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Biosensors are emerging as efficient (sensitive and selective) and affordable analytical diagnostic tools for
early-stage disease detection, as required for personalized health wellness management. Low-level
detection of a targeted disease biomarker (pM level) has emerged extremely useful to evaluate the
progression of disease under therapy. Such collected bioinformatics and its multi-aspects-oriented an-
alytics is in demand to explore the effectiveness of a prescribed treatment, optimize therapy, and
correlate biomarker level with disease pathogenesis. Owing to nanotechnology-enabled advancements
in sensing unit fabrication, device integration, interfacing, packaging, and sensing performance at point-
of-care (POC) has rendered diagnostics according to the requirements of disease management and pa-
tient disease profile i.e. in a personalized manner. Efforts are continuously being made to promote the
state of art biosensing technology as a next-generation non-invasive disease diagnostics methodology.
Keeping this in view, this progressive opinion article describes personalized health care management
related analytical tools which can provide access to better health for everyone, with overreaching aim to
manage healthy tomorrow timely. Considering accomplishments and predictions, such affordable
intelligent diagnostics tools are urgently required to manage COVID-19 pandemic, a life-threatening
respiratory infectious disease, where a rapid, selective and sensitive detection of human beta severe
acute respiratory system coronavirus (SARS-COoV-2) protein is the key factor.

© 2020 Elsevier Ltd. All rights reserved.
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1. Emergence of nanotechnology-enabled biosensor-based
diagnostics

Since the discovery of biosensors, efforts are continuously being
made for translating a demonstrated and optimized sensing pro-
totype to an analytical diagnostics tool [1—3] for clinical applica-
tions. Considering technological advancements and constant
demand raised by experts, the biosensor market is predicted to be
reaching up to 28 Billion USD with a compound annual growth rate
(CAGR) of 8.4% by the year 2022 [4], as illustrated in Fig. 1A. For
developing a biosensor of tunable salient features, all the aspects of
nanoscience and nanotechnology have been introduced in the
fabrication of next-generation systems that involve functionalized
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€ Authors contributed equally.

https://doi.org/10.1016/j.mtchem.2020.100306
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nanostructures, thin films, biocompatible functionalized materials,
miniaturized transducers, introduction of microfluidic manifolds,
device packaging, etc. (Fig. 1B, C, & D) [1,2].

A surface-enhanced Raman scattering (SERS) phenomena based
selective and sensitive geno-sensing of specific neuro biomarker/
cDNA (TuJ1) using graphene—Au hybrid nanoarray was investi-
gated, as illustrated in Fig. 1B. In this research, Raman active dye-
labelled probe DNA oligonucleotide were conjugated onto the
graphene-Au nanoarray which participate in the enhancement of
chemical and electromagnetic mechanism (EM) for SERS based
biosensing. The plasmonic Au nanostructures participate in the
amplification of Raman signal via electromagnetic mechanism
whereas graphene simultaneously enhances the signal via chemical
mechanism which brings into line the energy level of graphene
oxide with the targeted analyte. Such developed efficient hybrid
SERS nanoarray system could be useful to explore the cellular
phenomena (stem cell differentiation, disease evolution etc.) [5]. A
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Fig. 1. A) Biosensor market analysis in the USA. This prediction is based on the various applications and types of biosensors [4]. B) smart ultrathin graphene layer fabricated on Au
substrate integrated with Raman spectrophotometer for genetic (RNA, extracted from stem cell) materials detection [5]. C) Exploring artificial cells for the nano-bio interface-based
networking. This approach of nanosensor development is an optimized combination and interfacing of artificial cells, nano-transmitter, bio-cyber interface, and electronic tattoo [6].
D) presentation of a transdermal health monitoring toolkit fabricated using thread-based chemical and physical sensors, microfluidic channels, and interconnects for the realization

of a thread-based diagnostic device [7].

