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Abstract

Database peptide search algorithms deduce peptides from mass spec-
trometry (MS) data. There has been substantial effort in improving their
computational efficiency to achieve larger and more complex systems bi-
ology studies. However, modern serial and high-performance computing
(HPC) algorithms exhibit sub-optimal performance mainly due to their
ineffective parallel designs (low resource utilization), and high overhead
costs.

We present an HPC framework, called HICOPS, for efficient acceler-
ation of the database peptide search algorithms on distributed-memory
supercomputers. HiCOPS provides, on average, more than 10-fold im-
provement in speed, and superior parallel performance over several ex-
isting HPC database search software. We also formulate a mathemat-
ical model for performance analysis and optimization, and report near-
optimal results for several key metrics including strong-scale efficiency,
hardware utilization, load-balance, inter-process communication and I/0
overheads. The core parallel design, techniques, and optimizations pre-
sented in HICOPS are search-algorithm independent and can be extended
to efficiently accelerate the existing and future algorithms and software.

Keywords— mass spectrometry, high performance computing, proteomics, pep-
tide identification, bulk synchronous parallel



1 Introduction

Faster, and more efficient peptide identification algorithms [1], [2], [3] have been the
cornerstone of computational research in shotgun mass spectrometry (MS) based pro-
teomics for more than 30 years [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]. Modern mass spectrometry technologies allow the generation
of thousands of raw, noisy spectra in a span of few hours producing several giga-
bytes of data [18] (Supplementary Figure 1). Database peptide search is the most
commonly employed computational approach to identify the peptides from the exper-
imental spectra [19], [10], [2], [20]. In this approach, the experimental spectra are
searched against an (indexed) database of theoretical spectra (or modeled-spectra)
with the goal to find the best possible matches [1]. The theoretical spectra database
(or simply theoretical database) is simulated by simulating in-silico digestion on a
proteome sequence database (Supplementary Figure 2). The theoretical databases
(and their indexed versions) expand exponentially in space (several giga to terabytes)
as the post-translational modifications (PTMs) are added in the simulation [2], [21]
(Supplementary Figure 3a, b). Consequently, the low computational arithmetic inten-
sity (operations or instructions per byte) [22] inherent to database search algorithms
[2], [23], [9] results in performance bottlenecks due to memory contention (parallel
database query), out-of-core processing (database size > main memory), database
management (data movement), and I/0.

As demonstrated by other scientific fields [24], these limitations can be alleviated
through effective exploitation of architectural resources provided by modern high-
performance computing (HPC) systems. However, most existing HPC database pep-
tide search algorithms [25], [26], [27], [28], [29], [30], [31] employ unoptimized paral-
lelization techniques, resulting in sub-optimal performance and limited application in
the domain (Supplementary Section 1, Supplementary Section 2, Supplementary Fig-
ure 3c). The need for efficient parallel database peptide search software is driven by
the computational demands of modern systems biology studies for proteomics, meta-
proteomics and proteogenomics, where peptide identification is often the first step in
the analysis. These systems biology studies also have a direct impact on personalized
nutrition, microbiome research [32], [33], and cancer therapeutics [34].

In this paper, we present an HPC framework for efficient acceleration of database
peptide search algorithms on large-scale symmetric multiprocessor (SMP) distributed-
memory supercomputers. HICOPS provides orders-of-magnitude improvement in speed
compared to several existing shared- and distributed-memory database peptide search
tools allowing searching of several gigabyte experimental MS/MS data against tera-
bytes of theoretical databases in a few minutes compared to several hours required
using existing algorithms. The proposed HiCOPS parallel design implements an un-
conventional approach where the (massive) theoretical databases are distributed across
parallel nodes in a load-balanced fashion followed by asynchronous parallel execution
of the database peptide search. Upon completion, the locally computed results are
merged into global results in a communication-optimal manner. This overhead cost-
optimal design, along with several optimizations, allows HICOPS to maximize resource
utilization and alleviate the performance bottlenecks. We also formulate and perform
a performance analysis to identify the overhead costs and discuss optimization tech-
niques to minimize them. Finally, we implement a shared-peak counting coupled
hyperscore-based search algorithm [11], [2], [35] in HICOPS to demonstrate its paral-
lel performance, but in essence, our framework is search-algorithm oblivious. i.e. the
proposed parallel design, algorithms and optimizations can be extended or replaced to



accelerate most existing and future search algorithms.

Our comprehensive experimentation shows that HICOPS outperforms several ex-
isting serial and parallel database peptide search tools by more than 10-folds on av-
erage while producing correct and consistent peptide identifications. Additionally, we
demonstrate the application of HHCOPS in large-scale database search setting through
multiple compute- and data-intensive experiments. Note that the HiCOPS frame-
work does not propose a new database search algorithm and instead relies on the
underlying (portable) search algorithmic workflow for peptide identification accuracy.
Finally, we performed an extensive performance evaluation where we report between
70-80% strong-scale efficiency and less than 25% overall performance overheads (load
imbalance, 1/0O, inter-process communication, pipeline halt); collectively depicting a
near-optimal parallel performance.

2 Results

2.1 Methods Overview

HiCOPS constructs the parallel database peptide search workflow (task-graph) through
four Single Program Multiple Data (SPMD) Bulk Synchronous Parallel (BSP) [36] su-
persteps. In the BSP model, a superstep [37] refers to a set of distinct algorithmic
and data communications blocks, asynchronously executed by all parallel processes
(pi € P). Synchronization between the processes is done at the end of each superstep,
as needed. In the first HHCOPS’s superstep, the (massive) theoretical database is parti-
tioned across parallel processes in a load balanced fashion, and locally indexed. In the
second superstep, the experimental data are divided into batches and pre-processed, if
required. In the third superstep, the parallel processes execute a local database pep-
tide search, producing intermediate results. In the final superstep, the intermediate
results are de-serialized, and assembled into complete (global) results. Supplementary
Figure 4 provides an overview of the overall task-graph, and workload profile for each
superstep (Methods). The current HiCOPS design allows in-core processing so the
minimum number of nodes Py, required to run must be > D/M where D is the
theoretical database index size and M is the available main memory per node.

The total wall time (Tx) for executing the four supersteps is the sum of superstep
execution times, given as:

Tae=T1+T2+ T3+ T4

Where the execution time for a superstep (j) is the maximum time required by
any parallel task (p; € P) to complete that superstep, given as:
Tj = max(Tj,pl ) napza ) ijPP)
Or simply:
T; = maxp, (iji)
Combining the above three equations, the total HHICOPS runtime is given as:

4

Ty = Z maTp; (ijpi) (1)
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Figure 1: Methods Overview. (a) Superstep 1: The massive theoretical
spectra database (spectra shown as shapes) is partitioned among parallel pro-
cesses and locally indexed. Partitioning is done in a load balanced fashion (sim-
ilar shapes clustered and scattered across processes). (b) Superstep 2: The
experimental MS/MS spectra data are indexed, tagged, pre-processed and writ-
ten back to a shared memory in data parallel. (c) Superstep 3: Asynchronous
parallel database peptide search is executed by all processes. On each process,
three parallel sub-tasks R, I and K work in a pipeline to load the pre-processed
data, execute a local database search, and write the produced (sampled) local
results to the shared memory respectively. Task scheduler manages the paral-
lel threads between the pipeline tasks. (d) Superstep 4: Local/intermediate
results are assembled followed by curve fitting and expected value (es) compu-
tation in data parallel fashion. Results with es < 0.01 are communicated to
their origin processes.

pre-processed spectra data

2.2 Experimental Setup Overview

We constructed five custom datasets (S;) by combining several Pride Archive (PXD)
datasets (accession numbers: PXDxxxxxx) for our experimentation and evaluation.
These five custom datasets are given as follows: S1: PXD009072, S2: PXD020590, Ss:
PXDO015890, S4: PXD007871, 009072, 010023, 012463, 013074, 013332, 014802, 015391
combined, and Ss: all above listed datasets combined. The datasets were searched
against several theoretical databases constructed by adding combinations of post-
translational modifications (PTMs) to the D;: UniProt Homo sapiens (UP000005640)
and Dy: UniProt SwissProt (reviewed) databases. Detailed discussion about the set-
tings for database digestion, post-translational modifications, theoretical spectra gen-
eration etc. is provided in the (Methods) section. In the rest of the paper, we will



represent the workload size for each performed experiment (exp,) as a tuple given as:
expn = (¢, D,0M); where q is experimental MS/MS dataset size in 1 million spectra,
D is theoretical database size in 100 million spectra and 6 M is the peptide precursor
mass tolerance setting in +100Da. Note that the tuple does not contain the fragment-
ion mass tolerance (6 F) information as it is globally set to +0.01 Da unless specifically
mentioned as the fourth element in an experiment tuple.

Runtime Environment: All experiments were run on the Extreme Science and
Engineering Discovery Environment (XSEDE) [38] Comet cluster at the San Diego
Supercomputer Center (SDSC). The Comet compute nodes are equipped with 2 sock-
ets x 12 cores of Intel Xeon E5-2680v3 processor (Total: 24 cores), 2 NUMA nodes
x 64GB (Total: 128GB) DRAM, 56 Gbps FDR InfiniBand interconnect and Lustre
shared file system. The maximum number of nodes allowed per job is 72 and maximum
allowed job time is 48 hours. Furthermore, the single-node experiments for Crux and
X!Tandem tools requiring >48h (XSEDE limit) execution time were run on a (com-
parable) local machine named raptor, equipped with Intel Xeon Gold 6152 processor
(22 cores), 128GB DRAM and 6TB SSD HDD.

