
FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

HIGH-PERFORMANCE COMPUTING ALGORITHMS FOR ACCELERATING

PEPTIDE IDENTIFICATION FROM MASS-SPECTROMETRY DATA USING

HETEROGENEOUS SUPERCOMPUTERS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Muhammad Haseeb

2023

To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Muhammad Haseeb, and entitled High-Performance
Computing Algorithms for Accelerating Peptide Identification from Mass-
Spectrometry Data using Heterogeneous Supercomputers, having been approved
in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Ananda Mondal

Jason Liu

Janki Bhimani

Jun Li

Ashok Srinivasan

Fahad Saeed, Major Professor

Date of Defense: March 15, 2023

The dissertation of Muhammad Haseeb is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrés G. Gil
Vice President for Research and Economic Development

and Dean of the University Graduate School

Florida International University, 2023

ii

© Copyright 2023 by Muhammad Haseeb

All rights reserved.

iii

DEDICATION

I dedicate this work to my loving wife, Bisma, my amazing siblings, Aaqib, Aqsa

and Husnain, and most of all, my parents. This has been possible due to your

unconditional and constant love and support.

iv

ACKNOWLEDGMENTS

This dissertation marks the end of the journey of a lifetime for me. Looking back

at the last five years, the road to PhD has been long and tedious but also

rewarding, as summed in J.R.R. Tolkien’s words, ”All’s well that ends better”. For

this, first and foremost, I would like to acknowledge my PhD advisor, Dr. Fahad

Saeed for guiding me through this journey with his excellent mentorship. His

constant push for shooting for the stars and either landing on them or proving it is

impossible, provided me with the essential skills and attitude to perform and

disseminate impactful research. It has been an honor and privilege to be a part of

the lab. I would also like to thank my PhD committee members, Dr. Ananda

Mondal, Dr. Jason Liu, Dr. Janki Bhimani, Dr. Jun Li, and Dr. Ashok

Srinivasan, who always provided their prompt and useful feedback, instrumental to

the completion of this work. I would also like to thank Dr. Saeed’s wife, Saba, for

inviting the lab group over for dinners on holidays and events, especially Eid. It

always refreshed a little part of the celebrations and feasts from Pakistan. I would

also like to thank my lab mates, Muaaz, Usman, Sandino, Taban, Sumesh, Fahad,

Maryam, Fatima, Tianren and Umair, and my friends, Talha, Arslan, Anwer,

Talal, Daim, Ayaz, Vitalii, and Daniel for all the technical help, discussions,

hangouts and laughs. Also, I would like to thank Dr. Giri and his research group

for social gatherings and treats at Vicky’s Cafe. Also, I would like to acknowledge

all the prompt help from the SCIS staff including Rebeca, Olga, Luis, Sydney, Eric

and John. Finally, I would like to thank Jonathan, Muaaz and Jack for providing

an inspiring and learning experience at the Berkeley Lab.

v

ABSTRACT OF THE DISSERTATION

HIGH-PERFORMANCE COMPUTING ALGORITHMS FOR ACCELERATING

PEPTIDE IDENTIFICATION FROM MASS-SPECTROMETRY DATA USING

HETEROGENEOUS SUPERCOMPUTERS

by

Muhammad Haseeb

Florida International University, 2023

Miami, Florida

Professor Fahad Saeed, Major Professor

Fast and accurate identification of peptides and proteins from the mass spectrom-

etry (MS) data is a critical problem in modern systems biology. Database peptide

search is the most commonly used computational method to identify peptide se-

quences from the MS data. In this method, giga-bytes of experimentally generated

MS data are compared against tera-byte sized databases of theoretically simulated

MS data resulting in a compute- and data-intensive problem requiring days or weeks

of computational times on desktop machines. Existing serial and high performance

computing (HPC) algorithms strive to accelerate and improve the computational ef-

ficiency of the search, but exhibit sub-optimal performances due to their inefficient

parallelization models, low resource utilization and high overhead costs.

In this dissertation, we design and develop data- and architecture-aware al-

gorithms and optimizations to accelerate the database peptide search algorithms

on heterogeneous distributed-memory (top-500) supercomputers. We first present

an HPC framework which efficiently parallelizes both the compute- and memory-

intensive portions of the database peptide search workloads across homogeneous

supercomputers achieving a 10× speed improvement against the state-of-the-art al-

gorithms. To achieve maximum performance, we also develop several optimizations

vi

including a low-overhead algorithm for balanced distribution of the voluminous the-

oretical MS databases, and a novel data structure to reduce the memory footprint

of these databases by 2× without compromising the query speeds. We also de-

veloped GPU-accelerated algorithms, data pipelines and optimizations to leverage

the heterogeneous (CPU-GPU) supercomputing architectures and further accelerate

our HPC framework by 4×, providing a combined acceleration of 40× over exist-

ing shared- and distributed-memory, and GPU-accelerated software infrastructure.

Furthermore, we extensively analyze the performance of our developed methods and

show near-optimal results for several metrics including the throughput, resource uti-

lization and overheads. Finally, we explore possible extension methods for our meth-

ods to accelerate the existing and new numerical, and machine- and deep-learning

based peptide identification algorithms.

Our advancements in the HPC software infrastructure for ultrafast peptide iden-

tification have key application in meta-proteomics, multiomics, and cancer research,

which require astronomical computational resources to process tera-byte scale raw

MS-data at swift rates leading to useful scientific investigations and discoveries in

the respective domains.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Introduction to Peptide Sequencing . 1
1.2.1 Experimental Step . 1
1.2.2 Computational Step . 2
1.3 Data Volumes . 3
1.4 Problem Statement . 4
1.5 Developed Solutions and Objectives . 5

2. A REVIEW OF DATABASE PEPTIDE SEARCH ALGORITHMS 7
2.1 The Core Computational Problem . 7
2.2 Algorithmic Advances in the Database Peptide Search 7
2.2.1 Illuminating the Dark Matter . 8
2.2.2 Machine and Deep-Learning in Database Peptide Search 9
2.3 Computational Advances in the Database Peptide Search 9
2.3.1 Shared-Memory Database Peptide Search Algorithms 9
2.3.2 Distributed-Memory Database Peptide Search Algorithms 11
2.3.3 GPU-Accelerated Database Peptide Search Algorithms 12
2.4 The Premise of this Dissertation . 15

3. HICOPS: DATABASE PEPTIDE SEARCH ON SUPERCOMPUTERS . 16
3.1 Computational Steps in HiCOPS . 16
3.2 The HiCOPS Framework . 17
3.2.1 Notations and Symbols . 19
3.2.2 Runtime Cost Model . 20
3.2.3 Superstep 1: Database Indexing . 21
3.2.4 Superstep 2: Experimental Data Preprocessing 22
3.2.5 Superstep 3: Database Peptide Search 23
3.2.6 Superstep 4: Result Assembly and Postprocessing 24
3.3 Performance Analysis . 25
3.4 Optimizations . 27
3.4.1 Buffer Queues . 27
3.4.2 Task Scheduling Algorithm . 27
3.4.3 Load Balancing . 28
3.4.4 Sampling . 29
3.5 Results . 30
3.5.1 Experimental Setup . 30
3.5.2 Correctness Analysis . 31
3.5.3 Speed Comparison Against Existing Algorithms 32
3.5.4 Performance Evaluation . 34

viii

3.6 Summary . 38

4. LBE: LOAD BALANCED DATABASE PARTITIONING 40
4.1 Introduction . 40
4.2 The LBE Algorithm . 41
4.2.1 LBE Algorithm Overview . 41
4.2.2 Correctness of the LBE . 42
4.2.3 LBE Clustering . 43
4.2.4 LBE Cluster Partitioning . 44
4.3 Results . 45
4.3.1 Load Imbalance with and without the LBE 46
4.3.2 Load Imbalance in HiCOPS . 46
4.4 Summary . 47

5. CFIR: COMPACT AND LOSSLESS FRAGMENT-ION INDEXING . . . 49
5.1 Introduction to Fragment-Ion Search . 49
5.1.1 Fragment-Ion Searching in Database Peptide Search 50
5.2 The CFIR-Index Data Structure . 51
5.2.1 Data Representation in CFIR-Index 51
5.2.2 The CFIR-Indexing Algorithm . 52
5.2.3 The CFIR-Index Querying Algorithm 54
5.3 Results . 56
5.3.1 Memory Footprint . 56
5.3.2 Indexing Speed . 57
5.3.3 CFIR-Index Querying Time . 59
5.3.4 Application in the Database Peptide Search 59
5.4 Summary . 60

6. GICOPS: THE GPU-ACCELERATED HICOPS 62
6.1 Computational Steps in GiCOPS . 62
6.2 The GiCOPS Methods . 63
6.2.1 Notations and Symbols . 63
6.2.2 Runtime Cost Model . 63
6.2.3 CPU-GPU Pipeline . 63
6.2.4 Step 1: Database Indexing . 64
6.2.5 Step 2: Experimental Data Preprocessing 65
6.2.6 Step 3: Database Peptide Search . 67
6.2.7 Step 4: Results Postprocessing . 70
6.3 Performance Analysis . 71
6.4 Optimizations . 72
6.4.1 Race Conditions in Fragment-Ion Search 72
6.4.2 Performance Tuning . 73
6.4.3 Compile-Time Computations . 73

ix

6.5 Results . 73
6.5.1 Correctness Analysis . 74
6.5.2 Speed Comparison Against HiCOPS 75
6.5.3 Speed Comparison Against Existing Algorithms 76
6.5.4 Performance Evaluation . 78
6.6 Summary . 80

7. CURRENT AND FUTURE WORK . 81

BIBLIOGRAPHY . 83

APPENDICES . 92

VITA . 96

x

LIST OF FIGURES

FIGURE PAGE

1.1 Shotgun Proteomics Workflow . 2

1.2 Database Peptide Search Workflow . 3

2.1 Effect of PTMs on Database Size . 10

2.2 Reported Efficiency of the Existing Distributed-Memory Algorithms . . 12

2.3 Experimental Efficiency of the Existing Distributed-Memory Algorithms 13

2.4 Reported Speedups of the Existing GPU-Accelerated Algorithms 14

3.1 Schematic of the BSP Model . 18

3.2 HiCOPS Methods Overview . 19

3.3 HiCOPS Workload Profile . 20

3.4 Sampling in HiCOPS . 29

3.5 Correctness Analysis of HiCOPS . 33

3.6 Speed Improvement in HiCOPS . 35

3.7 HiCOPS Speedup and Efficiency . 36

3.8 HiCOPS Runtime Decomposition . 37

3.9 Performance Overheads in HiCOPS . 38

4.1 LBE Algorithm Workflow . 42

4.2 Load Balance with and without the LBE 47

4.3 LBE Algorithm in HiCOPS . 48

5.1 Percentage Unique-Ions in Fragment-Ion Index 52

5.2 Construction of Ni in CFIR-Index . 53

5.3 The CFIR-Indexing Algorithm . 54

5.4 Example of the CFIR-Indexing Algorithm 55

5.5 Example of the rank and select in CFIR-Index 56

5.6 Memory Footprint of CFIR-Index vs Existing Data Structures 58

xi

5.7 Extended Memory Footprint Results of CFIR-Index and MSFragger . . 58

5.8 Indexing Time of the CFIR-Index . 59

5.9 Search Time of the CFIR-Index . 60

5.10 Search Time Scalability of the CFIR-Index 61

6.1 CPU-GPU Pipeline in GiCOPS . 64

6.2 GiCOPS’s Steps 1 and 2 . 66

6.3 Example of the STA Approach . 67

6.4 GiCOPS’s Steps 3 and 4 . 70

6.5 Correctness Analysis of GiCOPS . 75

6.6 Speed Improvement in GiCOPS . 77

6.7 Speed Comparison between HiCOPS and GiCOPS 78

6.8 Performance Evaluation of GiCOPS . 79

xii

LIST OF ABBREVIATIONS

AI Arithmetic Intensity

BSP Bulk Synchronous Parallel

CFIR Compact Fragment-ion Index Representation

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DL Deep Learning

DNA Deoxyribonucleic Acid

ERT Empirical Roofline Toolkit

FFT Fast Fourier Transform

GPU Graphics Processing Unit

HPC High Performance Computing

LC Liquid Chromatography

ML Machine Learning

MPI Message Passing Interface

MR Map Reduce

MS Mass Spectrometry

NCU NVIDIA Nsight Compute

OpenMP Open Multi-Processing

PTM Post-translational Modifications

SPMD Single Program, Multiple Data

STA Sorted Tag Array

xiii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Proteins and peptides are the cellular workhorses in all living organisms and play

several critical roles in keeping us alive and functioning. These roles include pro-

tecting us from bacteria, viruses and tumors, digesting our food, carrying messages,

healing wounds, and translating genes [RSSK14], [AS16]. Proteins and peptides

are chain-structured biological molecules composed of combinations of twenty basic

amino acid. Shorter amino acid chains are referred to as peptides whereas longer

chains are referred to as proteins. Therefore, a fundamental and critical problem in

computational proteomics is the swift and accurate identification of proteins (and

peptides) in a biological mixture [HS21]. The peptide identification problem is also

referred to as peptide sequencing problem as it involves deducing the amino acid

sequence(s) of each peptide/protein.

1.2 Introduction to Peptide Sequencing

The peptide sequencing process involves a two-step approach involving 1) experi-

mental data generation and 2) processing of the experimental data to deduce pro-

tein/peptide sequences.

1.2.1 Experimental Step

In the experimental step, protein mixture is proteolyzed into peptides using an

enzyme, such as Trypsin [NRG+06]. The peptides are then passed to a liquid-

chromatography (LC) coupled two-step mass spectrometry (MS/MS orMS2) pipeline

1

[AS16]. The LC-MS/MS pipeline separates the peptide molecules and fragments

them. During fragmentation, the molecules of each peptide are ionized and bro-

ken into smaller (charged) fragments. These fragments are detected by the mass-

spectrometer and for each peptide, a (fingerprint) histogram is generated with the

mass-to-charge ratio of fragment-ions on the x-axis and their relative abundance, or

simply intensity, on the y-axis [THA+20]. These histograms are referred to as the

experimental MS/MS spectra data. The LC-MS/MS based experimental pipeline

setup for data generation is illustrated in Figure 1.1.

Protein
sample

Peptides
Mixture

Liquid
Chromatography

Mass
Spectrometry

Experimental
Spectra data

Enzyme

m/zin
te

ns
ity

Figure 1.1: The proteins in the sample are digested into peptides. The resultant pep-
tides are passed to a liquid chromatography (LC) coupled MS/MS pipeline yielding
the spectra. This experimental technique is also known as the bottom-up proteomics
or shotgun proteomics [HS21].

1.2.2 Computational Step

In the computational step, each experimental MS/MS spectrum is processed to

deduce the sequence of the peptide. This is typically achieved by either de-novo

methods [MDWC07], [YCZ+17], [QTL+19], spectral library search methods [LA10],

[YFS+10], [BMNL18], or most commonly, database peptide search methods [KLA+17],

[MTKF+14], [CLY+18]. In the database peptide search method, the experimental

MS/MS spectra data are compared against a (indexed) database of theoretically sim-

ulated MS/MS spectra to find the correct match [NRG+06]. This theoretical MS/MS

spectra database is simulated through probabilistic [HS21] or machine learning mod-

2

els [DM13] generating MS/MS data from proteome sequence databases. The generic

database peptide search workflow is illustrated in Figure 1.2. Peptide deduction is

often also followed by statistical significance scoring and false discovery rate compu-

tations to eliminate spurious and/or random matches between the experimental and

reference MS/MS data [CB03], [MVN12]. More recent methods have also employed

machine and deep learning to learn the translations between experimental MS/MS

spectra and peptide sequences for their identification [TS21].

MGFVKV
VKNKAYF
KRYQVKF

MSSNAQK
TPLPAPAK
TAASPIER
GNTANVIR

Experimental MS/
MS spectra data

Theoretically
predicted

spectra

Peptide
seqeunces

in-silico
digest

Proteome
Sequence
Database

Figure 1.2: Protein sequences are in-silico digested (along with PTMs) followed
by theoretical MS/MS spectra simulation using a probabilistic (or ML) model. The
experimental MS/MS spectra are compared against the theoretical spectra database
to find the best match [HS21].

1.3 Data Volumes

Modern mass spectrometry technologies such as the Thermo Orbitrap and TIMS-

TOF, allow the generation of tens of thousands of raw, noisy experimental MS/MS

spectra in only a few hours [HRB+14]. Each experimental spectrum contains, on

average, between 1000 to 4000 two-dimensional (mass-to-charge and intensity) data

points, yielding several gigabytes of raw data per experiment [AS16]. Similarly, the

theoretically simulated MS/MS spectra databases grow exponentially (O(2n) yield-

ing several hundred giga bytes to a few tera bytes databases [KLA+17], [HS19] as

the commonly occurring post-translational modification (PTMs) are incorporated

3

in them. Consequently, the process of comparing several gigabytes of experimental

MS/MS data against terabytes of theoretical MS/MS data results in trillions of spec-

tral similarity computations requiring several days (or weeks) of execution on desk-

top computers [HS21]. Even with the use of data reductive techniques [DRP+19],

[TSY03], [KLA+17], the asymptotic lower bounds remain quadratic [SHI22].

1.4 Problem Statement

Database peptide search is the most commonly employed peptide deduction tech-

nique in systems biology labs [KLA+17], [Nes10], [HS21]. For over three decades,

researchers have developed several algorithmic advances including modern index-

ing, filtering, graph traversal, and machine and deep learning techniques [DLZ+19],

[KLA+17], [CLY+18], [TS21] to accelerate the database peptide search algorithms.

While these advances have been useful, they have tremendously shifted the compu-

tational profile of the modern database peptide search algorithms from compute-

intensive to data-intensive, resulting in performance overheads from rapid memory

contention, excessive out-of-core processing, and data communication [CLY+18],

[KLA+17], [HS21] in shared-memory, multi and many-core architectures. In other

words, the algorithmic techniques employed in the state-of-the-art algorithms lead

to a sharp drop in their arithmetic intensity (AI) [WWP09]. i.e., the compute op-

erations per byte, leading to performance saturations at a fraction of the maximum

CPU throughput [WWP09].

With continued research and development [Mar13], these performance bottle-

necks can be reduced through sophisticated (heterogeneous) HPC algorithms on

supercomputing architectures. These scalable solutions will be inline with the re-

source demands of modern proteomics, cancer and systems biology, and multiomics

4

applications, where the data scales are astronomical and the experiment execution

times are critical. Accelerating these pipelines also directly impacts the discover-

ies in microbiome research [KBC+18], personalized nutrition [RA19], and cancer

therapeutics [YI19].

1.5 Developed Solutions and Objectives

In order to efficiently accelerate the large-scale systems biology pipelines, we de-

signed and developed a high-performance computing (HPC) framework, containing:

1. Efficient distributed-memory parallel computational pipelines for scalable ac-

celeration of the modern database peptide search algorithms on supercomput-

ers (Chapter 3).

2. Algorithm for load balanced distribution of the database peptide search com-

putational workload across the distributed-memory system (Chapter 4).

3. Data-structure for lossless compression of the massive fragment-ion index in

modern database peptide search algorithms without compromising the search

speed (Chapter 5).

