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Caves are perceived as isolated, extreme habitats with a uniquely specialized biota, which long ago led to the idea that caves

are “evolutionary dead-ends.” This implies that cave-adapted taxa may be doomed for extinction before they can diversify or

transition to a more stable state. However, this hypothesis has not been explicitly tested in a phylogenetic framework with multiple

independently evolved cave-dwelling groups. Here, we use the freshwater crayfish, a group with dozens of cave-dwelling species

in multiple lineages, as a system to test this hypothesis. We consider historical patterns of lineage diversification and habitat

transition as well as current patterns of geographic range size. We find that while cave-dwelling lineages have small relative

range sizes and rarely transition back to the surface, they exhibit remarkably similar diversification patterns to those of other

habitat types and appear to be able to maintain a diversity of lineages through time. This suggests that cave adaptation is not

a “dead-end” for freshwater crayfish, which has positive implications for our understanding of biodiversity and conservation in

cave habitats.

KEY WORDS: Caves, crayfish, diversification, extinction, habitat, range size, synthesis.

Caves and other subterranean habitats have long been hypothe-

sized as “evolutionary dead-ends” due to the perceived extreme

nature of cave-dwelling organisms’ morphologies and the high

degree of phenotypic and ecological specialization observed in

cave inhabitants (Poulson and White 1969; Barr and Holsinger

1985; Culver and Pipan 2009). The most conspicuous features

of cave-adapted taxa are the nearly ubiquitous loss of complex

traits such as vision and pigmentation, presumably in response to

evolution in a unique aphotic environment (Culver 1982; Culver

et al. 1995). Loss of these traits would potentially disadvantage

troglobionts (obligate cave-dwellers) in surface habitats com-

pared to their generalized epigean (surface) counterparts and the

reevolution of these traits seems improbable once they are lost

(Simpson 1955; Porter and Crandall 2003). As cave-dwelling

species become specialized to the relatively stable environment

of subterranean habitats, it creates a situation in which these

species are particularly susceptible to environmental perturba-

tions through evolutionary time. A considerable percentage of

troglobitic species are geographically isolated and numerically

rare (Culver and Pipan 2009), potentially limiting genetic diversity
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and increasing the potential for local extinctions (Culver 1982;

Caccone et al. 1986; Strecker et al. 2003). These factors have led

to the idea that once a lineage becomes an obligate cave-dweller, it

may be doomed for extinction before it can diversify or transition

to a more evolutionarily stable state, that is, one that can maintain

lineages through time.

The degree to which troglobitism can be considered an evo-

lutionary dead-end depends both on the irreversibility of cave

specialization and the ability to maintain lineages through time

once adapted to cave environments. It is generally accepted that

there is an interplay among dispersal ability, geographic range

size, speciation, and extinction that influences a group’s evolu-

tionary success (Bilton et al. 2001; Bohonak and Jenkins 2003;

Kisel and Barraclough 2010; Sukumaran et al. 2015). Given the

typically “patchy” nature of caves and other freshwater ecosys-

tems, the relationship between dispersal ability and speciation rate

can be described by an intermediate dispersal model (Diamond

et al. 1976). In this model, the relationship between speciation and

dispersal forms a curve where the highest speciation rates result

from a medium level of dispersal ability that produces a “patchy”

distribution in space (Claramunt et al. 2012). Dispersal is some-

what rare, but occurs often enough to allow for occasional range

expansion and facilitates genetic isolation. Low dispersal ability

results in species with high levels of endemism and little popu-

lation structure. High dispersal ability results in large geographic

range sizes, but also low population structure as individuals are

able to explore a high percentage of the range (Claramunt et al.

2012). Lineage diversification may be limited in caves due to re-

stricted dispersal capabilities and high levels of endemism. Even

when dispersal is possible (either via washouts or subsurface con-

nections), caves are a relatively homogeneous habitat both spa-

tially and temporally, limiting the number of available niches. As

with other ecologically specialized taxa, troglobites are hypoth-

esized to be particularly susceptible to environmental variability,

which would increase extinction probability, and cave fauna are

frequently in consideration for conservation actions (Culver and

Pipan 2009). Therefore, if caves are evolutionary dead-ends, we

would expect cave-adapted lineages to have relatively small ge-

ographic range sizes, low or zero transition rates out of caves,

elevated extinction rates relative to speciation and/or transition,

and a decreased net diversification rate relative to surface species.

