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Gender has been shown to impact the prevalence of several lung diseases such as cancer, asthma, chronic obstructive
pulmonary disease, and pulmonary arterial hypertension (PAH). Controversy over the protective effects of estrogen on the
cardiopulmonary system should be of no surprise as clinical trials of hormone replacement therapy have failed to show benefits
observed in experimental models. Potential confounders to explain these inconsistent estrogenic effects include the dose, cellular
context, and systemic versus local tissue levels of estrogen. Idiopathic PAH is disproportionately found to be up to 4 times more
common in females than in males; however, estrogen levels cannot explain why males develop PAH sooner and have poorer
survival. Since the sex steroid hormone 17β-estradiol is a mitogen, obliterative processes in the lung such as cell proliferation
and migration may impact the growth of pulmonary tissue or vascular cells. We have reviewed evidence for biological
differences of sex-specific lung obliterative lesions and highlighted cell context-specific effects of estrogen in the formation of
vessel lumen-obliterating lesions. Based on this information, we provide a biological-based mechanism to explain the sex
difference in PAH severity as well as propose a mechanism for the formation of obliterative vascular lesions by estrogens.

1. Introduction

Lung disease is not only responsible for more than 349,000
deaths per year in the United States but also is a chronic con-
dition with more than 35 million Americans living with
chronic lung disease according to the American Lung Associ-
ation. The increased prevalence in women of certain lung
diseases such as asthma, cystic fibrosis (CF), and chronic
obstructive pulmonary disease (COPD) suggests that sex-
specific hormones have detrimental effects on the lung [1].
The lung is a target tissue of estrogen. Since the lung
expresses estrogen receptor (ER) subtypes, ERα and ERβ,
estrogen has been implicated as a risk factor. The controversy
over whether estrogen is protective or detrimental to the
cardiopulmonary system should be of no surprise as clinical
trials have failed to show cardiovascular benefits from hor-
mone therapies. TheWomen’s Health Initiative reported that
long-term use of estrogen may have increased risk of cardio-
vascular disease [2] while a significant increase of coronary
heart disease was observed among men receiving estrogens
in the Coronary Drug Project [3, 4]. Since the sex hormone

17β-estradiol (E2) is a mitogen, a possible explanation may
be that exposure to E2 contributed to atherosclerotic lesions,
which have been proposed to occur as a result of the mono-
clonal expansion of a mutated vascular cell [5].

The dose of estrogens reportedly used in experimental
models and clinically may offer a potential explanation for
the estrogen paradox. On the one hand, estrogen at low doses
acts as a pro-oxidant, whereas at higher doses, it acts to sup-
press oxidative stress [6–10]. In order to understand the
actions of estrogen in lung cells, it is important that we
understand estrogen actions which we have summarized in
brief. The classical paradigm of estrogen mechanism of
action is through the ER which has been extensively
reviewed; therefore, we have limited our discussion in this
area. Estrogen supports cell growth via interaction with
estrogen receptors alpha and beta (ERα and ERβ) by directly
binding to estrogen response elements or through nonge-
nomic pathways. The nongenomic action of estrogen very
often includes ligand-dependent activation of GPR30 at the
plasma membrane and leads to the activation of signaling
pathways such as ERK/MAPK, protein kinases A and C,
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and calcium pathways [11]. Together, these genomic and
nongenomic pathways can contribute to obliterative lesions
via cell proliferation. Alternatively, reactive oxygen species
(ROS) generated from redox cycling of both stilbene and cat-
echol estrogens can act as signaling messengers also that are
also involved in cell growth [7, 12, 13]. We have shown that
physiologically achievable E2 concentrations, corresponding
to the estrogenic menstrual peak, induce formation of ROS.
Importantly, the ROS produced as a result of estrogen
stimulation does not require estrogen receptors, as the ER-
negative cell line produces a similar amount of ROS as the
ER-positive cell lines [7]. These studies suggest that estrogen
induces oxidative stress, in part, by both ER-dependent and
ER-independent pathways. Therefore, estrogen-induced
ROS through influencing cell signaling pathways may
contribute to the growth of estrogen-exposed lung cells.