4. GPU-acceleration of the HPC framework on modern heterogeneous computing

distributed-memory architectures (Chapter 6).

Achieving these objectives allow our HPC framework to optimally exploit the

homogeneous and heterogeneous distributed-memory architectures in modern super-

computers and extract the maximum compute, memory, I/O, and communication

bandwidths. Further, to demonstrate its practical application, we implemented a

MSFragger-like fragment-ion search based database peptide search algorithm, and its

GPU-accelerated version in our framework, but the proposed algorithms, pipelines,

5

and optimizations would be designed as search-algorithm-oblivious to allow our HPC

framework to be elastic and adaptable for efficiently accelerating most existing and

future database peptide search algorithms. We believe that our advancements de-

scribed in this dissertation will unlock the full performance of new and existing

database peptide search algorithms and help advance science. Our HPC framework

is available as open source at: https://github.com/pcdslab/gicops.

6

CHAPTER 2

A REVIEW OF DATABASE PEPTIDE SEARCH ALGORITHMS

In this chapter, we will discuss the algorithmic and computational advances

in the database peptide search algorithms over the years. We will also discuss

the bottlenecks in the current state-of-the-art serial, high-performance computing

(HPC) and CPU-GPU algorithms that limit their application in real-world systems

biology pipelines.

2.1 The Core Computational Problem

The core algorithmic problem in the database peptide search methods is the compu-

tation of similarities between the experimental MS/MS spectra and the theoretical

MS/MS spectra database. Before processing, both the theoretical and experimental

MS/MS spectra are represented as discrete signals by appropriately quantifying the

m/z (x) and intensity (y) axes [AS16]. This allows leveraging the signal processing

techniques such as Fast Fourier Transforms (FFTs) [EJH13] to compute correlations

[EMY94] and convolutions between them which became the premise of the very first

database peptide search algorithm, SEQUEST [EMY94]. Even the modern database

peptide search algorithms, such as MSFragger, leverage the discrete signal represen-

tation of the MS/MS spectra to compute cosine-similarity-like scores between the

spectra [KLA+17].

2.2 Algorithmic Advances in the Database Peptide Search

In 1994, SEQUEST [EMY94] was introduced as the first database peptide search

algorithm employing a signal cross-correlation (xcorr) algorithm to compute the

similarity between many-to-many pairs of the theoretical and experimental MS/MS

7

spectra. In subsequent years, the database peptide search and spectral library search

algorithms [LDE+06] employed noise reductions, multi-tiered scoring [XPV+15],

and Fast Fourier Transform (FFT) [EJH13], and estimations [MTKF+14] to im-

prove the speed and accuracy of the SEQUEST algorithm. Simultaneously, several

other spectral similarity metrics were proposed and employed in Mascot [PPCC99],

X!Tandem [CB03], OMSSA [GMK+04], MaxQuant [CM08], Andromeda [CNM+11],

HMMatch [WTE07], PEAKS [ZXS+12]. These similarity metrics exploited prob-

abilistic modeling, indexing, scoring, filtering, graph and network traversals, and

re-ranking techniques to improve the search quality and speed. However, even with

significant algorithmic advances, a significant fraction of the experimental MS/MS

spectra data remained unidentified, which are referred to as the dark matter of the

shotgun proteomics [SK15].

2.2.1 Illuminating the Dark Matter

Chick et al. [CKN+15] showed that this dark matter originates from the presence of

the unknown post-translational modifications (PTMs) in the experimental MS/MS

spectra. These unknown PTMs allow spectra to evade the peptide precursor mass

tolerance settings in the closed-search database peptide search algorithms and re-

main unidentified. To alleviate this, the authors also introduced the idea of open-

search where the precursor mass tolerance settings are widened from ± ≤ 1 Daltons

(Da) to ±500 Da allowing the identification of mutated spectra [SK15]. However,

widening the peptide precursor mass settings also leads to an exponential increase

in the computational cost of the open-search algorithms, leading to weeks to months

of execution times [KLA+17]. To alleviate this, several secondary database filtering

techniques such as sequence-tagging [ZXS+12], [TSY03], and fragment-ion indexing

8

[CHY+15] are incorporated in modern database peptide search algorithms includ-

ing Open-pFind [CLY+18], TagGraph [DLZ+19], MSFragger [KLA+17], significantly

improving their speed while achieving similar or better identification rates.

2.2.2 Machine and Deep-Learning in Database Peptide Search

More recently, several machine and deep learning (ML/DL) based database peptide

search techniques have been introduced. These techniques employ complex neu-

ral networks [GSZ+19], [GSG+22] and language translation models [TS21] to learn

the relations between the experimental MS/MS spectra data and their peptide se-

quences, even with the presence of a few post-translational modifications (PTMs).

Interestingly, these models can also simulate more accurate theoretical MS/MS spec-

tra from the reference peptide sequences [DM13], which can be employed in the

traditional database peptide search algorithms.

2.3 Computational Advances in the Database Peptide Search

In this section, we will discuss the advancements and limitations of the computa-

tional techniques employed in database peptide search algorithms.

2.3.1 Shared-Memory Database Peptide Search Algorithms

The computational trends in the database peptide search algorithms evolved with

the advances in computing architectures and technologies [SHI22]. While the earlier

algorithms were serial in nature, almost all algorithms developed beyond early 2000s

[MTKF+14], [EJH13], [CNM+11] employ multicore parallelism. This is because

the shared-memory multicore architectures allow for an intuitive and effective data

9

parallel design where the parallel cores can search a partition of the experimental

MS/MS data are spread against a common (shared-memory, low latency) database.

On the flip side, the maximum achievable performance in the modern (post-Moore)

architectures is limited by the performance gap between the maximum CPU and

memory throughputs.

Modern (open-search) database peptide search algorithms employ complex and

sophisticated memory-lookups and graph traversals to achieve more than 100×

speedup over their predecessors. However, by doing so, their computational profiles

have greatly shifted from compute-intensive to memory- and data-intensive [SHI22]

and the spectral similarity computations contribute less than 50% of the compute

workload (previously 80-90% [LLC+19]). Consequently, their arithmetic intensity

(AI), defined as the number of compute operations per byte, has greatly reduced

leading to poor scalability as memory bandwidth bottlenecks the achievable perfor-

mance. For instance, MSFragger reports performance saturation beyond 8 parallel

cores (see Supplementary Figure 2 in [KLA+17]), and X!Tandem’s performance sat-

urates beyond 4 parallel cores [BCC+07], [LLLL19]. The memory bandwidth bot-

tlenecks are particularly significant when post-translational modifications (PTMs)

are incorporated in the theoretical MS/MS spectra database [SHI22] as illustrated

in Figure 2.1. [Mar13].

Database

>protein 1
MEGSYIM
RKYTSNQ..

PTMs
M+15.99, STY+79.97..

100 MB proteome
database

Simulate &
Index

frag-ion
index

pep index

suffix arr

theore�cal database
index (D >1TB)

a b

max 5 PTMs
per peptide

index size density =
1GB / 1e6 peps

Figure 2.1: (a) The theoretical MS/MS spectra database grows combinatorially as
the PTMs are added to the simulation. (b) The memory-footprint of adding PTMs
to the Homo sapiens and the SwissProt (reviewed) database is shown [HS21].

10

2.3.2 Distributed-Memory Database Peptide Search Algo-

rithms

Distributed-memory architectures allow distributing the compute load across a clus-

ter of compute nodes and are employed to alleviate the performance bottlenecks

in the shared-memory algorithms as also demonstrated by many scientific fields

[Mar13].

Parallel Tandem [DCL05] is one of the first distributed-memory database pep-

tide search algorithms. It achieves parallelism by dividing the experimental MS/MS

spectra data across the available parallel compute nodes, all searching against a

(local) replicated copy of the same database, using the X!Tandem algorithm, us-

ing MPI or PVM. Other methods including X!!Tandem [BCC+07], MR-Tandem

[PHTN11], and SW-Tandem [LLC+19], also employ a similar parallelization model

with some optimizations to achieve better efficiency and load balance across the

parallel nodes. Bolt implements a distributed-memory version of a MSFragger-like

algorithm, MS-PyCloud [CZS+18] implements a cloud-computing version of the MS-

GF+ [KP14] algorithm, and UltraQuant implements a distributed-memory version

of the MaxQuant37 algorithm.

Notice that the parallelization models employed the distributed-memory algo-

rithms are identical to the shared-memory designs, except the experimental data

are partitioned across distributed-memory nodes, each searching it against a local

instance of the database. However, replicating voluminous databases on all system

nodes and searching them results in the same memory bandwidth bottlenecks on

all system nodes resulting in less than 50% strong-scale efficiency as seen in the

reported results in Figure 2.2. To further show this, we performed our own exper-

imentation using several existing distributed-memory tools including X!!Tandem,

11

SW-Tandem, as well as self-implemented distributed-memory versions of Comet-

MS, MSFragger, and Tide/Crux. The results in Figure 2.3a to 2.3d corroborate

that the existing methods result in a low compute-to-overhead ratio leading to low

speedup efficiency, also reported in [SHI22].

In 2009, Kulkarni et al. [KKCB09] introduced a preliminary split-database and

streaming based parallelization model greatly reducing the per-node memory inten-

sity of database peptide search algorithms. However, the proposed models demon-

strate about 50% parallel efficiency due to enormous amounts of required on-the-fly

computations and frequent data communications reported by the authors [KKCB09].

20 21 22 23 24 25 26 27 28

Number of Parallel Nodes

20

21

22

23

24

25

26

27

28

S
p

e
e

d
u

p
 (

R
e

p
o

rt
e

d
)

Ideal

X! !Tandem

ParallelTandem

MR-Tandem

SW-Tandem

Figure 2.2: The scalability results reported by the existing distributed-memory
database peptide search algorithms depict saturating strong-scale efficiency as the
degree of parallelism increases.

2.3.3 GPU-Accelerated Database Peptide Search Algorithms

Graphics Processing Units (GPUs) have emerged as the primary and ubiquitous

hardware accelerator in the next generation of HPC systems [MAB+20]. The main

computational pattern (or motif) in the earlier database peptide search algorithms

12

a b

c d

Figure 2.3: Our incrementing sized database peptide search experiments from (a) to
(d) show that the existing distributed-memory database peptide search algorithms
depict poor strong-scale efficiency (measured efficiency: solid lines, ideal perfor-
mance: corresponding dotted lines, less positive deviation is better).

is the matrix-matrix and matrix-vector based spectral similarity computations. i.e.,

xcorr, FFT, and dot product, etc. These matrix computations [ABD+08] are ef-

ficiently parallelized by GPUs due to their Single Instruction, Multiple Threads

(SIMT) architectures.

Consequently, several database peptide search algorithms including Tempest

[MFG12], Tide-for-PTM-search [KHUP18], GPUScorer [LXCC14], ProteinByGPU

[LCXC14], GPU SDP and KSDP [LC12], MIC-Tandem [HL15], and PaSER [Bru23]

employed GPUs to significantly (> 50×) accelerate their matrix computations as

seen in Figure 2.4. Some algorithms also exploited vector sparsity, loop unrolling,

cache and register usage for further optimize their compute times [MFG12], [LC12],

[LCXC14].

13

Nonetheless, even with these speedups, these GPU-accelerated algorithms are

easily outperformed by several modern CPU-based database peptide search algo-

rithms which employ sophisticated optimizations to significantly (> 150×) speed

up their compute times [KLA+17], [CLY+18] (more details in section 6.5.3). Fur-

thermore, as the dominant computational pattern in the modern database peptide

search algorithms has shifted from (GPU-friendly) matrix-vector computations, the

existing GPU-accelerated algorithms and data pipelines cannot be directly applied

to accelerate the complex memory-intensive graph traversals and memory lookup

patterns. We are not aware of any GPU-based algorithm that efficiently accelerates

modern open-search database algorithms.

MIC-Tandem Tem pest ProteinByGPU GPU-Tide GPUScorer

GPU-Accelerated Algorithm

0

10

20

30

40

50

60

R
e

la
ti

v
e

 S
p

e
e

d
s

(R
e

p
o

rt
e

d
)

CPU

GPU (best)

25x

62x 65x

6x

30x

Figure 2.4: The existing GPU-accelerated database peptide search algorithms report
over 50× speedups over the CPU implementations. However, these GPU-accelerated
algorithms are based on older (index-free) algorithms and are outperformed by
orders-of-magnitude using the state-of-the-art CPU-based algorithms [KLA+17],
[CLY+18], [HS21], highly limiting their application in the domain.

14

2.4 The Premise of this Dissertation

The existing computational infrastructure for the database peptide search is inca-

pable of achieving serious performance and accelerations on modern heterogeneous

(CPU-GPU) distributed-memory supercomputers. This is primarily because the

existing algorithms and data pipeline are either based on (index-free) closed-search

methods and/or do not optimally exploit the distributed-memory architectures to

accelerate the complex computational patterns in the modern database peptide

search algorithms, leaving a significant performance gap. We aim to bridging this

gap, one sub-problem at a time, throughout the rest of this dissertation.

15

CHAPTER 3

HICOPS: DATABASE PEPTIDE SEARCH ON SUPERCOMPUTERS

In this chapter, we will discuss the design, development, and optimization of

our high performance computing (HPC) computational software framework, called

HiCOPS, for scalably accelerating the database peptide search workloads and algo-

rithms on symmetric multiprocessor (top-500) supercomputers [HS21]. We also dis-

cuss the reported speed improvements, parallel performance, hardware utilization,

and optimizations implemented in HiCOPS as well as its application in tera-scale

database peptide search application.

3.1 Computational Steps in HiCOPS

HiCOPS strives to accelerate and optimize the four main computational steps of the

modern database peptide search algorithmic workflow:

1. Database Indexing: Simulate the theoretical MS/MS spectra database and

index.

2. Experimental MS/MS Data Preprocessing: Preprocess the experimen-

tal MS/MS spectra data

3. Database Search: Search the preprocessed experimental MS/MS data against

the indexed database.

4. Postprocessing: Compute confidence scores and false discovery rates (FDRs).

These four steps are also applicable to the newly developed machine and deep

learning based database peptide search algorithms where the database indexing

(first) step is replaced by model training and testing and the database search (third)

step is replaced by the inference.

16

3.2 The HiCOPS Framework

The HiCOPS software framework implements an inverted parallel design in which

the theoretical MS/MS spectra databases are distributed across the system nodes

and an asynchronous local database peptide search is executed [HS21]. On comple-

tion, the local (partial) results at the parallel nodes are assembled into global results

and postprocessed in a communication-optimal manner. In stark contrast to the ex-

isting parallel designs, HiCOPS distributes both the compute- and data-workload

across the parallel nodes, alleviating the memory bandwidth saturations.

The HiCOPS’s design employs a Single Program, Multiple Data (SPMD) based

four Bulk Synchronous Parallel (BSP) [Val90] model with four supersteps, each

accelerating a respective database peptide search step. A superstep in BSP model

[Tis11] refers to a set of algorithmic and data communication kernels executed by all

parallel nodes (or process) (pi ∈ P) in an asynchronous fashion. The parallel nodes

executing these supersteps synchronize at the end of each superstep. A schematic

of the BSP model is shown in the Figure 3.1.

In the first superstep, the theoretical spectra database is distributed across the

parallel nodes where the sub-databases are locally indexed. In the second super-

step, the parallel nodes preprocess the experimental MS/MS data and write it

to the shared file system. In the third step, the parallel nodes search the entire

(preprocessed) experimental MS/MS spectra data set against their (indexed) local

sub-databases and write the (partial) results to the shared file system. In the final

superstep, the parallel nodes assemble and compute the global results and communi-

cate them among one another in one all-to-all step as shown in Figure 3.2. Figure 3.3

depicts the parallelization model and the workload profiles of each superstep. From

17

Figure 3.1, the HiCOPS execution time (TH) for its four supersteps is given as:

TH =
4∑

j=1

Tj

where a superstep (j)’s execution time is the maximum time for any BSP node

(pi ∈ P) to complete that superstep, given as:

Tj = max(Tj,p1 , Tj,p2 , · · · , Tj,pP) = maxpi(Tj,pi)

Combining the above two equations, we have:

TH =
4∑

j=1

maxpi(Tj,pi) (3.1)

MGFVKVV
KNKAYFKR
YQVKFRTS

MTFVKVRK
NTAYQLRY
QVKFPTTK

MKIVKLVK
NCAYLKGG
IVKFGTSKR

Ω

Ω

Ω

log(nb!ny!
∑Ib∑Iy)-6

log(nb!ny!
∑Ib∑Iy)-6

Construct similar
database partitions

and distribute

Communicate
partial peptide
search results

Construct partial
search spaces

label=QGTLDRKlabel=QGTLDRKlabel=TAASPIERlabel=MSSNAVKlabel=QGTLDR

Experimental MS/MS
spectra data

Complete Peptide Seach Results

Compute
Similarity Score

MGFVKVVKNKAYF
KRYQVKFRRRREGK
TDYYARKRLVIQDK
NKYNTPKYRMIVR
VTNRDIICQIAYARI
EGDMIVCAAYAHE

Proteome
Sequence
Database

log(nb!ny!
∑Ib∑Iy)-6

Partial search
spaces

Λ

Λ

Λ

1 2 3 4

N

Description

Extract
metadata

DBentry
Global
Index

DBentry

Global Index

Local
Index

DBentry

Local
Index

DBentry

Local
Index

Description
Extract

metadata

DBentry

Global Index

DBentry

Local
Index

DBentry

Local
Index

DBentry

Local
Index

Data
Repository

Randomly sample
datasets at all nodes

Update

Database
Peptide
Search

Database
Peptide
Search

Redistribute DBentry’s between
compute nodes for load balance.

Construct local indices

Global index keeps track of data
categories and their locations

Search category information

Search Dbentry’s at all nodes

Results

Results

Results

Res# 10

Res# 02

Res# 01

...

Collect
results

Rerank
results

Final
results

Query Dataset

MS/MS dataset1) 2) 3)

Distributed MS/MS Data Indexing

Distributed MS/MS Data Querying

END

4

Data1

2 3

6
5

ME
S

Y

I
K R G

M R

S
Y

KV

1

1

1
1

1

1
1

1

1

1 2 3 4

N

END

Pre

MS/MS
Data

Ind

Buf
Co

mm
Sch

Wrt

exp
Co

mm

END

4

1 3

2

START

START

START

DB

1

2

k

P

1

2

k

P

1

2

k

P

Dataset tmp

1

2

k

P

tmp

1

2

k

P

Storage

4

4

4

4

Dataset

IK R

DatasetDBtmp

q_f

q_r

q_k

MTFVKV
RKNTAY
QLRYQV

Ω
log(nb!ny!
∑Ib∑Iy)-6Λ

START

1 2 k P

1 2 k P

1 2 k P

END

Su
p

e
rs

te
p

 1
Su

p
er

st
e

p
 2

Task Scheduler assigned threads
s1 s2 s3 s4

Compute ops

Communication ops

I/O ops

Legend

HiCOPS design: The parallel tasks construct partial database in superstep 1, pre-process
the experimental data in superstep 2, search the experimental data against partial

database in superstep 3 producing intermediate results. Finally, the results are assembled
into complete results in superstep 4.

Task scheduler: A thread pool is dynamically managed
between parallel sub-tasks in superstep 3 to maintain

synergy between them.