Recent phylogenetic studies have tested and challenged the

assumptions of specialization (including specialization to caves)

resulting in an evolutionary dead-end. For example, Prendini et al.

(2010) found that epigean scorpions have evolved from cave-

dwelling ancestors multiple times suggesting that cave adaptation

is reversible, and while Pyrenean cave beetles have evolved to live

in caves only once, they can persist and diversify with success

(Cieslak et al. 2014). Day et al. (2016) found mixed support for

the evolutionary dead-end hypothesis for specialists across a set

of 10 phylogenies. In general, however, these studies focus on

groups with either a small number of specialized taxa or with

very few replicated events of specialist evolution.

With approximately 45 described troglobitic species and sub-

species (Crandall and De Grave, 2017), the freshwater crayfish

are an excellent group in which to test the evolutionary dead-end

hypothesis of cave-dwelling organisms. Multiple origins of cave

adaptation have been hypothesized for crayfish based on morphol-

ogy and geography (Hobbs et al. 1977) providing power to detect

biologically meaningful patterns. Taxonomically, cave crayfish

fall into four genera, all of which belong to the largest of the

five crayfish families, Cambaridae (Hobbs and Barr 1960). These

generic placements were made according to genital morphology,

geography, and other typical characters used in crayfish taxonomy,

suggesting independent origins of cave adaptation. Cave cray-

fish are known from multiple geographic regions in the United

States, Cuba, and Mexico, including the Florida Lime Sinks, the

Ozark Plateau, the Cumberland Plateau, the Interior Lowlands, the

Greenbriar Valley, and the Sierra Madre Oriental. However, with-

out a complete phylogeny, it is difficult to determine the number

of transitions to and from cave life, especially considering the high

degree of convergent morphology found in troglobionts. Crayfish

species also exhibit other “specialized” habitat preferences (bur-

rows, lentic waters, and lotic waters) which can be compared to

caves to test if cave specialization is significantly different from

other types of habitat specialization. Here, we estimate the most

complete molecular phylogeny of the freshwater crayfish to date

and employ phylogenetic comparative methods to test the evo-

lutionary dead-end hypothesis in cave lineages, considering both

historical and current patterns. We test if cave-adapted taxa have

small geographic range sizes compared to surface lineages and

other habitat specialists, and test if cave adaptation is an irre-

versible state with decreased lineage diversification rates relative

to surface and other specialized lineages. Taken together, these

multiple lines of evidence will support or refute the evolutionary

dead-end hypothesis for cave habitats.

Materials and Methods
PHYLOGENY ESTIMATION

Sequences were obtained for three mitochondrial (16S, 12S, COI)

and three nuclear (18S, 28S, Histone H3) gene regions for 466

described crayfish species and subspecies, representing 70% of

the described diversity (Table S1) (Crandall and De Grave 2017).

These genes have proven useful for resolving relationships among

crayfish and other decapods (Toon et al. 2009; Bracken-Grissom

et al. 2014). Of the 1565 total sequences from 466 taxa used

in the phylogeny estimate, 411 from 119 taxa were new to this

study. The full molecular dataset contained 450 16S sequences,

289 12S sequences, 352 COI sequences, 86 18S sequences, 247
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28S sequences, and 141 Histone H3 sequences. Protein coding

sequences (COI, H3) were aligned by translating to amino acid

sequences and back translating to nucleotides in Translator X

(Abascal et al. 2010). Protein coding sequences that contained

stop codons were removed to eliminate potential nuclear mito-

chondrial genes (Song et al. 2008; Buhay 2009). The rRNA genes

were aligned with PASTA version 1.6 (Mirarab et al. 2015) us-

ing default alignment, merging, and tree searching algorithms

suggested by the program. We used the greedy algorithm in Parti-

tionFinder version 1.1.1 (Lanfear et al. 2012) to select an optimal

partitioning scheme and best fitting models of molecular evolu-

tion for each partition using the Bayesian information criterion

(BIC). Codon positions for protein coding genes and full rRNA

genes were used as a priori data subsets.