2.3 Correctness Analysis

We evaluated the HICOPS’s correctness using a two-step approach. In the first step,
we verified the consistency of results across parallel runs by searching all five datasets
S; against both protein sequence databases D; using various settings and PTM com-
binations. The correctness was evaluated in terms of identified peptide sequences, and
the corresponding hyperscores and expected values (expectscores) assigned (within 3
decimal points). A comparison of hyperscores and expectscores between the serial
(x-axis) and parallel runs (y-axis), obtained by searching the dataset: S1 against the
database: D; with no PTMs is shown in Figure 2a, 2b respectively. The results show
over 99.5% consistency in scores. A small error was observed in a negligible number of
results due to the sampling and floating-point precision losses (Methods, Figure 1d).

In the second step, we verified the quality of the implemented search algorithm
by comparing the HHICOPS-computed hyperscores with the MSFragger-computed ones
as both frameworks employ a similar scoring algorithm. i.e. shared-peak counting
coupled hyperscore. Note that the hyperscores computed by MSFragger and HICOPS
cannot be exactly identical as MSFragger uses several pre-processing and boosting
features that affect the final scores. These features could not be replicated in HICOPS
as MSFragger is a proprietary software. We designed and executed six experiments,
three with restricted search (§M=1Da) and three with open search (60 >100Da)
setting. The experimental MS/MS data pre-processing and database search settings
were kept identical (and as minimal as possible) for both tools for fair comparisons.
The details of the six experiments are as follows:

In the first experiment, a subset of 860 thousand spectra from the dataset: Si
was searched against the database: D; modified with Methionine oxidation and NQ-
deamidation as PTMs yielding a thoretical database of 18 million spectra at § M=1Da.
In the second experiment, the dataset: S3 was searched against the database: D:
modified with Methionine oxidation and STY-phosphorylation yielding a theoretical
database of 66 million spectra at 6M=1Da. In the third experiment, the dataset:
S3 was searched against the database: D2 modified with Methionine oxidation and
Serine phosphorylation yielding a database of 80 million spectra at M =1Da. In the
fourth experiment: the entire dataset: Ss was searched against the database: D,
with Methionine oxidation and NQ-deamidation yielding a theoretical database of 18



million spectra at 0 M=200Da. In the fifth experiment, the S3 was searched against
the database: D; modified with Methionine oxidation and ST-phosphorylation yielding
a theoretical database of 56 million spectra at 6/M/=100Da. In the sixth experiment,
dataset: S3 was searched against the database: D2 modified with Methionine oxidation
and Serine phosphorylation yielding a database of 80 million spectra at § M=200Da.

For our comparisons, first, a correlation between the hyperscores assigned by
both tools to commonly identified peptide to spectrum matches (PSMs) was com-
puted (shown in Figures 2c to 2h). Then, the PSMs from both tools were filtered
at 1% g-value (false discovery rate) and compared (shown in Supplementary Fig-
ure 5). Figures 2c, 2d, and 2e respectively depict a strong-correlation (pearson co-
efficient R > 0.90) between the hyperscores computed by both tools in the first
three (restricted-search) experiments. However, the correlation between the hyper-
scores slightly drops between 0.70 < R < 0.90 for the last three (open-search) ex-
periments (Figures 2f, 2g, and 2h respectively). We suspect that the divergence
in hyperscores may have stemmed from open-search specific spectral processing, re-
construction and/or score re-ranking algorithms implemented in MSFragger. Further,
the results in Supplementary Figure 5 show about 50% overlap between the g-value
filtered PSMs from HiCOPS and MSFragger. The results also show that the MSFrag-
ger’s scoring algorithm outperformed the underlying scoring algorithm in HiCOPS in
identified peptides, as expected. Recall that the HICOPS is designed as algorithm
oblivious; meaning the underlying algorithms can be customized or ported with more
sophisticated versions to improve the identification while delivering similar perfor-
mance.

2.4 Speed Comparison Against Existing Algorithms

We compared the HiCOPS speed against many existing shared- and distributed-
memory database peptide search algorithms including Tide/Crux v3.2 [3], Comet
v2020.01 [40], MSFragger v3.0 [2], X! Tandem v17.2.1 [41], X!! Tandem v10.12.1
[26], and SW-Tandem [29]. Parallel versions of the shared-memory tools were also im-
plemented and run through Python and Bash wrapper scripts executing the following
workflow: run parallel instances of the tool on XSEDE Comet nodes with equal par-
titions (random partitioning) of the experimental MS/MS data files. This technique
also indirectly simulated the workflows of cloud-based tools such as MS-PyCloud (via
parallel MSGF+) and Bolt (via parallel MSFragger). Additionally, we tried to run the
UltraQuant HPC tool which implements a parallel MaxQuant. However, it crashed
with unhandled exceptions every time it was run on >1 node.

We designed six experiments listed as (a) to (f) in increasing order of their ex-
perimental workload sizes. (i.e. database and dataset sizes, and experimental set-
tings). In the first two (a, b) experiment, a subset of 8000 spectra from dataset:
Ss (file: 7Sepl8_Olson-WT24) was searched against the database: D2 modified with
variable Methionine oxidation, and Tyrosine Biotin-tyramide yielding a theoretical
database of 93.5 million spectra at §M=10Da and dM=500Da respectively. In the
third experiment (c), the dataset: Ss was searched against database D; modified
with variable Methionine oxidation, and Tyrosine Biotin-tyramide as PTMs yield-
ing a theoretical database of 7.1 million spectra at M =500Da. In the fourth (d)
and fifth (e) experiments, the entire dataset: S3 was searched against the theoretical
database of first two experiments (i.e. the 93.5 million spectra one) at M/ =10Da and
0 M=500Da respectively. In the sixth (f) experiment, dataset S4 was searched against
the database: D1 modified with variable Methionine oxidation, STY-phosphorylation
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Figure 2: Correctness Analysis. (a,b) Comparison of 5K out of 251K
data samples of hyperscores and expected values (expectscores), computed by
HiCOPS in serial (x-axis) and parallel (y-axis) runs is shown. Note that all 251K
samples depict the same consistency across parallel runs [39], only infeasible to
plot. (c to h) Correlations between hyperscores computed by HICOPS (x-axis)
and MSFragger (y-axis) under restricted-search (¢, d, e) and corresponding
open-search (f, g, h) settings are shown along with Pearson correlation coeffi-
cients (R).

and NQ-deamidation yielding a theoretical database of: 213 million at é M =100Da.
The slower tools such as Comet, MSGF+, Crux and X!Tandem variants were only run
for smaller experiments due to XSEDE max job time limits.

The obtained wall time results (Figure 3a to 3f) show that the HICOPS outper-
forms all other tools by >10x on average in speed, especially for experiments with
larger workloads (Figure 3d, e, f). It can also be observed that the HICOPS exhibits
better strong-scale parallel efficiency compared to other tools as the experimental



workload size increases (a—f). For smaller workloads (Figure 3a, 3b, 3c) the parallel
efficiency is limited by the Amdahl’s law. The scalability is shown as the deviation
(+ve = sub-linear; -ve = hyper-linear) from the ideal speedup track (dotted gray)
lines in each experiment in Figure 3a to Figure 3f. The parallel efficiency results for
MSFragger were particularly peculiar as it appears to be scaling super-linearly up to
a certain number of parallel nodes, and then dropping to sub-linear. To explain this,
the runtime components of MSFragger were further analyzed in detail. The results
(Figure 3g and 3i) show that a large percentage of MSFragger’s runtime is composed of
I/O, and load imbalance, resulting in low overhead/compute ratio (effective resource
utilization). Comparatively, HICOPS exhibits significantly improved memory perfor-
mance (Figure 3h, 3j) resulting in lower run time even though the effective search time
(useful compute time) for MSFragger and HiCOPS are comparable. The results (Fig-
ure 3a, 3b, 3c) show that the existing HPC tools including X!!Tandem, SW-Tandem,
parallel Comet and parallel MSGF+ (MS-PyCloud) are > 100x slow even for small-
scale experiments. Finally, we observed zero parallel efficiency for SW-Tandem in all
experiments, i.e. no speedups whatsoever (Supplementary Section 3).

2.5 Application in Tera-Scale Experimentation

Application of HICOPS in tera-scale experiments was demonstrated using three addi-
tional experiments. In the first experiment, the dataset: S3 was searched against a the-
oretical database of 766 million spectra (780GB) at M =+500Da and § F==+0.01Da.
In the second experiment, the dataset: S; was searched against a theoretical database
of 1.59 billion spectra (1.7TB) at §M=4500Da and § F=+0.05Da. In the third ex-
periment, the dataset: S2 was searched against a theoretical database of 3.89 billion
spectra (4TB) at 6M=2500Da and §F==0.01Da. HiCOPS completed the execu-
tion of the these three experiments in 14.55 minutes (64 nodes), 103.5 minutes (72
nodes) and 27.3 minutes (64 nodes) respectively. In contrast, MSFragger completed
the execution of first experiment in 158.8 minutes (64 nodes; 10x slower). The second
experiment was completed by MSFragger in 18 hours (72 nodes; 10.3x slower) and
35.5 days when using 1 node (494 x slower). The other experiments were intentionally
not run on MSFragger or other tools due to feasibility issues. The results for this set
of experiments are summarized in Table 1.