Thread assigned
from R to I when:

Thread assigned
from I to R when:

R

expt
dset

DB

tmp

t
t t t t

t t t t
t

t t

qf

qr
qkK data flow queues

intermediate
results

I

shared file system

task scheduling
cI→RcR→I t

R

I

K

P P P P P

i i i i i

1 1 1 1 1

DB
expt
dset prep tmp res

shared file
system

s1 s2 s3 s4

parallel sub-task

compute intensive I/O intensive comm intensive
intra-proc comm inter-proc comm

Legend:

MGFVKVV
KNKAYFKR
YQVKFRTS

MTFVKVRK
NTAYQLRY
QVKFPTTK

MKIVKLVK
NCAYLKGG
IVKFGTSKR

MTFVKVRKN
TAYQLRYQVK
FPTTKRILQAG

T1

T2

T = T1 + T2

co
m

p
u

te

SYNC

co
m

m
.

Figure 3.1: In the BSP model, the parallel nodes asynchronously execute each super-
step including all compute and communication operations and synchronize between
the supersteps. Notice that in case of load imbalance, the faster nodes wait until all
nodes reach the synchronization point (horizontal black lines).

18

shared memory or file system

LegendDatabase

load-balanced
partitioning

1
i

p

a

identical partitions

b

0

pre-processed spectra data

1 i p

pa
ra

lle
l

pr
e-

pr
oc

es
sin

g

experimental spectra

d

overlap communication
with computations

savitzky-golay smooth
+ curve fitting

assemble = shift + sum

partial results

1

i p
comm.

I/O
control

computeparallel process

parallel sub-task

commt thread

parallel
processing

c
t
tt t

t t t
t
t t cR→IcI→R t

pre-processed
spectra

DB

task scheduling

partial
results

R

t

emptyqk'
data comm. queues

emptyqr

qf qk
sampled null dists.

KI

evalue

statistical
test

Figure 3.2: (a) The theoretical spectra database is partitioned across the parallel
nodes using the LBE algorithm and locally indexed. (b) The experimental MS/MS
spectra data are preprocessed and indexed and written back. (c) The experimental
spectra are searched against local sub-databases in a pipeline fashion, and the partial
results are written to the file system. (d) Partial results are assembled into complete
results, inter-communicated, and written to the file system [HS21].

3.2.1 Notations and Symbols

For the rest of this chapter, we will denote the indexed theoretical spectra database

as (D = ζ(2m)) where ζ is number of peptide sequences and (m) is the average

number of PTMs per peptide sequence. Further, we will represent the experimental

MS dataset as (Q = q1, q2, · · ·) containing (q) spectra, with average length of (η)

split across (b) batches and the total size being |Q| = qη, the number of parallel

nodes as (P), and the number of cores per parallel node as (cpi). Moreover, the

execution time of superstep (j) at the parallel node (pi) will be denoted as (Tj,pi),

and the miscellaneous boilerplate overheads will be captured by (γpi). Note that the

(indexed) theoretical spectra database will be referred to as simply the database.

19

R

I

K

1 1 1 1 1

i i i i i

p p p p p

DB
MS

data preprocessed part. null dist. resultshared file system

s1 s2 s3 s4

parallel sub-task
compute intensive I/O intensive comm intensive

intra-proc comm inter-proc commI/O opera�ons
data parallel thds

Figure 3.3: The first two supersteps are designed as data-parallel whereas the last
two supersteps are designed as hybrid task and data parallel [HS21].

3.2.2 Runtime Cost Model

Since the execution model in HiCOPS is based on SPMD, the runtime cost of the

same algorithm at a given node can be modeled by its (local) input size and the

amount of available resources. Further, for symmetrical nodes based supercomput-

ers, we will also assume that all nodes have the same resources available.

The algorithmic kernels in HiCOPS are computed in data-parallel and hybrid

fashions. The runtime cost of a superstep j on parallel node p, executing an algo-

rithm with O(D) complexity followed by another algorithm with O(D logD) com-

plexity using all cpi cores in data parallel fashion will be given as:

Tj,pi = kj1(D) + kj2(D) + γpi (3.2)

Here kjl are constant factors. Similarly, if the above two algorithms are executed

in the hybrid (i.e., task and data parallel) fashion, the number of cores for each

task are also considered. For instance, if both the algorithms in Equation 3.2 are

assigned half of the cpi cores, we can write the runtime cost as:

Tj,pi = max(kj1(D, cpi/2), kj2(D, cpi/2)) + γpi (3.3)

20

3.2.3 Superstep 1: Database Indexing

In this superstep, the parallel HiCOPS nodes execute the LBE algorithm [HAS19]

to partition the theoretical database among themselves and (locally) index it as

shown in Figure 3.2a. This superstep involves the following three algorithmic tasks:

1) Construct and extract a local partition of the database. 2) Simulate the local

theoretical MS/MS spectra. 3) Index the local database peptides and theoretical

MS/MS spectra to build peptide arrays and the fragment-ion index.

The LBE algorithm [HAS19] used to generate and partition the theoretical spec-

tra data across the parallel HiCOPS nodes in a load-balanced (load imbalance <

10%) fashion is discussed in detail in Chapter 4. To summarize here, the LBE

algorithm first clusters the theoretical MS/MS spectra data and then distributes

each cluster across the parallel node to optimize the load-balance. The partitioned

MS/MS spectra data are locally indexed at each parallel node using the CFIR-Index

data structure (discussed in Chapter 5) [HS19] due to its low memory-footprint. To

summarize here, the CFIR-Index leverages the low entropy and sparsity in the the-

oretical MS/MS spectra to compress the resultant fragment-ion index by at least

2×.

Runtime Cost: The parallel nodes generate and partition their sub-databases

of size D/P = Dpi) in time O(D) as they have to iterate once through roughly the

entire database when extracting. Then, the theoretical MS/MS spectra data are

generated from the peptides using probabilistic simulation models in time: O(τDpi)

where τ is average peptide sequence length. The CFIR-Index is then constructed

in time: O(Dpi logDpi). Note that all these steps run sequentially in data parallel

fashion resulting in the collective time in Equation 3.4.:

T1 = maxpi(k11(D) + k12(τDpi) + k13(Dpi logDpi)) + γpi (3.4)

21

3.2.4 Superstep 2: Experimental Data Preprocessing

In this superstep, the parallel HiCOPS nodes preprocess the experimental MS/MS

spectra data using the supplied algorithm in a data parallel fashion as shown in

Figure 3.2b. This superstep involves three following algorithmic tasks: 1) Read the

experimental MS/MS dataset from the shared file system, 2) Pre-process using the

supplied algorithm and (optional) index for later use and 3) Write the pre-processed

data back to the shared file system to be used in subsequent experiments.

The experimental MS/MS spectra data are split into smaller, more manageable

batches, before writing them back to the file system, to avoid long bursts of I/O

times (10,000 spectra per batch by default). The batches are also indexed using

running pointer stack to allow quick access in superstep 3, which is also written to

the disk for subsequent runs.

Runtime Cost: The parallel nodes read a partition (of size Qpi = qη/P)

of the experimental MS/MS data in runtime O(Qpi). The pre-processing may be

done using a supplied algorithm. e.g., pClean [DRP+19], MS-REDUCE [AS16],

or [DSPW09]. Currently, HiCOPS implements a top-K peak filtration algorithm

similar to [KLA+17] which runs in time O(Qpi logQpi). Finally, the preprocessed

data batches and the index is written back to the disk in time O(Qpi . Note that

this superstep is typically skipped in subsequent runs of HiCOPS and only the (few

kilo bytes) index is read into the memory pointing to the preprocessed data from

the previous runs. Since all steps are sequential data-parallel in this superstep, the

collective runtime is given by Equation 3.5:

T2 = maxpi(k21(Qpi) + k22(Qpi logQpi) + k23(Qpi)) + γpi (3.5)

22

3.2.5 Superstep 3: Database Peptide Search

In this superstep, the parallel HiCOPS nodes execute a local database peptide search

using the supplied algorithm, currently the fragment-ion search coupled hyperscore,

in a hybrid fashion as shown in Figure 3.2c. This superstep involves the following

three parallel pipeline algorithmic tasks: 1) Read batches of the preprocessed exper-

imental MS/MS data from the file system and queue them in the pipeline, 2) Search

the queued batches against the local sub-database using the supplied algorithm and

(separately) queue the results and distributions, and 3) Process the queued results

by sampling and encoding them and writing to the file system.

The three algorithmic tasks in this superstep are executed by respective mul-

tithreaded sub-tasks namely R, I, and K in a producer-consumer pipeline fashion

as shown in Figure 3.2c [HS21]. The sub-tasks communicate data with each other

using two sets of bidirectional buffer queues. The number of assigned parallel cores

to each sub-task at any time are given by: | r |, | i | and | k |.

Runtime Cost: The sub-task R reads the batches of experimental data in time

O(qη). The sub-task I first executes the fragment-ion search in time O(q log(Dpi))+

O(qηαpi) where αpi is the average number of fragment-ion matches per experimen-

tal fragment-ion searched. Then, the spectral similarity computations (hyperscores)

are computed in O(qµ) time where µ is the average number of candidate peptide

matches, or peptide-to-spectrum matches (PSM)s, per experimental MS/MS spec-

trum searched. The sub-task K writes the partial results to the shared file system

in time O(q). Since these sub-tasks run in a hybrid-fashion, their collective runtime

will be the total time for the pipeline given as:

T3 = maxpi(max(k30(qη, | r |), k31(q log(Dpi), | i |) + k32(qηαpi , | i |)+

k33(qµpi , | i |) + k34(q, | k |))) + γpi

(3.6)

23

Overhead Costs: Overhead costs originating from memory congestion, load-

imbalance, pipeline halts may significantly affect the runtime of this superstep.

Therefore, it is pertinent to capture them using an additional factor: Vpi(q,Dpi , P)

and optimize them using the techniques discussed in Section 3.4. The Equation 3.6

with the overheads can be written as:

T3 = maxpi(max(k30(qη, | r |), k31(q log(Dpi), | i |) + k32(qηαpi , | i |)+

k33(qησpi) + k33(qµpi , | i |) + k34(q, | k |))) + Vpi(q,Dpi , P) + γpi

(3.7)

3.2.6 Superstep 4: Result Assembly and Postprocessing

In this superstep, the parallel HiCOPS nodes assemble the partial peptide search

results computed in superstep 3 and postprocess them for confidence scores in a

hybrid fashion as shown in Figure 3.2d. This superstep involves the following three

algorithmic tasks 1) Read subsets of partial results, assemble, compute confidence

scores, and communicate them to the origin nodes, 2) Receive final results from other

nodes, and 3) Write the final results to the shared file system. The algorithmic tasks

in this superstep are executed using two multithreaded sub-tasks. The first sub-task

reads portions of partial results from the shared file system, assembles them, and

computes the confidence scores using regression and curve fitting techniques [FB03],

[HS21] as shown in Figure 3.2d. The confidence scores along with origin information

(16 bytes) is accumulated in a hashmap of P packets (one for each node) and on

completion, are communicated in one all-to-all communication load. The second

sub-task using 2 oversubscribed threads simply waits for this transmission for the

other P − 1 nodes and then writes the received results to the file system.

Runtime Cost: The first sub-task reads the partial results, assembles, com-

putes confidence score, and sends the final results to other nodes in time: O(Qpi , cpi)+

O(Qpi , cpi) +O(P, 1). The second sub-task waits in sleep to receive the final results

24

from other nodes in runtime: O(P, 1) and writes them to the shared file system in

runtime: O(Qpi). The complete runtime for this superstep can be written as:

T4 = maxpi(max(k41(Qpi , cpi) + k42(Qpi , cpi)+

k43(P, 1), k44(P, 1)) + k45(Qpi)) + γpi

(3.8)

Equation 3.8 can be simplified by writing it as the sum of computation and

communication costs (kcom(P, 1)) as:

T4 = maxpi(k41(Qpi , cpi) + k42(Qpi , cpi)+

kcom(P, 1) + k45(Qpi)) + γpi

(3.9)

3.3 Performance Analysis

The parallel performance of HiCOPS can be theoretically analyzed by quantifying

its runtimes into parallel (Tp), serial (Ts) and overhead runtimes (To) as:

TH =
4∑

j=1

maxpi(Tj,pi) = To + Ts + Tp (3.10)

Using equations 3.1, 3.4, 3.5, 3.7, and 3.9, we quantify the three runtimes as:

To = Vpi(q,Dpi , P) + γpi (3.11)

Ts = k11(D) + k21(qη) + kcom(P, 1) (3.12)

and:

Tp = k12(Dpi) + k13(Dpi logDpi) + k22(Qpi) + k23(Qpi)+

max(k30(qη, | r |), k31(q log(Dpi), | i |) + k32(qηαpi), | i |)+

k33(qµpi , | i |), k34(q, | k |)) + k41(Qpi , cpi)+

k42(Qpi , cpi) + k45(Qpi)

(3.13)

25

Ts is the serial time, which is not optimizable so, we will remove it from our

analysis and focus on the other two components: TF = Tp+To. Using equations 3.11

and 3.13, we have:

TF = k12(Dpi) + k13(Dpi logDpi) + k22(Qpi)+

k23(Qpi) +max(k30(qη, | r |), k31(q log(Dpi), | i |)+

k32(qηαpi), | i |) + k33(qµpi , | i |), k34(q, | k |))+

k41(Qpi , cpi) + k42(Qpi , cpi) + k45(Qpi) + To

(3.14)

As supersteps 1 and 2 are fairly parallelized and superstep 4 does not contribute

much to the execution time, we can prune the respective terms to simplify the

analysis:

TF = max(k30(qη, | r |), k31(q log(Dpi), | i |) + k32(qηαpi), | i |)+

k33(qµpi , | i |), k34(q, | k |)) + To

Notice that the sub-task R (producer) will always complete before its consumers

so can be removed resulting in:

TF = max(k31(q log(Dpi), | i |) + k32(qηαpi), | i |) + k33(qµpi , | i |),

k35(q, | k |)) + To

In above equation, we rewrite themax term as the database search time (sub-task

I) plus the overhead time tx(k) to complete the pipeline (sub-task K). Therefore,

using equation 3.6 we have:

TF = k31(q log(Dpi), | i |) + k32(qηαpi), | i |)+

k33(qµpi , | i |) + tx(k) + To

(3.15)

Further, in equation 3.15, we can prune the first two terms as their O(log(.))

times are relatively negligible. Finally, using equation 3.11 in 3.15, we have:

TF = k33(qηαpi , | i |) + k34(qµpi , | i |) + tx(k) + Vpi(q,Dpi , P) + γpi (3.16)

26

3.4 Optimizations

In this section, we will discuss the optimization techniques to minimize the overhead

terms in Equation 3.16.

3.4.1 Buffer Queues

Two sets of bidirectional buffer queues are initialized ({qf , qr}, {q′f , q′r}) are initial-

ized between the producer-consumer sub-tasks R, I and K in the superstep 3. qr

is populated with 20 (default) empty buffers which are filled with the experimental

data by R pushed to qf . I pops the buffers from qf , processes them, and recycles

them back into the qr while also pushing the results into q′f . Similar process is done

at sub-task K as well. Three compute regions are defined using qf depending on its

fullness at any time. i.e. w1 : (|qf | < 5), w2 : (5 ≤ |qf | < 15) and w3 : (|qf | ≥ 15)

to allow the core management algorithm (task-scheduling algorithm) to optimally

reallocate the cores between the sub-tasks.

3.4.2 Task Scheduling Algorithm

HiCOPS employs a forecasting-based task-scheduling algorithm to maintain a syn-

ergy between the producers and consumers in superstep 3 and eliminating any

pipeline halts. The algorithm begins with a thread pool of cpi + 2 parallel threads

and assigns 2 threads to R and K each, while assigning the rest to I. Then, in each

iteration, the qf compute regions wi, and the pipeline halt times (twait), and the

cumulative pipeline halt (tcum) are measured and recorded in a time series. Using

this data and double exponential smoothing [LaV03], the halt time in the next it-

eration is also forecasted (tfct). Then, based on the relative speed of the producers

27

and consumers, the cores are assigned between R and I using Algorithm 1. Note

that the sub-task K is assigned 2 oversubscribed threads in the beginning and does

not participate in task-scheduling.

Algorithm 1: Superstep 3: Task Scheduling [SHI22]

Data: buffer queue: qf , halt time (twait), minimum halt time (tmin), surge
(tsurge) and cumulative halt (tacc)

Result: thread allocation between sub-tasks R, and I
/* cumulative halt time */

1 tcumu ← 0
/* while experimental data available */

2 while (brem > 0) do
/* if pipeline halt time > tmin */

3 if thalt ≥ tmin then
4 tcumu ← tcumu + thalt;
5 if tcumu > tacc ∨ thalt > tsurge then
6 MoveThread(I, R);
7 tcumu ← 0;

8 else
9 if qF .size() < 5 ∧ | r |= 0 then

10 MoveThread(I, R);
11 tcumu ← 0;

12 else if qF .size() > 15 ∧ | r |> 1 then
13 MoveThread(R, I);

14 return MoveAllthreads(R, I);

3.4.3 Load Balancing

HiCOPS employs the LBE algorithm for load-balancing the database partitions

across the parallel nodes. The LBE algorithm is discussed in detail in Chapter 4.

28

3.4.4 Sampling

HiCOPS employs a sampling technique to minimize the communication and I/O

costs in the supersteps 3 and 4 without deteriorating the results quality. In the

employed technique, the null distribution along with its metadata (2KB) produced

for each searched experimental MS/MS spectrum in superstep 3, is sampled to

reduce the communication overhead. To do this, HiCOPS uses the data distribution

information (i.e., the Gumbel distribution [FB03]) to sample in a way that the

original distribution could be recovered in smoothing and curve fittings employed in

superstep 4. To do this, the distribution mean is first computed and then s = 120

samples are picked around it by prioritizing the head (unskewed and sharp slope)

of the distribution over the tail (skewed and slow decay). The sampled data are

then encoded into ushort, which along with the meta data constitute 256 bytes per

experimental MS/MS spectra (16× improvement). Figure 3.4 illustrates an example

of sampling.

Figure 3.4: The mean is roughly computed by computing the mean of the 3 or 5
most intense samples in the distribution (81 in this figure) and then s = 120 data
points are sampled around the mean prioritizing the head of the distribution as the
tail can be recovered in superstep 4 during curve smoothing and regression [HS21].

29

3.5 Results

3.5.1 Experimental Setup

We used five datasets (Ei) constructed by unionizing multiple publicly available

Pride Archive datasets for our experimentation and evaluation. The details of these

experiments are as follows: E1: PXD009072, E2: PXD020590, E3: PXD015890

E4: PXD007871, ∪ PXD009072 ∪ PXD010023 ∪ PXD012463 ∪ PXD013074 ∪

PXD013332 ∪ PXD014802 ∪ PXD015391, and E5: E1 ∪ E2 ∪ E3 ∪ E4. The

datasets were searched against PTM variants of the databases constructed from D1:

UniProtKB Homo sapiens and D2: UniProtKB SwissProt (reviewed) databases.

The database was digested in-silico using Trypsin with peptide lengths from 6 to

46, allowed missed cleavages up to 2, and peptide masses from 500 to 5000Da.