Bootstrap phylogenies (N = 1000) were estimated from the

concatenated alignment using RAxML version 8.2.13 (Stamatakis

2014) with the optimal partitioning scheme suggested by Parti-

tionFinder. Option “-f d” was used to search for the maximum

likelihood phylogeny from 200 randomized stepwise addition or-

der parsimony trees under the GTRCAT model, with the best

scoring tree optimized under the GTRGAMMA model with four

rate categories.

The maximum likelihood phylogeny and all bootstrap phy-

logenies were calibrated to absolute time using penalized like-

lihood in the program treePL (Smith and O’Meara 2012) with

an optimal smoothing parameter chosen using a cross-validation

procedure on the maximum likelihood phylogeny. Eight fossil

calibration points were used following the placements and justi-

fications found in Bracken-Grissom et al. (2014). The maximum

age of the root of the tree was set to 262 Ma to reflect an es-

timated split of the two crayfish superfamilies (Astacoidea and

Parastacoidea) (Bracken-Grissom et al. 2014). The lower bounds

of fossil age estimates were used as minimum estimates for their

assigned clades.

Although our molecular dataset sought to maximize coverage

and compatibility with existing sampling, we used a phylogenetic

synthesis approach, rather than either molecular sampling or tax-

onomy alone, to take advantage of all recent phylogenetic studies

and taxonomic updates to the freshwater crayfishes. We also used

our synthesis tree (our newly estimated phylogeny + phylogenies

from the literature + taxonomy) to assess data coverage and sam-

pling (Hinchliff et al. 2015). The synthesis approach allows us to

construct a more complete picture of phylogeny and taxonomy,

using studies with different sampling schemes (in terms of taxa

and genes), which often result in different topologies. This ap-

proach takes taxonomy as a backbone phylogeny and introduces

bifurcations to the tree using existing phylogenetic studies, re-

solving conflicts among these inputs with user-defined rankings.

We combined 19 published crayfish phylogenies (as referenced

in Owen et al. 2015) and the maximum likelihood estimate with

Open Tree taxonomy ott2.10 (Hinchliff et al. 2015). These trees

were merged and assembled into a synthesis tree using the propin-

quity pipeline (Redelings and Holder 2017). Taxa not represented

in the published phylogenies or in the maximum likelihood es-

timate are represented by taxonomy in the synthetic tree, giving

us a phylogeny-informed understanding of data distribution and a

complete phylogenetic hypothesis for the freshwater crayfishes.

GEOGRAPHIC RANGE SIZE, HABITAT CORRELATION

We analyzed species’ current geographic range sizes to test if the

contemporary distributions of cave lineages are smaller than those

of other specialized or generalized surface lineages, a predicted

consequence of the dead-end model. Dispersal ability is gener-

ally assumed to have a relationship with geographic range size,

despite the many exceptions and other contributing factors to the

range size of a species (Lester et al. 2007). Nevertheless, both

dispersal ability and geographic range size influence speciation

and extinction dynamics (Rosenzweig 1995; Birand et al. 2012).

Extinction probability increases to 1 as range size tends to 0 (Jones

et al. 2003) and range size is one of the most commonly used pre-

dictors of extinction risk (Foote et al. 2008; Harnik et al. 2012).

Conversely, speciation probability should increase as geographic

range size increases due to the increased probability of vicari-

ance or isolation by distance yielding population fragmentation

(Birand et al. 2012).

Range maps in the form of ESRI Shapefiles for 540 crayfish

species were obtained from the IUCN Red List database (IUCN

2015) and converted into spatial polygons in the R packages letsR

(Vilela and Villalobos 2015). Native geographic range sizes in

square meters were calculated for each species from the spatial

polygons. If multiple polygons were present for a given species,

range sizes for each polygon were summed to obtain a total range

size estimate for each species. Range sizes were converted to

square kilometers and log10-transformed before all analyses.