concept of Internet of Bio-Nano Things (IoBNT) was proposed by
Akyildiz et al. for investigating nanoscale devices (Fig. 1C) to
perform intra body sensing, environmental control for toxic sub-
stances and the pollution. The [oBNT is capable to transfer health
informatics from inside the body to the external health provider via
internet which has potential to evaluate drug delivery and efficacy.
Further, electronic artificial tattoos are being designed for bio-cyber
interface. In this direction, the biocyber interface is a set of process
to translate biochemical information of IoBNT to the internet cyber
domain via electromagnetic communications and vice versa as
portrayed (Fig. 1C). Artificial cells are another successful nano-
technology tool applied for gene therapy, drug delivery, and arti-
ficial blood cell production. Therefore, [0BNT is a new technology
which could be potentially explored for various health related is-
sues [6]. A 3D analytical biosensing platform based on thread was
fabricated by Mostafalu et al. (Fig. 1D). These threads acted 3D
microfluidic channels for sensors and electronics needed for health
monitoring. This group developed combination of physical and
chemical sensors integrated within the microfluidic network. The
microfluidic platform was developed via hydrophilic threads
decorated onto the hydrophobic fabric (as illustrated in Fig. 1C). The
treads serve as microfluidic channel for the controlled delivery of
body fluids to the sensing platform. Nanomaterial based conductive
threads were used as electrodes for measurements of pH, temper-
ature, glucose and strain. The output of the sensing platform was
connected to electronic readout for wireless communication and
signal processing to a smart phone or computers. These thread-
based devices could be used as implantable devices in the body
for health monitoring [7].

Most importantly, cost-effective, miniaturized, easy to operate
sensing devices are getting considerable attention in academia,
laboratories, and industries to promote smart (highly sensitive and
selective) biosensors as smart (keeping desired and physiological
range in view) diagnostic systems [3—7].

As of now, developed sensing products, either wearable or non-
wearable biosensors, based on electrochemical, optical, thermal

and piezoelectric transduction technology, have shown remarkable
performance, especially in the testing of blood glucose, cholesterol,
triglycerides, pregnancy testing, infectious diseases, drug discovery,
blood gas analysis, etc. [8—11]. Despite significant progress, efforts
are being continuously made to improve the state of art sensing
technology using more efficient and updated technologies to ach-
ieve sensing at a low level, especially picomolar (pM) level. How-
ever, the need for detecting a targeted biomarker at femtomolar
(fM) is also emerging for infectious diseases management which
raised the scope to develop smart biosensor i.e. more sensitive and
selective. It has been reported that smart bio-sensing materials
(selected to immobilized bio-active compounds involve enzyme,
DNA, RNA, and antibody), based biosensing prototype chip inte-
grated with a miniaturized potentiostat (M-P) fabricated using
micro/nanoelectronics) is getting attention for performing di-
agnostics at POC applications (Fig. 2). Further, the interfacing M-P
with a smartphone to operate M-P and to manage data for data
storage and timely informatics analysis is commonly used practice
to develop a biosensor of high performance and reliability [19,20].

2. Towards point-of-care diagnostics for personalized health
wellness

Modern material science has facilitated the preparation and
fabrication of nano-enabled smart sensing substrates (Fig. 1B) such
as biopolymers, conducting polymers, metal oxides, gold, carbon
nanotubes, graphene, quantum dots, composites, and hybrids
[21,22]. The need to achieve high loading of biomolecules to achieve
wide detection range and signal amplification to achieve sensing at
a low level of biomarker raised the demand of exploring novel
electro-active surface-functionalized nanostructures (Fig. 1C). Such
nano-systems have also been successfully fabricated onto inter-
digitated microelectrodes (IDuUE) for the development of a
biosensor which can detect targeted biomarkers at a very low level
(pM and fM). Such a low-level detection limit of a biosensor is very
important to detect a disease-specific biomarker at an early stage



M.A. Mujawar et al. / Materials Today Chemistry 17 (2020) 100306 3

Point-of-Care Testing
\ J

{ \
A better access of bio-informatics for

Health wellness

Fig. 2. The potential application of POC testing. An optimized smart POC diagnostics
tool can detect the desired biomarker. Such of informatics can be analyzed for
personalized health wellness.