Cysteine carbamidomethylation was used as static modification for all experiments,

and a maximum of 5 variable PTMs per peptide were chosen from combinations

of M-oxidation, NQ-deamidation, STY-phosphorylation, CK-gly-gly adducts, and

Y-biotin-tyramide. The closed-search criterion was set to δM ≤ ±10Da and the

opens-search criterion was set to δM ≤ ±500Da unless mentioned otherwise. We

intentionally set the closed-search criteria to a few Daltons instead of ppms to cover

the peptide mass differences due to average or monoisotopic masses and isotopes

used across different tools. The preprocessing settings for the experimental MS/MS

spectra were set to the minimum in all tools so that the same amount and nature of

the data (fairness) are used. Some of these settings include: precursor charges up to

+4, minimum 4 matched peaks for candidacy, picking only top 100 (or 150 in some

experiments) peaks by intensity for processing. Any and all other preprocessing set-

tings including calibrations, peak transformations, precursor peak removal, clipping

N-term M and partial spectrum re-construction were disabled when possible.

30

Runtime Environment: All experiments were run on the Comet cluster via

the Extreme Science and Engineering Discovery Environment (XSEDE) [TCD+14]

program. The Comet compute nodes consist of 12 cores × 2 Intel Xeon E5-2680v3,

64GB DRAM × 2 NUMA nodes, 56 Gbps Infiniband interconnect. The maximum

job allocation is 72 nodes for 48 hours. Note that the XSEDE program has now been

concluded and replaced by Advanced Cyberinfrastructure Coordination Ecosystem:

Services & Support (ACCESS) program, which provides access to the Expanse clus-

ter which recently replaced the now-decommissioned Comet cluster. Note that the

single-node Crux, X!Tandem, and MSFragger experiments needing more than 48

hours to complete were run on a local server named raptor, consisting of a 22 core

Intel Xeon Gold processor, 128GB RAM and 6TB storage.

3.5.2 Correctness Analysis

We measured the correctness of HiCOPS using a two-fold approach. First, we mea-

sured the correctness across the degree of parallelism. i.e., correctness across serial

and parallel runs. For this, we ran all five datasets Ei against several databases

of varying sizes. The results were said to be correct if the identified peptide se-

quences were the same and the computed scores were within 2 decimal points. Our

experiments in Figure 3.5a and 3.5b depict that the HiCOPS depicts correct and

consistent results (>99.5% consistency) across serial and parallel runs. A negligible

number of results depicted small negative errors due to sampling and floating point

errors.

Second, we measured the correctness across tools. For this, we ran three differ-

ent experiments first in closed- (δM = 1Da) and then open-search (δM = 200Da)

modes using HiCOPS and MSFragger as MSFragger also employs a similar fragment-

31

ion search coupled hyperscore algorithm (fairness). The first experiment involved

searching a subset of 860K spectra from E4 against D1 with M-oxidation and NQ-

deamidation (size: 18 million). The second experiment involved searching the

dataset: S3 against the database: D1 with M-oxidation and STY-phosphorylation

(size: 66 million). The third experiment involved searching the dataset: S3 against

the database: D2 with M-oxidation and S-phosphorylation (size: 80 million). Our

experimental results for the three experiments in closed search in Figures 3.5c to

3.5e respectively show a Pearson Correlation coefficient < 0.90 for the 1% FDR

filtered results, depicting strong correlation. On the other hand, the correlation

drops to about 0.78 for the open-search versions of the three experiments in Fig-

ures 3.5f to 3.5h respectively. We suspect that the divergence in the results from

MSFragger and HiCOPS originated from the open-search specific (proprietary and

closed-source) MSFragger components.

3.5.3 Speed Comparison Against Existing Algorithms

We measured the speed improvement provided by HiCOPS over several existing

HPC database peptide search tools including Crux/Tide [MTKF+14], Comet v2020.01

[EJH13], MSFragger v3.0 [KLA+17], X! Tandem v17.2.1 [CB04], X!! Tandem v10.12.1

[BCC+07], and SW-Tandem [LLC+19]. Notice that the Comet, Tide and MSFragger

are not HPC tools by themselves so we implemented a runner Python script which

emulates the parallelization techniques employed by the existing HPC database

peptide search tools [DCL05], [BCC+07], [LLC+19], involving partitioning of the

experimental data across the parallel nodes and simultaneously launching instances

of these tools on those nodes (also discussed in Section 2.3.2).

We ran six increasing workload sized experiments to measure the speed improve-

32

Figure 3.5: (a,b) 5K samples out of 251K data points are shown for computed scores
from HiCOPS in serial and parallel runs. (c to e) Correlation between MSFragger
and HiCOPS scores is about 0.90 for closed-search experiments. (d to f) Correlation
between MSFragger and HiCOPS scores is about 0.78 for open-search experiments
[HS21].

ment of HiCOPS. The first and second experiments involved searching a subset of

8K spectra from dataset: S3 against D2 with M-oxidation, and Y-Biotin-tyramide

(size: 93.5 million) at δM=10Da (first experiment, Figure 3.6a) and δM=500Da

(second experiment, Figure 3.6b). The third and fourth experiments involved search-

ing the dataset: S3 against D1 with M-oxidation, and Y-Biotin-tyramide (size:

7.1 million spectra) at δM=10Da (third experiment, Figure 3.6c) and δM=500Da

(fourth experiment, Figure 3.6d). The fifth and sixth experiments involved search-

33

ing the dataset: S4 against D1 with M-oxidation, STY-phosphorylation and NQ-

deamidation (size: 213 million spectra) at δM=10Da (fifth experiment, Figure 3.6e)

and δM=100Da (sixth experiment, Figure 3.6f).

Our experimental results (Figure 3.6a to 3.6f) depict that the HiCOPS out-

performs all other tools by at least > 10× regardless of the number of nodes and

experimental sizes. HiCOPS also exhibits better strong-scale efficiency (shown as

the deviation from the dotted black lines (positive = sub-linear; negative = hyper-

linear)) than that of other tools as the experimental sizes increase (from a→f). Fur-

ther, MSFragger depicted a peculiar trend in runtimes as it behaves superlinearly

at first and then drops. We investigated this by analyzing the runtime components

of MSFragger and the results in Figure 3.6g and 3.6i show that the I/O and load

imbalance overheads are significant in MSFragger. In contrast, HiCOPS depicts

little overheads as seen in Figure 3.6h and 3.6j. Finally, the results in Figures 3.6a

to 3.6c show that the other HPC tools are > 100× slow even for small experiments.

3.5.4 Performance Evaluation

Experimental Setup

We measured the parallel performance of HiCOPS using 12 extensive sets of ex-

periments curated from the five datasets and databases by varying the number and

combinations of PTMs and the peptide precursor mass tolerances (δM) to cover a

wide-range of real-world application.

Parallel Scalability

We measured the parallel efficiency for all 12 experiments. The experimental results

in Figures 3.7a and 3.7b depict an overall efficiency between 70 to 80% for larger

34

a b

c d

e f

g h

i jLoad Imbalance
in MSFragger

I/O overhead
in MSFragger

I/O overhead
in HiCOPS

Load Imbalance
in HiCOPS

Figure 3.6: (a to f) HiCOPS’s speed is compared with several existing tools for
increasing parallel nodes. The δM window was reduced for MSGF+ and Comet
(shown as @) for feasibility (g to i) Percentage overheads for HiCOPS and MS-
Fragger for experiments in (c to f) are shown [HS21].

experiments and between 30 to 50% for smaller experiments (Amdahl’s Law). As

the minimum HiCOPS’s nodes (Pmin) are limited to Pmin ≥ D/M ; where M is the

35

RAM per node, the computed strong-scale efficiencies used the experiments with

Pmin nodes as the base case. Hyperlinear speedups were also seen in large-scale

experiments due to the corresponding improved hardware performance including

CPU and cache performance as seen in Figures 3.7c to 3.7f. We also measured the

superstep-by-superstep times for these 12 experiments and the results in 3.8 show

that the superstep 3 dominates the total runtime for larger experiments.

a

b c

e f

Figure 3.7: (a), (b) Parallel speedup and strong-scale efficiency for the 12 experi-
ments is shown for HiCOPS. Note that the dotted black lines show the ideal speedup
and efficiency respectively. (c) to (f) Hardware utilization metrics for the 12 ex-
periments are shown for HiCOPS [HS21].

36

exp1 exp2 exp3

exp4 exp5 exp6

exp7 exp8 exp9

exp10 exp11 exp12

Figure 3.8: The runtime breakdown across the four HiCOPS supersteps and over-
head metrics in Equation 3.10for the 12 experiments is shown depicting the large
contribution of superstep 3 in the total execution times, especially in open-search
experiments that depict superlinear strong-scale efficiency as well [HS21].

Performance Overheads

We measured several overheads metrics including load balance, communication, I/O,

and pipeline halt stalls to quantify the severity of performance overheads in HiCOPS.

The experimental results in Figures 3.9a to 3.9c depict that the sum of all the

overheads remains < 25%. The performance of our task-scheduling algorithm is

also seen in the time series in Figure 3.9e plotting the pipeline halt times. It can be

seen that our task-scheduling algorithm instantly performs measures to eliminate

the stalls as soon as they are discovered, if any.

37

e

a b

c d

Figure 3.9: (a) to (d)The combined performance cost of several overhead metrics
is shown to be less than 25% in HiCOPS. Pipeline stall timeline is shown depicting
the active performance of the task-scheduling algorithm [HS21].

3.6 Summary

Open-search database peptide search algorithms require astronomical amounts of

computational resources to feasibly search several gigabytes of experimental MS/MS

spectra data against terabytes of indexed database. Shared-memory computers are

unable to meet these resource demands. Moreover, the post-Moore shared-memory

computers are bottle-necked by memory-bounds for open-search database peptide

search experiments. While these resource demands could be met by modern su-

38

percomputers, the HPC algorithms and methods deployed in the existing shared-

and distributed-memory database peptide search software infrastructure deliver sub-

optimal performance. This is because they are designed for compute-intensive al-

gorithms and do not optimize for the memory-intensity of the algorithms thereby

replicating the same memory-bounds on all supercomputer nodes. HiCOPS presents

a novel Bulk Synchronous Parallel (BSP) based parallelization model as well as op-

timizations that efficiently distribute both the compute and memory loads across

the supercomputing nodes, achieving over 10× speedup over all existing HPC tools

at a strong-scale efficiency between 70-80%. Further, the algorithms and optimiza-

tions presented in HiCOPS are algorithm-oblivious allowing it to be adaptable for

future traditional and machine and deep learning based database peptide search

algorithms. Our results show that the database peptide search experiments that re-

quire over 6 months of execution time using single-node algorithms can be executed

in about 2 hours by HiCOPS using 72 nodes.

39

CHAPTER 4

LBE: LOAD BALANCED DATABASE PARTITIONING

In this chapter, we will discuss our efficient and intuitive algorithm, called LBE

[HAS19], for load balanced partitioning and distributing the theoretical MS/MS

spectra databases, or simply the databases, across a symmetric distributed-memory

HPC cluster. We will also discuss its effectiveness in achieving system load balance

in HiCOPS, analyze its performance, as well as its application in extending HiCOPS

for heterogeneous compute clusters.

4.1 Introduction

In stark contrast to the previous HPC database peptide search algorithms, HiCOPS

partitions the database across a symmetrical compute cluster to distribute its com-

putational workload and achieve massive parallelism, as discussed in Chapter 3. This

is because distributing, instead of replicating, the voluminous databases across the

parallel nodes alleviates the memory pressure per node yielding superior throughput

as also shown in chapter 3. However, to achieve the maximum parallel throughput

in HiCOPS, its compute workload must be partitioned evenly across the system

nodes especially when a large number of nodes are involved [HAS19]. To under-

stand this, consider a 32 node parallel system executing HiCOPS with each node

completing its execution in Tavg = 100s, with straggler node(s) finishing execution

in Tmax = 150s. Then, on average, each compute node spent 50s waiting for the

stragglers to complete resulting in a wasted CPU time of Twst = 1600s or a 16×

performance degradation.

40

4.2 The LBE Algorithm

Before delving into the details of the LBE algorithm, let us first define the com-

putational workload in HiCOPS which is to be balanced across the system. From

Equation 3.16, the computational workload in HiCOPS is proportional to the cost

of the executing the fragment-ion search plus the spectral similarity score com-

putations. The results in Figure 3.8 also corroborate this estimation. Using this

definition, the LBE algorithm design strives to ensure that for a random experimen-

tal MS/MS spectrum, the number of fragment-ion matches and similar theoretical

spectra (i.e., the computational workload) seen at all systems nodes is roughly iden-

tical. In other words, the LBE algorithm strives to partition the database across the

parallel nodes such that the sub-database at each node is near-identical, implying

that the computational time to search a random experimental MS/MS spectrum

against any sub-database (approximately equal to the number of database matches)

is also near-identical.

4.2.1 LBE Algorithm Overview

To achieve this, the LBE algorithm employs a two-step approach to (load balanced)

partition the HiCOPS’s database across the symmetric parallel nodes. In the first

step, the LBE algorithm clusters the similar database peptides, both normal and

PTM modified, using a heuristics based technique. In the second step, each peptide

cluster is split across the parallel nodes in either round-robin (default), random, or

chunked fashion as shown in Figure 4.1. The mathematical theory along with the

details of each of the two steps in LBE are explained in the following sections.

41

cluster partition

full DB

pa
rt

ia
l

da
ta

ba
se

s

Figure 4.1: The LBE algorithm first constructs clusters of similar database ele-
ments which are round-robin partitioned across the system nodes to construct near-
identical (similar) sub-databases at each node [HS21].

4.2.2 Correctness of the LBE

Theorem. Let the data distribution of a HiCOPS’s theoretical database is g(x)

where m is the peptide precursor mass, then the LBE algorithm will yield load bal-

anced database partitions across the system nodes [HS21].

Proof. The algorithmic workload w(q, g) to search an experimental MS/MS spec-

trum (q) of mass (m) against the database g(x) is the cost of filtering the database

and computing spectral similarities sim given as:

w(q, g) = cost(sim(q, filter(q, g(m)) (4.1)

The above equation can be expanded for the entire experimental dataset Q as:

w(Q, g) = cost(
∑
q∈Q

sim(q, filter(q, g(m)) (4.2)

In HiCOPS, the filter is replaced by the fragment-ion search kernel with toler-

ances δM , δF resulting in:

w(Q, g) = cost(
∑
q∈Q

q.

z=δM∑
z=−δM

fragIon(q, g(m+ z), δF) (4.3)

Equation 4.3 implies that in order for the computational cost w(Q, g) to be bal-

anced across the system nodes in HiCOPS, the data distribution of the partitioned

42

sub-databases g(x) must also be identical to yield identical (
∑
fragIon(q, g(m +

z), δF)) at all nodes. Note that the LBE algorithm can also model other database

filtration methods in Equation 4.3.

4.2.3 LBE Clustering

Distance Metric

Unlike experimental MS/MS spectra data clustering, the LBE algorithm clusters

the database peptide sequences, both normal and modified. Since similar peptide

sequences result in similar corresponding MS/MS spectra, the algorithm need not to

move around and cluster large volumes of complex (floating point) data. Since the

peptide sequences are essentially character strings, it is natural to use a normalized

Edit Distance, represented by ∆e, as the main distance metric. However, the Edit

Distance itself is not sufficient to efficiently separate the peptide sequence pairs.

This is because in the context of peptide sequences and their corresponding MS/MS

spectra, the distance between a pair of peptide sequences with ∆e ≥ 2 also depends

on the location of those edits. To solve this, we introduce a secondary distance

metric, called Mod Distance (∆M), allowing better clustering of peptide sequences

leading to better load balance. The Mod Distance (∆m) is defined as follows:

Definition. Given a pair of simulated spectra (p, q), the number of ion-series to be

generated is s, and the sum of lengths of unmodified amino acid sequences in each

ion-series is aa, the Mod Distance (∆m) is given as:

∆m(x, y) = s− aa

max(|x|, |y|)

The application of the Mod Distance is best explained using an example. Let

three peptide sequences be p: PEPTIDE, q: PPPTIKE and r: PEPYKDE. Here,

43

the blue and red letters are the unedited and edited amino acids, respectively. In

this example, ∆e(p, q) = ∆e(p, r) = 2 does not differentiate between the two pairs.

Applying ∆m to this, will allow correctly setting the pair (p, q) farther than the

pair (p, r) due to the edit locations being far from either terminal in the latter one.

This can also be seen in their corresponding theoretical MS/MS spectra, with b- and

y-series (s = 2), where p and q share: PPPTIKE = 2 ions, yielding ∆m(p, q) = 1.42,

and the p and r share: PEPYKDE = 5 ions, yielding ∆m(p, r) = 0.57.

Clustering Algorithm

The LBE algorithm employs a single-pass heuristics based algorithm for clustering.

The algorithm begins by reading in all peptide sequences and generating their PTM

mutated versions. These sequences, both normal and mutated, are then lexicograph-

ically sorted to form the initial clusters. Then, a single pass algorithm is employed

to form the peptide clusters as follows. Choose the first encountered sequence si as

the centroid of a new cluster and add all subsequent peptide sequences sj to the

cluster that satisfy: ∆e(si, sj) + ∆m(si, sj) ≤ min(d, len(sj)/2 (default: d = 3).

Another criterion employed is: (∆e(si, sj) +∆m(si, sj))/max{len(si), len(sj)} ≤ d′

(default: d′ = 0.86). The same algorithm repeats until all clusters are formed as

shown in Algorithm 2.

4.2.4 LBE Cluster Partitioning

The clustered peptide sequence data are read by all system nodes where each node

extracts a distinct partition of each cluster based on the partitioning policy. The

LBE algorithm supports several partitioning policies including chunk, random, cyclic

(default), and zigzag. Our empirical experiments showed that the choice of policy

44

Algorithm 2: The LBE Clustering [HAS19]

Data: Peptide sequences (Li)
Result: LBE Clusters (Lz)
/* lexicographical sort */

1 Li.LexSort();
/* start the first cluster */

2 Lz.Append([Li[0]]);
3 for k ∈ size(Li) do

/* distance metrics */

4 dist = ∆e(seq, Li[k]) + ∆m(seq, Li[k]);
/* compute the cluster cutoff - either one */

5 c1 ← max(d, len(Li[k])/2);
6 c2 ← dist/max(len(seq), len(Li[k])) ≤ d′;

/* check conditions */

7 if (dist > cx) ∨ (Lz[size(Lk)] = csize) then
/* start a new cluster */

8 Lz.Append([seq]);

9 else
/* append to the current cluster */

10 Lz[−1].Append(Li[k]);

11 return Lz;

here does not significantly affect the final load balance results as long as the clusters

are well formed in the last step. Once all system nodes extract their partitions,

they generate the theoretical MS/MS spectra data and index it to form their sub-

databases, to be used in the subsequent database peptide search steps.

4.3 Results

The same experimental setup including the databases, experimental datasets, diges-

tion and pre-processing settings employed for HiCOPS (explained in Section 3.5.1)

was also used to evaluate the LBE algorithm as well. We ran the same twelve

performance evaluation experiments explained in the Section 3.5.4 to evaluate the

performance of the LBE algorithm and its application in HiCOPS.