Clinically, estrogen is given at a “low dose” to minimize
thrombotic risk and hormone-dependent malignancies. Few
in vitro and in vivo studies have studied the adverse effects
of low-dose estrogen exposure. For example, high concentra-
tions of E2 (10μM) have been shown to act as antioxidants
in vitro [14], which may explain certain beneficial effects.
Also, the exogenous administration of estrogen may not
mimic the endogenous estrogen response because of differ-
ences in pulsatile versus continuous cell exposure. It has been
argued that estrogens perhaps through antioxidant activity
scavenge lipid peroxyl radicals and thus interrupting lipid
peroxidation. Estrogen has been suggested to scavenge
hydroxyl radicals at higher doses and inhibit superoxide rad-
ical generation [15]. Estrogen can also produce its antioxi-
dant actions through suppressing inflammatory cytokines
or modulating antioxidant enzyme status. For instance, the
apoptotic oxidative effects of cytokine TNF-α which include
ROS generation, lipid peroxidation, antioxidant enzyme con-
sumption, and disruption of mitochondrial membrane
potential may be countered by estrogen [16]. The chemical
structure of estrogens contains a phenolic ring. In the pres-
ence of an oxidant-generating environment, the phenolic
hydroxyl group present at the C3 position of the A ring of
estrogens or catechol estrogens accepts electrons and gets
oxidized by either accepting these electrons or losing a pro-
ton [12, 13]. This may help explain the antioxidant function
of estrogens or estrogenic chemicals. In contrast to antioxi-
dant effects, estrogens have been described to induce an
inflammatory response with an increase of chemokines such
as IL-8 [17]. On the contrary, androgens have been demon-
strated to have potent anti-inflammatory effects, reducing
secretion of cytokines and chemokines which are related
to Th1 inflammatory response [18]. Testosterone was able
to blunt the inflammatory response induced by potent
proinflammatory stimuli such as TNFα, LPS, and activated
CD4 (+) lymphocytes [19]. Hence, the counteractive effects
of these two sex steroid hormones might justify the relative
increased incidence of pulmonary diseases in females as com-
pared to that in males as well as help to explain the paradox-
ical effects of estrogens.

Besides the dose, the capability of lung tissue to bio-
synthesize estrogen from circulatory testosterone by the
cytochrome P-450 enzyme aromatase (CYP19) raises the

question of whether a local imbalance between testoster-
one and E2 levels influences the development of lung dis-
ease. Lastly, cell context-specific effects may also determine
whether physiological or pharmacological concentrations
of E2 stimulate cell proliferation, hypertrophy, or survival
of obliterative vascular lesions found in severe pulmonary
arterial hypertension (PAH). Understanding the biological
and biochemical differences of sex-specific lung diseases
poses a major challenge in clinical research because of
the predominant use of male cell lines and animal models.
This has garnered the attention of NIH which has imple-
mented an initiative to reduce sex bias in research [20].
This review will discuss the general state of knowledge of
estrogens in lung disease with a focus on vessel lumen-
obliterating lesions that are found in PAH. This will
include a description of estrogens and xenoestrogens in
lung tissue and disease, a review of sex bias in obliterative
lung disease, an explanation for the sex differences in
PAH, and a proposed mechanism for the formation of
obliterative vascular lesions by estrogenic stress.

2. Estrogens and the Lung

Threemajor steroidal estrogens inwomen, estrone (E1), estra-
diol (E2), and estriol (E3), are produced by the ovary from
cholesterol. The steroidogenesis pathway also produces ovar-
ian androgens, specifically testosterone and androstenedione,
which are aromatized to E2 by the enzyme aromatase. The
cytochromeP-450 enzymesCYP1A1 andCYP1B1metabolize
E2 into two catechol estrogens, 4-hydroxyestradiol (4-OHE2)
and 2-hydroxyestraidol (2-OHE2), which are furthermetabo-
lized to methoxyestrogens via catechol-O-methyltransferase
[12, 13]. Out of the three estrogens, E2 has the highest estro-
genic activity and is the most abundant in the bloodstream
during reproductive years. Women experience normal fluc-
tuations in estrogen throughout their lifetime and in their
reproductive years. Premenopausal circulating E2 levels
range 40–400 pg/ml with a considerable drop after meno-
pause to approximately 10–20pg/ml [21]. During the men-
strual cycle, E2 increases in the follicular phase (days 0–14)
in the range of 40–100 pg/ml that ends with a surge of E2
ranging from 100 to 400 pg/ml on day 14. Estradiol levels
are lower during the luteal phase 40–250 pg/ml and return
to lower levels prior to menstruation. Men also produce
estrogen, but at lower levels than women. The adult testis
converts testosterone to E2 by aromatase in Leydig cells
and germ cells [22]. Once in the bloodstream, estrogen can
exist in two forms, bound or unbound to a protein carrier.
Between 20 and 40% of circulating estradiol is bound to sex
hormone-binding globulin (SHBG) which retains them in
the circulation where they are considered to be inactive
[23]. Estradiol that is unbound can diffuse directly through
the cell membrane where it binds to estrogen receptors to
regulate transcriptional processes. In addition, membrane-
bound estrogen receptors mediate both genomic and nonge-
nomic effects on target cells. Sex differences in fetal lung
development and maturation of adult lung tissue have been
attributed to estrogen [24]. The formation of alveoli in
females depends on estrogens which modulate alveologenesis
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by ERα and ERβ [25, 26]. The production of surfactant in the
fetal lung can be increased by E2 treatment [27], which may
contribute to more rapid lung maturation in female fetuses
than in the male fetus [28]. Although alveolar volume and
number of alveoli per unit area do not differ between male
and female, males develop larger lungs with larger conduct-
ing airways in adulthood [29].