We used Felsenstein’s threshold model to test for a correla-

tion between rates of change in habitat-preference and geographic

range size, thereby testing if cave-adapted species and other spe-

cialized species have significantly smaller geographic range sizes

than nonspecialized species (Felsenstein 2012). The threshold

model assumes that a binary trait has an underlying continuous

trait called “liability” that controls the state of the binary trait.

This facilitates estimation of the correlation between a discrete

binary and a continuous trait. The maximum likelihood phylogeny

was trimmed to the 386 tips with range maps in the IUCN Red

List database (Table S2). Habitat preference was coded as either

exclusively one state (i.e., cave = 0) or any other state or combi-

nation thereof (i.e., surface = 1). Habitat assignments were made

using data from the IUCN Red List (IUCN 2015) and crayfish

taxonomy web browser (Fetzner 2005). Species were assigned to

one or more of the following categories: lentic (still) water, lotic
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(flowing) water, caves, or burrows. Primary (obligate) burrowers

were coded as inhabiting burrows exclusively, whereas secondary

(seasonal) burrowers were coded as inhabiting burrows and an-

other habitat state (lentic, lotic, or both) (Table S2). Five tests

were performed for each of the four “specialist” habitat types and

one “generalist” type using the R package phytools (Revell 2012).

A Markov chain Monti Carlo (MCMC) chain was run under de-

fault priors for 30 million generations for each test, sampling

every 3000 generations. The first 25% of samples were discarded

as burn-in prior to summarizing parameter estimates and effec-

tive sample size (ESS) values for the correlation coefficient, r,

were checked (>200) to assess convergence. Correlations were

assumed to be significant if the 95% highest posterior density

(HPD) interval of the correlation coefficient, r, did not contain 0,

because the power of the analysis can reliably reveal only the sign

of the correlation (Felsenstein 2012).

DIVERSIFICATION AND TRANSITION RATES

Parameter estimation and hypothesis testing
The evolutionary dead-end model predicts that cave adaptation is

an irreversible state leading to increased extinction rates and de-

creased speciation rates. We used the binary-state speciation and

extinction (BiSSE) and geographic-state speciation and extinction

(GeoSSE) models to estimate diversification and transition rates,

and test this prediction of the evolutionary dead-end hypothesis.

GeoSSE was originally intended for use with discrete geograph-

ical areas, but is applicable to analyses of habitat preference due

to the similar processes involved in range and habitat evolution

(Goldberg et al. 2011). For GeoSSE, taxa were coded as obli-

gate cave-dwellers (A), surface-dwellers (B), or both (AB). Taxa

were only coded as AB if they are found both in surface and cave

habitats, and can survive and reproduce in caves (troglophiles).

For BiSSE, taxa were coded as obligate cave-dwellers (0) or not

obligate cave-dwellers (1) to capture the dynamics of specialist

species. Incomplete sampling was accounted for by specifying

the percentage sampled in each state, estimated from the syn-

thetic tree, and subspecies were trimmed to one per species to

avoid conflating species- and population-level processes.

To avoid making process-based inferences based on point es-

timates of parameters and model fits, which have been shown to

be problematic and potentially misleading (Goldberg et al. 2011;

