

injury statistics due to hurricanes were collected.  We use both of these pieces of 

information to generate our costs of not evacuating.  Table 17 presents the cost of injuries 

used in their study (converted to 2004 dollars) ranging from minor to critical injuries.  

Actual hurricane injury rates for three hurricanes were provided in the report: Andrew 

(CAT 3 in LA) – 0.2%; Opal (CAT 3) – 0.0%; and Isabel (CAT 2) – 0.9%. 

Table IV.17. Cost of Injuries (Source MMC) 

 

Severity Cost ($2004) 
Minor  $             6,303  

Moderate  $           51,471  

Serious  $        189,076  

Severe $        619,748  

Critical $     2,521,008  

 

 From the existing rates of injury, we take a conservative probability of injury for 

CAT 3 storms to be 0.45%.  We further use the fact that damages along the SSHS are 

generally thought to follow an exponential form, to ascertain our probabilities of injury 

                                                 
61 The cost of injury estimates come from another study that estimated costs of injury damages in car 
accidents  
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for CAT 1, 2, 4, and 5 hurricanes.  Figure 34 illustrates the probability of injury by 

hurricane CAT level following an exponential form62.  The generated probabilities of 

injury from hurricanes are then multiplied by each of the cost of injury values of Table 17 

to obtain an expected cost of not evacuating by CAT level63.  The expected costs of not 

evacuating are presented in Table 18, with costs ranging from $1,694 for a CAT 1 to 

$32,182 for a CAT 5. 

Figure IV.34. Probability of Injury by SSHS CAT 
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62 The probability of injury between CAT 4 and CAT 5 storms does not increase exponentially 
 
63 We have assumed that the probability of injury by each CAT level is the same for all types of injuries.  
For example, in a CAT 3 storm we have assumed the probability of incurring a minor injury is 0.45%, and 
that the probability of incurring a critical injury is also 0.45%.  This is a limitation stemming from our 
available data. 
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Table IV.18. Expected Costs of Not Evacuating 

CAT Prob of injury 
Expected 
Cost ($) 

0 0.000%  $               0 

1 0.050%  $        1,694  

2 0.200%  $        6,775  

3 0.450%  $      15,244  

4 0.850%  $      28,795  

5 0.950%  $      32,182  

 

 The construction of our three main model inputs is ultimately constrained by the 

available data.  Although this is possibly a limitation to the analysis, we believe we have 

made reasonable assumptions concerning the nature of the inputs, e.g., increasing costs of 

evacuation as (T*-n) approaches T, and this combined with the fact that all the inputs 

have been constructed from actual (albeit likely biased) data, allow us to feel comfortable 

in using the inputs as constructed to draw initial results from our model.      

 

IV.VI.  Solution and Results 

From our model setup we have a stochastic, finite-horizon, discrete time, discrete 

space, Markov decision model which is solved through backward recursion.  In time 

period T*, the last safe possible time to evacuate, (29) is 

( ){ }
** * *( ) min ,

TT EV T T T
V c E Vθ θ θ =    with ( ) ( )* * * ** _

*T T T T T TT T N EV
E V P E cθ θ θ θ   =   

, 

and 
*T T

P  being the Markov transition matrix of θ from T* to T.  That is, at T* a 

household does not have the possibility of waiting for a revised hurricane forecast.  The 

choice at T* is either to evacuate and incur 
*TEV

c , or to ride the storm out with expected 

damage equal to ( )* ** _
* T T TT T N EV

P E c θ θ 
 

.  Once *( )
T

V θ  has been solved for, 
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( ){ }
* 1* 1 * ( * 1)* ( * 1)

( ) min , *
TT EV T TT T

V c P Vθ θ θ
−− −−

 =   can be obtained by substituting in 

*( )
T

V θ , and with 
* ( * 1)T T

P
−

 being the Markov transition matrix of θ from (T*-1) to T*.  

Similarly, this recursive solution process continues for * 2( )
T

V θ − , …, * 11( )
T

V θ −

64.   

Table 19 presents the results from (29) for T* where 

( ){ }
** * *( ) min ,

TT EV T T T
V c E Vθ θ θ =   , and where the Section V values from Table 11, 

Table 18, and Table 16 are substituted for
*T T

P , ( ) *_T TN EV
c θ θ , and 

*TEV
c  respectively.  

Table 19 indicates that at T* it is optimal for an average household in our Gulf of Mexico 

region to evacuate for storms with a risk index > 1.0.  Note that transition matrix data for 

storms with risk indices > 4.0 in period T* are not available from the storm forecast data 

used, coinciding with an “N/A” value in Table 19.     

Table IV.19. ( ){ }
** * *( ) min ,

TT EV T T T
V c E Vθ θ θ =    

 

*T
θ  

*TEV
c  ( )* *T T T

E V θ θ    Optimal 
Decision 

*( )
T

V θ  

0 290 0 Wait 0 
0 – 0.5 339 47 Wait 47 
0.5 – 1 387 368 Wait 368 
1 – 1.5 416 593 Evacuate 416 
1.5 – 2 446 3599 Evacuate 446 
2 – 2.5 486 2659 Evacuate 486 
2.5 – 3 526 11857 Evacuate 526 
3 – 3.5 551 17954 Evacuate 551 
3.5 – 4 575 17954 Evacuate 575 
4 – 4.5 583 N/A N/A N/A 

4.5 – 5 590 N/A N/A N/A 

 

                                                 
64 While we collect data over 19 periods, we only use the data up to the 11th period in solving the model. 
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Likewise, Table 20 presents the results from (29) for period (T*-1), where 

( ){ }
* 1* 1 * ( * 1)* ( * 1)

( ) min , *
TT EV T TT T

V c P Vθ θ θ
−− −−

 =   , and where *( )
T

V θ  are the values from 

the last column of Table 19, 
* ( * 1)T T

P
−

 is the Markov transition matrix of θ from (T*-1) to 

T*, and 
* 1TEV

c
−

 are the Section V values from Table 16.  At (T*-1), it is also optimal for an 

average household to evacuate for storms with a risk index > 1.0.  However, note that a 

risk index of 1.0 in period  (T*-1) does not carry an equivalent risk connotation as a risk 

index of 1.0 in period T*.  Again, note that transition matrix data for storms with risk 

indices > 3.0 in period (T*-1) are not available from the storm forecast data used, 

coinciding with an “N/A” value in Table 20. 

Table IV.20. ( ){ }
* 1* 1 * ( * 1)* ( * 1)

( ) min , *
TT EV T TT T

V c P Vθ θ θ
−− −−

 =    

 

( * 1)T
θ −  

( * 1)TEV
c

−
 ( )( * 1) * ( * 1)T T T

E V θ θ− −
 
 

 

Optimal 
Decision 

( * 1)( )
T

V θ −

 

0 254 1 Wait 1 

0 – 0.5 296 40 Wait 40 

0.5 – 1 339 246 Wait 246 

1 – 1.5 363 410 Evacuate 363 

1.5 – 2 388 454 Evacuate 388 

2 – 2.5 422 495 Evacuate 422 

2.5 – 3 456 533 Evacuate 456 

3 – 3.5 477 N/A N/A N/A 

3.5 – 4 497 N/A N/A N/A 

4 – 4.5 504 N/A N/A N/A 

4.5 – 5 510 N/A N/A N/A 

 

Similarly, this recursive solution process continues for * 2( )
T

V θ − , …, * 11( )
T

V θ − .  A 

complete listing of the dynamic programming results for each (T*-n) period are provided 

in a separate appendix.   
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Figure 35 presents the ( * )T n
θ −  evacuation cut-off results for all (T*-n) periods, n = 

0, 1, …, 11, along with the maximum risk index determined for each of these periods.  

For periods T* to (T*-2) we see that it is rational for an average household at a 

representative Gulf of Mexico location to evacuate when the forecasted hurricane risk 

index is > 1.0, and for period (T*-3) when > 0.75.  This corresponds to the indicated 

evacuation region in Figure 35.  However, for storms with risk indices < 1.0 in periods T* 

to (T*-2), < 0.75 in period (T*-3), and for any determined risk index values beyond 

period (T*-3) our model indicates that it is not rational to evacuate.  This corresponds to 

the indicated waiting region of Figure 35.     

Figure IV.35. Average Household Optimal Evacuation Results 
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While our results thus far have been general, i.e., for an average household at an 

representative location in our defined Gulf of Mexico region, we can use the applicable 

evacuation timing graphs from Figures 25 to 32 in Section V, as well as our per period, 

per location constructed risk indices to evaluate how well our model does in explaining 

actual evacuation timing outcomes.  We analyze four storms for which we have 

evacuation timing information, and whose forecast data were included in our probability 

transition matrices – Hurricanes Ivan, Opal, Charley, and Lili: 

 

Hurricane Ivan 

 In September, 2004 Hurricane Ivan made landfall as a strong CAT 3, borderline 

CAT 4 hurricane over Mobile, AL and Pensacola, FL.  Figure 26 illustrates the 

evacuation timing for evacuees from LA (Jefferson, Orleans, Plaquemines, St. Bernard, 

St. Charles, St. John, St. Tammany Parishes), AL (Baldwin and Mobile counties), MS 

(Hancock, Harrison, Jackson counties), and FL (Bay, Escambia, Franklin, Gulf, Inland 

counties, Okaloosa, Santa Rosa, and Walton counties) from the 2004 post-storm 

assessment report (USACE, 2006b).  Depending upon the state, Figure 26 shows the 50th 

percentile evacuee leaving during either period (T*-3) or (T*-2).  Forecasts for Ivan from 

periods (T*-10) to T* consistently called for a CAT 4 hurricane at landfall.    