Several lung diseases are more common in women than
in men; and estrogen has been implicated as a risk factor.
Since the most biologically active estrogen is E2, we reviewed
concentrations of E2 reported in pathological conditions of
the human lung. In patients with PAH, it has been recom-
mended to avoid pregnancy. Levels of E2 tend to rise in the
bloodstream up to 7200 pg/ml during pregnancy which
may exacerbate lung pathology [30]. A recent study reported
a significantly higher level of circulatory E2 [42 pg/ml] and
E2/testosterone ratio in men with PAH [31]. Aromatase
was shown to be expressed by human pulmonary arterial
smooth muscle cells in both PAH patients and controls
[32]. Since E2/testosterone ratio has been considered to be
correlated with aromatase activity [33], it is possible that
the localized expression of aromatase may elevate E2 in the
pulmonary artery. With regard to local E2 concentrations,
lung tissue concentrations of 20 pg/g in non-small-cell lung
cancer (NSCLC) have been reported to be 2.2-fold higher
than those found in corresponding nonneoplastic lung tis-
sues [34]. E2 concentration of 79 pg/g was reported in inter-
stitial pneumonia (IP) which was 2.8-fold higher than in
normal lung [35]. A significant immunolocalization of aro-
matase in IP tissues implicates a role of local metabolism in
causing local estrogen overexposure in the lung. In premen-
opausal women, the major sources of circulatory estrogens
are the ovaries. However, estrogens are produced locally in
various reproductive and nonreproductive tissues in both
postmenopausal women and men by enzymatic conversions
of serum androgens and adrenal cortex steroids. The produc-
tion of E2, the most potent estrogen, from the precursor E1 is
a major conversion pathway dependent on the enzyme 17-
beta-hydroxysteroid dehydrogenases (17β-HSDs) [36]. The
enzyme CYP19A1 aromatase, mentioned previously, also
catalyzes the aromatization of androstenedione to E1 and tes-
tosterone to E2. Evidence from a recent study of COPD
showed that the local production of E2 in the lung had
increased levels of enzymes involved in local estradiol syn-
thesis [9]. Since chronic inflammation is a major hallmark
of lung diseases such as COPD and pulmonary hypertension,
we provide a summary of proinflammatory effects as it per-
tains to estrogen in the following section.

3. Proinflammatory Effects of Estrogen in the
Lung

The function of estrogen in inflammation is complex because
on the one hand, suppression of inflammation with increased
estrogen occurs in chronic inflammatory diseases, while on
the other hand, estrogen produces proinflammatory effects
in some chronic autoimmune diseases. Estrogen induces pro-
inflammatory cytokines, such as interleukin-1β (IL-1β) and
tumor necrosis factor alpha (TNF-α), and a number of other