Rabosky and Goldberg 2015; Beaulieu and O’Meara 2016), we

took a Bayesian approach to testing these predictions based on

MCMC samples of the full (unconstrained) models. For each of

1000 bootstrap phylogenies, an MCMC chain with slice sampling

(Neal 2003) was run for 5000 generations using a broad exponen-

tial prior distribution with a mean of 0.5 on all parameters of the

BiSSE and GeoSSE models in the R package diversitree (FitzJohn

2012). The first 10% of samples from each run were discarded

as burn-in. Posterior probabilities of different predictions made

by the evolutionary dead-end hypothesis were assessed by calcu-

lating the percentage of MCMC samples that met each condition

(e.g., the extinction rate is greater than the speciation rate). We

assessed support for an irreversible model by constraining the

transition rate out of caves to 0 and enforcing the root state to be

in the “surface” state (Goldberg and Igic 2008). Reversible and

irreversible models were compared using the Bayes factor (Kass

and Raftery 1995) with marginal likelihoods estimated by taking

the harmonic mean of the likelihood of the MCMC chains. All

analyses were run on two sets of 1000 bootstrap trees: one set

containing the full crayfish phylogeny and the second contain-

ing the largest pruned subtrees that maximized the percentage of

cave species to reduce potential biases associated with an uneven

tip-state distribution (Gamisch 2016). This subtree was identified

using the synthetic phylogeny and happened to correspond to the

Cambaridae family, which contains all described cave-adapted

species.

To test if diversification rates in cave lineages are signifi-

cantly different from other specialized habitat affinities, we re-

peated the above procedure for estimating BiSSE and GeoSSE

parameters, categorizing taxa into three additional crayfish habi-

tat types, as above. Taxa occurring in more than one habitat were

coded as “AB” in GeoSSE and as “state 1” in BiSSE. To facilitate

comparisons across separate analyses for each habitat type, we

analyzed relative net diversification rates ([sA − xA]/[sB − xB]).

SSE model adequacy
To test the adequacy (objective fit) of a state-dependent diversifi-

cation model, we took two approaches. The first was a posterior-

predictive approach in which we simulated phylogenies using

parameter estimates from the model and compared the simulated

data to the empirical trees. If the model adequately describes

the data, phylogenies simulated under the model should be com-

patible with the observed data (Pennell et al. 2015). First, we

tested whether data simulated under estimated model parameters

produced the same tip state frequency as the empirical phyloge-

nies. For each sampling scheme and model, we used diversitree

(FitzJohn 2012) to simulate 1000 phylogenies of the same size

as the total number of taxa with coded habitat data. Each sim-

ulation was run using parameters from a random sample from

the MCMC chain. For each set of trees, we calculated the num-

ber of taxa surviving to the present in each state and compared

this to the observed state distribution with a chi-squared test. We

also tested if phylogenies simulated using estimated BiSSE and

GeoSSE parameters would produce the same phylogenetic signal

of habitat states as the empirical data. To keep the prevalence

of each state constant, we simulated 1000 trees for each sam-

pling scheme and model using backward simulation in phylomet-

rics (Hua and Bromham 2016), using the estimated parameters

from 1000 MCMC samples for each model. We compared the
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phylogenetic signal of habitat states in the simulated data and

bootstrap phylogenies using the sum of sister clade differences

(SSCD) (Fritz and Purvis 2010) calculated in the R package phy-

lometrics (Hua and Bromham 2016). We tested if the mean of

the simulated distribution of SSCD was significantly different

from the observed distribution using a t-test and calculated the

proportion of SSCD values in the bootstrap phylogenies that

fell within the 95th and 50th percentiles of simulated SSCD

values.

The second approach in testing the adequacy of state-

dependent models in general was to fit a set of hidden-state spe-

ciation and extinction (HiSSE) models to the data to test if an

unobserved character in cave lineages might influence diversifi-

cation dynamics and if character-independent models fit the data

better than the state-dependent models (i.e., the diversification

process varies through the tree, but not according to any partic-

ular modeled trait) (Beaulieu and O’Meara 2016). HiSSE allows

each state of a binary trait to contain an unobserved “hidden”

state with diversification rate parameters that may be different

from the observed states. This also facilitates the construction of

“character-independent” diversification models with equal com-

plexity to “character-dependent” models. When used in a model

selection context, this has been shown to reduce the propensity

to select state-dependent models (Beaulieu and O’Meara 2016).

As the implementation of these models in the R package hisse

does not currently support MCMC sampling, we do not exten-

sively draw conclusions based on point parameter estimates given

the complex likelihood surfaces of SSE models (Goldberg et al.