i.e. onset of disease and to monitor a disease's progression under a
prescribed therapy. Such of biosensors are recommended for the
management of the diseases of infectious diseases causes by virus
e.g. Zika and Ebola outbreak. In those diseases, the virus replicates
in low concertation which is not detectable using polymerase chain
reaction (PCR) and enzyme-linked immunosorbent assay (ELISA)
but nano-enabled IDUE based biosensors are efficient to perform
this task. This approach is also highly recommended to manage
several other diseases (such as cancers and stress) along with
environmental, agriculture, and food security-related aspects. More
towards advancements sides, the IDuE-based bio-sensing chips are
being integrated with M-P to promote bio-sensing applications
from laboratory to field [4]. This micro/nano electronics-based
approach is useful to design and develop portable biosensors of
reduced form factors which is the foundation of diagnostics at POC
application (Fig. 2) to perform personalized diagnostics
[3,8,23—-25].

Biosensors facilitate rapid sensing of a targeted biomarker,
thereby it is possible to carry out the biomarker detection (or dis-
eases diagnostics) multiple times in a day or a real-time manner.
These features project such biosensors to generate enough of bio-
informatics to understand the symptom variation and optimize
timely therapeutics. Another sensing approach that is being
explored to manage disease diagnostics in a real-time manner is
MEMS/BioMEMS based bio-sensing. BloOMEMS bio-sensing devices
based on the pressure sensor, accelerometer, microfluidics, micro-
phones, and ultrasonic sensors are in demand for health manage-
ment due to automated handling and precise measurement
(Fig. 1D). Due to the involvement of major players like Google,
Apple, Amazon, etc., and the proven multiple benefits, the market

business of BioMEMS based sensing devices will be around 6.9
Billion USD in 2023 with CAGR of 14.9% from 2017 to 2023, as
proposed by Yole Development Inc [4]. However, a well-
recommended focus towards exploring novel sensing methodolo-
gies such as capacitive/piezoelectric ultrasound detection, a cell-
phone mobile-based health care wherein smartphone enables easy
operation and data recording, and internet of medical things (IoMT)
[26,27] for efficient data analysis and data sharing have been sug-
gested by experts as E (electronics) - health to I (intelligent) —
health [28]. The E-health includes smartphone-assisted sensing
and personalized electronics for rapid bio-informatics collection
along with real-time patient care monitoring, diagnostics at certain
internal, and self-aware based diagnostics performance. In this era,
the smartphone is very common electronic people keep this most
of the time everywhere. This common practice can be useful to
design a well-planned diagnostics or bio-informatics collection,
where the differences of ecology, race, gender, age, etc., are
important points of consideration to manage a targeted disease.
Such of the intelligent use of electronic devices-based diagnostics
in medical practice refers as I-health [29].