inflammation-associated genes, which were also associated
with exposure to endocrine-disrupting chemicals (EDCs)
[37]. How estrogen induced inflammation may play a role
in lung disease is not clear. One of the mechanisms includes
inflammation-mediated oxidative stress. For example,
inflammatory genes are associated among estrogens, EDCs,
and several chronic diseases. Polychlorinated biphenyls
(PCBs) congener 126 and congener 153 modify the following
inflammation related genes: AHR, CXCL2, HMOX1, IFNG,
IL6, PTGS2, SOD2, and TNF; AHR, CXCL8, HMOX1,
IL1B, IL6, MMP9, NOS2, NOS3, PARP1, PTGS2, and TNF;
and AHR, IFNG, IL1B, PARP1, PTGS2, and TNF. Dibutyl
phthalate, diethyl-hexyl phthalate, and BPA-modified
inflammation genes are AHR, CXCL8, HMOX1, IL1B, IL6,
MIF, MMP9, PARP1, SOD2, TFRC, and TNF; AHR, CSF2,
CXCL8, IFNG, LEP, MMP9, SOD2, and TNF; and AHR,
CSF2, HMOX1, IFNG, IL1B, IL6, LEP, MIF, MMP9, NOS2,
NOS3, PARP1, PTGS2, SOD2, and TNF, respectively. In
addition to the direct effect of estrogen on mitochondria
and the redox cycling of catechol estrogen, estrogen-
induced proinflammatory cytokines, such as IL-1β, IL-6,
and TNF-α, can also generate reactive oxygen and nitrogen
species (RO/NS) [38]. In the pathogenesis of estrogen-
dependent lung diseases, the role of IL-6 and IL-1β is impli-
cated in cell proliferation, angiogenesis, and cell adhesion.
The concentration of the peptide IL-1β seems to determine
its stimulatory or inhibitory paracrine and/or autocrine sig-
nals that regulate the growth of estrogen-dependent disease
[39]. IL-6 is an important cytokine involved in the pathogen-
esis of PAH. Clinical data showed an association between
higher levels of IL-6 in PAH patients that also correlated with
patient survival [40]. Furthermore, IL-6 has been shown to
impact the development of pulmonary hypertension in
COPD patients [41]. In the transgenic mouse model, overex-
pression of IL-6 resulted in obliterative neointimal lesions
consisting of endothelial cells [42]. It is important to note
that estrogen differentially regulates IL-6 production in vari-
ous cell types; however, estrogen has been shown to stimulate
IL-6 production in mice and humans [43]. Taken together,
these evidences support the proinflammatory contribution
of estrogens to obliterative lung lesions in chronic disease.

4. Xenoestrogens, Endocrine Disruptors, and
the Lung

Endogenous estrogens are known to strongly regulate angio-
genesis and vascular modeling by influencing the growth of
both vascular endothelial and smooth muscle cells. Exoge-
nous estrogen exposures may also be important factors to
consider in sex-specific lung diseases. Pharmacological expo-
sure to hormone replacement therapy (HRT) or oral contra-
ceptives has been shown to exacerbate PAH [44–47], LAM
[48, 49], and NSCLC [50]. There is also a growing body of
evidence in support of estrogenic endocrine disruptors
including occupational exposure to chlorinated solvents in
PAH [51]. High levels of PCBs have been reported in human
lung tissue [52]. Inhalation exposure to vapor phase PCBs
was demonstrated to be even more important than ingestion
under some circumstances [53]. Epidemiological studies
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have shown that chronic exposure to PCBs including its
estrogenic congeners is associated with lung toxicity [54]
and hypertension [55]. Prenatal exposures to PCBs have been
associated with decreased lung function in a 20-year-old off-
spring [54]. Moreover, population-based studies have pro-
vided evidence that PCBs are damaging to the vascular
system [56–59]. In vivo animal studies have shown that PCBs
produce placental vascular lesions and trophoblastic lesions
[60]. We have reported that physiological levels of E2 and
estrogenic PCB153 [1ng/ml] at a level found in human
serum [0.60–1.63 ng/ml] [61] altered pulmonary endothelial
as well as smooth muscle cell phenotypes [61]. PCB153’s
effects on both endothelial cells are even more pronounced
than those on E2 with respect to vasculosphere formation
and vasculogenesis. Another endocrine-disrupting chemical,
4,4′-methylenedianiline, used in the synthesis of polyure-
thanes has been shown to increase hyperplasia of pulmonary
arteries exclusively in female rats [62]. In vitro human pul-
monary smooth muscle cells were shown to proliferate when
exposed to 4,4′-methylenedianiline, and this was inhibited by
treatment with the estrogen receptor antagonist ICI 182,780.
Another well-known xenoestrogen, bisphenol A, has been
reported to enhance the development of asthma [63]. Envi-
ronmentally relevant concentrations of bisphenol A have
been shown to elicit proangiogenic effects in human endo-
thelial cells [64]. Taken together, these studies suggest that
exposure to xenoestrogens and/or endocrine disruptors is a
potential risk factor for obliterative lung lesions.