2.6 Performance Evaluation

Twelve experiments of varying workload sizes were designed using combinations of
aforementioned databases (D;) and datasets (5;), post-translational modifications,
and precursor peptide mass tolerance windows (0M) for an extensive performance
evaluation. These experimental workloads varied from extremely small to massive-
scale covering a wide-range of application. The twelve experiment sets in the tuple
form are listed as follows: exp1=(0.3, 0.84, 0.1), exp2=(0.3, 0.84, 2), exp3=(3.89, 0.07,
5), expa=(1.51, 2.13, 5), exps=(6.1, 0.93, 5), exps=(3.89, 7.66, 5), expr=(1.51, 19.54,
5), exps =(1.6, 38.89, 5), expo=(3.89, 15.85, 5), exp10=(3.89, 1.08, 5), exp11=(1.58,
2.13, 1), and exp12=(0.305, 0.847, 5). Note that the fragment-ion tolerance is set to
0F = £0.01Da in all these experiments.

Parallel Scalability: Strong-scale efficiency for all twelve experiments was
measured and the results (Figure 4a, 4b) depict that the overall strong-scale efficiency
ranges between 70-80% for sufficiently large experimental workloads. For smaller ex-
periments, the parallel speedup quickly dampens as there is not enough parallel work



P s oo
a — o
. ~— ~——
~— Jd= T,
~, S
0 S 10’ ~<_
. [ o
. - o 10
E | T E .
= 21 -+~ nicops S e — T = -+~ HICOPS 1
? L s oo e ommm
—»— MSFragger 10°3 —=— MSFragger
—<  X!lTandem —<  X!'Tandem
SW-Tandem | SW-Tandem
—— Crux 10 =- XiTandem
1 4 8 16 1 2 4 8 16 32 64
parallel nodes parallel nodes
c T T Ce—_ d o -+ HICOPS
S ] —— MSFragger
o] S, XiTandem
10 e i 100 Crux
= T - _ P———
RS . 2 S
S, S~ g
Ew " S £ IR
-+- HCOPS rreh,
—» MSFragger R S 10° e
—< X!Tandem e S TR A
2 Comet B N S +
107« MsGF:@iDa 10
1 2 4 8 16 32 1 4 16
parallel nodes parallel nodes
e ~.. -+~ HICOPS f
105 * \.\ —»— MSFragger i ~.
. \ ~—
N S 10° i
' S T
o ~ N - e
© w0t . Kt s
E S T E ' o
e .| -+ wicops e
0 . 10’1 —»— MSFragger I
Tl Comet@10Da T,
1 2 i 3 [ 2 64 4 16 64
parallel nodes parallel nodes
c c
80 1/0 overhead d 1/0 overhead d
. in MSFragger > e 0 in HICOPS e
g i ! £ - f
- s s
8 \ 2
2 o
H 40 £
s
3 < 3
e |. - o
20 =2 +
». v Jites
et
> e .
.
0 s S o = G >
1 2 4 8 16 32 64 1 3 i 3 1 % o
parallel nodes parallel nodes
j " . i c
2 4 Load Imbalance J 120 Load Imbalance d
— - in MSFragger + = in HICOPS >e
R 100f -+ E & 100 -t
@ 2
8 8
5 ® 5
T ik 3
3 ¥ K
g 60 £
° 40 o v k]
8 = i
20
. » 5 2 -+
o] > e
1 2 32 64 1 2 32 64

4 ] 16 4 [ 6
parallel nodes parallel nodes
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Table 1: Summary of the execution times for three large-scale database search
experiments using HICOPS and MSFragger is shown. Peptide precursor mass
tolerance and fragment-ion tolerance in Daltons (Da) are given as M and 6F
respectively. Single node version of the second experiment using MSFragger
(i.e. 2*%) was run on the local (raptor) server. The third experiment was not
run using MSFragger due to feasibility issues.

Experim- Dat-;aset Dat.abase 6M | 6F | Runtime
ent Tool Name | Nodes size size (Da)| (Da)| (min)
Number (GB) (GB)
1 HiCOPS 64 20 780 500 | 0.01 14.55
1 MSFragger 64 20 780 500 | 0.01 158.8
2 HiCOPS 72 15 1692 500 | 0.05 103.5
2 MSFragger 72 15 1692 500 | 0.05 | 1074.45
2% MSFragger 1 15 1692 500 | 0.05 | 51130
3 HiCOPS 64 41 4000 500 | 0.01 27.3

to be done (Amdahl’s Law). Superstep-level dissection of the speedup results in Sup-
plementary Figure 6 further confirm that the most significant fraction of the overall
runtime is constituted by the superstep 3 indicating its importance in optimizations.
Note that the minimum number of parallel nodes (P i) required by HICOPS for each
experiment must be P > D/M; where M is main memory per node. Therefore, the
speedup and efficiency calculations were done using the runtime for the experiment
with minimum nodes as the base case. The serial time (T's) was first computed using
the base case experiment runtime (Tp,, ,, ) as: T's = Ppin XTp,,,, . Then, the speedups
and efficiency for experiments with nodes > P,,;n were computed relative to Tp,,,,
using the computed T's. Essentially, the speedups are relative to the base case runtime
which may not be the 1-node time depending on the Pp,;, (limitation of HiCOPS).
Furthermore, super-linear speedups were observed in several experiments with larger
workloads. To explain this, the following hardware counters-based metrics were also
recorded for all experiments: instructions per cycle (ipc), last level cache misses (LLC)
per all cache level misses (Ipc), and the cycles stalled due to writes per total stalled
cycles (wps). The results (Figure 4c, 4d, 4e) show that the CPU, cache, and memory
bandwidth utilization improves as the workload per node (wf/P) increases reaching to
an optimum point after which it saturates due to memory bandwidth contention since
the database search algorithms employed (and also in general) are highly memory in-
tensive. Beyond this saturation point, increasing the number of parallel nodes for the
same experimental workload resulted in a substantial improvement (super-linear) in
performance as the workload per node (wf/P) reduced to the normal (optimal) range.
For instance, the experiment set exps depicts super-linear speedups (Figure 4a) which
can be correlated to the hardware performance surge in Figure 4c.

Performance Overheads: Several metrics including load imbalance, commu-
nication, I/O, and pipeline halt costs were also measured to identify and quantify
the performance overheads. The obtained results (Figure 5a, 5b, 5¢) depict that the
load imbalance costs remain <10%, I/O costs remain <10%, and inter-task commu-
nication costs remain <5% in most experiments. Note that the load imbalance is a
direct measure of synchronization cost. Figure 5e shows a time series of the per-batch

10
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Figure 4: Performance Metrics. Performance metrics including (a) parallel
speedup, (b) strong-scale efficiency, (c) instructions per cycle (ipc), (d) last
level cache miss per total cache misses (Ipc), and (e) write stalls per total stalls
(wps) respectively are shown with increasing parallel nodes for all performance
evaluation experiments (labeled as tuples: exp,, in section: Performance Eval-
uation). The black dotted lines (ref) show the ideal speedup and efficiency in
(a) and (b) respectively.

producer-consumer pipeline halt time (see Superstep 3 in Methods) when searching
three datasets of increasing size. The wait time is the time when any of the pipeline
sub-tasks wait for a batch of data from its predecessor. The results (Figure 5e) show
that our task-scheduling algorithm actively performs counter measures (reallocates
threads) as soon as a pipeline-stall is detected due to speed mismatches between par-
allel sub-tasks keeping the total cost to < 5% in most experiments (Figure 5d).
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Figure 5: Overhead Analysis. Overhead costs including (a) load imbalance,
(b) I/0O, (¢) communication, and (d) pipeline halt time are shown with in-
creasing parallel nodes for all performance evaluation experiments (labeled as
tuples: exp, in section: Performance Evaluation). (e) The time series shows
the per-batch sub-task pipeline halt time (scheduling performance) in Superstep
3 when searching datasets of sizes 15GB, 41GB, and 71GB in open-search using
64 nodes. The wait time shows the time the pipeline sub-tasks in Superstep 3
waited for corresponding data batches.

3 Discussion

Recent trends in high-performance computing (HPC) have shifted towards heteroge-
neous architectures [42] as several top-500 supercomputers combine CPUs with Graph-
ical Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs) to de-
liver petascale (and in near future, exascale [43]) computing powers. However, the
presented SPMD-BSP based HICOPS design limits its application to only the homo-
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geneous (CPU-only) parallel nodes in a supercomputer. This technological shift in
HPC drives our future efforts that include a GPU-accelerated design for HICOPS.

Peptide identification rates achieved by HiCOPS are limited by the underlying
data processing, scoring and statistical modeling algorithms it executes. In our cur-
rent design, we implement a basic shared-peak coupled hyperscoring algorithm [2]
without making an explicit effort to improve these algorithms. Further, in some cases,
searching against smaller databases (on single nodes) results in better performance
(smaller workloads) and search quality (high-confidence separation of true positives
from false positives). Although the proposed parallel design is algorithm-independent;
i.e. underlying algorithms can be trivially ported and updated, we focus our future
efforts on implementing (heterogeneous) HPC versions of several modern algorithms,
and machine- and deep-learning models [44], [45], [9] within HiCOPS.