Table 21 presents the per period risk indices by location, ranked in descending 

order by T*, for Hurricane Ivan.  Following from the general results of our multi-period 

model, evacuation is rational beginning in period (T*-3) for average households in our 

defined locations of Mobile (Mobile County), AL, Pensacola (Escambia County) and 
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Panama City (Bay County), FL, Gulfport (Harrison County), MS, and Buras 

(Plaquemines Parish), LA, as risk indices for these locations are all > 0.75 and are 

highlighted in Table 21.  Therefore, for Hurricane Ivan our predicted results for these 

locations coincide fairly well with the actual evacuation timing illustrated in Figure 26, 

where the 50th percentile of evacuees as well as the steepest slopes of the evacuation 

timing curves are occurring in periods (T*-3) to (T*-1).  However, the evacuation 

occurring for Ivan during periods (T*-7) to (T*-4) is not predicted from our model – at 

least not for an average household. 

Table IV.21. Hurricane Ivan Risk Indices by Location 

 

  Evac for: > 1 > 1 > 1 > .75 Wait Wait Wait Wait Wait Wait Wait Wait 
               

State Locations Ivan Iv_T* Iv_t-1 Iv_t-2 Iv_t-3 Iv_t-4 Iv_t-5 Iv_t-6 Iv_t-7 Iv_t-8 Iv_t-9 Iv_t-10 Iv_t-11 

AL Mobile 3.00 2.98 2.12 1.55 1.22 1.24 0.97 0.90 0.85 0.63 0.71 0.56 0.42 

FL Pensacola 3.00 2.66 1.62 1.37 1.14 1.08 0.90 0.79 0.78 0.59 0.71 0.56 0.42 

MS Gulfport 0.00 2.18 1.87 1.40 1.14 1.24 0.97 0.94 0.85 0.67 0.74 0.59 0.42 

LA Buras 0.00 0.98 1.44 1.37 1.10 1.28 1.01 1.01 0.93 0.74 0.78 0.63 0.48 

LA New Orleans 0.00 0.22 0.58 0.72 0.80 1.04 0.82 0.86 0.82 0.67 0.67 0.59 0.42 

FL Panama City 0.00 0.36 0.54 0.68 0.80 0.72 0.67 0.60 0.59 0.52 0.63 0.52 0.39 

FL Apalachicola 0.00 0.25 0.40 0.50 0.65 0.60 0.56 0.49 0.52 0.45 0.56 0.48 0.36 

FL St. Marks 0.00 0.29 0.40 0.40 0.53 0.48 0.45 0.41 0.45 0.37 0.48 0.41 0.30 

FL Cedar Key 0.00 0.18 0.22 0.22 0.30 0.24 0.22 0.22 0.26 0.26 0.33 0.33 0.24 

FL Tampa 0.00 0.07 0.11 0.11 0.15 0.12 0.15 0.11 0.19 0.22 0.26 0.30 0.24 

LA New Iberia 0.00 0.00 0.00 0.11 0.23 0.52 0.49 0.60 0.59 0.59 0.48 0.48 0.36 

TX Port Arthur 0.00 0.00 0.00 0.00 0.00 0.12 0.15 0.26 0.26 0.37 0.26 0.30 0.21 

TX Galveston 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.15 0.15 0.26 0.15 0.22 0.18 

TX Freeport 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.19 0.11 0.15 0.15 

TX Port Lavaca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.09 
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Hurricane Opal 

          In October, 1995 Hurricane Opal made landfall as a strong CAT 3 hurricane over 

Pensacola, FL.  Figure 31 illustrates the aggregated evacuation timing for evacuees from 

AL (Baldwin and Mobile counties) and FL (Bay, Escambia, Okaloosa, Santa Rosa, and 

Walton counties) from the 1995 post-assessment report (USACE, 2006b).  Figure 31 

shows the 50th percentile evacuee leaving during period (T*-1), and the slope of the curve 

steepening considerably over this time period.  Forecasts for Opal from periods (T*-11) 

to (T*-3) called for a minor hurricane at landfall, while forecasts from (T*-2) to T* called 

for a major hurricane at landfall. 

 Table 22 presents the per period risk indices by location, ranked in descending 

order by T*, for Hurricane Opal.  Following from the general results of our multi-period 

model, evacuation is rational beginning in period (T*-1) for average households in our 

defined locations of Pensacola (Escambia County) and Panama City (Bay County), FL, as 

well as for Mobile (Mobile County), AL, as risk indices for these locations are all > 1.0 

and are highlighted in Table 22.  These results coincide well with the actual evacuation 

timing as illustrated in Figure 31, where the steepest slope of the evacuation timing curve 

and the 50th percentile are occurring in period (T*-1), and overall evacuation is really 

beginning in earnest during this timeframe.  In this case, the results of our multi-period 

model offer an explanation for the relatively late (12 hours prior to landfall for a major 

hurricane) evacuation response. 
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Table IV.22. Hurricane Opal Risk Indices by Location 

 

  Evac for: > 1 > 1 > 1 > .75 Wait Wait Wait Wait Wait Wait Wait Wait 
               

State Locations Opal O_T* O_T*-1 O_T*-2 O_T*-3 O_t-4 O_t-5 O_t-6 O_t-7 O_t-8 O_t-9 O_t-10 O_t-11 

FL Pensacola 3.00 2.80 1.40 0.67 0.54 0.40 0.32 0.30 0.22 0.07 0.03 0.04 0.04 

FL Panama City 0.00 1.84 1.08 0.70 0.56 0.36 0.28 0.26 0.22 0.05 0.02 0.04 0.03 

AL Mobile 0.00 1.76 1.15 0.58 0.46 0.38 0.32 0.30 0.24 0.07 0.04 0.04 0.04 

FL Apalachicola 0.00 0.92 0.83 0.67 0.54 0.34 0.26 0.26 0.20 0.05 0.02 0.04 0.03 

MS Gulfport 0.00 0.60 0.86 0.49 0.39 0.38 0.34 0.30 0.24 0.09 0.04 0.05 0.05 

FL St. Marks 0.00 0.60 0.65 0.61 0.49 0.30 0.24 0.24 0.18 0.04 0.00 0.03 0.02 

LA Buras 0.00 0.28 0.76 0.52 0.41 0.42 0.38 0.34 0.28 0.12 0.06 0.07 0.06 

LA New Orleans 0.00 0.00 0.29 0.36 0.29 0.34 0.34 0.30 0.26 0.12 0.06 0.06 0.06 

FL Cedar Key 0.00 0.00 0.22 0.46 0.37 0.24 0.20 0.20 0.16 0.04 0.00 0.03 0.02 

FL Tampa 0.00 0.00 0.07 0.30 0.24 0.18 0.16 0.18 0.16 0.04 0.00 0.03 0.02 

LA New Iberia 0.00 0.00 0.00 0.18 0.15 0.22 0.30 0.24 0.24 0.12 0.07 0.06 0.06 

TX Port Arthur 0.00 0.00 0.00 0.06 0.05 0.08 0.16 0.12 0.18 0.12 0.07 0.05 0.06 

TX Galveston 0.00 0.00 0.00 0.00 0.00 0.04 0.12 0.08 0.16 0.14 0.09 0.06 0.07 

TX Freeport 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.06 0.14 0.14 0.10 0.06 0.07 

TX Port Lavaca 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.10 0.14 0.10 0.06 0.07 

 

 

Hurricane Charley 

In August, 2004 Hurricane Charley made landfall in Southwest FL as a CAT 4 

hurricane over Punta Gorda.  Figure 27 illustrates (amongst other locations) the 

evacuation timing for evacuees from Northern Coastal FL (Citrus, Dixie, Hernando, 

Levy, and Taylor counties) and from Tampa Bay Coastal FL (Hillsborough, Manatee, 

Pasco, and Pinellas counties) from the 2004 post-assessment report (USACE, 2006b).  

Figure 27 shows the 50th percentile evacuee for these two specific areas leaving during 

period (T*-1).  Forecasts for Charley from periods        (T*-11) to (T*-4) called for a 

minor hurricane at landfall, while forecasts from (T*-3) to T* called for a major hurricane 

at landfall.     
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 Table 23 presents the per period risk indices by location, ranked in descending 

order by T*, for Hurricane Charley.  Following from the general results of our multi-

period model, evacuation is rational beginning in period (T*-3) for average households in 

our defined locations of Tampa (Hillsborough County), Cedar Key (Levy County), and 

St. Marks (Wakulla County) FL, as risk indices for these locations are all > 0.75 and are 

highlighted in Table 23.  From Figure 27 we see that evacuation timing begins to increase 

rapidly starting with period (T*-4), with the slope of the evacuation timing curve 

increasing significantly between periods (T*-2) and T*.  Again, it appears that our model 

does a good of explaining the timing of the actual evacuation behavior.  