5. Sex Bias in Lung Disease

5.1. Asthma. Gender has been shown to play a role in the dis-
eased lung. We will summarize sex differences in major lung
diseases at times highlighting how estrogens contribute to
obliterative processes in the lung such as cell proliferation
and migration. Female hormones in allergic disease have
been extensively studied in asthma. After puberty, the preva-
lence of asthma is greater in girls than in boys [65]. The prev-
alence of asthma is greater in women than in men during
early to middle adulthood [66]. Asthma is also more severe
in women with a higher likelihood of death compared to that
in men [67]. Modulation of lung inflammation by estrogen
may partly explain this association. In asthma, inflammation
enhances airway smooth muscle cell contractility, prolifera-
tion, and extracellular matrix production. Estrogens are
known to modulate immune cells such as macrophages,
lymphocyte, and mast cells, some of which express ERs
and the estrogen membrane receptor GPR30 [68], which
may contribute to smooth muscle hyperplasia that obliter-
ates the airway.

5.2. Chronic Obstructive Pulmonary Disease (COPD).
Chronic obstructive pulmonary disease is a progressive dis-
ease that includes emphysema and chronic bronchitis. The
incidence of COPD in women has been reported to be
increasing [69]. For example, smoking is a major risk factor
for COPD, but females tend to develop COPD faster than
males even though they smoke less cigarettes [70]. In
nonsmokers, females make up two-thirds of cases with

COPD [71]. Cell proliferation has been shown to contribute
to the intimal thickening of pulmonary arteries in both
smokers and patients with mild COPD [72]. The early
appearance of obliterative vascular lesions in COPD suggests
that the pathology is not a late complication of pulmonary
hypertension. Rather, the growth-promoting effects of estro-
gen on smooth muscle cells may be involved in the early
development of COPD. Besides receptor-mediated pathways,
oxidative stress from estrogen metabolism in the lung may
contribute to the growth of these cells. Estrogens have been
shown to be hydroxylated to catechol estrogens, and catechol
estrogens participate as a substrate in cytochrome P450-
catalyzed redox reactions [12, 13]. Thus, estrogen potentia-
tion of oxidative stress may confer susceptibility of female
smokers to COPD. Cystic fibrosis is a rare genetic disorder
that affects both men and women and is characterized by a
buildup of mucus in the lungs. This abnormal level of mucus
leads to repeated, serious lung infections that over time
severely damage lungs. Women have shown a higher preva-
lence of severe cystic fibrosis, and exacerbations coincide
with estrogen peak in the menstrual cycle [73, 74]. Estrogen
has been demonstrated to upregulate the MUC5B gene, a
major mucin in the human airway [75]. A potential mecha-
nism by which estrogen may exacerbate cystic fibrosis in
women may be by increasing MUC5B expression.

5.3. Lymphangioleiomyomatosis (LAM). Pulmonary lym-
phangioleiomyomatosis (LAM) is a progressive and eventu-
ally fatal disease that primarily affects premenopausal
women and can be exacerbated by pregnancy [76]. Estrogen
can be considered a risk factor for LAM because disease
severity worsens with estrogen therapy [77]. LAM is associ-
ated with abnormal proliferation and invasion of smooth
muscle cells that destroy the lung parenchyma. Small clusters
of cells characterize lung lesions in LAM which are located
along pulmonary bronchioles, blood vessels, and lymphatics.
Clumps of LAM cells in lymph vessels lead to the thickening
of the vessel wall and obliteration of the lumen. Immunohis-
tochemical data has also shown higher levels of estrogen-
synthesizing enzyme aromatase in LAM cells [78]. Lung can-
cer is a leading cause of cancer-related deaths in women [79].
A greater female predominance of NSCLC in both smokers
and nonsmokers suggests that differences in sex hormones
contribute to its pathogenesis [80]. A worse prognosis in
women with lung cancer has been associated with the expres-
sion of aromatase [81]. Hence, the proproliferative effects of
estrogen along with its known genotoxic effects may explain
the sex bias observed in both LAM and NSCLC.