Finally, we believe that the computational tools are the enablers of new and more
exciting science — science that one might not envision today because of the limitations
of the infrastructure that is at our disposal. Therefore, we are confident that our
current and future efforts will make a useful advance in enabling scientific investigations
in this application domain.
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7 Methods

Notations and Symbols

For the rest of the paper, we will denote the number of peptide sequences in the
database as ({), average number of post-translational modifications (PTMs) per pep-
tide sequence as (m), the total theoretical database index size as (((2™) = D), the
number of parallel nodes/processes as (P), number of cores per parallel process as
(cp, ), size of experimental MS/MS dataset (i.e. number of experimental/query spec-
tra) as (q), average length of query spectrum as (), and the total dataset size as (¢f3).
The runtime of executing the superstep (j) by parallel task (p;) will be denoted as
(T},p;) and the generic overheads due to boilerplate code, OS delays, memory alloca-
tion etc. will be captured via (p,). Note that we shall refer the theoretical database
as simply the database in the rest of the paper.

7.1 Runtime Cost Model

Since the HICOPS parallel processes run in SPMD fashion, the cost analysis for any
parallel process (with variable input size) is applicable for the entire system. Also, the
runtime cost for a parallel process (p; € P) to execute superstep (j) can be modeled
by only its local input size (i.e. database and dataset sizes) and available resources
(i.e. number of cores, memory bandwidth). The parallel processes may execute the
algorithmic work in a data parallel, task parallel or a hybrid task and data parallel
model. As an example, the execution runtime (cost) for a parallel process p; to execute
superstep (j) which first generates D model-spectra using algorithm k1 and then sorts
them using algorithm ko in data parallel fashion (using all ¢,, cores) will be given as
follows:
Tjp; = kj1 (D) + kj2(D) + v, (2)
Similarly, if the above steps k, are performed in a hybrid task and data parallel
fashion, the number of cores allocated to each (k;.) must also be considered. For
instance, in the above example, if the two algorithmic steps are executed in sub-task
parallel fashion with ¢p, /2 cores each, the execution time will be given as:

T p; = maz (k1 (D, cp, /2), kj2(D, cp; /2)) + Yo, (3)

For analysis purposes, if the time complexity of the algorithms used for step k;. is
known (say O(.)), we will convert it into a linear function &}, with its input data size
multiplied by its runtime complexity. This conversion will allow better quantification
of serial and parallel runtime portions as seen in later sections. As an example, if it
is known that the sorting algorithms used for kj2 have time complexity: O(N log N),
the equation 2 can be modified to:

Tjp; = kj1(D) + kj2(Dlog D) + p, (4)

Remarks: The formulated model will be used to analyze the runtime cost for
each superstep, quantify the serial, parallel and overhead costs in the overall design,
and optimize the overheads.

7.2 Superstep 1: Database Partitioning

In this superstep, the HICOPS parallel processes construct a local database partition
through the following three algorithmic data parallel steps (Figure 1): 1) Generate and
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extract a (balanced) local partition of the (peptides + PTM variants) database. 2)
Generate the theoretical spectra data. 3) Index the local peptide and model-spectra
to build the theoretical database index (suffix array and the fragment-ion index).

The database partitions are constructed using the LBE algorithm [46] (illustrated
in Supplementary Figure 7). The LBE algorithm first clusters similar model-spectra
in the database which are then scattered across parallel nodes cluster by cluster to
achieve the balance [46] as also depicted in Supplementary Algorithm 1. In this work,
we supplement the LBE algorithm with a new additional distance metric for cluster-
ing. We call this metric as the Mod Distance (Am) which allows better separation of
database spectral-pairs which cannot be separated by the normalized Edit Distance
(Ae) metric introduced in the LBE algorithm (See Supplementary Section 5 for more
information on Mod Distance). Consequently, the new distance metric allows better
load balance between the database partitions as corroborated by our experimental
results. To the best of our knowledge, LBE is the only existing technique for effi-
cient theoretical database partitioning. Mod Distance (Am) proposed in this paper is
defined as follows:

Mod Distance: For a pair of model-spectra in the database (x,y), assuming the
sum of unedited amino acid sequence lengths from both peptide sequence termini is
(a), the Mod Distance (Am) is given as follows (See Supplementary Section 5):

a

Am(z,y) =2 = maz(len(z),len(y))

Cost Analysis: The first step generates the entire database of size (D) and sep-
arates out a local partition (of roughly the size D/P = D,,) in runtime: ki1(D).
The second step generates the model-spectra from the partitioned database using the
standard simulation model [12], [40] in runtime: ki2(D,,). The third step constructs
a fragment-ion index similar to [2], [23], [21] in runtime: O(Nlog N). In our imple-
mentation, we employed the CFIR-Index [21] algorithm due to its smaller memory
footprint resulting in runtime: kj3(Dp, log Dp,). Collective runtime for this superstep
is given by Equation 5.

Ty = mazy, (kll(D) + kl?(Dm) + k/13 (Dm log Dpi) + FYP@) (5)

Remarks: Equation 5 depicts that the serial execution time i.e. k11(D) bottle-
necks the parallel efficiency.

7.3 Superstep 2: Experimental MS/MS Data Pre-processing

In this superstep, the HICOPS parallel processes pre-process a partition of experimen-
tal MS/MS spectra data through the following three algorithmic data parallel steps
(Figure 1): 1) Read the dataset files, create a batch index and initialize internal struc-
tures. 2) Pre-process (i.e. normalize, clear noise, reconstruct etc.) a partition of
experimental MS/MS data. 3) Write-back the pre-processed data.

The experimental spectra are split into batches such that a reasonable parallel
granularity is achieved when these batches are searched against the database. By
default, the maximum batch size is set to 10K spectra and the minimum number of
batches per dataset is set to P. The batch information is indexed using a queue and
a pointer stack to allow quick access to the pre-processed experimental data in the
superstep 3.

Cost Analysis: The first step for reads the entire dataset (size: ¢f3) and creates
a batch index in runtime: k21(g8). The second step may pre-process a partition of the
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dataset (of roughly the size: ¢8/P = Qp,) using a data pre-processing algorithm such
as [47], [5], [44] etc. in runtime: k22(Qp,). The third step may write the pre-processed
data back to the file system in runtime: k23(Qp;). Note that the second and third
steps may altogether be skipped in subsequent runs when the input data are already
pre-processed. Collective runtime for this superstep is given by Equation 6.

Ty = maxp, (k21(qB) + k22(Qp,) + k23(Qp,) + 1p.) (6)

Remarks: Equation 6 depicts that the parallel efficiency of superstep 2 is highly
limited by its dominant serial portion i.e. k21(g83). Moreover, this superstep is sensitive
to the file system bandwidth since large volumes of data may be communicated to/from
the shared file system.

7.4 Superstep 3: Database Peptide Search

This is the most important superstep in HiCOPS workflow and is responsible for
80-90% of the total algorithmic workload. In this superstep, the HICOPS parallel
processes search the pre-processed experimental spectra against their local database
partitions through the following three algorithmic hybrid task and data parallel fashion
steps (Figure 1, Supplementary Figure 4): 1) Load the pre-processed experimental
MS/MS data batches into memory. 2) Search the loaded spectra batches against the
(local) database partition and produce intermediate results. 3) Serialize and write the
intermediate results to the shared file system assigning them unique tags.

Three parallel sub-tasks are created, namely R, I and K, that work in a producer-
consumer pipeline to execute the algorithmic work of this superstep (Figure 1c). The
data flow between the sub-tasks is handled through queues to create a buffer between
the producers and consumers. The first sub-task (R) loads batches of the pre-processed
experimental spectra data and puts them in queue (qs) as depicted in Supplementary
Algorithm 2. The sub-task R may also perform minimal computations on the exper-
imental spectra before putting them in queue. e.g. peak selection and/or intensity
normalization. The parallel cores assigned to sub-task R are given by: | r |. The
second sub-task (I) extracts batches from (gqy), performs the database peptide search
(currently: shared-peak counting coupled hyperscore computation) against its local
database partition and puts the produced intermediate (local) results in queue (gx) as
depicted in Supplementary Algorithm 3. The parallel cores assigned to sub-task I are
given by: | ¢ |. The sub-task I also recycles the memory buffers back to sub-task R
using the queue (g-). The third sub-task (K) serializes and writes the intermediate
results to a shared memory using | k | cores. Given an experimental spectrum (), a
database peptide (x), the number of shared b-ions between them (n;) with intensities
(%b,5), and the number of shared y-ions between them (n,) with intensities (iy,x), the
hyperscore between them is given as:

ng ny
hyperscore(p, x) = log(ny!) + log(ny!) + log(z i) + log(z Gy,k)
j=1 k=1

Cost Analysis: The sub-task (R) reads the experimental data batches in runtime:
k30(gB). The sub-task (I) iteratively filters the database and computes spectral com-
parisons against the database (scoring step). Most commonly, the database peptide
search algorithms use two or three database filtration steps, most commonly, peptide
precursor mass tolerance [3], [29], shared fragment-ions [2], [23] and sequence tags [10]
[9]. In current implementation, we use the first two filtration methods which execute in
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runtime: ks31(¢Dp,;) and ks2(qBap,) respectively. Here, the ap, represents the average
filtered database size filtered from the first step. The currently implemented scoring
mechanism computes hyperscores [13] in runtime: ks3(qBop,;) + ksa(qup,). Here, the
op; and pp, represent the average number of filtered shared-ions and model-spectra per
experimental spectrum. Note that the scoring algorithm in this superstep is portable
as the parallel design does not depend on it. Finally, the sub-task K writes the inter-
mediate results to the shared file system in runtime: kss(q).