45

4.3.1 Load Imbalance with and without the LBE

We measured the load balancing factor of the LBE algorithm by comparing the load-

imbalance in the sub-databases constructed with and without the LBE algorithm.

To measure the load imbalance, we searched the experimental MS/MS dataset: E1

against increasing size databases split across 16 sub-databases and measured the

load imbalance between the MPI processes (or sub-database). The load imbalance

factor employed in the analysis is defined as follows.

Definition. Given the average compute time for all processes to complete the search

is Tavg and the maximum time is Tmax, then the Load Imbalance (LI) is defined as

the ratio of the (+ve) maximum deviation in compute time (Tmax − Tavg) to the

average compute time [HAS19], given as:

LI =
Tmax − Tavg

Tavg
(4.4)

Our experimental results in Figure 4.2 show that the LBE provides orders of mag-

nitude improvement in the load balance (significantly lower LI) across increasing

database sizes compared to the naive (simple chunk or random) database partition-

ing.

4.3.2 Load Imbalance in HiCOPS

We measured the effectiveness of the LBE algorithm in the HiCOPS algorithm using

all 12 sets of performance evaluation experiments (expi) described in Section 3.5.4.

Our experimental results in Figure 4.3 show that the load imbalance (LI) related

overheads in HiCOPS with the LBE algorithm remains below 10% for nearly all

experiments for databases up to 4TB for up to 72 parallel nodes (144 database

partitions).

46

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

200

Database Size (Million peptides & spectra)

L
oa
d
Im

b
al
an

ce
(%

)

Without LBE
With LBE

Figure 4.2: The LBE based partitioning exhibits ∼ 5× improvements over a con-
ventional data partitioning for 16 partitions [HAS19].

4.4 Summary

Load-balance is a critical component of the achieved parallelization efficiency in

HiCOPS as it is a direct measurement of the CPU utilization efficiency. As re-

ported by several other HPC database peptide search tools and corroborated by

our own experimentation, the load imbalance in distributed-memory database pep-

tide search algorithms can reach up to 120% - corresponding to ∼6× performance

degradation - with existing and random experimental and/or theoretical MS/MS

spectra data distribution techniques. We present the LBE algorithm, which mod-

els and exploits the sequence similarity and edit positional information between

the database peptide sequences and their PTM-variants to first cluster them and

then finely distribute them across the database partition. This way, the data sketch

across the constructed sub-databases is identical yielding similar compute workloads

47

1 2 4 8 16 32 64
parallel nodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
ad

 im
ba

la
nc

e
(%

)

exp1
exp2
exp3
exp4
exp5
exp6

exp7
exp8
exp9
exp10
exp11
exp12

Figure 4.3: Employing the LBE algorithm in HiCOPS results in keeping the load
imbalance overheads < 10% across all 12 experiments for up to 72 parallel nodes
(144 partitions) and databases up to 4TB [HS21].

when a random peptide is searched against either of them. The results show that

by using the LBE algorithm, the load imbalance LI across the HiCOPS nodes is

maintained under 10% even for terabyte-scale databases spanning across more than

100 sub-database partitions yielding a decent strong-scale efficiency.

48

CHAPTER 5

CFIR: COMPACT AND LOSSLESS FRAGMENT-ION INDEXING

In this chapter, we will discuss our compact and lossless data structure, called

CFIR-Index, to compress the memory footprint of the fragment-ion index by 2× with

without impacting its indexing or search speed complexities. We will also discuss

its application in optimizing the memory and time complexity costs of fragment-ion

index based database peptide search algorithms, including the HiCOPS.

5.1 Introduction to Fragment-Ion Search

Fragment-Ion searching, also called shared-peak counting, is one of the most com-

monly employed filtering techniques in the open-search database peptide search

application [KLA+17], [THS+05], [BLY+18]. In this technique, the theoretically

generated MS/MS fragment-ion data are indexed in a (inverted) way such that it

can be queried and accessed in O(1) time. This constructed index is known as a

fragment-ion index [KLA+17], [THS+05].

Then, during the database peptide search, the fragment-ion index is queried to

quickly filter the otherwise terabytes of database into only the candidate peptides

that share≥ k fragment-ions (or peaks) with the experimental MS/MS spectra being

searched [CHY+15], [LCW+10], [ZXS+12]. However, constructing a fragment-ion

data index incurs a substantially large memory footprint often beyond the available

main memory requiring partitioning into smaller independent chunks and swapping

(page faults) from the disk to be processed one at a time [KLA+17]. Further,

querying the fragment-ion index involves enormous numbers of random memory

reads and writes, which leads to severe memory contentions and bottlenecks. Let us

discuss application of the fragment-ion search (or shared-peak counting) in database

peptide search in more detail.

49

5.1.1 Fragment-Ion Searching in Database Peptide Search

The fragment-ion search essentially computes the dot product (or cosine distance)

between a pair of MS/MS spectra, using a relaxed fragment-ion tolerance range

(δF) [CB04]. This same tolerance is also often employed to discretize the other-

wise floating-point data points in the MS/MS spectra using a bin width b ≥ 1/δF

[EJH13], [HS19]. As a result, each spectrum can be represented as a sparse binary

vector of length =M/r where M is the maximum (discretized) fragment-ion mass.

Using this representation, a δF -relaxed matrix-matrix multiplication operation be-

tween the database matrix D and the experimental MS/MS spectra matrix Q will

give the shared-peak counts between each D × Q spectral pair in the scorecard

matrix B as follows [HS19]:

D|D|×M/r ×QM/r×|Q| = B|D|×|Q| (5.1)


0 1 .. 0 .. 1

1 0 .. 1 .. 0

0 0 .. 0 .. 1

×

0 1 .. 0 .. 1

1 0 .. 1 .. 0

0 0 .. 0 .. 1

 =


0 3 .. 0 .. 5

7 0 .. 2 .. 4

0 4 .. 9 .. 12



Since all matrices D, Q and S are sparse, most existing fragment-ion data struc-

tures employ Compressed Sparse Rows (CSR) or Compressed Sparse Columns (CSC)

[BG08] to store and query the non-zero (NNZ) data. For each indexed fragment-

ion, the following information is also stored to query its properties: fragment-ion

mass (m/z) mi, parent vector id (osid), ion-series si, ion-charge zi. To speed up the

search, the existing fragment-ion data structures [CHY+15], [KLA+17] optimize the

two query operations: rank and select [HS19] described as follows.

1. rank(T,m): Retrieve the frequency of the fragment-ion with mass = m in T .

50

2. select(T,m, k): Retrieve the properties of the kth instance of fragment ion

with mass = m in T . Retrieve the properties of all ions with mass = m, if k

is not specified.

5.2 The CFIR-Index Data Structure

We built the Compact Fragment-Ion Index Representation (CFIR-Index) [HS19]

using two observations. First, the number of unique ion masses (or m/z’s) in a

typical fragment-ion index is extremely small compared to the total number of ions

as shown in Figure 5.1 meaning that the m/z (or simply the mass) information

which typically requires 4-bytes can be represented in a compact format. Second,

the theoretical experimental MS/MS spectra matrix D can be split into distinct sub-

matrices, all having the same lengths proportional to their parent peptide sequence

lengths. This, combined with a restructuring of the fragment-ion data vectors allows

encoding their ion-properties within their respective position within only 4 byte

integers. The details of the split-matrix fragment-ion data representation along

with algorithms for index construction and querying are discussed in the following

sections.

5.2.1 Data Representation in CFIR-Index

The theoretical MS/MS spectra in the CFIR-Index are simulated as vectors of inte-

ger fragment-ion masses represented as Sj = [i1, .., ik, .., in] where 0 ≤ ik ≤ M − 1.

The generated ions in each vector ik are ordered first by their ion-series, then by

their fragment charge, and then by the peptide sub-sequence they correspond to

(also equivalent to their m/z). Then, the vectors of the same length (correspond-

ing to the peptide sequences of the same length) are stacked together to form an

51

0 0.4 0.8 1.2 1.6 2 2.4

·109

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Total Number of Ions

P
er
ce
n
ta
ge

U
n
iq
u
e
Io
n
s
(%

)

Figure 5.1: The plot depicts that the ratio of unique ion masses to total number of
ions in a fragment-ion is extremely small for increasing size of index [HS19].

instance Ni of the CFIR-Index given as: Ni = [S1, S2, S3, · · · , SY]. The ordering of

the spectra vectors in CFIR-Index and the construction of the CFIR-Index instance

sub-matrix Ni with Y spectra of length n is shown in Figure 5.2, and can be written

as:

Ni =


i11 .. i1k .. i1n

ij1 .. ijk .. ijn

iX1 .. iXk .. iY n


where ijk is the mass of kth fragment-ion in the jth spectrum. Since all vectors in

Ni have the same length = n, we can flatten Ni into a vector T = [i0, i1, i2, ..., iY n−1]

where the original positions can be inferred as dim(N) = (Y × n).

5.2.2 The CFIR-Indexing Algorithm

Let T be the flattened vector version of an instance (sub-matrix Ni) of the CFIR-

Index with Y vectors each with length n. Then, we define another vector A contain-

ing indices from 0 to len(T) = Y n− 1 and apply a Stable Key-Value Sort with T as

52

Figure 5.2: The ions are first ordered by the ion-series, then by fragment charge and
finally by their m/z. The spectra of the same length are stacked in a sub-matrix of
CFIR-Index Ni [HS19].

keys and A as values yielding the rearranged versions of the two vectors namely Ω

and Λ respectively as:

Ω,Λ = StableKeyV alueSort(T,A)

Here, Ω is simply the sorted T , and from Figure 5.1 we know the ratio of unique

values in Ω will be << |Ω| and also since all data are sorted, we can encode it into

a much smaller representation by storing a running counter of the frequency of each

unique ions as:

Ω′[i] = {freq[i] ; i ϵ[0,M)}

Ω′′[i] = prefixSum(Ω′[i])

Notice that the |Ω′′| =M << Xn = |T | whereM is the maximum ion mass in T

resulting in a memory footprint of Xn+M ≈ Xn = |T | (∼ 4.01bytes/ion) [HS19].

The same algorithm is applied to all sub-matrices of the CFIR-Index to construct

the complete index. The CFIR-Index transformation is shown in Figure 5.3 and an

example is illustrated in Figure 5.4 while the final CFIR-Index I for p sub-matrices

can be written as:

I = [{Λ1,Ω
′′
1}, {Λ2,Ω

′′
2}, · · · , {Λp,Ω

′′
p}] (5.2)

53

Figure 5.3: The flattened fragment-ion data T along with the vector of ion indices
A are Stable Key Value sorted using T as key and A as value. The frequencies of
each ion are counted into Ω′ and a prefixSum is applied to yield Ω′ [HS19].

5.2.3 The CFIR-Index Querying Algorithm

A fragment-ion f in an experimental MS/MS spectrum q = [f1, f2, · · ·] can be

queried against the CFIR-Index by first locating its occurrences in an instance of

the CFIR-Index using the Ω′′ array at [Ω′′[f],Ω′′[f + 1]) [HS19]. Then, the ion-

positions in Λ in this range can be decoded (using Algorithm 3) to compute the

ion properties including the parent spectrum id osid, ion series si and ion-charge

zi using the ion ordering in Figure 5.2. Formally, the rank and select operations

can be computed as follows and an example of rank and select is illustrated in

Figure 5.5.

1. rank(T, f): is given as Ω′′[f + 1]− Ω′′[f], computed in O(1) time.

2. select(T, f, k): is given at position: Λ[Ω′′[f] + k], whereas all occurrences can

be located at the range: [Λ[Ω′′[f]],

Λ[Ω′′[f] + rank(T, f)− 1]]; also computed in in O(1) time.

The decoded shared-peaks computed in Algorithm 3 can be used to update

a scorecard with counts of shared ions as well as corresponding running sums of

54

Figure 5.4: An example of CFIR-Index construction for fragment-ion data in the
range [0, 4]. Notice that the output list Ω′′ contains only the bolded black entries
while the greyed ones are omitted [HS19].

intensities to later assemble the hyperscore in one-pass. Given a pair of spectra,

theoretical or experimental, ν and ξ, the number of shared b- and y-ions between

them be nb and ny respectively with corresponding intensities ib,j and iy,j, then the

hyperscore between them is as follows:

hyperscore(ν, ξ) = log(nb!) + log(ny!) + log(

nb∑
j=1

ib,j) + log(

ny∑
k=1

iy,k) (5.3)

55

Figure 5.5: Examples of computing rank and select in the CFIR-index for fragment-
ions with mass 2 and 3 [HS19].

5.3 Results

All our experiments were run on a Windows machine with 20GB RAM for compat-

ibility purposes.

5.3.1 Memory Footprint

We measured the memory footprint of the CFIR-Index against the fragment-ion

index data structures implemented in SpecOMS, MSFragger, and ANN-SoLo for in-

creasing database sizes. These increasing index sizes were constructing by increasing

the number and type of PTMs in the fragment-ion index construction. The index

size for ANN-SoLo was increased by concatenating spectral libraries from multiple

sources including Human Orbitrap spectral library from ISB and Mouse spectral

56

Algorithm 3: Search Algorithm [HS19]

Data: fragment-Ion positions in T (p), spectrum length (len), max
ion-charge in index (zmax)

Result: Fragment-Ion properties
/* Origin spectrum ID */

1 osid =
⌊
p/len

⌋
;

/* ion-number in the series */

2 inum← (p mod (len/2)) + 1;
/* ion-charge in parent spectrum vector */

3 iz ← ((inum− 1)/(len/2zmax) + 1);
/* ion-series parent spectrum vector */

4 is← y;
5 if (p mod len) ≤ (len/2) then
6 is← b;

7 return osid, inum, iz, is;

library from NIST. The results in Figure 5.6 depict that the CFIR-Index provides

at least a 2× improvement over all other data structures. We also extended the

memory footprint results showing a consistent 2× improvement for CFIR-Index

and MSFragger for larger databases on a Linux based server machine with 128GB

RAM as depicted in Figure 5.7.

5.3.2 Indexing Speed

We also measured the indexing speed for the three tools for varying index sizes.

The experimental results in Figure 5.8 show that MSFragger and CFIR-Index out-

perform ANN-SoLo and SpecOMS by several folds. It can also be seen that the

MSFragger is slightly faster than CFIR-Index, but their overall trend (asymptotic

time complexity) is similar.

57

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

Index Size (Million Spectra)

M
em

or
y
(G

B
)

SpecOMS
ANN-SoLo
MSFragger
CFIR-Index

Figure 5.6: CFIR-Index is capable of indexing ∼40 million spectra (in 20GB RAM)
which is 2× than any other data structure [HS19].

0 10 20 30 40 50 60 70 80 90 100110
0

10

20

30

40

50

60

70

80

90

100

Index Size (Million Spectra)

M
em

or
y
(G

B
)

MSFragger
CFIR-Index

Figure 5.7: Extended memory footprint results for CFIR-Index and MSFragger for
up to 128GB index sizes [HS19].

58

10−2 10−1 101 102
10−2

10−1

101

102

103

104

Index Size (Million Spectra)

In
d
ex
in
g
T
im

e
(s
)

SpecOMS
ANN-SoLo
MSFragger
CFIR-Index

Figure 5.8: Indexing time results show that MSFragger and CFIR-Index exhibit
similar time complexity and outperforms others by several folds [HS19].

5.3.3 CFIR-Index Querying Time

We measured the CFIR-Index search (query) time for by searching subsets of the

dataset E1 against increasing size CFIR-Index sizes constructed by incrementally

adding M-oxidation, CK-gly-gly adducts, and NQ-deamidation. Our results in Fig-

ure 5.9 depict an almost linear relationship between the search speed and the exper-

imental MS/MS data size indicating the constant (slope) search time complexity.

5.3.4 Application in the Database Peptide Search

We measured the performance scalability of the querying time for the CFIR-Index

and the MSFragger to illustrate the application of the CFIR-Index in large-scale

and especially distributed-memory database peptide search algorithms such as the

HiCOPS. To do this, we (multicore) searched a subset of the dataset: E1 against

increasing size databases on a computer equipped 32GB RAM. The results in Fig-

ure 5.10 depicts that the MSFragger depicts a performance loss of about 12% beyond

59

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.1

·105

0

30

60

90

120

150

Number of MS/MS spectra

S
ea
rc
h
T
im

e
(s
)

10.53M
27.15M
51.2M

Figure 5.9: The CFIR-Index search time depicts linear relation with experimental
data size for a given index size (individual color lines) indicating constant time
(slope) complexity [HS19].

the 16 million spectra (requiring out of core processing) whereas the CFIR-Index,

which consumes about half the memory as MSFragger, performs linearly until 32

million spectra.

5.4 Summary

The search speed of a distributed- or shared-memory open-search database peptide

search algorithm such as the HiCOPS, heavily relies on its memory performance

due to the low AI of the algorithms and the data volumes involved. Further, the

minimum number of nodes (or memory resources) required by a distributed-memory

algorithm is also determined by the memory-footprint of the database. The best

existing data structures for the fragment-ion index in database peptide search algo-

rithms require at least 8 bytes per indexed ion resulting in massive index sizes. We

present the CFIR-Index data structure, which exploits the low entropy and sparsity

of the fragment-ion data to encode the positions thereby, improving the memory

60

0 10 20 30 40
0

50

100

150

200

250

300

Index Size (Million Spectra)

S
ea
rc
h
T
im

e
(s
)

MSFragger
CFIR-Index

Figure 5.10: MSFragger shows a performance drop in search time speed beyond 16
million index size mark due to out-of-core computing while the CFIR-Index performs
linearly up to 32 million size on a 32GB RAM computer [HS19].

density to about 4.01 bytes per indexed ion or 2× improvement compared to all

existing data structures.

Further, the asymptotic runtime bounds for the database indexing and querying

(search) speeds remain the same with only O(N) and O(1) extra computations

required for each respective operation. This 2× memory-footprint by the CFIR-

Index is also significant in reducing and optimizing the number of required parallel

nodes (resource utilization optimization) in including HiCOPS by half. Therefore,

running a database peptide search experiment with a database of 1 billion indexed

peptides with CFIR-Index will require about 1TB RAM (or 10 nodes ×100GB)

compared to 2TB RAM (or 20 nodes ×100GB) with the best existing data structure.

61

CHAPTER 6

GICOPS: THE GPU-ACCELERATED HICOPS

In this chapter, we will discuss the algorithms, data pipelines, and optimizations

for GPU-accelerating our HiCOPS framework (introduced in Chapter 3) on het-

erogeneous (CPU-GPU) supercomputing architectures. The new GPU-accelerated

HiCOPS will be called as the GiCOPS framework. We will also discuss the speed

improvements and the GPU throughput exhibited by GiCOPS for database peptide

search.

6.1 Computational Steps in GiCOPS

GiCOPS aims to GPU-accelerate the algorithms in the four supersteps - discussed

in Section 3.1 - of HiCOPS . The supersteps are simply referred to as steps in this

chapter as the developed GPU-accelerated are at the intra-node level. Note that

the developed CPU-GPU methods automatically scale system-wide by the SPMD

parallel design of the underlying HiCOPS. Therefore, GiCOPS strives to GPU-

accelerate and optimize the following four steps:

1. Database Indexing: Simulate the theoretical MS/MS spectra from the peptide

sequences and construct the CFIR-Index [HS19].