On applying fundamental of nano-biosensor technology, our
research has also proposed development of smart miniaturized
biosensing platform to detect a targeted biomarker such as Ebola,
beta-amyloid, cortisol, and Zika-virus protein at low level (10 pM)
needed to establish methodologies of rapid diagnostics at early-
stage and disease progression monitoring with/without therapy
[1-3,12—21]. These salient features enable diseases diagnostics and
per requirement and generate bioinformatics to decide therapy
timely and establishing a correlation between diseases progression
and pathogenesis. Our established sensing prototypes are suitable
for POC application [1—3,12,17]. For example, we have fabricated an
electrochemical biosensor using IDEs modified using an appro-
priate self-assembled monolayer (SAM) to detect cortisol [15,16], a
psychological stress biomarker at 10 pM within 40 min (Fig. 3A).
The SAM based biosensor was tested using saliva collected from
farmworker and plasma of HIV infected patients, and sensing out-
comes were validated using ELISA [16]. This miniaturized IDE based
cortisol immune-sensor was integrated with a microfluidic mani-
fold for automated sampling of 10 pL and customized M-P (LMP
9100, Texas instrumentation) for fabricating a potable cortisol
biosensor. As planned this fabricated sensing device was very
useful to perform cortisol sensing at POC [20]. As Zika-virus
infection declared as international health emergency due its asso-
ciation with microcephaly, a significant attention was made to
develop miniaturized electrochemical biosensors to detect zika-
virus protein at very low level to achieve early stage diagnostics
[3,19]. To achieve this task, Kaushik et al. developed an electro-
chemical zika virus immunosensor (Fig. 3B) using a SAM func-
tionalized IDEs to detect envelop virus protein at 10 pM selectively
(in comparison of dengue and malaria). Such Zika sensor was
interfaced with a M-P which can be operated using a smartphone to
perform POC diagnostics and easy data management. The integra-
tion of IDE based efficient sensor with smartphone make user
friendly (easy to use) and performance according to the need of
clinical such as rapid sharing and analytics [19]. In order to explore
smart electro-active sensing platforms, our groups explored the
alternated of ELISA, needed to evaluate diseases progression and
efficacy of a therapy. In this research, a chip based electrochemical
system was developed to monitor electrophysiology of targeted
cells infected with HIV in setting of drug abuse (cocaine) and
therapies (Fig. 3C) [23]. It was observed that on infection and
treatment selected cell types goes under a distinctive electro-
physiology changed which can be monitored using a sensitive
electrochemical chip-based technology. Outcomes of this research
confirmed that such chip-based sensing system are suitable for
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Fig. 3. A) Schematic illustration of SAM/IDE-based electrochemical cortisol immuno-sensor interfaced with a M-P and microfluidic system for cortisol detection at for POC
application [20], B) fabrication of IDE-based electrochemical Zika immunosensor and its integration with a smartphone to perform POC diagnostics [19], C) chip-based electro-
chemical system to monitor cell electro-physiology of human astrocyte cell on HIV infection in setting with drug abuse (cocaine), with/without FDA recommended drug [23].

rapid to diagnose HIV-infection, monitor efficacy of a therapy, and
rapid optimization of a suitable therapy. These affordable and
sensitive sensing systems are easy to fabricate and optimize and
emerging as an alternate of ELISA and PCR for managing HIV dis-
eases in personalized manner [23].

Wearable electronic micro-sensors are considered as the first
generation of smart sensing (the year 2000) [30]. Later, numerous
papers and flexible substrate-based sensor prototypes were
developed to fabricate efficient wearable biosensors. The interfacial
electrical and optical properties of material-targeted biological
compounds have been leveraged to develop wireless sensing sys-
tems [22,31]. Due to this feature, it is possible to monitor health
variation in a real-time manner. Such sensing systems are second-
generation (Year from 2010 to 2014) of biosensors which facilitate
miniaturization of integrated circuits and low power consumption
[32]. The current era, as the third generation of the biosensor, is of
non-invasive biosensors (2017—2020) i.e. nanosensor [33]. This
generation is emerging with significant advancements in self-
powered electronics, bioelectronics, stretchable electronics, and
flexible and body compatible materials.

3. Artificial intelligent supported POC diagnostics for
intelligent healthcare

Innovations in biomedical devices are continuously making
health care delivery easy, timely, affordable, manageable, and user

friendly. As an outcome, the investigation and introduction of new
non-invasive approaches of reduced form factor features have
made health monitoring more personalized. However, the right
analysis of generated bio-informatics has raised the demand for
smart deep learning towards artifical intelligence (Al), an approach
to mimic human condition by a computer, which can analyze the
data efficiently by considering demands and potential challenges in
mind. This huge data analysis and data management is needed to
understand targeted diseases/symptoms monitoring, correlation of
targeted biomarker level with disease variation, efficacy moni-
toring, and disease management. To categorize data concerning
health parameter preferences, a new tool that can digitalize di-
agnostics systemically for a patient profile is urgently in demand.
This can be completely manageable if the IoT methodology asso-
ciates with the Al-based approach. The IoT approach is capable of
digitalizing every possible information intelligently by using the
cyber-physical smart passive framework. This feature can filter bio-
informatics analysis using Al to optimize the parameter according
to the patient profile. Such an Al-assisted IoT based bio-informatics
is very crucial to manage targeted diseases in a personalized
manner.