Overhead Costs: Overhead factors stemming from load imbalance, producer-
consumer pipeline halt, file system bandwidth congestion affect the performance of this
superstep. Therefore, we capture them using an additional runtime cost: Vj, (¢, Dp,, P).
Several optimizations including buffering, task scheduling, load balancing and data
sampling (discussed in later sections) were implemented to alleviate the overhead costs.
Collective runtime for this superstep is given by Equation 10.

The runtime of sub-task R, i.e. tp, (r,| r |), is given as:

tp; (r, | 7 1) = kso(gB, [ ) (7

The runtime of sub-task I, i.e. t,,(4,] ¢ |), is given as:

tm (iv | ( |) = k31(qDPm‘ ( |) + k32(q6amv | ( |) + k33(qﬁo—m) + k34(q:u‘17i7| { D
Or:

tp, (i, ] 1 ]) = kél(qIOg(Dm)v‘ i)+ ké2(q/610g(api)7‘ i)+
k33(Qﬂ0Pi>| i |) + kj34(‘]ﬂ’pi>| i ‘)

The runtime of sub-task K, i.e. tp,(k,| k |), is given as:

tp; (k[ K |) = kas(q, [ & ) )
Combining equations 7, 8 and 9 we have:

Ty = maxy, (max(tp, (r; | 7 1), 1, (6| 7 1), tp: (K, | K 1))+

(10)
Vo, (g, Dy,, P) + ’Ym)

Remarks: Equations 7, 8, 9 and 10 depict that the parallel runtime portion of
this superstep grows quadratically superseding the serial portion if the experimental
load is sufficient.

7.5 Superstep 4: Result Assembly

In this superstep, the HICOPS parallel processes assemble the intermediate results
from the last superstep into complete results through the following hybrid task and
data parallel algorithmic steps (Figure 1d): 1) Read a set of intermediate result
batches, assemble them into complete results, and send the assembled results to their
parent processes. 2) Receive complete results from other parallel processes and syn-
chronize communication. 3) Write the complete results to the file system.

Two parallel sub-tasks are created to execute the algorithmic steps in this super-
step. The first sub-task reads sets of intermediate results from the shared file system
(or shared memory) (satisfying: tag mod P = p;; p; € MPI ranks), de-serializes them
and assembles the complete results. The expectation scores are then computed and
communicated to their origin processes. For example, the process with MPI rank 4
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will process the all intermediate result batches with tag 0x8_¢ where ¢ =0,1,.., P — 1.
The assembly process is done through signal addition and shift operations (Figure 1d).
The expected values (expectscores (es)) are computed by first smoothing the assem-
bled data through Savitzky-Golay filter and then applying the null test through either
the Linear-Tail Fit [48] or log-Weibull (Gumbel) Fit method (Figure 1d). The com-
puted es along with additional information (total: 16 bytes) are queued to be sent
to the HiICOPS process that recorded the most significant database hit (origin). The
final results are stored in a map data structure for collective communication at the end
of all batches. All available cores (cp,) are assigned to this sub-task. Supplementary
Algorithm 4 depicts the algorithmic work performed by this sub-task.

The second sub-task runs waits for P — 1 packets of results from other HICOPS
processes. This task runs asynchronously using an over-subscribed thread and only
activates when incoming data is detected. Finally, once the two sub-tasks complete
(join), the complete results are written to the file system in data parallel fashion using
all available threads.

Cost Analysis: The first sub-task reads the intermediate results, performs re-
gression and sends computed results to other processes in runtime: k41(Qp,,cp;) +
ka2(Qp,;,cp;) + kas(P,1) time. The second sub-task receives complete results from
other tasks in runtime: k44(P, 1). Finally, the complete results are written in runtime:
kas(Qp, ). Collectively, the runtime for this superstep is given by equation 11.

T, = maxp,; (max(k‘ﬂ (me sz:) + ka2 (qu ) Cpqz) + kas (P7 1)7 k44(P7 1)) + k45(QP7:) + ’YPi)
(11)

To simplify equation 11, we can re-write it as a sum of computation costs plus the
communication overheads (kcom (P, 1)) as:

T, = mazxp, (k41(QPi7 cpi) + k42(QPi7 CPi) + kcom(Pa 1) + ks (Qpi) + 'Ypi) (12)

Assuming that the network latency is denoted as (w), bandwidth is denoted as ()
and (16Q)p,) is the average data packet size in bytes, the inter-process communication
overhead cost (kcom (P, 1)) in seconds is estimated to be:

Feom (P, 1) & 2(P — 1)(w + 16Q,, /)

Remarks: As the communication per process are limited to only one data ex-
change between any pair of processes, the overall runtime given by equation 12 is
highly scalable. The effective communication cost depends on the amount of overlap
with computations and the network parameters at the time of experiment.

7.6 Performance Analysis

To quantify the parallel performance, we decompose the total HHCOPS time Ty (Eq. 1)
into three runtime components. i.e. parallel runtime (7}), serial runtime (7%) and
overheads runtime (7,) given as:

4
Tu = Z mazy, (Tjp;) =To +Ts +Tp (13)

j=1

Using equations 1, 5, 6, 10, and 12, we separate the three runtime components as:

To =V, (Q7 DpwP) + Vo, (14)
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Ts = k11(D) + k21(qB) + keom (P, 1) (15)
and:
Ty = k12(Dyp,;) + k/13(Dm log Dy, ) + k22(Qp,) + k23(Qp, )+
maz(tp, (¢, 1), tp; (i, i ]),tp; (K, | K [) + ka1 (@p, )+ (16)
ka2(Qp;» Cp;) + ka5 (Qp,)

T, is the minimum serial time required for HICOPS execution and cannot be further
reduced. Therefore, we will focus on optimizing the remaining runtime: Tr = T, +T5.
Using equations 14 and 16, we have:

Tr = ki2(Dyp,) + Kis(Dp, 10g Dy, ) + k22(Qyp;) + k23(Qp, )+
maz(tp, (¢, 7 1) tp, (i, 3 ]),tp, (k| K [) + ka1 (Qp,, cp)+ (17)
ka2 (QPL ) CPi) + kas (Qm) + 7,

Since the HiICOPS parallel processes divide the database and experimental dataset
roughly fairly in supersteps 1 and 2, the first four and the sixth term in 7}, are already
almost optimized, so we can prune them from Tr:

TF = mam(tpi(t7 | r |)7 tpi,(iv | i |)7 tpi (kv | k |)) + k41(QP7‘,vCP7‘,)+

(18)
k42(QPi7 Cpi) + +kas (sz) + 1

Recall that the superstep 4 runtime is optimized for maximum parallelism (and
least inter-process communication) and that the superstep 3 performs the largest frac-
tion of overall algorithmic workload. Thus, we can also remove the superstep 4 terms
from Tr to simplify analysis:

Tr = max(ty; (¢, r |)stp; (i, ]), tp; (ks | K 1)) + To

Further, as that the superstep 3 is executed using the producer-consumer pipeline
(Figure 1c) where the sub-task R must produce all data before it can be consumed by
I meaning its runtime must also be smaller than ¢,,(¢,| 4 |) and ¢, (k, | k |) allowing a
safe removal from the above equation yielding;:

Tr = maz(tp, (i, | i ), tp; (K, | k1)) + To

In above equation, we can rewrite the max(.) term as the time to complete sub-
task I: (tp,(%,] ¢ |)) plus the extra time to complete sub-task K (the last consumer):
to (k). Therefore, using equation 9 we have:

Tr = ki1 (qlog(Dy,), | i |) + k2 (qB log(ap, ), | i )+

19
kas(@B0mes | 1) + ks (apipes | 1) + £ (k) + T 19)

We can prune the first two terms in the equation 19 as well since their runtime
contribution: O(log N) will be relatively very small. Finally, using equation 14 in 19,
we have:

Tr = ks3(qBop;, | 1 ]) + ksa(qup;, | 1) + ta(k) + Vi, (q, Dp,, P) + v, (20)
7.7 Optimizations

The following sections discuss the optimization techniques employed to alleviate the
overhead costs in Equation 20.
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7.7.1 Buffering

Four queues, the forward queue (gf), recycle queue (g-) and result queues (qi, qj)
are initialized and routed between the producer-consumer sub-tasks in the superstep
3 (Figure 1c) as: R — I, R < I, I — K and I < K respectively. The ¢ is
initialized with (default: 20) empty buffers for the sub-task R to fill the pre-processed
experimental data batches and push in gy. The sub-task I removes a buffer from gy,
consumes it (searches it) and pushes back to ¢- for re-use. The results are pushed
to qx which are consumed by sub-task K and pushed back to ¢} for re-use. Three
regions are defined for the queue ¢f based on the number of data buffers it contains
at any time. ie. wy : (len(gy) < 5), w2 : (5 < len(gy) < 15) and ws : (len(gy) >
15). These regions (w;) are used by the task-scheduling algorithm discussed in the
following section.