2. Preprocessing: Preprocess the experimental MS/MS spectra data.

3. Database Search: Compute the fragment-ion search coupled hyperscore based

database peptide search algorithm

4. Postprocessing: Postprocess the search results and compute the confidence

scores.

62

6.2 The GiCOPS Methods

6.2.1 Notations and Symbols

For consistency, we will use the same symbols and notations defined in the Sec-

tion 3.2.1. Apart from the predefined symbols, we will denote the GPU thread

block size as (ψ), the CPU-GPU communication latency as (ω) and the bandwidth

as (π). Similar to the chapter 3, we will refer the indexed theoretical MS/MS spectra

database as simply the database in this chapter as well.

6.2.2 Runtime Cost Model

We will import the same runtime cost model employed in HiCOPS in Section 3.2.2

for consistency. However, we will drop the per-node (i.e., pi) subscripts as the

GiCOPS methods will be designed and analyzed for single-node case, and extended

system-wide via the pre-established HiCOPS methods (discussed in Chapter 3).

Furthermore, given the CPU-GPU latency ω and bandwidth π, the communication

cost of a one-way transmission of B-bytes data will be given as: O(ω +B/π).

6.2.3 CPU-GPU Pipeline

The CPU-GPU pipeline in GiCOPS consists of a global work queue, a priority queue

and a scheduling thread. The work units (database, experimental data etc.) to be

processed are queued in the global queue either at once in the beginning or through

the data producer sub-tasks. The scheduling thread then schedules the work units

from the global queue to either CPUs or GPU based on their priority and availability

in the priority queue. The priority queue allows fine-tuning the preferred compute

unit for each algorithm or step depending on the workload profile and the nature

63

of the data and computations. For instance, GPUs may be the preferred compute

unit for compute-intensive floating point workload and CPUs may be the preferred

compute unit for memory- or I/O intensive workloads. A schematic of the GiCOPS’s

CPU-GPU pipeline is illustrated in Figure 6.1.

CPU
(1)

GPU
(0)

c c

c c c

parallel cores

priority_queue <std::pair<int, device_t>> pq;

std::thread t_s (wq, pq);

std::mutex<bool> qlock;
conditional_variable<int> cv;

(global variable) std::queue<data_t> wq;

Figure 6.1: The CPU-GPU pipeline in GiCOPS consists of a global work queue, a
priority queue, synchronization intrinsics, and a task scheduling thread.

6.2.4 Step 1: Database Indexing

In this step, GiCOPS generates the theoretical MS/MS spectra data and constructs

the CFIR-Index. In case of HiCOPS, the CPU-side first executes the LBE algorithm

[HAS19] to construct the local peptide sequence sub-databases. In single-node case,

the CPU-side simply reads the peptide sequences, separates by length, for each

instance of the CFIR-Index [HS19], and communicates them to the GPU. The GPU

executes a two-fold parallel data generation kernel where each thread block of size sl

where s is the number of ion-series to generate and l is the peptide sequence length,

generates the corresponding theoretical MS/MS spectrum for each peptide sequence.

Inside each block, each thread operates on a peptide sequence character to compute

64

the respective ion-series using warp and block-wise reduction trees. On completion,

the respective instance of the CFIR-Index is constructed using array-wide stable

sort-by-key, and lowerbound kernels [BH12]. The computed index is communicated

back to the CPU-side. The process repeats until all instances of the CFIR-Index

are computed. Figure 6.2a illustrates the GPU-algorithm and the data pipeline of

this step.

Runtime Cost: The GPU-side runtime cost of this step involves generating

the theoretical MS/MS data in O(D), building the CFIR-Index in O(D logD) plus

computing the CFIR-Index’s lower-bound array (i.e., Ω′′) in time O(a log a) where

a is the (discretized) maximum ion mass in CFIR-Index. Finally, the overhead cost

of communicating the CFIR-Index back to the CPU is given by O(ω +D/π) as:

T1 = k1,1(D) + k1,2(D logD) + k1,3(a log(a)) + k1,4(ω +D/π) (6.1)

6.2.5 Step 2: Experimental Data Preprocessing

In this step, GiCOPS, similar to HiCOPS, preprocesses the experimental MS/MS

data and writes it back to the file system for subsequent runs. The CPU side reads

the experimental MS/MS data in batches, indexes them and streams to the GPU.

The GPU side globally preprocesses each batch using the Sorted Tag Approach

(STA) [AS16] for better scalability. The preprocessing involves extracting top-K

(K=100 or 150) data points by intensity from each experimental MS/MS spectrum

similar to [KLA+17] and [HDDA21]. In the STA, all spectra in a batch are first

concatenated in super-vector Q. Another vector, called tag-array T is also initialized

where T [i] = j where j is the spectrum number of each data point in the super-

vectorQ to preserve the spectrum positions inQ. Then, the stable-sort-by-key kernel

[BH12] is applied to Q and T twice, first using Q as key and T as value and then

65

1 1 2 2 3 3

0

Preprocessing kernel on
CPU in parallel

2 3

GPUCPU
CPU
→

GPU
1 1 1 1 2 2 2 3 3 3

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

GPU
←

CPU

Preprocessed
Experimental

Spectra

Raw experimental MS/MS Spectra

1 thread block /
spectrum

raw intensity
raw m/zs

tags

key-value sort data
by intensity

key-value sort data
by tags

filter top-K (last K)
peaks from each

spectrum

b

M G F V K V

M G F V K V | M G F V K V

MGFVKV

VKNKAYF

KRYQVKF

Indexing kernel on
CPU in parallel

write to global
memory

scale and write fragment-ion data

b-ions y-ions

multi-level prefixSum - f[l]

1 thread block /
peptide

GPUCPU

key-value sort +
exclusive_scan()

CPU
→

GPU

GPU
←

CPU

MGFVKV
VKNKAYF
KRYVKF

Indexed Theoretical
Spectra Database

add protons +
scale by charge

Peptide
sequence
database

a

Figure 6.2: (a) CPU side communicates the peptide sequences to the GPU where
the theoretical MS/MS spectra are simulated, indexed and communicated back to
the CPU. (b) CPU side streams the experimental MS/MS spectra to the GPU
where they are processed using the supplied algorithm and streamed back to the
CPU.

using T as key and Q as value. The final result of this is that each spectrum q ∈ Q

is sorted and is extracted back from Q using T using another two-fold parallel GPU

kernel. Figure 6.2b illustrates the GPU-algorithm and the data pipeline of this step.

Figure 6.3 illustrates an example of the STA approach.

Runtime Cost: We will skip the GPU-side analysis for this step as it does

not significantly contribute to the overall GiCOPS’s execution. This is because the

CPU-GPU pipeline naturally assigns almost all work units in this step to the CPU

66

side due to its memory-intensive nature. Further, the experimental MS/MS data

are pre-processed only once and written to the disk to be used in the subsequent

runs.

A = {{3, 2}, {5, 7, 6}, {8, 6, 3, 0}}
T = { 1, 1, 2, 2, 2 , 3, 3, 3, 3 }

Arrays (ai) and Tag-Array (T)

A = {0, 2, 3, 3, 5, 6, 6, 7, 8}
T = {3, 1, 1, 3, 2, 2, 3, 2, 3}

flatten and stable_sort_by key(A, T)

A = {2, 3, 5, 6, 7, 0, 3, 6, 8}
T = {1, 1, 2, 2, 2, 3, 3, 3, 3}

stable_sort_by key(T, A)

A' ={{2, 3}, {5, 6, 7}, {0, 3, 6, 8}}
Unflatten A' to a'i

Figure 6.3: Illustration of the STA algorithm using example arrays A and T .

6.2.6 Step 3: Database Peptide Search

In this step, GiCOPS searches the batches of experimental MS/MS spectra data

against the indexed (CFIR-Index). The CPU side reads the batches of (prepro-

cessed) experimental MS/MS spectra and streams them to the GPU. The CFIR-

Index index is also pre-communicated to the GPU. The GPU side them searches

each batch against the CFIR-Index in a two-fold parallel model where each thread

block searches an experimental spectrum against the CFIR-Index. The number of

threads per block vary depending on the search mode. i.e., more threads per block

67

for open-search and vice versa. Multi-step CUDA warp-shuffle based ψ-ary reduc-

tion loops/trees [HDDA21] are employed to optimize the shared and global memory

usage as well as to alleviate race conditions without using atomics, but at an addi-

tional log(ψ) cycles per 1 data-parallel (ψ) memory updates. The generic pattern

of the optimized two-step ψ-ary reduction kernels in GiCOPS is illustrated in Al-

gorithm 4. The database peptide search results are communicated to the CPU for

the underlying HiCOPS framework to communicate and assemble across the parallel

nodes. In case of single node GiCOPS application, these results are not communi-

cated to the CPU at this step and are directly used to execute the fourth (result

postprocessing) step and only the final postprocessed results are communicated to

the GPU as shown in Figure 6.4. Figure 6.4 illustrates the GPU-algorithm and the

data pipeline of this step. This process repeats for all batches of the experimental

MS/MS spectra.

Runtime Cost: The GPU-side runtime cost of this step involves the commu-

nication costs of the CFIR-Index and b batches of experimental data in runtime:

O(bω + (Q + D)/π), the cost of database filtering by peptide precursor mass in

runtime: O(q log(D)) + O(qηα log(ψ)) + O(qµ log(ψ)) + O(qυ/ψ) where α is the

average fragment-ion matches per experimental fragment, µ is the average database

peptide candidates per experimental spectrum and υ is the average number of col-

lisions per atomic null distribution (histogram) construction. Finally, in multi-node

case, the communication of communicating intermediate results for q spectra is

O(bω + 2048q/π). Collectively, the cost of this step can be written as:

T3 = k3,1(bω + (Q+D)/π) + k3,2(q log(D)) + k3,3(qηα log(ψ))+

k3,4(qµ log(ψ)) + k3,5(qυ/ψ) + k3,6(bω + 2048q/π)

(6.2)

68

Algorithm 4: Warp-Shuffle based Reduction kernels

Data: thread-local variable (vl), commutative and associative reduction
operation (⊗), conditions cond1,cond2

Result: reduced global variable vg
/* currently reduced values in vl */

/* compute the thread mask */

1 mask ← ballot sync(activemask(), cond1);
/* reduce intra-warp */

2 for off ∈ warpSize/2, · · · , 1 do
3 tmp← shfl down sync(mask, vl, off);
4 if cond2 then
5 vl ← vl ⊗ tmp;

6 shared vals[32];
/* The laneId = 0 threads now have the reduced value of their warps

*/

7 if laneId = 0 then
8 vals[warpId]← vl;

/* read from vals and reduce the first warp only */

9 if warpId = 0 then
10 vl ← vals[laneId];

/* update thread mask */

11 mask ← ballot sync(activemask(), warpId = 0);
12 for off ∈ warpSize/2, · · · , 1 do
13 tmp← shfl down sync(mask, vl, off);
14 if cond2 then
15 vl ← vl ⊗ tmp;

/* tid = 0 will have the reduced value, broadcast */

16 if tid = 0 then
17 vals[0]← vl;

/* read and return the reduced value in vg */

18 return vg ← vals[0];

69

Search kernel on CPU
in parallel

shared
peak counts

Preprocessed
Experimental Spectra

CPU
→

GPU

CPU

CFIR-Index
database

map(p,i) =
qi * i

compute
scores

hyperscores

 reduce and
accumulate

compute
confidence

scores

race free
updates

GPU
←

CPU

final scores +
expected value

e-value

atomically build
frequency
histogram

(argmin, argmax) +
savgol + linear

regression

stream
CPU
→

GPU

compute
database

filters
Fl, Fu

parallel fragment-ion search

one thread
block per
spectrum

0

metadata

0

GPU
CFIR-Index
database

Figure 6.4: CPU side communicates the entire CFIR-Index and streams the prepro-
cessed experimental spectra to the GPU, where they are searched using fragment-ion
search method. The computed results are then post-processed before being commu-
nicated to the CPU. Multi-tier reduction trees are used to optimize each sub-kernel
in these steps. In case of multi-node application, the intermediate results are as-
sembled across the system by HiCOPS before post-processing.

6.2.7 Step 4: Results Postprocessing

In this step, GiCOPS postprocesses the results computed in the last step. The

CPU-GPU pipeline of this step depends on the GiCOPS (parallel) application. In

case of multi-node application, the partial or intermediate results at each node are

first assembled into global results at the CPU side by HiCOPS as explained in

Section 3.2.6. In case of single node, the results from the last step are directly

used in this step as shown in Figure 6.4 (last steps). The GPU side computes the

required confidence scores using optimized data parallel vector and reduction kernels

implementing regressions and curve fitting algorithms. The final results from this

70

step are communicated to the CPU side and written to the file system (single-node

application) or communicated to other nodes (multi-node application).

Runtime Cost: We will skip the GPU-side analysis for this step as it does

not significantly contribute to the overall GiCOPS’s execution. This is because the

GPU kernels employed in this step are highly optimized for the SIMT architectures

and also contribute less than 1% execution time in most real world application.

6.3 Performance Analysis

GiCOPS’s GPU performance can be modeled by analyzing the performance of its

steps.

TG = T1 + T3

Inserting Equations 6.1 and 6.2 in above equation, we have:

TG = k1,1(D) + k1,2(D logD) + k1,3(a log(a)) + k1,4(ω +D/π)+

k3,1(bω + (Q+D)/π) + k3,2(q log(D)) + k3,3(qηα log(ψ))+

k3,4(qµ log(ψ)) + k3,6(bω + 2048q/π)

(6.3)

Splitting the Equation 6.3 into computational (TP) and overhead (TO) parts, we

have.

TP = k1,1(D) + k1,2(D logD) + k1,3(a log(a)) + k3,2(q log(D))+

k3,3(qηα log(ψ)) + k3,4(qµ log(ψ))

(6.4)

and

TO = k1,4(ω +D/π) + k3,1(bω + (Q+D)/π)+

k3,5(qυ/ψ) + k3,6(bω + 2048q/π)

(6.5)

From equations 6.4 and 6.5, it can be seen that increasing the database (D)

or the experimental dataset size Q = qη size directly positively affects the TP .

71

However, the dominant quadratic factor that controls the amount of many-to-many

search operations are controlled by the peptide (δM) and fragment-ion (δF) mass

tolerances, seen as α and µ in Equation 6.4. Note that for small α and µ, the

TP diminishes to only the T1 factors even with large D and Q, and the TO may

dominate the overall performance. Also notice that the database indexing T1 is

relatively unaffected by other factors and the GPU provides a decent speedup over

CPU-only code even for small D.

6.4 Optimizations

In the following sub-sections, we will discuss the optimizations employed in GiCOPS

to maximize the GPU throughput given by Equation 6.4.

6.4.1 Race Conditions in Fragment-Ion Search

The fragment-ion matches encountered in the data-parallel database search by GPU

threads are written to a scorecard to be processed to compute the hyperscores later

on. However, doing so may result in race conditions if multiple threads simulta-

neously try to update (fetch, update, write) the same scorecard entry. A simple

solution could be to employ atomic intrinsics, which would severely hurt the per-

formance in case of (unpredictable) considerable number of collisions. Therefore, to

avoid this, GiCOPS implements a race condition and atomics free algorithm involv-

ing two main steps. The first step involves ensuring that the sorting algorithms in

CFIR-Index are stable allowing natural clustering of the (colliding) GPU threads

which are to write to the same scorecard location. Then, a warp-shuffle based two-

step reduction is employed reducing these clusters in O(log(ψ)) cost before writing

to the scorecard.

72

6.4.2 Performance Tuning

We used the Nvidia Nsight Compute (NCU) software to profile the database peptide

search kernel and fine tune several hyperparameters including the GPU thread grid

size, shared memory usage, reduce bank faults, optimize register usage and improve

the thread occupancy resulting in an additional 25% improvement in performance

(incorporated in the reported results), speed of light performance (12.1% compute

and 80.06% memory), occupancy factor (80% theoretical max), active blocks (79.6%

theoretical max), and the shared memory bank conflicts (< 0.1% transactions).

6.4.3 Compile-Time Computations

Billions of hyperscore computations are performed in database peptide search ex-

periments. The hyperscore between a pair of spectra ν and ξ with the number of

shared b- and y-ions nb and ny respectively with corresponding intensities ib,j and

iy,j from Equation 5.3 is rewritten as:

hyperscore(ν, ξ) = log(nb!) + log(ny!) + log(

nb∑
j=1

ib,j) + log(

ny∑
k=1

iy,k)

Notice that the first two terms in the above equation compute log of factorial of

nb and ny, which can be precomputed at compile time and reused to avoid billions of

O(n!) time computations. To do this, we compute a C++ constexpr data structure

using dynamic programming memoizing: log(n!) = log(n)+log((n−1)!). This array

is communicated to the GPU constant memory to be used at the GPU side as well.

6.5 Results

We employed the database D1 and the five custom datasets E1 to E5 from HiCOPS

experimentation to measure evaluate GiCOPS as well. We also used the same

73

experimental and data processing settings described in the Section 3.5.1.

Runtime Environment: All experiments were run on the Dragon scientific

computing cluster at the Florida International University (FIU). The cluster consists

of 6 compute nodes, each powered by 2 × Intel Xeon Gold 5215 (10 cores each), 2

× NVIDIA RTX A6000 GPU (84 SMs, 48GB DRAM), 2 NUMA nodes × 128GB

DRAM, 3TB SSD local scratch space. The compute nodes are interconnected with

each other and the storage nodes (18TB) via a 10Gbps Ethernet interconnect.

6.5.1 Correctness Analysis

We measured the correctness of GiCOPS by directly comparing its computed results

(identified peptides and the scores) against HiCOPS for single- and multi-node runs.

For this, we searched all five datasets against various increasing size databases in

both open and closed search modes. The computed scores were directly one-to-

one compared against the ones computed by HiCOPS. Figures 6.5a and 6.5b show a

comparison of scores (100 samples out of 208K) computed by HiCOPS and GiCOPS

from searching the dataset: E1 against D1 modified with methionine oxidation as

PTM in both search modes (overlayed and duplicates removed).

Figures 6.5a and 6.5b depict that both GiCOPS and HiCOPS computes consis-

tent and correct results irrespective of the degree of parallelism. We also observed

a small number (≥0.05%) of discrepancies in the GiCOPS’s computed scores across

runs. We investigated this and found that this was due to the order of the reduction

loops and floating point precision errors. We fixed the first problem by modifying

the reduction loop to prefer the peptides with lower index in reduction and slightly

widening the δM boundaries in the GiCOPS experiments.

74

6 8 10 12 14

hyperscore (HiCOPS)

6

8

10

12

14

hy
pe

rs
co

re
 (

G
iC

O
P

S
)

0 1 2 3 4 5 6 7

e-values (HiCOPS)

0

1

2

3

4

5

6

7

e-
va

lu
es

 (
G

iC
O

P
S

)

b

a

100 random samples
shown

100 random samples
shown

Figure 6.5: GiCOPS computes correct and consistent results for >99.5% samples as
compared to HiCOPS across several experiments.