At present, system development is emerging as a key factor for
developing an efficient diagnostics device of reduced form factor
and capable to perform at POC applications (Fig. 2). This has raised
the demand for exploring internet of medical things (IoMT), a
hardware-based approach involving a smartphone [34]. Although



M.A. Mujawar et al. / Materials Today Chemistry 17 (2020) 100306 5

both IoT and IoMT have a lot of similarities but the connecting
devices for biomedical application in the health care industry is
growing under IoMT. Recently, the IoMT is emerging rapidly in
biomedical research because of rapid data sharing and analysis. It
has been predicted that Al-IoMT assisted diagnostic will be a focus
to develop the next generation of bio-sensing systems [27—29,35].
Such systems are predicted more reliable due to easy calibration
because of portability, as a well-packaged miniaturized sensing
technology. Future biosensors will enable patient care at home in a
real-time manner and will provide diagnostics information to cli-
nicians/health experts to know about disease progression and
medication. To achieve such claims and tasks, a systematic step-by-
step approach is recommended by experts as illustrated in Fig. 4.

Despite recent developments in biosensing systems, several
challenges such as affordability, sensitivity, portability, stability,
compatibility with bio-active molecules, etc., are yet to be over-
come to achieve disease diagnostics at home, POC or both. Devel-
oping novel electro-active biomaterials (especially biopolymer
such as chitosan, scaffolds, etc.) exhibiting absolute immune
compatibility and desired interfacing with the human body will be
one of the major concerns in sensor development. The investigation
of M-P operated by a smartphone will also be a key component to
achieve diagnostics at POC required for disease management at the
epidemic site in a real-time manner. Bio-sensing based on MEMS
seems to be a game-changing approach to investigate nano-toxicity
aspects of nanomaterials, cell physiology on the exposure of
external factors for example inhalation of pollutants particles, vi-
ruses, transmitted diseases, etc. Such sensors which are based on
advanced chip technology will be very useful to optimize a dose of
various nanoparticle selected for biomedical applications, evaluate
drug efficacy, and therapy efficacy assessment [36—39]. The out-
comes of such of sensing strategy will provide desired informatics
to optimize a product to everyday use and drug/vaccine therapy to
provide better treatment, as illustrated in Fig. 5.

4. Viewpoint and suggested approaches for intelligent
healthcare

In today's world, where time is precious, people, the working
class especially, spend most of the day shuttling between various
tasks and tend to ignore their health and fitness. Even a simple
appointment with a doctor in a clinic can require several tests set
for diagnosis, prescription, and finally treatment, which can take a
lot of time [40]. Therefore, many patients only go to a clinic when
they are suffering from a serious illness. Hence, many people are
seeking an alternative, such as a device that can be worn on the
body, which would not only continuously monitor the user's health
in real-time but also provide timely insights on various health pa-
rameters to the user as well as his or her physician. Rural health
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care [41] is one of the biggest challenges in the world, especially in
developing countries where over 55% of people live in rural areas
[42]. Thus, the Internet of Things is considered very useful. Data
Transfer and Automation (IoT) is the fastest growing technology
[43,44] using the Internet of Things. This includes sensors, cyber
systems - IoT, and cloud computing [45]. Web systems collaborate
at every stage of the web to reach the right people in real-time. In
rural areas, the patient must take the medication on time. The IoT
can be very useful for those who suffer from the disease [46].
Keeping this in view, IoT users are also focusing on some authen-
tication improvements. The IoT is a device that connects multiple
devices locally, including electronics, software, sensors, actuators,
and networks [47]. Various applications of the IoT include smart
healthcare, smart cities, automation in industries, agriculture, and
transportation decision making [48]. They convert the radio-
frequency energy emitted by the reader device into a few feet
transmitted signals. Given the huge shortage of trained manpower
and the high cost of setting up government facilities, it is often
impossible to provide proper health care services in rural and
remote areas [49].

However, IoT is considered viable [50]. Living as healthy people
can lead to economic growth and they are more productive thus,
the country grows. Many health monitoring systems have been
developed over the years to improve the quality of life by providing
better health [51]. The Internet has become an important part of
our daily lives. The whole concept of 10T enables users to commu-
nicate and access information about sensors, gateways, and wire-
less networks [52]. The Internet of Things has a role to play in
improving quality of life [53]. It is an ever-growing network of
smart objects connected using the internet. It can be used to di-
agnose the disease at home and take appropriate medication [54].
The overview of the healthcare monitoring system is depicted in
the below block diagram.