2011; Beaulieu and O’Meara 2016). We fit six HiSSE models

using the R package hisse (Beaulieu and O’Meara 2016) on the

1000 bootstrap phylogenies trimmed to the Cambaridae subtree,

including two character independent models, a full HiSSE model,

and models in which only the cave or surface states had a hidden

state. Taxa were coded as they were for the BiSSE analysis. The

parameters of the “best-fit” HiSSE model were used to recon-

struct marginal ancestral states on the maximum-likelihood phy-

logeny. All code used in our analyses is available in the Supporting

Information.

Results
PHYLOGENY ESTIMATION AND SYNTHESIS

The maximum likelihood topology and divergence dates are

largely concordant with other crayfish phylogenetics studies

(Breinholt et al. 2012; Pedraza-Lara et al. 2012; Ainscough et al.

2013; Bracken-Grissom et al. 2014; Owen et al. 2015), but with

the additional resolution of 119 taxa and 14 cave-adapted species

(Fig. S1; Dataset S3). The phylogeny synthesizing 19 phyloge-

netic studies, taxonomy, and our maximum likelihood molec-

ular phylogeny contains 733 tips (including several undescribed

species included in the OTT taxonomy). Of these, 466 have molec-

ular phylogenetic data, 599 have habitat assignments, and 500

have range size data (Fig. 1; Tables S1 and S2). This phylogeny

suggests up to 11 independent origins of cave adaptation although

there still remain several described cave-adapted species without

molecular data. The concatenated alignment, best-fit partition-

ing scheme determined by PartitionFinder, synthetic phylogeny,

maximum likelihood phylogeny, and calibrated bootstrap trees

are available in the Supporting Information.

RANGE–HABITAT CORRELATION

Median range sizes were found to be highest in generalist species

and lowest in cave dwellers (Table 1). All five of our threshold

model analyses found significant correlations between liabilities

in habitat preference and range size; namely, that lineages tend to

have smaller range sizes when they are exclusively cave dwellers,

primary burrowers, or lotic or lentic water inhabitants (Table 1).

Conversely, lineages that occupy more than one habitat type tend

to have larger range sizes (Table 1). The small range sizes found in

cave lineages is in support of the evolutionary dead-end hypothe-

sis; however we do find small relative range sizes in all specialized

lineages.

HABITAT-DEPENDENT DIVERSIFICATION

SSE model adequacy
The mean counts of tips in each state across the simulated trees

were not significantly different from the empirical values for the

GeoSSE and BiSSE analyses on the full tree and subtree (chi-

square, P > 0.1), indicating that these models adequately de-

scribe the diversification dynamics of this group using this metric.

When considering the phylogenetic signal of these traits, only the

GeoSSE analysis on the subtree produced simulated SSCD val-

ues that were not significantly different from the empirical values

(t-test, P > 0.25). Although the BiSSE analysis on the subtree did

not pass this test (P < 0.01), 47.9% of empirical SSCD values did

fall within the 50% distribution of the simulated SSCD values and

100% fell within in the 95% distribution. Backward simulations

using GeoSSE and BiSSE parameters estimated on the full phy-

logeny failed to coalesce, suggesting that those estimates may be

unrealistic. This is likely due to the heterogeneous diversification

processes experienced across the group as a whole, particularly

different patterns found in the Southern and North Hemisphere

clades (Bracken-Grissom et al. 2014; Owen et al. 2015), which

violates these models.

Akaike information criterion (AIC) weights of HiSSE models

supported a character-dependent diversification model over an

equally complex “character-independent” model (Table S3). This

suggests that using a “state-dependent” diversification model in

this analysis is appropriate. The HiSSE model with the highest

AICw support was one with a “hidden” surface state (Table S3),
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Figure 1. Phylogenetic synthesis of 19 studies, taxonomy, and the molecular phylogeny new to this study. Yellow branches lead to

cave-adapted taxa. Branches are colored by family: green, Cambaridae; blue, Astacidae; purple, Cambaroididae; red, Parastacidae. Solid

branches lead to tips with molecular sequence data. Thin branches lead to tips represented only by Open Tree taxonomy. The black bars

are values of log10 geographic range sizes in square kilometers. The outer ring of colored circles refers to habitat preferences: blue, lentic;

green, lotic; yellow, cave; red, burrow. Figure was created using iTOL version 3 (Letunic and Bork 2016).