6.5.2 Speed Comparison Against HiCOPS

We measured the GiCOPS speed improvement against HiCOPS (its CPU-only ver-

sion), by searching all five datasets against increasing size databases in both search

modes. Our experimental results in Figures 6.6a to 6.6c show that the GiCOPS’s

speeds (labeled as go and gc for open and closed search respectively) over HiCOPS

(labeled as ho and hc for open and closed search respectively) depends on the dataset

and database sizes and the search setting. It can be seen that the GiCOPS outper-

forms HiCOPS by 4-5 × in open-search and 1-2 × in closed-search setting. This

reduction in speedup stems from the reduced computation-to-computation ratio in

75

GiCOPS from ∼85% to ∼50% in the database search step as shown in Figure 6.6d.

Step by step speed analysis of GiCOPS shown in Figures 6.6e and 6.6f depicts that

GiCOPS exhibits speed improvement for step 1 in all experiments while no speedup

for step 2. Figures 6.6g and 6.6h show a similar trend in GiCOPS’s speedup in

multi-node application as the single-node case (in Figures 6.6a to 6.6c) relative to

the compute workload per node.

6.5.3 Speed Comparison Against Existing Algorithms

We attempted to measure the GiCOPS speed improvement against several exist-

ing GPU based database peptide search software. These software include, Tempest

[MFG12], Tide-for-PTM-search [KHUP18], GPUScorer [LXCC14], ProteinByGPU

[LCXC14], MIC-Tandem [LLLL19], and PaSER [Bru23]. Unfortunately, we could

only do so for Tide-for-PTM-search, referred to as GPU-Tide in the rest of the

chapter, as the other software were either outdated, unavailable, incompatible, un-

usable, proprietary or faulty. To do this, we searched all five datasets, expect E3

as it crashed for GPU-Tide, using GiCOPS, GPU-Tide, HiCOPS and MSFragger

in closed and open-search modes. The open search setting was limited to δM =

100Da due to the δM limit in GPU-Tide. In the first experiment, the datasets were

searched against D1 with M-oxidation (size: 3.89 million) as PTM. The experimen-

tal results depict that all tools outperform GPU-Tide by > 100× in open search

(Figure 6.7a) and > 50× in closed search mode (Figure 6.7b). In the second experi-

ment, the datasets were searched against D1 with M-oxidation and NQ-deamidation

as PTMs (size: 10.3 million). Similar results are seen for both the open (Figure 6.7c)

and closed search (Figure 6.7d) modes.

76

3.86 10.3 38.5 62.6 120.9
Database size (GB)

0

50

100

150

200

250

300

tim
e

(s
)

CPU

GPU

E1 E2 E3 E4 E5
Expt. MS Dataset

0

20

40

60

80

100

120
tim

e
(s

)
CPU

CPU+GPU

a b

c

e

g h

d

f

E1 E2 E3 E4 E5
Expt. MS Dataset

10
2

10
3

10
4

tim
e

(s
)

ho
go
hc
gc

Database size = 49 million

E1 E2 E3 E4 E5
Expt. MS Dataset

10
2

10
3

10
4

tim
e

(s
)

ho
go
hc
gc

Database size = 38.5 million

E1 E2 E3 E4 E5
Expt. MS Dataset

10
1

10
0

a
vg

.
b

a
tc

h
 t

im
e

 (
s)

comm

kernel
Database size = 38.5 million

E1 E2 E3 E4 E5
Expt. MS Dataset

10
2

10
3

10
4

tim
e

(s
)

ho
go
hc
gc

Database size = 16.7 million

1 2 3 4 6
Number of parallel nodes

2
5

2
6

2
7

2
8

2
9

2
10

tim
e

(s
)

ho
go
hc
gc

2 3 4 6
Number of parallel nodes

2
6

2
7

2
8

2
9

tim
e

(s
)

ho
go
hc
gc

DB size = 49 million
Dset size = 305,000
open (δM) = 500 Da

DB size = 98 million
Dset size = 305,000
open (δM) = 200 Da

Figure 6.6: (a to c) GiCOPS depicts about 4-5× and 1-2× speedup over HiCOPS
in open- and closed search modes respectively. (d) The reduced speedup in closed-
search mode is due to the lower compute to communication ratio. (e, f) GiCOPS
shows speedup in step 1 for all experiments and almost no speedup in step 2. (g,
h) Similar speedup results are seen for multi-node GiCOPS vs HiCOPS case with
respect to compute load per node as single-node case in (a to c).

77

E1 E2 E4 E5
Expt. MS Dataset

10
2

10
3

10
4

10
5

10
6

tim
e(

s)

GPU-Tide

MSFragger

HiCOPS

GiCOPS

E1 E2 E4 E5
Expt. MS Dataset

10
2

10
3

10
4

10
5

tim
e(

s)

GPU-Tide

MSFragger

HiCOPS

GiCOPS

a

c

b

d
E1 E2 E4 E5

Expt. MS Dataset

10
2

10
3

10
4

10
5

tim
e(

s)

GPU-Tide

MSFragger

HiCOPS

GiCOPS

E1 E2 E4 E5
Expt. MS Dataset

10
2

10
3

10
4

tim
e(

s)

GPU-Tide

MSFragger

HiCOPS

GiCOPS

Figure 6.7: GiCOPS and other CPU-only database peptide search tools outperform
GPU-Tide by > 100× in open search (a, c) and by > 50× in closed search (b, d)
mode.

6.5.4 Performance Evaluation

We measured the GPU throughput of GiCOPS using the Instruction Roofline Model

[DW19]. The Instruction Roofline Model, like the traditional Roofline Model [WWP09]

is an intuitive model to visualize the performance for non-floating-point kernels.

For our case, we profiled and rooflined the database peptide search kernel as it

contributes more than 85% of the compute time in sufficiently large experiments.

We measured our GPU’s (NVIDIA RTX A6000) maximum throughputs using the

Empirical Roofline Toolkit (ERT) [LWS+14] and then plotted the database peptide

kernel’s performance by searching a batch 10000 experimental MS spectra against

the Homo sapiens database incorporating M-oxidation, NQ-deamidation, and STY-

phosphorylation as PTMs (size: 36 Million) in open- and closed-search modes.

The Roofline results in Figure 6.8a depicts that the GiCOPS achieves a through-

78

put of 143.608 warp Giga Instructions per second (warp GIPS) in open-search

(shown as squares) and 64.642 warp GIPS in closed-search mode (shown as dia-

monds). The achieved throughputs correspond to 48% and 21.5% of theoretical

integer instruction peak on the NVIDIA RTX A6000 GPU. Figure 6.8a also shows

that the effect of branch divergence is minimum in GiCOPS as well as the DRAM

performance is between stride-1 and stride-8 due to the heavy usage of the scorecard

data structure (12 bytes). Figure 6.8b depicts a nearly bank-conflict-free shared-

memory performance of GiCOPS’s database search for open- (square) and closed-

search (diamond) modes.

10 4 10 2 100 102 104 106

Instruction Intensity (Warp Instructions per Transaction)

10 2

10 1

100

101

102

103

P
er

fo
rm

an
ce

 (
w

ar
p

G
IP

S
)

L1 (tot_inst)

DRAM (tot_inst)

Global (ldst)

DBSearch (open)

DBSearch (closed)

st
rid

e-
0

st
rid

e-
1

st
rid

e-
8

Theoretical Peak: 604.8 warp GIPS

L1
: 1

17
.9

GTXN/s

DRAM: 2
1.8

1 GTXN/s

b

10 2 100 102 104 106

Instruction Intensity (Warp Instructions per Transaction)

10 1

100

101

102

103

P
er

fo
rm

an
ce

 (
w

ar
p

G
IP

S
)

Shared (ldst_inst)

DBSearch (open)

DBSearch (closed)

32
-w

ay
 c

on
fli

ct

N
o

b
an

k
co

n
fl
ic

t

Theoretical Peak: 604.8 warp GIPS

Sh
ar

ed
: 2

9.
47

 G
TX

N/
s

a

Figure 6.8: (a) GiCOPS exhibits a throughput of 143.6 and 64.6 warp GIPS in
open- (squares) and closed- (diamonds) search modes corresponding to the 48% and
21.5% of the theoretical integer peak throughput respectively. (b) Shared memory
performance of GiCOPS depicts almost no bank faults indicating near-ideal usage.

79

6.6 Summary

Existing GPU-accelerated database peptide search algorithms are based on closed-

search (index-free) algorithms and are outperformed by > 100× newer indexing-

based CPU-only algorithms with only a few cores especially for the open-search

application. This renders their application in the application domain almost neg-

ligible. We present a new-age GPU-accelerated framework or algorithms and op-

timizations, called GiCOPS, to efficiently accelerate the database peptide search

algorithms. Our experiments show that the GiCOPS provides a speed improvement

of 4-5× for open-search application compared to its CPU-only predecessor, HiCOPS,

as well as over 100× compared to GPU-Tide, the only existing (open-source) us-

able GPU-accelerated database peptide search software. Our comprehensive per-

formance evaluation reveals that the GiCOPS provides an average throughput of

143.6 warp GIPS in open-search experiments corresponding to a 95% theoretical

maximum integer-instruction throughput on a NVIDIA RTX A6000 GPU. We also

discuss the application of the presented algorithms, GPU kernels and optimizations

in GiCOPS to build and GPU-accelerate existing and new database peptide search

algorithms.

80

CHAPTER 7

CURRENT AND FUTURE WORK

In this chapter, we will discuss our accomplishments in high performance com-

puting (HPC) for accelerated peptide identification in large-scale systems biology

application. We will also discuss the current and future aspects of the research work

in this domain.

To date, most research works on database peptide search have focused on im-

proving its accuracy and consistency. While there have been significant algorith-

mic advancements, the computational efficiency of these state-of-the-art algorithms

has barely improved. This is primarily because the designed algorithms are imple-

mented for either serial or multicore computers. While multicore computing scales

well for purely numerical algorithms, the complex computations, graph traversals,

dynamic programming algorithms employed in modern day database peptide search

algorithms render them unscalable (strong-scale efficiency less than 50%) on the

shared-memory architectures. This is primarily because the performance gap be-

tween the CPU and memory throughputs in the post-Moore computers is significant

and is increasing, making data patterns and memory accesses the system bottleneck

[SHI22].

Our research work targets this problem by employing distributed-memory and

GPU-accelerated supercomputers to alleviate these bottlenecks by implementing

novel compute and memory-optimal parallelization methods, optimizations, and

data pipelines, which synergistically efficiently accelerate the database peptide search

workflows on top-500 supercomputers providing more 10× speedup over the existing

infrastructure. The algorithms and optimizations implemented in our HiCOPS and

GiCOPS frameworks are designed to be algorithm-oblivious, meaning they can be

integrated and extended to accelerate many new and existing algorithms.

81

Recent advances in machine and deep learning (ML/DL) algorithms for database

peptide search have demonstrated modest gains in peptide identification accuracy as

well as consistent validation. These ML/DL algorithms include SpeCollate [TS21],

yHydra [AMR21], AlphaPeptDeep [ZZW+22], Prosit [GSZ+19]. While these im-

provements in peptide discovery are significant, these ML/DL algorithms pose even

more complex computational profiles and demand astronomical resources to train

and deploy their neural networks. On the other hand, recent advances in comput-

ing infrastructure including cloud computing, unified memory architectures, Tensor

Computing Units (TPUs), Field Programmable Gate Arrays (FPGAs) and Applica-

tion Specific Integrated Circuits (ASICs) demonstrate impressive accelerations for

neural networks. Therefore, there is an urgent need for the development and ex-

pansion of the HPC methods discussed in this dissertation to efficiently harness the

new architectures to meet the demands of ML/DL algorithms for database peptide

search.

The ultimate (future) goal of this dissertation work is the development, expan-

sion and integration of the HPC and ML/DL methods for database peptide search

algorithms in a way that HPC harnesses the modern supercomputers to train and

ML/DL methods for accurate and consistent peptide identifications as well as the ap-

plication of machine and deep learning in recognizing the compute, data and control

flow patterns aiding HPC methods to better harness the computational resources

at hand.

82

BIBLIOGRAPHY

[ABD+08] Krste Asanovic, Ras Bodik, James Demmel, Tony Keaveny, Kurt
Keutzer, John D Kubiatowicz, Edward A Lee, Nelson Morgan, George
Necula, David A Patterson, et al. The parallel computing laboratory
at uc berkeley: A research agenda based on the berkeley view. EECS
Department, University of California, Berkeley, Tech. Rep, 2008.

[AMR21] Tom Altenburg, Thilo Muth, and Bernhard Y Renard. yhydra: Deep
learning enables an ultra fast open search by jointly embedding ms/ms
spectra and peptides of mass spectrometry-based proteomics. bioRxiv,
pages 2021–12, 2021.

[AS16] Muaaz Gul Awan and Fahad Saeed. Ms-reduce: An ultrafast tech-
nique for reduction of big mass spectrometry data for high-throughput
processing. Bioinformatics, 32(10):1518–1526, 2016.

[BCC+07] Robert D Bjornson, Nicholas J Carriero, Christopher Colangelo, Mark
Shifman, Kei-Hoi Cheung, Perry L Miller, and Kenneth Williams. X!!
tandem, an improved method for running x! tandem in parallel on col-
lections of commodity computers. The Journal of Proteome Research,
7(1):293–299, 2007.

[BG08] Aydin Buluc and John R Gilbert. On the representation and multipli-
cation of hypersparse matrices. In 2008 IEEE International Symposium
on Parallel and Distributed Processing, pages 1–11. IEEE, 2008.

[BH12] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented
library for cuda. In GPU computing gems Jade edition, pages 359–371.
Elsevier, 2012.

[BLY+18] Doruk Beyter, Miin S Lin, Yanbao Yu, Rembert Pieper, and Vineet
Bafna. Proteostorm: An ultrafast metaproteomics database search
framework. Cell systems, 7(4):463–467, 2018.

[BMNL18] Wout Bittremieux, Pieter Meysman, William Stafford Noble, and Kris
Laukens. Fast open modification spectral library searching through
approximate nearest neighbor indexing. Journal of proteome research,
17(10):3463–3474, 2018.

[Bru23] Bruker. Run & done with paser, 2023.

83

[CB03] Robertson Craig and Ronald C Beavis. A method for reducing the
time required to match protein sequences with tandem mass spectra.
Rapid communications in mass spectrometry, 17(20):2310–2316, 2003.

[CB04] Robertson Craig and Ronald C Beavis. Tandem: matching proteins
with tandem mass spectra. Bioinformatics, 20(9):1466–1467, 2004.

[CHY+15] Hao Chi, Kun He, Bing Yang, Zhen Chen, Rui-Xiang Sun, Sheng-Bo
Fan, Kun Zhang, Chao Liu, Zuo-Fei Yuan, Quan-Hui Wang, et al.
pfind–alioth: A novel unrestricted database search algorithm to im-
prove the interpretation of high-resolution ms/ms data. Journal of
proteomics, 125:89–97, 2015.

[CKN+15] Joel M Chick, Deepak Kolippakkam, David P Nusinow, Bo Zhai,
Ramin Rad, Edward L Huttlin, and Steven P Gygi. A mass-tolerant
database search identifies a large proportion of unassigned spectra
in shotgun proteomics as modified peptides. Nature biotechnology,
33(7):743, 2015.

[CLY+18] Hao Chi, Chao Liu, Hao Yang, Wen-Feng Zeng, Long Wu, Wen-Jing
Zhou, Xiu-Nan Niu, Yue-He Ding, Yao Zhang, Rui-Min Wang, et al.
Open-pfind enables precise, comprehensive and rapid peptide identifi-
cation in shotgun proteomics. bioRxiv, page 285395, 2018.

[CM08] Jürgen Cox and Matthias Mann. Maxquant enables high pep-
tide identification rates, individualized ppb-range mass accuracies
and proteome-wide protein quantification. Nature biotechnology,
26(12):1367–1372, 2008.

[CNM+11] Jurgen Cox, Nadin Neuhauser, Annette Michalski, Richard A Schel-
tema, Jesper V Olsen, and Matthias Mann. Andromeda: a peptide
search engine integrated into the maxquant environment. Journal of
proteome research, 10(4):1794–1805, 2011.

[CZS+18] Li Chen, Bai Zhang, Michael Schnaubelt, Punit Shah, Paul Aiyetan,
Daniel Chan, Hui Zhang, and Zhen Zhang. Ms-pycloud: An open-
source, cloud computing-based pipeline for lc-ms/ms data analysis.
bioRxiv, page 320887, 2018.

[DCL05] Dexter T Duncan, Robertson Craig, and Andrew J Link. Parallel tan-
dem: a program for parallel processing of tandem mass spectra using

84

pvm or mpi and x! tandem. Journal of proteome research, 4(5):1842–
1847, 2005.

[DLZ+19] Arun Devabhaktuni, Sarah Lin, Lichao Zhang, Kavya Swaminathan,
Carlos G Gonzalez, Niclas Olsson, Samuel M Pearlman, Keith Raw-
son, and Joshua E Elias. Taggraph reveals vast protein modification
landscapes from large tandem mass spectrometry datasets. Nature
biotechnology, page 1, 2019.

[DM13] Sven Degroeve and Lennart Martens. Ms2pip: a tool for ms/ms peak
intensity prediction. Bioinformatics, 29(24):3199–3203, 2013.

[DRP+19] Yamei Deng, Zhe Ren, Qingfei Pan, Da Qi, Bo Wen, Yan Ren, Huan-
ming Yang, Lin Wu, Fei Chen, and Siqi Liu. pclean: an algorithm to
preprocess high-resolution tandem mass spectra for database searching.
Journal of proteome research, 18(9):3235–3244, 2019.

[DSPW09] Jiarui Ding, Jinhong Shi, Guy G Poirier, and Fang-Xiang Wu. A
novel approach to denoising ion trap tandem mass spectra. Proteome
Science, 7(1):9, 2009.

[DW19] Nan Ding and Samuel Williams. An instruction roofline model for
gpus. In 2019 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS), pages
7–18, 2019.

[EJH13] Jimmy K Eng, Tahmina A Jahan, and Michael R Hoopmann. Comet:
an open-source ms/ms sequence database search tool. Proteomics,
13(1):22–24, 2013.

[EMY94] Jimmy K Eng, Ashley L McCormack, and John R Yates. An approach
to correlate tandem mass spectral data of peptides with amino acid
sequences in a protein database. Journal of the American Society for
Mass Spectrometry, 5(11):976–989, 1994.

[FB03] David Fenyö and Ronald C Beavis. A method for assessing the sta-
tistical significance of mass spectrometry-based protein identifications
using general scoring schemes. Analytical chemistry, 75(4):768–774,
2003.

[GMK+04] Lewis Y Geer, Sanford P Markey, Jeffrey A Kowalak, Lukas Wagner,
Ming Xu, DawnMMaynard, Xiaoyu Yang, Wenyao Shi, and Stephen H

85

Bryant. Open mass spectrometry search algorithm. Journal of pro-
teome research, 3(5):958–964, 2004.

[GSG+22] Siegfried Gessulat, Tobias Schmidt, Michael Graber, Samia Ben
Fredj, Lizi Mamisashvili, Patroklos Samaras, Florian Seefried, Magnus
Rathke-Kuhnert, Daniel P Zolg, and Martin Frejno. An end-to-end
machine learning workflow for ms-based proteomics. In International
Mass Spectrometry Conference (IMSC), 2022.