7.7.2 Task Scheduling

The task scheduling algorithm is used to maintain a synergy between the producer-
consumer (sub-task) pipeline in the superstep 3. The algorithm initializes a thread
pool of ¢p, +2 threads where cp, is the number of available cores. In the first iteration,
2 threads are assigned to the sub-tasks R and K while the remaining c,, —2 threads are
assigned to sub-task I. Then, in each iteration, the ¢f region: w;, and the gf.pop() time
for I, given by: tyait, are monitored. A time series is built to forecast the next tyq:t
(i-e. tgce) using double exponential smoothing [49]. The tuwai is also accumulated into
teum. Two thresholds are defined: minimum wait (£min) and maximum cumulative
wait (tmaz). Using all this information, a thread is removed from sub-task I and added
to R if the following conditions are satisfied:

CI-R = (twait Z t'mzn A (tcum + tfct) > tmuz) \Y (’LUl = W1 A ‘ T |: O)

The tcum is set to 0 every time a thread is added to R. Similarly, a thread is
removed from sub-task R and added to [ if the following conditions are satisfied.
All threads are removed from R if the queue gy becomes full or there is no more
experimental MS/MS data left to be loaded.

cror = (w =w3s A1 [>1) Vg full()

The sub-task K uses its 2 over-subscribed threads to perform the overlapped I/0O
operations concurrently (Figure 1c).

7.7.3 Load Balancing

The algorithmic workload in equation 20 is given by: kss(qBop,,| ¢ |) + k3a(qup,,|
i |). Here, the terms ¢8 and ¢ are constants (experimental data size) whereas the
terms op,, and pp, are variable. The variable terms represent the filtered database
size for a parallel HICOPS process (p;) and thus, must be balanced across processes.
We do this statically by constructing balanced database partitions (hence a balanced
workload) using the LBE algorithm supplemented with our new Mod Distance metric
in Superstep 1 (Methods, Figure 1a, Supplementary Figure 6). The correctness of the
LBE algorithm for load balancing is proven in Supplementary Section 6. In future, we
plan to devise and develop dynamic load balancing techniques for better results.
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7.7.4 Sampling

Sampling is used to reduce the inter-process communication required in result assembly
(superstep 4) without compromising on the assembly accuracy. For each experimental
spectrum, the HICOPS processes (p;) produce a local resultc consisting: number of
local hits, hyperscore for the top hits etc. (12 bytes), and the local null distribution
histogram of hyperscores (2048 bytes). Communicating this, the size of each data
packet (1 per batch) will be: ~20MB, which can result in serious overheads. It has
been shown that the null distribution hyperscore (and several other scoring algorithms)
in database peptide search follow a log-Weibull or Gumbel curve [41]. This means
that most of the data are localized around the mean. We exploit this information
to reduce the communication footprint as follows: We first locate the mean of the
local null distribution and sample most intense non-zero data points around it. If the
total number of non-zero samples exceed s(=120 default), we prioritize the samples
towards the head of the distribution as we can reconstruct the tail fairly accurately
through curve fitting. The sampled data are further encoded into unsigned short
instead of int to fit inside a buffer of 256 bytes resulting in a 1.5MB data packet size
which is instantly written/read from the shared file system reducing the overhead costs
including ¢, (k) (see Equation 20). Supplementary Figure 7 illustrates an example of
sampling.

7.8 Detailed Experimental Setup

The two databases (i.e. D; and D2) were digested in-silico using Trypsin as enzyme
(fully tryptic) with 2 allowed missed cleavages, peptide lengths between 6 and 46 and
peptide masses between 500 and 5000Da. The pseudo-spectra were simulated by gen-
erating b- and y-ions up to +3 charge with zero isotope error and no decoys. Cysteine
carbamidomethylation was set as fixed modification for all experiments whereas the
variable modifications were chosen from the combinations of Methionine oxidation,
Arginine and Glutamine deamidation, Serine, Threonine and Tyrosine phosphoryla-
tion, Cysteine and Lysine gly-gly adducts, and Tyrosine Biotin-tyramide across exper-
iments. The maximum number of allowed modified residues (amino acid letters) per
peptide was set to 5. The number and type of PTMs used in database expansion, and
the search settings including peptide precursor mass tolerance (6M) were varied across
experiments to cover both the open-: 6 M ~ +500Da and closed-search: §M < £+10Da
scenarios. The closed-search criterion was set to a few Daltons (<1Da in correctness
analysis and <10Da in performance evaluation) instead of 10-20ppms to cover the dif-
ferences in calculated peptide precursor masses due to monoisotopic or average masses
and isotopic masses across search tools. The four experimental MS/MS datasets were
converted to MS2 format before use. The experimental MS/MS spectra pre-processing
settings for all tools were set to minimal so that all tools execute a nearly identical
algorithmic work (fairness). Some of these settings are listed as follows: allowed pre-
cursor masses: 500 to 5000Da, precursor charges: +1 to 4+4, min matched peaks for
PSM candidacy: 4, min database hits for statistical scoring: 4, de-noising: only top
100 peaks picked (by intensity), peak transformations: none, mass calibration: no,
precursor peak removal: no, partial spectrum re-construction: no, clip n-term M: no.
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8 Code Availability

The HiCOPS software has been implemented using object-oriented C++17, MPI,
OpenMP, Python, Bash and CMake. Instrumentation interface is implemented via
Timemory [42] for performance analysis. Command-line tools for MPI task mapping
(Supplementary Section 7), database processing, file format conversion and result post-
processing are also distributed with the software. HICOPS is under active development
and all documentation updates, source code releases etc. will be updated on the same
web page. The source code is available open-source at https://doi.org/10.5281/
zenodo.5094072 [50] and https://github.com/hicops/hicops. Please refer to the
software web page: https://hicops.github.io for detailed documentation, licensing
and future software updates.

9 Data Availability

All datasets used in this study are publicly available from Pride Archive and can

be accessed via https://www.ebi.ac.uk/pride/archive/projects/<AccessionNum>
where AccessionNum is the accession number for each dataset mentioned in the text.

For example, to access the dataset S1: PXD009072, use the link: https://www.ebi.
ac.uk/pride/archive/projects/PXD009072. Homo sapiens protein sequence database

can be downloaded from UniProtKB using the link: https://www.uniprot.org/proteomes/
UP000005640. The UniProt SwissProt (reviewed) database can be downloading using

the link: https://www.uniprot.org/uniprot/?query=reviewed:yes. Source data for
Figures 2, 3, 4, 5 are also available with this manuscript as well as on [39].
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1 Supplementary Figures
1.1 Supplementary Figure 1

Shotgun Mass-Spectrometry Proteomics. Proteins in a biological sample are
proteolyzed into peptides by digesting them through an enzyme, typically Trypsin.
The resultant peptide mixture is fed to an automated liquid chromatography (LC) cou-
pled two-staged MS/MS pipeline (LC-MS/MS) which yields an experimental MS/MS
spectrum per peptide. Thousands of experimental spectra (several GBs data) can be
generated in a span of few hours.

Enzyme ki :ﬁ 'E
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Protein Peptides Liquid Mass Experimental
sample Mixture  Chromatography Spectrometry Spectra data

1.2 Supplementary Figure 2

Generic Database Peptide Search Workflow. Experimental MS/MS spectra
are compared against a database of theoretically predicted spectra. These theoretical
spectra are generated by first in-silico digesting a protein sequence database followed by
spectral predicted using a probabilistic (or machine-learned) model. Post-translational
modifications (PTMs) are also added in the digestion process to to also generate and
include the (modified) peptide variants in the theoretical spectra database. Adding
PTMs to the database results in a combinatorial expansion to: O(Dg x 2™) ; where
Dy is the database size before PTMs and m is the average number of PTMs added
per peptide.
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1.3 Supplementary Figure 3

Comparison of the Parallel Methods (a) The theoretical database (peptide and
fragment-ion index) expands combinatorially when PTMs are added. (b) Homo sapi-
ens and Swiss databases expand to >1B peptides and variants (indexed size: > 1TB)
as a few commonly used PTMs are added. (c) Each parallel node in existing designs
search a portion of the dataset against the entire replicated database. This results in
exhibit poor performance due to memory contention and other overheads (low CPU
utilization) when the theoretical database size (D) >> RAM (M). (d) Each node in
the proposed design searches the entire dataset against a small portion of database
in a pipelined stream coupled with scheduling, sampling and other optimizations for
efficient HPC resource utilization.
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1.4 Supplementary Figure 4

Workload Profile. Supersteps 1 and 2 are designed as data parallel. Supersteps
3 and 4 are designed as hybrid task and data parallel. The workload executed by
the four respective supersteps are compute intensive, I/O intensive, mixed (compute
and I/0), and mixed (compute and comm.). In the last two supersteps, the compute
workload may supersede the communication and/or I/0, given that the associated
overhead costs are overlapped or minimized.
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1.5 Supplementary Figure 5