As illustrated in Fig. 6, IoT wearable devices and Al-based
healthcare monitoring systems elaborated. Patients' vital parame-
ters such as Heartbeat and the temperature is continuously moni-
tored via medical sensors and periodically stored in cloud service.
The system collects real-time data from the patients and delivers an
updated patients’ status to the medical professionals and the
caretakers using a wireless sensing network (WSN). This autono-
mous system replaced the traditional method to collect the pa-
rameters regularly by the nurse. It avoids human errors in
collecting the patients' data manually. Data transfer protocol helps
to transfer the messages. The observed vital signs of the patients
are analyzed and checked against the standard range to detect the
abnormal condition of the patients.

The IoT wearable devices and Al-based healthcare monitoring
system incorporates IoT Edge and Al technologies to provide pre-
dictive capabilities. The IoT Edge technology provides a way to

POC,

Home Diagnostics,

Research Labs,

Biodefense,

Environmental Monitoring,

Geology,

Food & Beverages Industry,
Technologies,

Products (Wearable and Non-Wearable),

Applications

Fig. 4. Illustration of a systematic approach to developing an efficient and affordable biosensor for clinical and POC applications.
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Fig. 6. Deception of IoT wearable devices and Al-based healthcare monitoring system.

package and deploy Al models on the cloud or at the edge itself
which reduce tremendous computational power. The healthcare
data collection and storage can be done by the smart biosensors
discussed in the earlier sections of the paper. After data collection
completes, Al infrastructure needs to design and develop Al models
which includes machine learning and deep learning algorithm
development and enhancement. Once Al models will be ready for
the deployment, there are two possible ways to deploy it. First,
deploy Al model at IoT device or wearable device and another is to
deploy it on IoT edge gate way. The deployment scenario as shown
in Fig. 7, a machine learning, deep learning or Al model will be used
for deployment at the edge of IoT. It can be done using IoT function
container to the data of process retrieved from IoT wearable devices
in real time processing. The appropriate action will be taken only
after Al model predict anomalies on the streaming data and
generate proper actions.

There is also a possibility of Al model deployment at IoT device
or wearable device. In that cases, all real-time data processing will
be done at the microcontroller level and anomalies will be identi-
fied at the wearable device to take appropriate actions based on

Telemetry

Data

Wearable
loT Devices

real-time prediction. There are multiple benefits of proposed Al
model deployment on IoT edge and wearable devices. It monitors
patient health indicators in real time. It provides secure trans-
mission of data collected by the wearable devices to the cloud. It's
also analyzed patient data to prompt urgent actions and provide
long-term healthcare guidance with timely emergency notifica-
tions. At last, it also provides potential for analysis of aggregated
patient data to identify health risk patterns across a population.

5. Intelligent diagnostics for COVID-19 management

A life-threatening respiratory infectious disease known as
COVID-19, associated with novel RNA envelope human beta severe
acute respiratory syndrome (SARS-CoV-2) virus, strike China in late
December 30, 2019. This new infectious disease has affected over 5
million people around globe (30% them belong to the United States
of America) and continuing to grow because of easy human to
human transmission, no effective of therapeutics, and lacking
effective diagnostics systems. Health agencies monitored COVID-19
epidemic sincerely and latter declared it as a pandemic and alert
every country to plane joint efforts to combat against this inter-
national health emergency. Every country pain serious attention to
develop regulatory guidelines, therapies, and diagnostics systems
to manage COVID-19 pandemic. But the variation in categories and
strains of SARS-CoV-2 virus projected developing high efficacy
therapy as an unpredictive and long-term goal [55—57].