Table IV.23. Hurricane Charley Risk Indices by Location 

 

  Evac for: > 1 > 1 > 1 > .75 Wait Wait Wait Wait Wait Wait Wait Wait 

State Locations Charley Ch_T* Ch_t-1 Ch_t-2 Ch_t-3 Ch_t-4 Ch_t-5 Ch_t-6 Ch_t-7 Ch_t-8 Ch_t-9 Ch_t-10 Ch_t-11 

FL Tampa 0.00 2.31 1.41 1.31 1.19 0.86 0.86 0.70 0.58 0.39 0.29 0.28 0.21 

FL Cedar Key 0.00 1.98 1.32 1.13 1.06 0.79 0.81 0.64 0.56 0.36 0.27 0.25 0.18 

FL St. Marks 0.00 1.00 1.02 0.70 0.79 0.60 0.65 0.46 0.46 0.29 0.23 0.20 0.12 

FL Apalachicola 0.00 0.39 0.84 0.46 0.61 0.50 0.58 0.36 0.40 0.25 0.20 0.21 0.16 

FL Panama City 0.00 0.11 0.60 0.24 0.43 0.36 0.43 0.28 0.34 0.21 0.16 0.20 0.14 

FL Pensacola 0.00 0.00 0.09 0.00 0.09 0.10 0.14 0.06 0.14 0.07 0.07 0.12 0.09 

AL Mobile 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.04 0.03 0.02 0.09 0.05 

MS Gulfport 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.04 

LA Buras 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 

LA New Orleans 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 

LA New Iberia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TX Port Arthur 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TX Galveston 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TX Freeport 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TX Port Lavaca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Hurricane Lili 

In October, 2002 Hurricane Lili made landfall as a CAT 1 hurricane over 

Vermilion Parish, LA.  Figure 30 illustrates the aggregated evacuation timing for 

evacuees from Louisiana (Cameron, Calcasieu, Jefferson Davis, Vermilion, Acadia, 

Lafayette, Iberia, St. Mary, St. Martin, Iberville, Terrebonne, Assumption, Lafourche, St. 

Charles, Jefferson, Plaquemines, Ascension, St. James, and St. John the Baptist parishes) 

and Texas (Jefferson, Orange, and Chambers counties) from the 2002 post-assessment 

report (USACE, 2006b).  Figure 30 shows the 50th percentile evacuee leaving during 

period (T*-5).  Forecasts for Lili from periods (T*-11) to    (T*-3) called for a CAT 3 

hurricane at landfall, while forecasts in (T*-2) and (T*-1) called for a CAT 4 hurricane at 

landfall. 

 Table 24 presents the per period risk indices by location, ranked in descending 

order by T*, for Hurricane Lili.  Following from the general results of our multi-period 

model, evacuation is rational beginning in period (T*-3) for average households in our 

defined locations of New Iberia (Iberia Parish) and New Orleans (St. Charles Parish), LA, 

and Port Arthur (Jefferson County), TX, as risk indices for these locations are all > 0.75 

and are highlighted in Table 24.  From Figure 30 we see that evacuation timing begins to 

increase rapidly starting with period  (T*-7), with the slope of the evacuation timing 

curve increasing significantly between periods (T*-7) and (T*-3).  In this case, our model 

does not do a good job of predicting the beginning of evacuation behavior, but is able to 

at least capture the tail end of the steepest part of the evacuation timing curve. 
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Table IV.24. Hurricane Lili Risk Indices by Location 

 
  Evac for: > 1 > 1 > 1 > .75 Wait Wait Wait Wait Wait Wait Wait Wait 
               

State Locations Lili T* T*-1 T*-2 T*-3 -4 -5 -6 -7 -8 -9 -10 -11 

LA New Iberia 1.00 2.49 2.72 1.48 0.96 0.79 0.70 0.64 0.55 0.51 0.45 0.36 0.39 

LA New Orleans 0.00 0.93 1.88 1.00 0.76 0.64 0.58 0.55 0.48 0.48 0.42 0.33 0.36 

TX Port Arthur 0.00 0.63 0.64 1.24 0.89 0.76 0.70 0.64 0.55 0.48 0.45 0.36 0.36 

MS Gulfport 0.00 0.15 0.88 0.76 0.60 0.49 0.42 0.39 0.39 0.42 0.36 0.27 0.30 

LA Buras 0.00 0.09 1.12 0.80 0.66 0.55 0.52 0.51 0.48 0.48 0.45 0.36 0.39 

AL Mobile 0.00 0.09 0.44 0.56 0.50 0.42 0.36 0.33 0.30 0.36 0.27 0.21 0.24 

FL Pensacola 0.00 0.00 0.08 0.24 0.33 0.33 0.27 0.24 0.24 0.30 0.24 0.18 0.24 

TX Galveston 0.00 0.00 0.00 0.76 0.73 0.64 0.64 0.61 0.55 0.45 0.42 0.36 0.36 

TX Freeport 0.00 0.00 0.00 0.36 0.56 0.52 0.55 0.55 0.51 0.42 0.42 0.36 0.33 

FL Tampa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.15 

FL Cedar Key 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.12 

FL St. Marks 0.00 0.00 0.00 0.00 0.07 0.09 0.06 0.06 0.06 0.09 0.06 0.06 0.12 

FL Apalachicola 0.00 0.00 0.00 0.00 0.10 0.09 0.09 0.06 0.09 0.15 0.12 0.12 0.18 

FL Panama City 0.00 0.00 0.00 0.00 0.13 0.15 0.12 0.12 0.12 0.18 0.15 0.12 0.21 

TX Port Lavaca 0.00 0.00 0.00 0.00 0.27 0.30 0.39 0.39 0.42 0.33 0.36 0.30 0.27 

 

The results from our general multi-period model applied to actual evacuation 

timing behavior for specific locations and specific storms indicate that our multi-period 

model does a convincingly good job of predicting evacuation timing outcomes for Gulf 

of Mexico locations.  In all 4 cases, evacuation is predicted only in those locations where 

actual evacuation occurred according to the post-storm assessment survey data.  For 

example, Hurricane Charley made landfall in Southwest Florida and our model predicts 

evacuations for locations close to the eventual landfall such as Tampa, while not 

predicting evacuations for locations not in close proximity such as Mobile, AL.  In 3 of 

the 4 cases, our model correctly predicts evacuation for an average household, which 

correspond to the 50th percentile on the evacuation timing graphs.  Moreover, in the case 

of Opal our results offer an explanation for the seemingly late evacuation response.   
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However, the general results from our multi-period model cannot address the 10-

50% of cumulative evacuations occurring between periods (T*-8) and (T*-4) for 

Hurricanes Lili and Ivan.  For both of these hurricanes, forecasts during this period called 

for a major hurricane strike at landfall.  However, recall that the NHC strike probabilities 

for 36 and 48 hour forecasts are constrained to be less than 25%, which directly affects 

our risk index calculation and ultimately the evacuation/wait result.  Furthermore, our 

results thus far are for an average household.  In addition to evaluating our model against 

actual evacuation timing outcomes for an average household, we can also evaluate it 

through expected evacuation outcomes by various evacuation household types. 

Let us assume two household types: high damage (coastal location or mobile 

home) vs. low damage (inland location or non-mobile home), where high (low) damage 

households have a greater (lower) probability of being injured than those rates presented 

in Table 18 of Section V.  Intuitively, compared to an average damage household type, 

high (low) damage household types should evacuate earlier (later) in general and also be 

more (less) willing to evacuate for lower (higher) risk index storms.  Figure 36 and 37 

present the ( * )T n
θ −  evacuation cut-off results for high damage and low damage household 

types respectively for all (T*-n) periods, n = 0, 1, …, 11, along with the maximum risk 

index determined for each of these periods. 

The high damage household optimal evacuation results from our multi-period 

model shown in Figure 36 coincide with the expected results for this household type.  

When the probability of injury increases by five times that of the average household, the 

evacuation region expands for lower risk indices in periods T* to (T*-3).  Furthermore, if 

the probability of injury has increased significantly, one would also expect the number of 
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evacuees to increase leading to higher rates of increase of evacuation costs for all periods 

compared to those used for an average household as given in Table 13 of Section V.  

When the higher probability of injury is coupled with evacuation cost increase twice that 

of an average household, not only does the evacuation region expand for periods T* to 

(T*-3), but earlier evacuation is induced for periods (T*-5) to (T*-7).  Likewise, the low 

damage household optimal evacuation results from our multi-period model shown in 

Figure 37 coincide with the expected results for this household type.  When the 

probability of injury decreases to half of that of the average household, the evacuation 

region contracts with evacuation optimal for higher risk indices in periods T* to (T*-3).65 

 

Figure IV.36. High Damage Household Optimal Evacuation Results 
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65 Decreasing the rates of costs of evacuation increases only changed results from Figure 37 slightly and are 
therefore not shown. 
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Figure IV.37. Low Damage Household Optimal Evacuation Results 
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We can also assume household types in terms of the overall costs of evacuation 

with high cost and low costs household types.  Intuitively, compared to an average 

evacuation cost household type, high (low) cost household types should evacuate later 

(earlier) in general and also be less (more) willing to evacuate for higher (low) risk index 

storms.  Figure 38 and 39 present the ( * )T n
θ −  evacuation cut-off results for high cost and 

low cost household types respectively for all (T*-n) periods, n = 0, 1, …, 11, along with 

the maximum risk index determined for each of these periods. 

The high cost household optimal evacuation results from our multi-period model 

shown in Figure 38 coincide with the expected results for this household type.  When the 

overall costs of evacuating increase by two times that of the average household, the 

evacuation region contracts for higher risk indices in periods T* to (T*-3).  Furthermore, 

if the overall costs of evacuation have increased significantly, one would also expect the 

number of evacuees to decrease leading to lower rates of increase of evacuation costs for 
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all periods compared to those used for an average household as given in Table 13 of 

Section V.  When the higher costs of evacuation are coupled with evacuation cost 

increases half that of an average household, the evacuation region contracts even further.   