Comparison of Filtered Peptide Identifications. Comparison of the peptide to
spectrum matches (PSMs) obtained from HiCOPS and MSFragger after false discovery
rate analysis (1% g-value) is shown for the siz experiments discussed in Figures 2c to
2h (see Main text). (a,b,c) show more than 50% overlap between the two tools for
closed-search experiments. (d, e, f) show that MSFragger outperforms the HICOPS’s
underlying algorithm in open-search scenario. Nonetheless, HICOPS is designed as
algorithm-oblivious and the search quality can be improved using different sets of
algorithms.
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1.6 Supplementary Figure 6

Extended HiCOPS Performance Results Decomposition of HICOPS’s total run-
time (tot) into individual supersteps (s;), producer-consumer pipeline overhead time
(tz), and remaining overheads (V') (see Equation 20 in Methods) is shown for the 12
experiments described in Figure 4 (see Main text). Note that the minimum number of
parallel nodes (Pr:n) required for each experiment is = D/M where M is the available
main memory per node. The sub-figures show near ideal speedups as the workload
(database, dataset and search filter) size increases.
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1.7 Supplementary Figure 7

Summary of the LBE Algorithm. The improved LBE method used in the super-
step 1 clusters the theoretical database entries (shown as shapes) using two distance
metrics: Edit Distance (Ae) and Mod Distance (Am) (explained in Supplementary
Section 5). The obtained database clusters (shown as highlighted pieces) are then
finely and evenly scattered across database partitions at parallel HICOPS processes in
either round robin or random fashion.
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1.8 Supplementary Figure 8

Example of the Sampling Technique. An example of the sampling technique used
to minimize the inter-process communication load in superstep 4 is shown. The mean
is computed roughly by averaging the locations of three most intense samples in the
distribution (u ~ 81 in the figure). Then, a maximum of s =120 most intense data
points around the mean are sampled and the others are discarded. The discarding
prefers pruning samples from the tail first the tail is usually easily recovered by fitting
a log-Weibull curve into the data.
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2 Supplementary Sections

2.1 Supplementary Section 1

Related Work. The distributed memory parallel database peptide search algorithms
emerged with the Parallel Tandem [25], which is a variant of the X!Tandem [41] tool.
Parallel Tandem achieves parallelism by spawning multiple instances of the original
X!Tandem using MPI or PVM, where each instance processes a chunk of experimental
dataset files. X!!Tandem [26] is another variant of the X!Tandem which implements an
internal (but similar) parallel technique for computational and synchronization steps.
The experimental dataset files in the case of X!!Tandem are shuffled among the MPI
processes to achieve better load balance. MR-Tandem [27] follows a strategy similar
to X!!Tandem however by breaking computations into small Map and Reduce tasks
(Map-Reduce model) exhibiting better parallel efficiency than the Parallel Tandem and
X!lTandem. MCtandem [28] and SW-Tandem [29] implement the same parallel design
but offload the X!Tandem’s expensive Spectral Dot Product (SDP) computations over
Intel Many Integrated Core (MIC) co-processor and Haswell AVX2 vector instructions
respectively. Both algorithms also implement optimization techniques including dou-
ble buffering, pre-fetching, overlapped communication and computations and a task-
distributor for better performance. Bolt [31] implements a cloud-computing based
parallel solution using a MSFragger-like [2] algorithm where each parallel instance
constructs a full theoretical database and processes a chunk of experimental data.
MS-PyCloud [30] runs parallel instances of MS-GF+ [51] in cloud-computing setting.
Similarly, UltraQuant achieves parallelization by spawning instances of MaxQuant37
with a partition of experimental dataset.

2.2 Supplementary Section 2

Limitations in existing HPC methods. Most existing HPC database peptide
search algorithms achieve parallelization through naive methods - spawn (P) instances
of the original serial code on memory-distributed parallel nodes, each searching a
partition of the experimental MS/MS data against a local replica of the entire database.
Database replication inflates the space complexity of these HPC algorithms to = O(N);
where = O(N) is the space complexity of their serial counterparts. Consequently, these
methods, if applied to modern (high memory footprint) database search algorithms
will suffer from memory bandwidth contention, memory swaps, page faults, I/O from
the shared file-system, load imbalance and out-of-core processing yielding non-scalable
performance. Moreover, adding PTMs to the database will aggravate memory and
bandwidth exhaustion at an exponential rate (Supplementary Figure 3b).

To workaround this bottleneck, Bolt [31] limits its application to the use case where
each database replica must fit within the (150GB) main memory available on system
nodes. On the other hand, X!Tandem’s parallel variants [25], [26], [28], [29], MS-
PyCloud, UltraQuant and others parallelize the classical database search algorithms
with focus on boosting the scoring arithmetic operations. However, these algorithms
require enormous amounts of on-the-fly floating point computations making them com-
paratively slower. For instance, the SW-Tandem running on 6 parallel nodes performs
slower than single node MSFragger run and even beyond 6 nodes the speedups are not
significant [29]. Consequently, the invention of sophisticated parallel methods capable
of leveraging all available (HPC) hardware resources as well as the existing and future
algorithmic advancements are critical in furthering research in this domain.

33



There have been some investigation efforts by Kulkarni et al.[52] towards parallel
designs capable of optimizing the database search compute and memory load per node
to = O(N/P) via theoretical database (and corresponding index) partitioning instead
of the other way around. These designs employ stream based workflows where each
parallel process receives a batch of experimental data, executes a partial search, and
passes on the results to the next process in the stream. However, this scheme still
required significant amounts of on-the-fly computations and frequent data communi-
cation between parallel nodes leading to high compute times showing promising, albeit
limited (~50%) parallel performance [52].

2.3 Supplementary Section 3

SW-Tandem. The SW-Tandem binaries were obtained from its GitHub repository:
https://github.com/Logic09/SW-Tandem and were run on XSEDE Comet system
with increasing number of parallel nodes using MPI but no speedups in runtime were
observed. We ran the Linux utility 1dd on both binaries attached at the SW-Tandem
GitHub repository and found that they do not link to any parallel libarary (MPI, PVM,
UPCXX etc.) - hence no speedup. We also ran the diff utility on both binaries and
found that both of them were exactly the same. We contacted the corresponding au-
thor via Email and GitHub issues (https://github.com/Logic09/SW-Tandem/issues)
but did not receive a response as of the acceptance date of this paper.

2.4 Supplementary Section 4

Existing parallel methods vs HICOPS. The HiCOPS achieves significant speed
improvement over ecisting methods due to efficient resource utilization and overhead
manimaization.

Proof. Let the experimental dataset size be (q) spectra, available main memory per
node be (M), theoretical database index size be (D >> M), number of parallel nodes
be (P), average number of database comparisons per experimental spectrum be (k),
spectrum I/O time be (¢;,), indexing time per database slice of size (d) be (¢;,4), and
the time to perform one (database query + hyperscore) given database slice of size (d)
be (ts,4), then:

The algorithmic runtime per node using ezxisting parallel techniques (wez) is the
sum of I/O time for g/P spectra D/M times, indexing D/M database slices of size
M, and searching the ¢/ P spectra against those slices, given as:

q D D q D

ex = —— X tio — X ti. M
w + ,M+PM

PM M XMXkthJW

Similarly, the algorithmic runtime per node using the proposed (HiCOPS) frame-

work (wg) is the sum of 1/O for ¢ spectra 1 time, indexing 1 slice of size D/P and
searching ¢ spectra against that slice, given as:

D
wH = ¢ X tio +tip/p + 15 Xkxtsp/p
Since our proposed design performs I/O in parallel with database search (Online

Methods, Superstep 3), the I/O overhead term can be pruned (better resource uti-
lization). Further, as P increases, the database slice becomes smaller (already smaller
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than M to fit inside RAM) making it safe to remove the indexing term as well.
D
WH = qF X k x ts,D/P < Weg

Even if somehow all overhead terms in (wey) are ignored, the unit database search
time (¢s,a) remains constant with increasing nodes (indifferent to available system
memory). On the other hand, the unit time for HiCOPS (¢, p,p) reduces with in-
creasing P (see Figure 4 in Main text) or mathematically:

q D
=D Xk X ts — xkxt
P ,M>QP s,D/P

Since:
ts,m > ts,p/p ; since M > D/P

Note the load balance factor has not been considered in the above analysis, which
also contributes to the speed improvement achieved by HICOPS over unbalanced tools.
O

2.5 Supplementary Section 5

Mod Distance. The proposed Mod Distance (Am) is used as a supplementary met-
ric in peptide database clustering in superstep 1 (the improved LBE method). The
application of this metric can be best understood through an example. Consider three
database peptide sequences p: MEGSYIRK, ¢: ME*GSYT*RK and r: MEGS*Y*IRK.
The blue letters represent the normal amino acids in the peptide and the red letters
with (*) represent the modified amino acids. Now, we can see that the Edit Distance
between the pairs Ae(p, q) = Ae(p,r) = 2 (cannot differentiate). Now let us apply the
Mod Distance on this scenario which considers the shared peaks between the peptide
pairs to further separate them. For example, the shared (b- and y-) ions (or peaks)
between p and ¢ are: ME*GSYI*RK = 3, yielding Am(p,q) = 1.625 and the peaks
shared between p and r are: MEGS*Y*IRK = 6, yielding Am(p,r) = 1.25. This indi-
cates that the entries p and r should be located at relatively nearby database indices.
The Mod Distance can be easily generalized for other ion-series such as: a-, c-, x-,
z-ions and immonium ions as well.