Table 1. Median geographic range sizes and liability correlation coefficients from threshold model analyses for each habitat type.

Habitat preference Median range size (km2) Correlation coefficient

Lentic (N = 18) 19,777.37 −0.320 [−0.598:−0.013]
(ESS = 291.13)

Lotic (N = 163) 30,481.20 −0.267 [−0.434:−0.080]
(ESS = 1412.76)

Cave (N = 32) 16,323.35 −0.396 [−0.608:−0.168]
(ESS = 298.84)

Primary burrower (N = 88) 23,580.75 −0.280 [−0.566:−0.017]
(ESS = 322.50)

Generalist (N = 84) 69,753.43 0.604 [0.464:0.733]
(ESS = 660.71)

Brackets contain the 95% HPD interval.
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Figure 2. (A) Marginal posterior probability distributions of GeoSSE model parameters estimated for cave lineages from 1000 bootstrap

phylogenies. (B) Per sample differences in rate estimates between surface and cave lineages.
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Figure 3. Relative net diversification rates estimated from sepa-

rate GeoSSE analyses for each habitat type over 1000 bootstrap

phylogenies.

suggesting that there are heterogeneous patterns of diversification

in surface lineages and that diversification patterns across different

cave clades are similar.

SSE model parameter estimates
As only the GeoSSE analysis on the subtree that minimized the tip-

state imbalance while still retaining a majority of taxa passed all

of our model adequacy tests, we report only on those results here.

We do note, however, that the BiSSE and GeoSSE analyses on the

full phylogeny did not produce qualitatively different results. We

found support for a “reversible” model of cave-adaptation over an

“irreversible” one (2lnBF = 4.278), suggesting that the dispersal

rate out of caves is significantly nonzero, which is not in support

of the evolutionary dead-end model. However, the dispersal rate

out of caves was less than both the speciation rate (posterior prob-

ability 0.99; Fig. 2A) and extinction rate (posterior probability

0.74; Fig. 2A), suggesting dispersal out of caves is quite rare.

In fact, the speciation rate estimate was 72.6 times higher than

the dispersal rate and the extinction rate was 26.0 times higher

than the dispersal rate on average. Additionally, we did not find

a significant difference between the dispersal rate into and out of

caves (Fig. 2B), that is, the 95% HPD interval of the per-sample

difference between dC and dS includes 0. We found this same

pattern in the speciation and extinction rates (Fig. 2B), suggesting

that there are no significant differences in diversification patterns

between cave and surface lineages, which does not support the

evolutionary dead-end model. The posterior probabilities that the

extinction rate is greater than the speciation rate and speciation

plus dispersal rate in cave lineages, as predicted by the evolu-

tionary dead-end model, were 0.002 and 0.001, respectively. On

average, the estimated speciation rate was 3.1 times higher than

the extinction rate.

Considering the four crayfish habitat categories, there was

considerable overlap in the 95% HPD interval of relative net

diversification rates ([sA − xA]/[sB − xB]; Fig. 3) with estimates in

cave lineages overlapping each of the other three habitats, which

is not in support of the evolutionary dead-end hypothesis. The one

outlier is the broad distribution in the relative net diversification

rate estimate of “lentic” habitat dwellers. However, this may be

an artifact due to the fact that only 20 species in the phylogeny
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were coded as exclusively lentic (Gamisch 2016). Although there

was overlap in the distributions of these parameter estimates,

the marginal posterior means were somewhat different across

habitat states with no overlap between “lotic” habitat dwellers and

primary burrowers (Fig. 3). This demonstrates that we were able

to detect differences in rates among different habitat affinities and

could explain why HiSSE favored a state-dependent model over

character-independent ones and recovered multiple diversification

schemes within the “surface” state (Table S3).