Figure IV.38. High Overall Evacuation Cost Household Optimal Evacuation Results 
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Likewise, the low cost household optimal evacuation results from our multi-

period model shown in Figure 39 coincide with the expected results for this household 

type.  When the overall costs of evacuation have decreased to half of that of the average 

household, the evacuation region expands only slightly with evacuation optimal for lower 

risk indices in periods T* only.  But if the overall costs of evacuation have decreased 

significantly, one would also expect the number of evacuees to increase leading to higher 

rates of increase of evacuation costs for all periods compared to those used for an average 

household as given in Table 13 of Section V.  When the lower costs of evacuation are 

coupled with evacuation cost increases twice that of an average household, not only does 
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the evacuation region expand for periods T* to (T*-3), but earlier evacuation is induced 

for periods (T*-5) to (T*-7).       

Figure IV.39. Low Overall Evacuation Cost Household Optimal Evacuation Results 
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 Finally, we can designate different evacuee types by changing the specific 

categories of our costs of evacuation.  For example, evacuation cost structures for 

transients (tourists) can be constructed by increasing travel related and direct costs, and 

eliminating lost income.  Figure 40 illustrates ( * )T n
θ −  evacuation cut-off results for tourist 

types for all (T*-n) periods, n = 0, 1, …, 11, along with the maximum risk index 

determined for each of these periods.  By increasing travel and direct costs by three times 

that of an average evacuee, as well as the rate of cost increases by twice that of an 

average evacuee, the evacuation region expand for periods T* to (T*-3), and earlier 

evacuation is induced for periods (T*-4) to (T*-7) as would be expected.  These predicted 

earlier tourist evacuation results coincide with the faster rates of response for transients as 

illustrated in Figure 9 of Section II.      



 173 

Figure IV.40. Tourist Optimal Evacuation Results 
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The results from our multi-period model by different household evacuation types 

also do a convincingly good job of predicting expected evacuation timing outcomes.  

Furthermore, these predicted results have the potential to explain the 10-50% of 

cumulative evacuations occurring between periods (T*-8) and (T*-4) for Hurricanes Lili 

and Ivan that our average household results from our general multi-period model could 

not.  Given the illustrated precision of our model outcomes in regard to actual evacuation 

timing and expected evacuation response by various household types, we feel 

comfortable in further using the model to assess potential hurricane related policies meant 

to affect evacuation timing.  

   

IV.VII. Policy Implications 

 In this section we provide a preliminary assessment of a number of potential 

hurricane policies meant to affect the timing of evacuation.  



 174 

A. Evacuation Cost Reduction 

For policy makers and emergency managers interested in having households evacuate 

as early as possible, the costs of evacuation are a key constraint.  Given that the costs of 

evacuation consist of the various components of direct, travel related, and lost income 

costs, a variety of policy initiatives may be available to reduce costs.   

 Figure 41 illustrates the effect of reducing the overall costs of evacuation equally 

across all components by 25%, 50%, and 80%, while holding all other variables constant.  

The results indicate that large cost reductions are needed, as much as 80% of the original, 

in order to induce evacuation for lower risk indices.  Even these significant cost 

reductions do not induce earlier evacuation for periods prior to (T*-3).  This suggests that 

a policy aimed at simply reducing the overall costs of evacuation does not induce early 

evacuation.  These results indicate that a more targeted evacuation cost reduction, or a 

non-evacuation cost policy such as a focus on an improved forecast may be a more 

appropriate strategy in order to achieve earlier evacuations by the average household.   

Figure IV.41. Effect of Lower Overall Costs of Evacuation on Evacuation Timing 
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B. The Value of an Improved Forecast  

In fact, we can use overall cost of evacuation reductions to estimate the value of 

an improved forecast in terms of its ability to induce earlier evacuations.  As presented in 

Section VI, the evacuation response for Hurricane Opal was relatively late with the vast 

majority of evacuations occurring within 12 hours of the actual hurricane landfall.  We 

repeat below for convenience the Hurricane Opal risk indices by location from Table 22.  

From Table 22, there are two ways that an earlier evacuation 24 hours out from Opal’s 

landfall in period (T*-3) could have occurred for the eventual landfall locations of 

Pensacola or Panama City: 1) lowering the (T*-3) cut-off point where evacuation is 

optimal from risk index values > 0.75 to risk index values > 0.50; or 2) increasing the 

(T*-3) risk index values achieved for Pensacola and Panama City to > 0.75, the current 

cut-off point for optimal evacuation.   

Table IV.22. Hurricane Opal Risk Indices by Location 
 

  Evac for: > 1 > 1 > 1 > .75 Wait Wait Wait Wait Wait Wait Wait Wait 
               

State Locations Opal O_T* O_T*-1 O_T*-2 O_T*-3 O_t-4 O_t-5 O_t-6 O_t-7 O_t-8 O_t-9 O_t-10 O_t-11 

FL Pensacola 3.00 2.80 1.40 0.67 0.54 0.40 0.32 0.30 0.22 0.07 0.03 0.04 0.04 

FL Panama City 0.00 1.84 1.08 0.70 0.56 0.36 0.28 0.26 0.22 0.05 0.02 0.04 0.03 

AL Mobile 0.00 1.76 1.15 0.58 0.46 0.38 0.32 0.30 0.24 0.07 0.04 0.04 0.04 

FL Apalachicola 0.00 0.92 0.83 0.67 0.54 0.34 0.26 0.26 0.20 0.05 0.02 0.04 0.03 

MS Gulfport 0.00 0.60 0.86 0.49 0.39 0.38 0.34 0.30 0.24 0.09 0.04 0.05 0.05 

FL St. Marks 0.00 0.60 0.65 0.61 0.49 0.30 0.24 0.24 0.18 0.04 0.00 0.03 0.02 

LA Buras 0.00 0.28 0.76 0.52 0.41 0.42 0.38 0.34 0.28 0.12 0.06 0.07 0.06 

LA New Orleans 0.00 0.00 0.29 0.36 0.29 0.34 0.34 0.30 0.26 0.12 0.06 0.06 0.06 

FL Cedar Key 0.00 0.00 0.22 0.46 0.37 0.24 0.20 0.20 0.16 0.04 0.00 0.03 0.02 

FL Tampa 0.00 0.00 0.07 0.30 0.24 0.18 0.16 0.18 0.16 0.04 0.00 0.03 0.02 

LA New Iberia 0.00 0.00 0.00 0.18 0.15 0.22 0.30 0.24 0.24 0.12 0.07 0.06 0.06 

TX Port Arthur 0.00 0.00 0.00 0.06 0.05 0.08 0.16 0.12 0.18 0.12 0.07 0.05 0.06 

TX Galveston 0.00 0.00 0.00 0.00 0.00 0.04 0.12 0.08 0.16 0.14 0.09 0.06 0.07 

TX Freeport 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.06 0.14 0.14 0.10 0.06 0.07 

TX Port Lavaca 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.10 0.14 0.10 0.06 0.07 

 



 176 

In regard to lowering the (T*-3) cut-off point to risk index values > 0.50, again 

Figure 41 indicates that for evacuation to be optimal for risk index values > 0.50, overall 

evacuation costs need to be reduced by 80%, which is a cost of $307 per household.  At a 

cost of $307 per household, and with approximately 50,000 households in these two 

locations, total cost reductions necessary to induce evacuation 24 hours out from landfall 

could therefore plausibly equal $15 million.   

Conversely, in regard to increasing the (T*-3) risk index values to > 0.75, the 

NHC strike probabilities for Panama City and Pensacola in this period were 22% and 

23% respectively.  If these strike probabilities had been increased to 31%, risk index 

values would have been high enough for it to be rational for household to evacuate during 

period (T*-3), i.e., > 0.75.  Therefore, in the case of Hurricane Opal the difference 

between the cost necessary to improve the strike probabilities from 22% to 31% 24 hours 

before landfall, and the $15 million cost of evacuation reduction is the value of an 

improved forecast that induces evacuation 24 hours out from landfall.  

 

C. Salaried vs. Wage Employees              

 The costs of lost income are one component of evacuation costs that potentially 

can be targeted by policy makers.  Not only are the costs of lost income the largest 

component of the specified average costs of evacuation which we assumed to be incurred 

at period (T*-4), but they also delineate two separate household types with someone in 

the household having to work – hourly vs. salaried worker household types.  We assume 

that salaried workers have more flexibility in their decision to evacuate with any missed 
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days of work not equating to lost income, while hourly workers have less flexibility in 

their evacuation decision assuming that they lose their income for any days missed.   

The results from our multi-period model with the costs of lost income eliminated 

demonstrate a divergent salaried vs. hourly worker outcome as shown in Figure 42.  

When the costs of lost income no longer need to be considered in the evacuation decision, 

earlier evacuation 2 days out from landfall in periods (T*-4) to (T*-7) is shown to be 

optimal for certain risk indices where waiting had previously been optimal.  The 

elimination of lost income costs from the evacuation decision makes it easier to evacuate 

earlier.  

Given the demonstrated hourly vs. salaried worker evacuation timing divergence, 

one can think of other possible policies that might make evacuation decisions more 

equitable such as a focus on the reduction of direct costs.  For example, assume a policy 

that focuses on reducing much of the direct costs of evacuation through the use of 

improved shelters that provide meals, showers, etc.  Households that use the improved 

shelters (which we assume to typically be hourly worker household types) have the 

possibility of having much of their direct costs eliminated.  Figure 43 illustrates the 

evacuation region results when direct costs are completely eliminated from the multi-

period model where it is shown that little earlier evacuation is induced due to the 

elimination of direct costs. 