This obstacle turned the attention of experts to think about
management COVID-19 infectious diseases which bring the need of
investigating efficient sensor to detect SARS-CoV-2 selectively and
timely as an urgent focus. As demonstrated, SARS-CoV-2 spreads
through person-to-person which raised to demand of using pre-
cautions like mask [58] and investigating diagnostics at POC
without need of labor extensive sophisticated laboratories. To
achieve desired diagnostics, we suggested that an optimized
compartmentalization approach, as discussed above, could be the
best way fabricate a nano-enable miniaturized biosensor for SARS-
CoV-2 virus protein detection at site of epidemic [57].

Anomaly

Notification

Fig. 7. Al model deployment on IoT edge gateway.
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Such of desired SARS-CoV-2 sensing supported by Al and IoT is
emerging a key factor to manage COVID-19 pandemic manage-
ment. The need of developing such smart sensing system to COVID-
19 pandemic because of asymptomatic carries and hospital dis-
charges patient again got SARS-CoV-2 virus infection. These chal-
lenges demand the real-time SARS-CoV-2 detection and tracing to
population [59,60]. If such intelligent system implemented, then
smart management of COVID-19 pandemic can be achieved suc-
cessfully (Fig. 8) due to advantages as follows.

e A miniaturized IDE-based SASR-CoV-2 biosensor can be fabri-
cated via selecting specific Anti-SASR-CoV-2 virus protein anti-
body for selective and sensitive detection within 30—40 min of
operation time.

e Such biosensor can be transformed to develop POC analytical
devices to perform SASR-CoV-2 at POC needed to manage
COVID-19 in personalized manner.

e Such SASR-CoV-2 detection will generate bioinformatic to un-
derstand the diseases progression, efficacy of therapy, optimi-
zation of a good therapy, and correlating between SASR-CoV-2
level and pathogenesis.

e MEMS based can designed to evaluate the efficacy of a new drug

prior to test using animal model.

Introduction of IoT in SASR-CoV-2 biosensing may be useful to

develop wireless system for POC diagnostics.

e Al supported POC diagnostics of COVID-19 will be emerged as
breakthrough in big data analytics needed explore.

e An optimized combination of nano-enabled SASR-CoV-2 bio-
sensing, IoT and Al will be a perfect platform to manage COVID-
19 pandemic intelligently without errors at personalized level.

e Tunable features and programmable operation will be useful to
manage COVOD-19 diagnostics after considering variabilities
associated with population, race, gender, and medical history.

e Al-supported algorithm will be useful to optimize a therapy
among available drugs, vaccines, and combinations,

e Al-supported analytic can direct expert to plan for targeted
testing or where the attention is most required i.e. high risk
areas.

e Al-assisted big data analytics will be useful to predict the need
and understanding of social/physical distancing.

e Al and IoT supported COVID-19 management strategy is
acceptable to evaluate the risk factors, tracing of population, and
suggesting option, which are the primary requirement of every
county to remove lock down and open business, mainly
universities.

e Al and IoT assisted approach will be useful to assess the needs of
an individual is there is a factor of neurobehavior alteration and
safe work practice.

e Al and IoT supported POC diagnostics can manage COVID-19
pandemic in personalized manner.

e Technology supported intelligent healthcare will be driving
force to trace and eradicate COVID-19 pandemic.

6. Viewpoint

As summary, this opinion article explores the state of art bio-
sensing technological approaches that have been investigated and
are being under investigation for disease diagnostics and man-
agement. Keeping capabilities of sensitive and selective diagnostics
at POC, the future bio-sensor market projection suggested de-
velopments, and related challenges with a viewpoint are also
described. This report is oriented as a call to experts for developing
advanced analytical bio-sensing devices for disease diagnostics
needed for personalized health care and wellness at home and POC.
As future research, it is strongly recommended to introduce the
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concept of miniaturization in biosensors to explore required for
POC application. Further, the operation of POC biosensors using a
smartphone for useful bio-informatics analysis supported by Al and
IoMT (for data storage, sharing, and security) for rapid and essential
diagnostics emerged very usefully for timely therapy optimization
and personalized diseases diagnostics. This report is a request for
investigating Al and IoT supported SARS-CoV-2 detection selec-
tively at low level desired for early-stage COVID-19 diagnostics at
POC to manage pandemic successfully, in personalized manner.
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