Discussion
Karst (limestone) topography occupies 15% of the earth’s sur-

face (White et al. 1995), and despite critical and illuminating

work from many speleobiologists over the years, caves are still a

largely unexplored and poorly understood ecosystem (Culver and

Pipan 2009; Perez-Moreno et al. 2016). Subterranean organisms

are frequently viewed as “oddities,” but perhaps this perception

is guided by human inability to easily interact with the entirety

of these ecosystems. Subterranean habitats have a cosmopolitan

distribution with organismal exemplars across widely diverse tax-

onomic groups (Culver and Pipan 2009). Within the freshwater

crayfish (some of the most conspicuous members of subterranean

ecosystems they inhabit [Reynolds et al. 2013]), we find that there

have been up to 11 transitions into caves (Figs. 1 and S1), but tran-

sitions from caves to epigean (surface) habitats are rare (Fig. 2).

This is consistent with a pattern observed across cave organisms

and is one of the reasons biologists have hypothesized caves to

be “evolutionary dead-ends” (Culver 1982; Culver and Wilkens

2000; Culver and Pipan 2009; Ribera et al. 2010; Niemiller et al.

2013). We find that rather than being an “evolutionary dead-end,”

cave-adapted freshwater crayfish exhibit lineage diversification

patterns that are nearly indistinguishable from their surface coun-

terparts (Figs. 2 and 3).

We find that cave-adapted lineages tend to have smaller ge-

ographic range sizes than surface lineages and this pattern is also

found in other specialized habitat types when compared in a bi-

nary fashion (Table 1). On average, cave-adapted crayfish have the

smallest geographic range sizes of crayfish habitat types. This is

expected due to the restricted dispersal ability of cave organisms

and the fact that some cave crayfish are known from only one or

a few localities (Barr and Holsinger 1985). Nevertheless, we find

that the speciation rate in cave lineages is higher than both the

extinction and transition rate (Fig. 2A). This is in agreement with

other studies that cave crayfish are still able to disperse across

subterranean landscapes and speciation can occur by subsequent

restriction of gene flow (Buhay and Crandall 2005; Finlay et al.

2006). The limited dispersal ability we find suggests that range

expansion occurs slowly and formation of new populations oc-

curs rarely, but there is still enough dispersal ability for speciation

to occur through evolutionary time. One might expect that with

restricted ranges, susceptibility to environmental perturbations

would increase extinction probability, but also increase specia-

tion rates through population isolation (Barnosky 2001; Birand

et al. 2012). We do not find evidence for increased speciation and

extinction rates relative to surface lineages, suggesting that caves

are as evolutionarily stable as other habitat types for freshwater

crayfish (Figs. 2B and 3).

The term “evolutionary dead-end” has been used to describe

a number of different evolutionary patterns related to irreversibil-

ity (Schneider and Michalik 2011) or increased extinction rate

(Agnarsson et al. 2006; Helanterä et al. 2009). It is often applied

to specialists, depending on the situation, and holds a connotation

of evolutionary failure (Wiegmann et al. 1993; Day et al. 2016).

However, failure to diversify or transition back to an ancestral

state does not signify a lack of success per se. Consider boreal

conifers, which comprise only 0.3% of extant land plant diver-

sity, have experienced low rates of lineage diversification but have

large, stable populations with circumpolar distributions (Plomion

et al. 2011). Cetaceans have never transitioned back to living on

dry land, but are a large group of animals that have experienced

high diversification rates (Steeman et al. 2009). We see similar

patterns in cave crayfish. The uniquely dark, cold cave habitat

results in its fauna developing certain morphologies, which may

make them unsuccessful in other habitats, for example, loss of

eyes and pigmentation. Despite the low-energy input, lineages

that are successful in colonizing this extreme habitat have the

ability to thrive and spread across the subsurface range (Romero

and Green 2005). Rather than a dead-end, caves are a habitat

with open niches available to those with the ability to colonize.

Although troglobites are often considered examples of extreme

specialization, one needs to consider the perspective with which

we view these organisms. They may be specialized in that they

are limited to one type of “habitat,” but if they are able to use

a wide breadth of resources and niche-spaces available to them,

are they truly specialized (Futuyma and Moreno 1988)? Partic-

ularly when one considers the vast availability of subterranean

habitats across the globe, it certainly does not seem to be the

case.
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for each bootstrap phylogeny.
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