  The results from Figures 42 and 43 indicate an evacuation timing divergence 

between hourly and salaried workers.  Furthermore, policies that give hourly workers 

more evacuation options once they have evacuated are not effective in minimizing the 

divergence.  In order for the divergence to be addressed, policies need to be directed at 
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making it easier for hourly workers to leave, such as a policy that provides incentives for 

employers to pay hourly workers for lost work time due to hurricane evacuations. 

 Figure IV.42. Optimal Evacuation Region Excluding Lost Income Costs 
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Figure IV.43. Optimal Evacuation Region Excluding Direct Costs 

0.0

1.0

2.0

3.0

4.0

5.0

T* (T*-1) (T*-2) (T*-3) (T*-4) (T*-5) (T*-6) (T*-7) (T*-8) (T*-9) (T*-10) (T*-11)

Time to Landfall

F
o

re
c

a
s
t 

R
is

k
 I
n

d
e
x

Costs with Direct Costs without Direct Max Risk Index

Waiting Region

Expanded 

Evacuation 

Region

 



 179 

D. The Cost Profile  

Other more targeted policies intended to induce earlier evacuation could focus on 

reducing the rates at which direct and travel-related costs increase over time such as the 

use of contra-flow or the increased availability of shelters.  Figure 44 illustrates the affect 

on evacuation timing if these types of policies are implemented and our assumed rates of 

per period cost increases from (T*-11) to T* are decreased by half.  Decreasing the rate at 

which the costs of evacuation increase over time leads to a contraction of the evacuation 

region, as well as to no earlier evacuation prior to period (T*-3) being induced.  This 

outcome helps to explain the empirical result that Baker (2005b) found for Hurricane 

Ivan where when contra-flow was implemented, a quarter of respondents indicated this 

made them less likely to evacuate66.  Similar to our results from the two-period model, 

these rate reduction results from the multi-period model show that when the ability to 

wait is a part of household’s decision to evacuate, timing results may run opposite of the 

intended policy goals.   

Conversely, when the rates of travel and direct costs increase over time, earlier 

evacuation is induced.  Figure 44 also illustrates this result assuming the rates have 

increased by two times our original assumptions, with earlier evacuation shown for 

periods (T*-5) to (T*-7).  This result also coincides with another Hurricane Ivan finding 

discussed by Baker (2005b) where the implementation of the contra-flow actually caused 

additional problems in traffic flow (which can be construed as a rate increase), and 60% 

of those evacuees that used the contra-flow route indicated that they would leave earlier 

next time.   

                                                 
66 While a quarter of respondents said it made them less likely, 56% said it did make them more likely.   
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Figure IV.44. Optimal Evacuation Region for Different Rates of Cost Increases 
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 Finally, we can think of how different policies can be combined in order to induce 

earlier evacuation.  Figure 37 of Section VI indicated that lowering the probability of 

being injured leads to a contracted evacuation region.  In this way, a policy focused on 

structural mitigation would result in increased waiting by households.  While this 

outcome may be desirable for inland homes, it would not be desirable for coastal homes.  

However, by combining a mitigation effort with cost reduction, the original evacuation 

cut-offs points can be achieved.  Therefore, for coastal homes if mitigation efforts are 

introduced, they should be coupled with evacuation cost reduction policies.  Also, from 

Figure 36 of Section VI we saw how conversely, higher probabilities for being injured 

lead to earlier evacuations.  By introducing cost reductions of half the overall costs of 

evacuation in this situation, even earlier evacuation is induced as shown by Figure 45.  

Cost reduction policies may therefore be more useful certain household types such as 

those located near the coast or in mobile homes.   
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  Figure IV.45. High Damage Household Combined with Cost Reduction Optimal Evacuation 
Results 
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IV.VIII. Conclusions 

This paper has developed of a dynamic model of hurricane evacuation behavior 

where every potential evacuation time period prior to the actual hurricane landfall, a 

household’s optimal choice is to either evacuate, or to wait one more time period for a 

revised NHC hurricane forecast.  The power and intuition behind framing a household’s 

evacuation decision dynamically vs. statically was shown through a simple two-period 

model of evacuation.  The dynamic model was extended to a realistic multi-period setup 

incorporating existing forecast and evacuation cost data in order to explain actual 

evacuation behavior for our designated Gulf of Mexico region.  The evacuation timing 

results from our general model did a convincingly good job of explaining actual 

evacuation timing outcomes by location from specific hurricanes, as well as expected 
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evacuation timing outcomes for various household types.  Therefore, from our calibrated 

dynamic framework, a number of policy questions that plausibly affect the timing of 

household evacuations were analyzed.  The dynamic model results were also able to 

provide a deeper understanding to existing evacuation timing empirical outcomes.     

 However, due to the probabilistic and non-primary nature of the model input data, 

we needed to develop a number of assumptions in order to properly incorporate the 

forecast and evacuation cost data into our multi-period dynamic evacuation model.  

While ultimately we feel comfortable in using the inputs as constructed from our 

assumptions and limited available data to draw initial results from our model, we 

acknowledge that the model and its inputs need to be further developed.  Obtaining cost 

data that does not suffer from selection bias, generating more comprehensive forecast 

data and probability transition matrices through Monte Carlo simulations, incorporating 

the latest NHC forecast products such as wind speed probabilities; complementing the 

model with a formal econometric analysis of data collected through an actual evacuation 

survey; and a formal general equilibrium solution through specific cost functions all can 

be done to improve the existing model.  Despite the current shortcomings, we feel the 

analysis has addressed the need for modeling hurricane evacuation behavioral responses 

in more precise and comprehensive ways, and importantly laid a solid foundation for 

continued development in this regard.   
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APPENDIX 

Derived Hurricane Risk Indices Per Storm, Per Location, & Per Period 
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(T*-1) 0 0 0 0 0 0.09 0.15 0.18 0.18 0.33 0.90 1.59 1.44 0.99 0.39

(T*-2) 0 0 0 0 0 0.11 0.22 0.25 0.29 0.43 0.86 1.33 1.33 1.04 0.43

(T*-3) 0 0 0 0 0 0.11 0.19 0.27 0.38 0.50 0.84 1.18 1.18 1.03 0.65

(T*-4) 0 0 0 0 0 0.11 0.23 0.34 0.46 0.57 0.88 1.10 1.10 0.95 0.69
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(T*-2) 0.07 0.13 0.20 0.24 0.25 0.17 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-3) 0.03 0.06 0.09 0.11 0.12 0.12 0.10 0.08 0.12 0.05 0.00 0.00 0.00 0.00 0.00
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(T*-2) 1.31 1.13 0.70 0.46 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-3) 1.19 1.06 0.79 0.61 0.43 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-4) 0.86 0.79 0.60 0.50 0.36 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-5) 0.86 0.81 0.65 0.58 0.43 0.14 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-6) 0.70 0.64 0.46 0.36 0.28 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-7) 0.58 0.56 0.46 0.40 0.34 0.14 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-8) 0.39 0.36 0.29 0.25 0.21 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-9) 0.29 0.27 0.23 0.20 0.16 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-10) 0.28 0.25 0.20 0.21 0.20 0.12 0.09 0.07 0.05 0.04 0.00 0.00 0.00 0.00 0.00

(T*-11) 0.21 0.18 0.12 0.16 0.14 0.09 0.05 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00  
 

Frances (2004)
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T* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-1) 0.59 0.59 0.49 0.50 0.37 0.14 0.08 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-2) 0.56 0.56 0.27 0.25 0.21 0.12 0.09 0.06 0.03 0.03 0.00 0.00 0.00 0.00 0.00

(T*-3) 0.56 0.43 0.28 0.28 0.24 0.15 0.10 0.06 0.03 0.03 0.00 0.00 0.00 0.00 0.00

(T*-4) 0.36 0.34 0.22 0.20 0.17 0.12 0.09 0.07 0.03 0.03 0.01 0.00 0.00 0.00 0.00

(T*-5) 0.23 0.18 0.11 0.10 0.08 0.06 0.05 0.04 0.02 0.02 0.01 0.00 0.00 0.00 0.00

(T*-6) 0.15 0.14 0.11 0.09 0.08 0.06 0.05 0.05 0.03 0.03 0.02 0.01 0.00 0.00 0.00

(T*-7) 0.15 0.13 0.10 0.09 0.09 0.07 0.06 0.06 0.04 0.04 0.03 0.01 0.01 0.00 0.00

(T*-8) 0.12 0.11 0.09 0.08 0.08 0.07 0.06 0.05 0.04 0.04 0.03 0.01 0.01 0.00 0.00

(T*-9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
 
 

Ivan (2004)
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T* 0.07 0.18 0.29 0.25 0.36 2.66 2.98 2.18 0.98 0.22 0.00 0.00 0.00 0.00 0.00