2.6 Supplementary Section 6

Correctness of LBE. Let the peptide precursor m/z distribution of any given database
is g(m) and that of any given dataset is f(m), then the LBE algorithm statically results
in fairly balanced workloads at all parallel nodes.

Proof. The algorithmic workload w(f,g) for database peptide search can be repre-
sented as the cost of performing the total number of scoring operations to search
the dataset f(m) against the database g(m) using precursor mass tolerance of M,
fragment-ion tolerance of §F' and shared peaks > k, mathematically:

%) SM
w(f,g) =cost(>_ f(m) Y_ filter(f(m),g(m+ 2),0F, k))
m=0 z=—06M

where filter(f, g,0F, k) in our algorithm is:
filter(f,g,0F, k) = count(shared_peaks(f,g,0F) > k)
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The above equations imply that the database distribution i.e. > filter(f(m),
g(m + z),0F, k) must be similar at all parallel nodes in order to achieve system-
wide load balance. The LBE algorithm achieves this by localizing (by 6 M and shared
peaks) the database entries and then finely scattering them across parallel nodes (Sup-
plementary Figure 7) producing similar (distinct) local database distributions gioc(m)
at parallel nodes thereby, similar workloads. This theorem can also be extended to
incorporate sequence-tag based filtration methods in a straightforward manner. O

2.7 Supplementary Section 7

Task Mapping. The parallel HICOPS tasks are configured and deployed on sys-
tem nodes based on the available resources, user parameters and the database size.
The presented algorithm assumes a Linux based homogeneous multicore nodes cluster
where the interconnected nodes have multicores, local shared memory and optionally
a local storage as well. This is the most common architecture in modern supercom-
puters including XSEDE Comet, NERSC Cori etc. The resource information is read
using Linux’s 1scpu utility. Specifically, the information about shared memory per
node (\), NUMA nodes per node (u), cores per NUMA node (¢, ), number of sockets
per node (s) and cores per socket (cs) is read. The total size of database (D) is then
estimated using protein sequence database and user parameters. Assuming the total
number of system nodes to be P, the parameters: number of MPI tasks per node (¢5)
and the number of parallel cores per MPI task (¢.) and MPI task binding level (¢;) are
optimized as depicted in Supplementary Algorithm 5. The optimizations ensure that:
1) System resources are efficiently utilized 2) The MPI tasks have sufficient resources
to process the database and 3) The MPI tasks have an exclusive access to a disjoint
partition of local compute and memory resources.

Note that in Supplementary Algorithm 5, the lines 8 to 14 iteratively reduce the
cores per MPI task while increasing the number of MPI tasks until the database size
per MPI task is less than 48 million (empirically set for XSEDE Comet nodes). This
was done to cap the memory usage per MPI process for superior performance. The
while loop may be removed or modified depending on the database search algorithms
and machine parameters.

2.8 Supplementary Section 8: Software Details
Minimum Environment

e SMP HPC cluster with Linux OS

e GCC/Intel/LLVM compiler with C++17.

e MPI with thread support, OpenMP.

e Python 3.7+ with common packages.

e CMake 3.18+ and other common packages.

Install

Comprehensive details about the required packages, supported environments and step
by step installation of packages and HiCOPS are documented at: hicops.github.io/
installation. This link will be updated as the development progresses.
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Getting Started

The instructions for setting up the peptide database, experimental MS/MS dataset
and running HiCOPS are documented at: hicops.github.io/getting_started.

Compatibility

The current version of HiCOPS accepts the experimental MS/MS data in the MS2
format and produces a peptide-to-spectrum matches (PSM) report in either tab de-
limited values (TSV) or Excel format. The future versions of HICOPS will have native
support for more formats including HDF5 based formats. For now, the input files can
be converted to MS2 format using the provided raw2ms2 tool and the output files can
be converted to other formats such as pepXML, mzldentML, idXML using either the
IDFileConverter or psm-convert tools.

Integrating with HICOPS framework

The details on integrating the existing and new algorithms with the HICOPS paral-
lel core library are documented at: hicops.github.io/getting_started/integrate.
Currently, the integration is done via the provided functional interface (and data
structures). Meanwhile, the integration is being redesigned with C++ template meta-
programming interfaces. The documentation will be updated accordingly.

Command-line tools

Several command-line tools are distributed as a part of HICOPS software. These tools
provide support for runtime interface, preparation of database, dataset, and post-
processing final results. A brief summary of each tool is documented at: hicops.
github.io/tools.
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3 Supplementary Algorithms
3.1 Supplementary Algorithm 1

Algorithm 1: Database Partitioning in Superstep 1

Data: peptide sequences (¢)

Result: database index partitions (D;)
/* generate theoretical database entries
for s in € do in parallel

=

2 for v in 2™ do
3 e «+ gen_entry(v);
/* add to local database if mine
a if is_mine(e,) then
5 L E.append(e);

/* generate model-spectra data
for s in D; do in parallel
L S.append(model _spectrum(s));

N o

/* index the database in parallel

D; + map(parallel _sort(E), parallel index(S));
/* return the indexed parital database

9 return D;;

o]
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3.2 Supplementary Algorithm 2

Algorithm 2: Data load (per thread) by sub-task R (Superstep 3)

index (iq)

/* loop unless gy full, preempted or no more batches

1 while ~ g;.full() do

10
11

12

13

14

/* check pointer stack
if ~ dp then

| dp < s4.pop();
/* if stack is empty, get a new pointer
if ~ dp then

| dp « iq.pop();
/* no more experimental data batches - exit
if ~ dp then

L break;

/* check preemption state and ¢, status
if ~ preempt() or ~ q,.empty() then

Sq-push(dp);

break;

else
L /* else get a buffer from ¢,

bp < qr-pop();
/* read a batch of expt data
dp.read_batch(bp);
/* push the buffer to qy

qy-push(bp);

Data: forward queue (gy), recycle queue (g,), pointer stack (sq), batch

*/

*/

*/

*/

*/

*/

*/

*/
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3.3 Supplementary Algorithm 3

Algorithm 3: Partial DB search by sub-task R (Superstep 3)

Data: forward queue (gy), recycle queue (g, ), database partition (Dp,),
result queue (gx)

/* extract a batch from queue */
1 b < qs.pop();
/* data parallel search */
2 for e in b do in parallel
/* apply the precursor mass filter */
3 | op, < filter1(Dy,,e);
if 0p, then
for 8 in e do
/* apply the shared peaks filter */
6 L Ly, -append(filtera(op,, B));
/* score against the filtered database */
for h in p,, do
L heap.push(k < score(h,e));
/* append to a batch of intermediate results */
9 res;.append(heap);
/* recycle the buffer back to g, */
10 g..push(b);
/* push the intermediate results batch to gx */

11 qg.push(res;);
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3.4 Supplementary Algorithm 4

Algorithm 4: Result Assembly in Superstep 4

Data: rank p;, Intermediate Result batches (r;)
Result: expect scores (ev)

/* extract a batch from queue

b < qz.pop();

/* get batches that satisfy the condition

2 for b in (b mod p; = 0) do

10

11

12
13

14

15

L l.append(b);

/* data parallel assembling of results for each batch
for s in | do in parallel
/* assemble the null distribution

dist < assemble(s);

/* max heapify the scores

heap < make_heap(s);

/* use either fitting method

fit < logW eibull Fit(dist);

fit « Tail Fit(dist);

/* get the top hit from heap

Ymaz 4 heap.pop().value();

/* compute the expect score

ev < (fit.w X gmaz + fit.b) x heap.size();
/* push results to a map structure

map.push(key = gmaz-key(),val = ev);

/* asynchronous scatter complete result data
for p; in P do in parallel
L isend(map.data(key = p;),dst = p;);
/* synchronize using barrier
barrier();
/* write the results to the file system

write(map.data(key = rank));

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/
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3.5 Supplementary Algorithm 5

Algorithm 5: Task Mapping

Data: number of nodes (n), node parameters (\,u, ¢y, s, ¢s) and

database size (D)

Result: number of MPI tasks per node (t,), cores per MPI task (t.)

and MPI binding level (¢y)
/* ensure enough memory for database
1 if D,, < D/P > 0.70X then
2 L return err;

/* set MPI binding level
3 ty < max{u,c};
/* set MPI binding policy
4 typy < scatter;
/* set cores per MPI task
5 t. + min{cy,cs};
/* set number of MPI tasks per node
6 t, < max{u,c};
7 tmaz < e

/* Optional: optimize for memory bandwidth

s while (D/t, > 48 x 10°) do

/* Choose the next highest factor of {max
9 Nposs < factorize(tmaz);
10 if Nposs > tmaz/2 then
11 ty  tn X tmaz/Mposs;
12 te < Nposs;
13 else
14 L break;

15 return t,, L., tp, tpp;

*/

*/

*/

*/

*/

*/

*/

42



	High Performance Computing Framework for Tera-Scale Database Search of Mass Spectrometry Data
	tmp.1639174982.pdf.1Y5Hg