[GSZ+19] Siegfried Gessulat, Tobias Schmidt, Daniel Paul Zolg, Patroklos Sama-
ras, Karsten Schnatbaum, Johannes Zerweck, Tobias Knaute, Julia
Rechenberger, Bernard Delanghe, Andreas Huhmer, et al. Prosit:
proteome-wide prediction of peptide tandem mass spectra by deep
learning. Nature methods, 16(6):509–518, 2019.

[HAS19] Muhammad Haseeb, Fatima Afzali, and Fahad Saeed. Lbe: A com-
putational load balancing algorithm for speeding up parallel peptide
search in mass-spectrometry based proteomics. In 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 191–198. IEEE, 2019.

[HDDA21] Muhammad Haseeb, Nan Ding, Jack Deslippe, and Muaaz Awan. Eval-
uating performance and portability of a core bioinformatics kernel on
multiple vendor gpus. In 2021 International Workshop on Perfor-
mance, Portability and Productivity in HPC (P3HPC), pages 68–78.
IEEE, 2021.

[HL15] Pinjie He and Kenli Li. Mic-tandem: parallel x! tandem using mic
on tandem mass spectrometry based proteomics data. In 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pages 717–720. IEEE, 2015.

[HRB+14] Alexander S Hebert, Alicia L Richards, Derek J Bailey, Arne Ulbrich,
Emma E Coughlin, Michael S Westphall, and Joshua J Coon. The one
hour yeast proteome. Molecular & Cellular Proteomics, 13(1):339–347,
2014.

[HS19] Muhammad Haseeb and Fahad Saeed. Efficient shared peak counting
in database peptide search using compact data structure for fragment-
ion index. In 2019 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 275–278. IEEE, 2019.

86

[HS21] Muhammad Haseeb and Fahad Saeed. High performance computing
framework for tera-scale database search of mass spectrometry data.
Nature Computational Science, 1(8):550–561, 2021.

[KBC+18] Patricia Kaiser, Maya Bode, Astrid Cornils, Wilhelm Hagen, Pe-
dro Mart́ınez Arbizu, Holger Auel, and Silke Laakmann. High-
resolution community analysis of deep-sea copepods using maldi-tof
protein fingerprinting. Deep Sea Research Part I: Oceanographic Re-
search Papers, 138:122–130, 2018.

[KHUP18] Hyunwoo Kim, Sunggeun Han, Jung-Ho Um, and Kyongseok Park.
Accelerating a cross-correlation score function to search modifications
using a single gpu. BMC bioinformatics, 19(1):1–5, 2018.

[KKCB09] Gaurav Kulkarni, Ananth Kalyanaraman, William R Cannon, and
Douglas Baxter. A scalable parallel approach for peptide identifica-
tion from large-scale mass spectrometry data. In 2009 International
Conference on Parallel Processing Workshops, pages 423–430. IEEE,
2009.

[KLA+17] Andy T Kong, Felipe V Leprevost, Dmitry M Avtonomov, Datta-
treya Mellacheruvu, and Alexey I Nesvizhskii. Msfragger: ultrafast
and comprehensive peptide identification in mass spectrometry–based
proteomics. Nature methods, 14(5):513, 2017.

[KP14] Sangtae Kim and Pavel A Pevzner. Ms-gf+ makes progress towards a
universal database search tool for proteomics. Nature communications,
5:5277, 2014.

[LA10] Henry Lam and Ruedi Aebersold. Spectral library searching for peptide
identification via tandem ms. In Proteome Bioinformatics, pages 95–
103. Springer, 2010.

[LaV03] Joseph J LaViola. Double exponential smoothing: an alternative to
kalman filter-based predictive tracking. In Proceedings of the workshop
on Virtual environments 2003, pages 199–206, 2003.

[LC12] You Li and Xiaowen Chu. Speeding up scoring module of mass spec-
trometry based protein identification by gpu. In 2012 IEEE 14th Inter-
national Conference on High Performance Computing and Communi-
cation & 2012 IEEE 9th International Conference on Embedded Soft-
ware and Systems, pages 1315–1320. IEEE, 2012.

87

[LCW+10] You Li, Hao Chi, Le-Heng Wang, Hai-Peng Wang, Yan Fu, Zuo-Fei
Yuan, Su-Jun Li, Yan-Sheng Liu, Rui-Xiang Sun, Rong Zeng, et al.
Speeding up tandem mass spectrometry based database searching by
peptide and spectrum indexing. Rapid Communications in Mass Spec-
trometry, 24(6):807–814, 2010.

[LCXC14] You Li, Hao Chi, Leihao Xia, and Xiaowen Chu. Accelerating the
scoring module of mass spectrometry-based peptide identification using
gpus. BMC bioinformatics, 15(1):1–11, 2014.

[LDE+06] Henry Lam, Eric Deutsch, James Eddes, Jimmy Eng, Nichole King,
Sara Yang, Jeri Roth, Lisa Kilpatrick, Pedatsur Neta, Steve Stein, et al.
Spectrast: An open-source ms/ms spectramatching library search tool
for targeted proteomics. In Poster at 54th ASMS Conference on Mass
Spectrometry, pages 1–2, 2006.

[LLC+19] C Li, K Li, T Chen, Y Zhu, and Q He. Sw-tandem: A highly ef-
ficient tool for large-scale peptide sequencing with parallel spectrum
dot product on sunway taihulight. Bioinformatics (Oxford, England),
2019.

[LLLL19] Chuang Li, Kenli Li, Keqin Li, and Feng Lin. Mctandem: an efficient
tool for large-scale peptide identification on many integrated core (mic)
architecture. BMC bioinformatics, 20(1):397, 2019.

[LWS+14] Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J Ligocki,
Matthew J Cordery, Nicholas J Wright, Mary W Hall, and Leonid
Oliker. Roofline model toolkit: A practical tool for architectural and
program analysis. In International Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Performance Computer
Systems, pages 129–148. Springer, 2014.

[LXCC14] You Li, Leihao Xia, Hao Chi, and Xiaowen Chu. Accelerating mass
spectrometry-based protein identification using gpus. BMC Bioinfor-
matics, 2014.

[MAB+20] Jonathan R Madsen, Muaaz G Awan, Hugo Brunie, Jack Deslippe,
Rahul Gayatri, Leonid Oliker, Yunsong Wang, Charlene Yang, and
Samuel Williams. Timemory: Modular performance analysis for hpc.
In International Conference on High Performance Computing, pages
434–452. Springer, 2020.

88

[Mar13] Vivien Marx. Biology: The big challenges of big data, 2013.

[MBDH99] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. Papi:
A portable interface to hardware performance counters. In Proceedings
of the department of defense HPCMP users group conference, volume
710, 1999.

[MDWC07] Lijuan Mo, Debojyoti Dutta, Yunhu Wan, and Ting Chen. Msnovo:
a dynamic programming algorithm for de novo peptide sequencing via
tandem mass spectrometry. Analytical chemistry, 79(13):4870–4878,
2007.

[MFG12] Jeffrey A Milloy, Brendan K Faherty, and Scott A Gerber. Tempest:
Gpu-cpu computing for high-throughput database spectral matching.
Journal of proteome research, 11(7):3581–3591, 2012.

[MTKF+14] Sean McIlwain, Kaipo Tamura, Attila Kertesz-Farkas, Charles E
Grant, Benjamin Diament, Barbara Frewen, J Jeffry Howbert,
Michael R Hoopmann, Lukas Kall, Jimmy K Eng, et al. Crux: rapid
open source protein tandem mass spectrometry analysis. Journal of
proteome research, 13(10):4488–4491, 2014.

[MVN12] Kelvin Ma, Olga Vitek, and Alexey I Nesvizhskii. A statistical model-
building perspective to identification of ms/ms spectra with peptide-
prophet. BMC bioinformatics, 13(16):S1, 2012.

[Nes10] Alexey I Nesvizhskii. A survey of computational methods and error
rate estimation procedures for peptide and protein identification in
shotgun proteomics. Journal of proteomics, 73(11):2092–2123, 2010.

[NRG+06] Alexey I Nesvizhskii, Franz F Roos, Jonas Grossmann, Mathijs Vo-
gelzang, James S Eddes, Wilhelm Gruissem, Sacha Baginsky, and
Ruedi Aebersold. Dynamic spectrum quality assessment and iterative
computational analysis of shotgun proteomic data toward more effi-
cient identification of post-translational modifications, sequence poly-
morphisms, and novel peptides. Molecular & Cellular Proteomics,
5(4):652–670, 2006.

[PHTN11] Brian Pratt, J Jeffry Howbert, Natalie I Tasman, and Erik J Nilsson.
Mr-tandem: parallel x! tandem using hadoop mapreduce on amazon
web services. Bioinformatics, 28(1):136–137, 2011.

89

[PPCC99] David N Perkins, Darryl JC Pappin, David M Creasy, and John S
Cottrell. Probability-based protein identification by searching sequence
databases using mass spectrometry data. ELECTROPHORESIS: An
International Journal, 20(18):3551–3567, 1999.

[QTL+19] Rui Qiao, Ngoc Hieu Tran, Ming Li, Lei Xin, Baozhen Shan, and Ali
Ghodsi. Deepnovov2: Better de novo peptide sequencing with deep
learning. arXiv preprint arXiv:1904.08514, 2019.

[RA19] S Rossel and P Mart́ınez Arbizu. Revealing higher than expected di-
versity of harpacticoida (crustacea: Copepoda) in the north sea using
maldi-tof ms and molecular barcoding. Scientific reports, 9(1):1–14,
2019.

[RSSK14] V Srinivasa Rao, K Srinivas, GN Sujini, and GN Kumar. Protein-
protein interaction detection: methods and analysis. International
journal of proteomics, 2014, 2014.

[SHI22] Fahad Saeed, Muhammad Haseeb, and SS Iyengar. Communication
lower-bounds for distributed-memory computations for mass spectrom-
etry based omics data. Journal of Parallel and Distributed Computing,
161:37–47, 2022.

[SK15] Owen S Skinner and Neil L Kelleher. Illuminating the dark matter of
shotgun proteomics. Nature biotechnology, 33(7):717, 2015.

[TCD+14] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly
Gaither, Andrew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave
Lifka, Gregory D Peterson, et al. Xsede: accelerating scientific discov-
ery. Computing in Science & Engineering, 16(5):62–74, 2014.

[THA+20] Muhammad Usman Tariq, Muhammad Haseeb, Mohammed Aledhari,
Rehma Razzak, Reza M Parizi, and Fahad Saeed. Methods for pro-
teogenomics data analysis, challenges, and scalability bottlenecks: a
survey. IEEE Access, 9:5497–5516, 2020.

[THS+05] Wilfred H Tang, Benjamin R Halpern, Ignat V Shilov, Sean L Seymour,
Sean P Keating, Alex Loboda, Alpesh A Patel, Daniel A Schaeffer,
and Lydia M Nuwaysir. Discovering known and unanticipated protein
modifications using ms/ms database searching. Analytical Chemistry,
77(13):3931–3946, 2005.

90

[Tis11] Alexander Tiskin. BSP (Bulk Synchronous Parallelism), pages 192–
199. Springer US, Boston, MA, 2011.

[TS21] Muhammad Usman Tariq and Fahad Saeed. Specollate: Deep cross-
modal similarity network for mass spectrometry data based peptide
deductions. PloS one, 16(10):e0259349, 2021.

[TSY03] David L Tabb, Anita Saraf, and John R Yates. Gutentag: high-
throughput sequence tagging via an empirically derived fragmentation
model. Analytical chemistry, 75(23):6415–6421, 2003.

[Val90] Leslie G Valiant. A bridging model for parallel computation. Commu-
nications of the ACM, 33(8):103–111, 1990.

[WTE07] Xue Wu, Chau-Wen Tseng, and Nathan Edwards. Hmmatch: pep-
tide identification by spectral matching of tandem mass spectra using
hidden markov models. Journal of Computational biology, 14(8):1025–
1043, 2007.

[WWP09] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
an insightful visual performance model for multicore architectures.
Communications of the ACM, 52(4):65–76, 2009.

[XPV+15] TPSK Xu, SK Park, JD Venable, JA Wohlschlegel, JK Diedrich, D Co-
ciorva, B Lu, L Liao, J Hewel, X Han, et al. Prolucid: An improved
sequest-like algorithm with enhanced sensitivity and specificity. Jour-
nal of proteomics, 129:16–24, 2015.

[YCZ+17] Hao Yang, Hao Chi, Wen-Jing Zhou, Wen-Feng Zeng, Kun He, Chao
Liu, Rui-Xiang Sun, and Si-Min He. Open-pnovo: de novo peptide se-
quencing with thousands of protein modifications. Journal of proteome
research, 16(2):645–654, 2017.

[YFS+10] Ding Ye, Yan Fu, Rui-Xiang Sun, Hai-Peng Wang, Zuo-Fei Yuan, Hao
Chi, and Si-Min He. Open ms/ms spectral library search to iden-
tify unanticipated post-translational modifications and increase spec-
tral identification rate. Bioinformatics, 26(12):i399–i406, 2010.

[YI19] John R Yates III. Proteomics of communities: metaproteomics, 2019.

[ZXS+12] Jing Zhang, Lei Xin, Baozhen Shan, Weiwu Chen, Mingjie Xie, Denis
Yuen, Weiming Zhang, Zefeng Zhang, Gilles A Lajoie, and Bin Ma.

91

Peaks db: de novo sequencing assisted database search for sensitive
and accurate peptide identification. Molecular & Cellular Proteomics,
11(4):M111–010587, 2012.

[ZZW+22] Wen-Feng Zeng, Xie-Xuan Zhou, Sander Willems, Constantin Ammar,
Maria Wahle, Isabell Bludau, Eugenia Voytik, Maximillian T Strauss,
and Matthias Mann. Alphapeptdeep: a modular deep learning frame-
work to predict peptide properties for proteomics. Nature communica-
tions, 13(1):1–14, 2022.

92

APPENDIX A: CODE AVAILABILITY

All the software frameworks discussed in this dissertation are available as open-

source.

HiCOPS and GiCOPS

Implemented using MPI, C++17, CUDA, OpenMP, Python, Bash, Timemory [MAB+20],

PAPI [MBDH99] and CMake, and is available and maintained at: https://github.

com/pcdslab/gicops. The legacy HiCOPS code repository and webpage are also

available at https://github.com/hicops/hicops and https://hicops.github.

io respectively.

LBE and CFIR-Index

Implemented using C++17, Python and Bash and available as a part of the HiCOP-

S/GiCOPS framework.

93

APPENDIX B: DATA AVAILABILITY

All datasets and databases used in this work are publicly available.

Datasets

All datasets used in this dissertation are available from the public Pride Archive

repository using the link: https://www.ebi.ac.uk/pride/archive/projects/<AN>

where <AN> is the dataset’s accession number. For example, the dataset with the

accession number: PXD012345, can be accessed via the link: https://www.ebi.

ac.uk/pride/archive/projects/PXD012345.

Databases

The proteome sequence databases used in this dissertation are publicly available

from UniProt via: https://www.uniprot.org/proteomes/<ID>, where <ID> is

the Proteome ID of the species. For example, the Homo sapiens proteome se-

quence database with Proteome ID UP000005640 can be accessed via the link:

https://www.uniprot.org/proteomes/UP000005640 and the SwissProt database

is available at: https://www.uniprot.org/uniprot/?query=reviewed:yes.

94

APPENDIX C: FUNDINGS AND COMPUTE RESOURCES

This work used the NSF Extreme Science and Engineering Discovery Environment

(XSEDE) Supercomputers - now called Advanced Cyberinfrastructure Coordination

Ecosystem: Services and Support (ACCESS) - through allocations: TG-CCR150017

and TG-ASC200004, as well as the Dragon High-Performance Computing cluster

resources at the Florida International University supported by the NIH Supple-

mental Award: 3R01GM134384-02S1. The research work was partially supported

by the NIGMS of the National Institutes of Health (NIH) under award number:

R01GM134384. Additionally this research work was partially supported by Na-

tional Science Foundations (NSF) under the award number: NSF CAREER OAC-

1925960. The content in this dissertation is solely the responsibility of the author(s)

and does not necessarily represent the official views of the National Institutes of

Health and/or National Science Foundation.

95

VITA

MUHAMMAD HASEEB

Born, Faisalabad, Pakistan

2015 BS, Electrical Engineering
University of Engineering and Technology
Lahore, Pakistan

2015 Software Engineer (L1)
Mentor Graphics Corporation
Lahore, Pakistan

2016 Software Engineer (L2)
Mentor Graphics Corporation
Lahore, Pakistan

2017 Graduate Research Assistant
Western Michigan University
Kalamazoo, Michigan

2018 Graduate Research Assistant
Florida International University
Miami, Florida

2020 Application Performance Intern
Lawrence Berkeley National Laboratory
Berkeley, California

2021 GPU Performance Intern
Lawrence Berkeley National Laboratory
Berkeley, California

2023 PhD, Computer Science
Florida International University
Miami, Florida

2023 Application Performance Postdoc
Lawrence Berkeley National Laboratory
Berkeley, California

96

PUBLICATIONS AND PRESENTATIONS

Muhammad Haseeb, and Fahad Saeed., (2022) GPU-Acceleration of the Distributed-
Memory Database Peptide Search on Supercomputers. ASMS Conference on Mass
Spectrometry and Allied Topics.

Fahad Saeed, and Muhammad Haseeb., (2022) High-Performance Algorithms for
Mass Spectrometry-Based Omics., ISBN 9783031019593, Springer Nature Switzer-
land AG.

Muhammad Haseeb, and Fahad Saeed., (2022) Systems and Methods for Peptide
Identification. U.S. Patent 11,309,061.

Muhammad Haseeb, Nan Ding, Jack Deslippe, and Muaaz Awan., (2021) Evaluat-
ing Performance and Portability of a core bioinformatics kernel on multiple vendor
GPUs. International Workshop on Performance, Portability and Productivity in
HPC (P3HPC).

Fahad Saeed, Muhammad Haseeb, and S. S. Iyengar., (2021) Communication lower-
bounds for distributed-memory computations for mass-spectrometry based omics data.
Journal of Parallel and Distributed Computing.

Muhammad Haseeb, and Fahad Saeed., (2021) High performance computing frame-
work for tera-scale database search of mass spectrometry data. Nature Computa-
tional Science, 1 (8): 550-561

Muhammad Usman Tariq, Muhammad Haseeb, Mohammed Aledhari, Rehma Raz-
zak, Reza M. Parizi, and Fahad Saeed., (2020) Methods for Proteogenomics Data
Analysis, Challenges, and Scalability Bottlenecks: A Survey. IEEE Access.

Fahad Saeed, and Muhammad Haseeb., (2020) Methods and systems for compress-
ing data. U.S. Patent 10,810,180.

Muhammad Haseeb and Fahad Saeed., (2019) Efficient Shared Peak Counting in
Database Peptide Search Using Compact Data Structure for Fragment-Ion Index.
IEEE International Conference on Bioinformatics and Biomedicine, 275-278.

Muhammad Haseeb, Fatima Afzali, and Fahad Saeed., (2019) LBE: A Computa-
tional Load Balancing Algorithm for Speeding up Parallel Peptide Search in Mass-
Spectrometry based Proteomics. IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops, 191-198.

97