(T*-1) 0.11 0.22 0.40 0.40 0.54 1.62 2.12 1.87 1.44 0.58 0.00 0.00 0.00 0.00 0.00

(T*-2) 0.11 0.22 0.40 0.50 0.68 1.37 1.55 1.40 1.37 0.72 0.11 0.00 0.00 0.00 0.00

(T*-3) 0.15 0.30 0.53 0.65 0.80 1.14 1.22 1.14 1.10 0.80 0.23 0.00 0.00 0.00 0.00

(T*-4) 0.12 0.24 0.48 0.60 0.72 1.08 1.24 1.24 1.28 1.04 0.52 0.12 0.00 0.00 0.00

(T*-5) 0.15 0.22 0.45 0.56 0.67 0.90 0.97 0.97 1.01 0.82 0.49 0.15 0.07 0.00 0.00

(T*-6) 0.11 0.22 0.41 0.49 0.60 0.79 0.90 0.94 1.01 0.86 0.60 0.26 0.15 0.07 0.00

(T*-7) 0.19 0.26 0.45 0.52 0.59 0.78 0.85 0.85 0.93 0.82 0.59 0.26 0.15 0.07 0.00

(T*-8) 0.22 0.26 0.37 0.45 0.52 0.59 0.63 0.67 0.74 0.67 0.59 0.37 0.26 0.19 0.07

(T*-9) 0.26 0.33 0.48 0.56 0.63 0.71 0.71 0.74 0.78 0.67 0.48 0.26 0.15 0.11 0.00

(T*-10) 0.30 0.33 0.41 0.48 0.52 0.56 0.56 0.59 0.63 0.59 0.48 0.30 0.22 0.15 0.07

(T*-11) 0.24 0.24 0.30 0.36 0.39 0.42 0.42 0.42 0.48 0.42 0.36 0.21 0.18 0.15 0.09  
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Matthew (2004)
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T* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-7)

(T*-8)

(T*-9)

(T*-10)

(T*-11)

 
 

Claudette (2003)
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T* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.41 0.48 0.52

(T*-1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.29 0.33 0.30

(T*-2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.11 0.19 0.21 0.19

(T*-3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.14 0.19 0.20 0.20

(T*-4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.08 0.12 0.14 0.15

(T*-5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.10 0.11 0.13

(T*-6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.08 0.10 0.12

(T*-7) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.08 0.09 0.12

(T*-8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.05 0.06

(T*-9) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.04 0.06 0.07

(T*-10) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.04

(T*-11) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.04  
 

Lili (2002)
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T* 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.15 0.09 0.93 2.49 0.63 0.00 0.00 0.00

(T*-1) 0.00 0.00 0.00 0.00 0.00 0.08 0.44 0.88 1.12 1.88 2.72 0.64 0.00 0.00 0.00

(T*-2) 0.00 0.00 0.00 0.00 0.00 0.24 0.56 0.76 0.80 1.00 1.48 1.24 0.76 0.36 0.00

(T*-3) 0.00 0.00 0.07 0.10 0.13 0.33 0.50 0.60 0.66 0.76 0.96 0.89 0.73 0.56 0.27

(T*-4) 0.00 0.00 0.09 0.09 0.15 0.33 0.42 0.49 0.55 0.64 0.79 0.76 0.64 0.52 0.30

(T*-5) 0.00 0.00 0.06 0.09 0.12 0.27 0.36 0.42 0.52 0.58 0.70 0.70 0.64 0.55 0.39

(T*-6) 0.00 0.00 0.06 0.06 0.12 0.24 0.33 0.39 0.51 0.55 0.64 0.64 0.61 0.55 0.39

(T*-7) 0.00 0.00 0.06 0.09 0.12 0.24 0.30 0.39 0.48 0.48 0.55 0.55 0.55 0.51 0.42

(T*-8) 0.00 0.00 0.09 0.15 0.18 0.30 0.36 0.42 0.48 0.48 0.51 0.48 0.45 0.42 0.33

(T*-9) 0.06 0.06 0.06 0.12 0.15 0.24 0.27 0.36 0.45 0.42 0.45 0.45 0.42 0.42 0.36

(T*-10) 0.06 0.06 0.06 0.12 0.12 0.18 0.21 0.27 0.36 0.33 0.36 0.36 0.36 0.36 0.30

(T*-11) 0.15 0.12 0.12 0.18 0.21 0.24 0.24 0.30 0.39 0.36 0.39 0.36 0.36 0.33 0.27  
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Earl (1998)
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T* 0.14 0.26 0.51 0.69 0.99 0.58 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-1) 0.26 0.38 0.77 1.03 1.21 0.89 0.20 0.12 0.08 0.04 0.00 0.00 0.00 0.00 0.00

(T*-2) 0.19 0.32 0.56 0.74 0.82 0.60 0.11 0.05 0.05 0.03 0.00 0.00 0.00 0.00 0.00

(T*-3) 0.03 0.04 0.08 0.09 0.11 0.15 0.15 0.17 0.26 0.15 0.08 0.04 0.03 0.02 0.02

(T*-4) 0.02 0.03 0.05 0.06 0.08 0.11 0.13 0.15 0.24 0.18 0.13 0.06 0.05 0.04 0.02

(T*-5) 0.02 0.04 0.06 0.08 0.08 0.12 0.13 0.15 0.18 0.18 0.22 0.14 0.10 0.07 0.03

(T*-6) 0.00 0.03 0.06 0.07 0.09 0.14 0.18 0.21 0.24 0.26 0.30 0.27 0.27 0.26 0.21

(T*-7) 0.00 0.00 0.02 0.02 0.03 0.05 0.06 0.07 0.07 0.08 0.09 0.09 0.09 0.08 0.07

(T*-8) 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.10 0.11 0.10 0.10 0.08 0.07 0.06 0.03

(T*-9) 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.11 0.11 0.08 0.07 0.05 0.03

(T*-10)

(T*-11)  
 

Georges (1998)
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T* 0.08 0.10 0.18 0.24 0.30 1.18 1.72 1.98 1.98 0.58 0.36 0.20 0.12 0.10 0.06

(T*-1) 0.10 0.15 0.22 0.29 0.34 0.51 0.71 1.17 2.41 0.80 0.46 0.24 0.15 0.12 0.05

(T*-2) 0.08 0.11 0.21 0.32 0.40 0.62 0.73 0.89 1.15 0.86 0.62 0.35 0.21 0.16 0.08

(T*-3) 0.08 0.11 0.19 0.32 0.40 0.59 0.67 0.78 0.99 0.75 0.59 0.38 0.24 0.19 0.11

(T*-4) 0.11 0.13 0.24 0.34 0.40 0.53 0.61 0.69 0.77 0.69 0.56 0.37 0.24 0.19 0.11

(T*-5) 0.16 0.19 0.24 0.34 0.40 0.50 0.56 0.66 0.82 0.72 0.56 0.37 0.24 0.19 0.11

(T*-6) 0.16 0.21 0.26 0.40 0.42 0.53 0.58 0.66 0.79 0.69 0.56 0.37 0.26 0.21 0.13

(T*-7) 0.22 0.24 0.30 0.43 0.46 0.51 0.54 0.59 0.67 0.62 0.56 0.40 0.32 0.27 0.16

(T*-8) 0.13 0.19 0.32 0.48 0.51 0.56 0.56 0.59 0.62 0.54 0.43 0.27 0.16 0.11 0.05

(T*-9) 0.30 0.32 0.46 0.67 0.70 0.70 0.65 0.62 0.59 0.54 0.38 0.16 0.08 0.05 0.00

(T*-10) 0.54 0.43 0.48 0.65 0.65 0.67 0.62 0.59 0.56 0.51 0.35 0.16 0.08 0.00 0.00

(T*-11) 0.75 0.56 0.54 0.65 0.65 0.59 0.54 0.51 0.48 0.46 0.35 0.22 0.13 0.08 0.00  
 

Danny (1997)
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T* 0.02 0.04 0.10 0.10 0.16 0.63 0.63 0.63 0.14 0.12 0.09 0.05 0.03 0.03 0.01

(T*-1) 0.06 0.11 0.17 0.19 0.26 0.90 0.90 0.90 0.15 0.14 0.09 0.05 0.04 0.02 0.00

(T*-2) 0.01 0.03 0.06 0.06 0.08 0.20 0.59 0.59 0.59 0.12 0.10 0.07 0.05 0.04 0.02

(T*-3) 0.02 0.03 0.07 0.07 0.10 0.19 0.28 0.56 0.56 0.56 0.08 0.04 0.03 0.02 0.01

(T*-4) 0.03 0.05 0.08 0.08 0.10 0.14 0.20 0.26 0.56 0.56 0.09 0.05 0.03 0.02 0.01

(T*-5) 0.02 0.03 0.04 0.04 0.05 0.08 0.11 0.14 0.31 0.31 0.05 0.03 0.02 0.01 0.01

(T*-6) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-7) 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.00

(T*-8)

(T*-9)

(T*-10)

(T*-11)  
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Allison (1995)
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T* 0.03 0.13 0.33 0.45 0.45 0.23 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-1) 0.08 0.20 0.35 0.49 0.48 0.26 0.11 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-2) 0.06 0.06 0.07 0.08 0.08 0.06 0.05 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00

(T*-3) 0.07 0.07 0.06 0.07 0.06 0.04 0.03 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00

(T*-4) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(T*-6)

(T*-7)

(T*-8)

(T*-9)

(T*-10)

(T*-11)  
 

Erin (1995)
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T* 0.00 0.00 0.05 0.99 0.99 0.80 0.66 0.55 0.27 0.31 0.21 0.18 0.16 0.15 0.12

(T*-1) 0.00 0.05 0.18 0.90 0.90 0.55 0.46 0.45 0.38 0.36 0.23 0.18 0.16 0.15 0.12

(T*-2) 0.17 0.76 0.42 0.65 0.55 0.38 0.29 0.26 0.20 0.20 0.15 0.12 0.08 0.07 0.05

(T*-3) 0.21 0.21 0.15 0.15 0.13 0.09 0.07 0.05 0.03 0.04 0.03 0.01 0.01 0.00 0.00

(T*-4) 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00

(T*-5) 0.15 0.11 0.08 0.08 0.08 0.07 0.06 0.06 0.06 0.06 0.05 0.04 0.04 0.03 0.02

(T*-6) 0.16 0.12 0.08 0.09 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.04 0.04 0.03 0.02

(T*-7) 0.20 0.16 0.14 0.15 0.14 0.13 0.12 0.12 0.12 0.11 0.10 0.08 0.07 0.06 0.04

(T*-8) 0.18 0.14 0.12 0.13 0.13 0.12 0.11 0.11 0.12 0.11 0.10 0.08 0.07 0.06 0.04

(T*-9) 0.22 0.18 0.15 0.16 0.16 0.15 0.15 0.15 0.16 0.15 0.13 0.11 0.09 0.07 0.05

(T*-10) 0.16 0.13 0.11 0.13 0.13 0.12 0.12 0.13 0.14 0.13 0.12 0.10 0.09 0.09 0.09

(T*-11) 0.14 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.06 0.06 0.05 0.04  
 

Opal (1995)

H
illsb

o
ro

u
g

h
 C

o
u

n
ty

 (T
am

p
a)

L
ev

y
 C

o
u

n
ty

 (C
ed

ar K
ey

)

W
ak

u
lla C

o
u

n
ty

 (S
t. M

ark
s)

F
ran

k
lin

 C
o

u
n

ty
 

(A
p

alach
ico

la)

B
ay

 C
o

u
n

ty
 (P

an
am

a C
ity

)

E
scam

b
ia C

o
u

n
ty

 (P
en

saco
la)

M
o

b
ile C

o
u

n
ty

 (M
o

b
ile)

H
arriso

n
 C

o
u

n
ty

 (G
u

lfp
o

rt)

P
laq

u
em

in
es P

arish
 (B

u
ras)

S
t. C

h
arles P

arish
 (N

ew
 

O
rlean

s)

Ib
eria P

arish
 (N

ew
 Ib

eria)

Jefferso
n

 C
o

u
n

ty
 (P

o
rt A

rth
u

r)

G
alv

esto
n

 C
o

u
n

ty
 (G

alv
esto

n
)

B
razo

ria C
o

u
n

ty
 (F

reep
o

rt)

C
alh

o
u

n
 C

o
u

n
ty

 (P
o

rt L
av

aca 

/ P
o

rt O
 C

o
n

n
o

r)

T* 0.00 0.00 0.60 0.92 1.84 2.80 1.76 0.60 0.28 0.00 0.00 0.00 0.00 0.00 0.00

(T*-1) 0.07 0.22 0.65 0.83 1.08 1.40 1.15 0.86 0.76 0.29 0.00 0.00 0.00 0.00 0.00

(T*-2) 0.30 0.46 0.61 0.67 0.70 0.67 0.58 0.49 0.52 0.36 0.18 0.06 0.00 0.00 0.00

(T*-3) 0.24 0.37 0.49 0.54 0.56 0.54 0.46 0.39 0.41 0.29 0.15 0.05 0.00 0.00 0.00

(T*-4) 0.18 0.24 0.30 0.34 0.36 0.40 0.38 0.38 0.42 0.34 0.22 0.08 0.04 0.00 0.00

(T*-5) 0.16 0.20 0.24 0.26 0.28 0.32 0.32 0.34 0.38 0.34 0.30 0.16 0.12 0.10 0.04

(T*-6) 0.18 0.20 0.24 0.26 0.26 0.30 0.30 0.30 0.34 0.30 0.24 0.12 0.08 0.06 0.00

(T*-7) 0.16 0.16 0.18 0.20 0.22 0.22 0.24 0.24 0.28 0.26 0.24 0.18 0.16 0.14 0.10

(T*-8) 0.04 0.04 0.04 0.05 0.05 0.07 0.07 0.09 0.12 0.12 0.12 0.12 0.14 0.14 0.14

(T*-9) 0.00 0.00 0.00 0.02 0.02 0.03 0.04 0.04 0.06 0.06 0.07 0.07 0.09 0.10 0.10

(T*-10) 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.07 0.06 0.06 0.05 0.06 0.06 0.06

(T*-11) 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.06 0.06 0.06 0.06 0.07 0.07 0.07  
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Andrew (1992)
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T* 0.00 0.00 0.24 0.24 0.28 0.44 0.52 0.60 2.56 2.64 3.04 1.20 0.44 0.20 0.08

(T*-1) 0.00 0.00 0.00 0.16 0.24 0.36 0.52 0.64 1.75 1.47 1.99 1.11 0.76 0.60 0.40

(T*-2) 0.00 0.00 0.00 0.24 0.28 0.44 0.56 0.72 1.99 1.43 1.51 0.95 0.80 0.68 0.52

(T*-3) 0.00 0.00 0.19 0.27 0.30 0.50 0.61 0.76 1.22 0.95 0.88 0.69 0.65 0.61 0.50

(T*-4) 0.15 0.22 0.34 0.41 0.49 0.60 0.67 0.75 0.86 0.79 0.71 0.52 0.49 0.41 0.34

(T*-5) 0.00 0.00 0.22 0.30 0.37 0.60 0.67 0.79 0.97 0.86 0.79 0.64 0.56 0.49 0.37

(T*-6) 0.22 0.15 0.22 0.34 0.41 0.56 0.64 0.71 0.90 0.79 0.75 0.60 0.56 0.49 0.41

(T*-7) 0.67 0.35 0.28 0.42 0.39 0.42 0.42 0.46 0.56 0.49 0.49 0.42 0.42 0.39 0.35

(T*-8) 0.67 0.35 0.28 0.42 0.39 0.42 0.42 0.46 0.56 0.49 0.49 0.42 0.42 0.39 0.35

(T*-9) 0.70 0.46 0.32 0.42 0.39 0.39 0.39 0.42 0.49 0.46 0.46 0.42 0.42 0.42 0.39

(T*-10) 0.55 0.39 0.32 0.39 0.36 0.36 0.36 0.36 0.42 0.39 0.36 0.32 0.32 0.29 0.26

(T*-11) 0.39 0.30 0.23 0.27 0.27 0.25 0.23 0.23 0.27 0.25 0.20 0.16 0.16 0.16 0.14  
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Probability Transition Matrices 
 

T* \ T 0 1 2 3 4 5

0 100% 0% 0% 0% 0% 0%

0 - 0.5 97% 3% 0% 0% 0% 0%

0.5 - 1 78% 22% 0% 0% 0% 0%

1 - 1.5 80% 15% 5% 0% 0% 0%

1.5 - 2 63% 0% 25% 13% 0% 0%

2 - 2.5 67% 5% 20% 8% 0% 0%

2.5 - 3 22% 0% 0% 78% 0% 0%

3 - 3.5 0% 0% 0% 80% 20% 0%

3.5 - 4 0% 0% 0% 80% 20% 0%

4 - 4.5 N/A N/A N/A N/A N/A N/A

4.5 - 5 N/A N/A N/A N/A N/A N/A

(T*-1) \ T* 0 0 - 0.5 0.5 - 1 1 - 1.5 1.5 - 2 2 - 2.5 2.5 - 3 3 - 3.5 3.5 - 4 4 - 4.5 4.5 - 5

0 98% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0 - 0.5 37% 60% 3% 0% 0% 0% 0% 0% 0% 0% 0%

0.5 - 1 9% 30% 45% 12% 3% 0% 0% 0% 0% 0% 0%

1 - 1.5 0% 6% 25% 13% 38% 6% 13% 0% 0% 0% 0%

1.5 - 2 0% 9% 9% 9% 9% 9% 36% 9% 9% 0% 0%

2 - 2.5 0% 0% 0% 0% 28% 20% 52% 0% 0% 0% 0%

2.5 - 3 0% 0% 0% 0% 0% 35% 15% 15% 35% 0% 0%

3 - 3.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3.5 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4.5 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

(T*-2) \ (T*-1) 0 0 - 0.5 0.5 - 1 1 - 1.5 1.5 - 2 2 - 2.5 2.5 - 3 3 - 3.5 3.5 - 4 4 - 4.5 4.5 - 5

0 99% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 14% 83% 2% 0% 0% 0% 0% 0% 0% 0% 0%

0.25 - 0.5 4% 85% 12% 0% 0% 0% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 18% 64% 18% 0% 0% 0% 0% 0% 0% 0%

0.75 - 1 7% 7% 50% 29% 7% 0% 0% 0% 0% 0% 0%

1 - 1.5 0% 0% 17% 39% 33% 6% 6% 0% 0% 0% 0%

1.5 - 2 0% 0% 0% 0% 57% 29% 14% 0% 0% 0% 0%

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

(T*-3) \ (T*-2) 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1 - 1.5 1.5 - 2 2 - 3 3 - 4 4 - 5

0 97% 3% 0% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 17% 69% 7% 5% 2% 0% 0% 0% 0% 0%

0.25 - 0.5 3% 25% 44% 25% 3% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 4% 21% 46% 29% 0% 0% 0% 0% 0%

0.75 - 1 0% 0% 0% 22% 22% 50% 6% 0% 0% 0%

1 - 1.5 0% 0% 0% 0% 0% 60% 40% 0% 0% 0%

1.5 - 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A  
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(T*-4) \ (T*-3) 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1 - 1.5 1.5 - 2 2 - 3 3 - 4 4 - 5

0 81% 19% 0% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 10% 84% 6% 0% 0% 0% 0% 0% 0% 0%

0.25 - 0.5 0% 11% 59% 30% 0% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 4% 15% 48% 30% 4% 0% 0% 0% 0%

0.75 - 1 0% 0% 0% 0% 60% 40% 0% 0% 0% 0%

1 - 1.5 0% 0% 0% 0% 11% 89% 0% 0% 0% 0%

1.5 - 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

(T*-5) \ (T*-4) 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1 - 1.5 1.5 - 2 2 - 3 3 - 4 4 - 5

0 97% 3% 0% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 24% 72% 4% 0% 0% 0% 0% 0% 0% 0%

0.25 - 0.5 0% 6% 82% 12% 0% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 4% 19% 67% 11% 0% 0% 0% 0% 0%

0.75 - 1 0% 0% 0% 23% 41% 36% 0% 0% 0% 0%

1 - 1.5 0% 0% 0% 0% 75% 25% 0% 0% 0% 0%

1.5 - 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

(T*-6) \ (T*-5) 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1 - 1.5 1.5 - 2 2 - 3 3 - 4 4 - 5

0 75% 23% 3% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 6% 92% 2% 0% 0% 0% 0% 0% 0% 0%

0.25 - 0.5 0% 23% 68% 10% 0% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 0% 6% 61% 25% 8% 0% 0% 0% 0%

0.75 - 1 0% 0% 0% 7% 93% 0% 0% 0% 0% 0%

1 - 1.5 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

1.5 - 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

(T*-7) \ (T*-6) 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1 - 1.5 1.5 - 2 2 - 3 3 - 4 4 - 5

0 85% 15% 0% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 12% 79% 9% 0% 0% 0% 0% 0% 0% 0%

0.25 - 0.5 0% 11% 64% 22% 2% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 3% 3% 79% 14% 0% 0% 0% 0% 0%

0.75 - 1 0% 0% 0% 23% 69% 8% 0% 0% 0% 0%

1 - 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A  
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(T*-8) \ (T*-7) 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1 - 2 2 - 3 3 - 4 4 - 5

0 79% 21% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 6% 84% 9% 0% 0% 0% 0% 0% 0%

0.25 - 0.5 0% 5% 72% 23% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 0% 13% 63% 25% 0% 0% 0% 0%

0.75 - 1 0% 0% 0% 0% 100% 0% 0% 0% 0%

1 - 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(T*-9) \ (T*-8) 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1 - 2 2 - 3 3 - 4 4 - 5

0 65% 35% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 4% 89% 6% 0% 0% 0% 0% 0% 0%

0.25 - 0.5 0% 12% 81% 7% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 0% 9% 80% 11% 0% 0% 0% 0%

0.75 - 1 0% 0% 0% 100% 0% 0% 0% 0% 0%

1 - 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(T*-10) \ (T*-9) 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1 - 2 2 - 3 3 - 4 4 - 5

0 80% 20% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 10% 85% 5% 0% 0% 0% 0% 0% 0%

0.25 - 0.5 0% 0% 79% 21% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 0% 13% 84% 3% 0% 0% 0% 0%

0.75 - 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

1 - 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(T*-11) \ (T*-10) 0 0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 1 - 2 2 - 3 3 - 4 4 - 5

0 89% 11% 0% 0% 0% 0% 0% 0% 0%

0 - 0.25 16% 65% 19% 0% 0% 0% 0% 0% 0%

0.25 - 0.5 0% 3% 58% 40% 0% 0% 0% 0% 0%

0.5 - 0.75 0% 0% 12% 88% 0% 0% 0% 0% 0%

0.75 - 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

1 - 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A

2 - 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 - 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

4 - 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A  
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Dynamic Programming Results 

θ(T*) C_EV(T*) E[V(T)]

Optimal 

Decision V(T*)

0 290 0 Wait 0

0 - 0.5 339 47 Wait 47

0.5 - 1 387 368 Wait 368

1 - 1.5 416 593 Evac 416

1.5 - 2 446 3599 Evac 446

2 - 2.5 486 2659 Evac 486

2.5 - 3 526 11857 Evac 526

3 - 3.5 551 17954 Evac 551

3.5 - 4 575 17954 Evac 575

4 - 4.5 583 N/A N/A N/A

4.5 - 5 590 N/A N/A N/A

θ(T*-1) C_EV(T*-1) E[V(T*)]

Optimal 

Decision V(T*-1)

0 254 1 Wait 1

0 - 0.5 296 40 Wait 40

0.5 - 1 339 246 Wait 246

1 - 1.5 363 410 Evac 363

1.5 - 2 388 454 Evac 388

2 - 2.5 422 495 Evac 422

2.5 - 3 456 533 Evac 456

3 - 3.5 477 N/A N/A N/A

3.5 - 4 497 N/A N/A N/A

4 - 4.5 504 N/A N/A N/A

4.5 - 5 510 N/A N/A N/A

θ(T*-2) C_EV(T*-2) E[V(T*-1)]

Optimal 

Decision V(T*-2)

0 226 1 Wait 1

0.25 244 39 Wait 39

0.5 263 62 Wait 62

0.5 - 0.75 282 230 Wait 230

0.75 - 1 301 257 Wait 257

1 - 1.5 322 360 Evac 322

1.5 - 2 343 407 Evac 343

2 - 3 401 N/A N/A N/A

3 - 4 436 N/A N/A N/A

4 - 5 447 N/A N/A N/A

θ(T*-3) C_EV(T*-3) E[V(T*-2)]

Optimal 

Decision V(T*-3)

0 198 2 Wait 2

0.25 214 47 Wait 47

0.25 - 0.5 231 102 Wait 102

0.5 - 0.75 247 195 Wait 195

0.75 - 1 264 288 Evac 264

1 - 1.5 281 330 Evac 281

1.5 - 2 299 N/A N/A N/A

3 347 N/A N/A N/A

4 377 N/A N/A N/A

5 386 N/A N/A N/A  
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θ(T*-4) C_EV(T*-4) E[V(T*-3)]

Optimal 

Decision V(T*-4)

0 235 11 Wait 11

0.25 255 47 Wait 47

0.25 - 0.5 274 124 Wait 124

0.5 - 0.75 294 199 Wait 199

0.75 - 1 313 271 Wait 271

1.5 328 279 Wait 279

1.5 - 2 343 N/A N/A N/A

3 383 N/A N/A N/A

4 408 N/A N/A N/A

5 416 N/A N/A N/A

θ(T*-5) C_EV(T*-5) E[V(T*-4)]

Optimal 

Decision V(T*-5)

0 225 12 Wait 12

0.25 244 41 Wait 41

0.25 - 0.5 263 128 Wait 128

0.5 - 0.75 281 188 Wait 188

0.75 - 1 300 258 Wait 258

1 - 1.5 314 273 Wait 273

1.5 - 2 327 N/A N/A N/A

3 364 N/A N/A N/A

4 387 N/A N/A N/A

5 393 N/A N/A N/A

θ(T*-6) C_EV(T*-6) E[V(T*-5)]

Optimal 

Decision V(T*-6)

0 219 22 Wait 22

0.25 237 41 Wait 41

0.5 255 115 Wait 115

0.5 - 0.75 273 209 Wait 209

0.75 - 1 292 253 Wait 253

1 - 1.5 304.12 272.96 Wait 273

1.5 - 2 317 N/A N/A N/A

3 351 N/A N/A N/A

4 373 N/A N/A N/A

5 379 N/A N/A N/A

θ(T*-7) C_EV(T*-7) E[V(T*-6)]

Optimal 

Decision V(T*-7)

0 213 25 Wait 25

0.25 231 45 Wait 45

0.25 - 0.5 249 131 Wait 131

0.5 - 0.75 267 206 Wait 206

.75 - 1 284 244 Wait 244

2 308 N/A N/A N/A

3 341 N/A N/A N/A

4 361 N/A N/A N/A

5 367 N/A N/A N/A  
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θ(T*-8) C_EV(T*-8) E[V(T*-7)]

Optimal 

Decision V(T*-8)

0 303 29 Wait 29

0.25 328 52 Wait 52

0.5 353 144 Wait 144

0.75 378 206 Wait 206

1 404 244 Wait 244

2 435 N/A N/A N/A

3 479 N/A N/A N/A

4 505 N/A N/A N/A

5 513 N/A N/A N/A

θ(T*-9) C_EV(T*-9) E[V(T*-8)]

Optimal 

Decision V(T*-9)

0 299 37 Wait 37

0.25 324 57 Wait 57

0.5 349 138 Wait 138

0.75 374 205 Wait 205

1 399 206 Wait 206

2 429 N/A N/A N/A

3 472 N/A N/A N/A

4 497 N/A N/A N/A

5 505 N/A N/A N/A

θ(T*-10) C_EV(T*-10) E[V(T*-9)]

Optimal 

Decision V(T*-10)

0 294 41 Wait 41

0.25 318 59 Wait 59

0.5 343 152 Wait 152

0.75 367 196 Wait 196

1 392 N/A N/A N/A

2 421 N/A N/A N/A

3 461 N/A N/A N/A

4 486 N/A N/A N/A

5 493 N/A N/A N/A

θ(T*-11) C_EV(T*-11) E[V(T*-10)]

Optimal 

Decision V(T*-11)

0 290 43 Wait 43

0.25 314 74 Wait 74

0.5 338 167 Wait 167

0.75 363 191 Wait 191

1 387 N/A N/A N/A

2 415 N/A N/A N/A

3 454 N/A N/A N/A

4 478 N/A N/A N/A

5 485 N/A N/A N/A  
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