5.4. Pulmonary Arterial Hypertension (PAH). Pulmonary
arterial hypertension is clinically classified as group 1 in the
World Health Organization (WHO) system. Uncontrolled
vascular cell growth has been postulated as the major mech-
anism involved in PAH pathogenesis [82], which results in
vessel obliteration. Most epidemiological studies have deter-
mined the effect of gender on prevalent PAH cases. Group
1 PAH includes idiopathic PAH, heritable PAH, drug- and
toxin-induced PAH, and PAH-associated conditions such
as connective tissue disease- (CTD-) PAH, HIV-PAH,
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congenital heart disease- (CHD-) PAH, and schistosomiasis.
The Registry to Evaluate Early and Long-term PAH Disease
Management (REVEAL) is a database used in an ongoing
observational cohort study of PAH designed to enroll preva-
lent and/or incident patients in the United States with group
1 PAH. This study reported the highest female to male ratio
of 4.1 : 1 in IPAH patients as compared to the French registry
(1.9 : 1) and the National Institutes of Health registry (1.7 : 1)
[83–85]. A female bias was also reported in other subcate-
gories of group 1 PAH which include CHD-PAH (2.8 : 1),
CTD-PAH (9.1 : 1), and drug-/toxin-induced PAH (5.4 : 1)
[83]. We have provided a descriptive table of female to male
ratios reported from these PAH registries (Table 1).

6. Estrogen as a Risk Factor in PAH

In human studies, pulmonary hypertension [44] and vessel
lumen-obliterating lesions [46] have been associated with
oral contraceptives. Hormone replacement therapy has also
been associated with severe PAH in postmenopausal women
[86]. While these hormone therapies contain estrogens, the
contribution of estrogen to PAH has been debated because
of paradoxical gender effects observed in animal models.
The chronic hypoxia-induced pulmonary hypertension
model showed that male rats are more susceptible than
females while estrogen treatment was shown to protect
against monocrotaline- (MCT-) induced pulmonary hyper-
tension [87, 88]. In contrast, there are reports of chronic
E2-induced hypoxic pulmonary hypertension in ovariecto-
mized female rats [89–91]. The contradictory effects of E2
in the MCT-induced model may be partly due to differences
in pulsatile versus continuous E2 exposure which cannot
fully recapitulate what occurs in the human body. Another
factor that may complicate our understanding comes from
the assumption that exogenous and endogenous E2 act sim-
ilarly on the pulmonary vasculature. Recently, a study has
shown that reduction of endogenous E2 by ovariectomy or
aromatase inhibitor treatment decreased vessel muscle-
thickening or vessel-obliterating lesions [32]. This study used
both the hypoxic mouse and the Sugen 5416 plus chronic
hypoxia (SuHx) rat model of PAH. In the SuHx model, rats
are given a single injection of the VEGF receptor blocker
Sugen 5416 and exposed to hypoxia for several weeks [92].
The protection observed with the anastrazole treatment
of the previous study was corroborated by a study with
metformin treatment which reversed PAH and decreased

pulmonary vascular remodeling via aromatase inhibition
[93]. E2 treatment was reported to improve heart function
in the SuHx model [94], but its effect on the development
of plexiform lesions, a hallmark of human PAH reproduced
in the SuHx rat model, was not reported. Further studies on
the development of obliterative intimal lesions in a chronic
E2-treated SuHx model would be helpful because of the pre-
viously mentioned reports of chronic E2-induced pulmonary
hypertension in ovariectomized female rats.

Other rodent models of PAH have reported a female
bias toward PAH. Anorectic drugs such as dexfenflura-
mine (Dfen) have been shown to induce PAH only in
female mice [95]. Treatment of rats with 4,4′-methylene-
dianiline (DAPM) induced female-specific smooth muscle
hyperplasia of the pulmonary vessels [62]. Genetic-based
mouse models have also shown sex differences in PAH sus-
ceptibility. Female mice overexpressing calcium-binding
protein S100A4/Mts1 (Mts1) were more susceptible to
develop PAH and developed plexiform-like lesions [96]. In
mice overexpressing the serotonin transporter (SERT), only
female SERT+ mice developed PAH [97]. Since E2 treatment
increased the severity of PAH in female SERT+ mice, it is
plausible that estrogen is a significant risk factor for the
development of PAH. Furthermore, the inhibition of obliter-
ative vascular lesions by aromatase inhibitor anastrozole in
the SuHx model supports the idea that E2 mediates its
adverse effects by increasing the formation of plexiform
lesions in PAH. We have provided a summary table of the
discussed in vivo models that support a role of female sex
and/or estrogen in PAH (Table 2).

7. Biological-Based Mechanisms for Sex
Differences in PAH

Circulatory levels of E2 cannot explain why males who have
lower levels of E2 than females develop PAH much sooner
and have poorer survival. A potential explanation may lie
in the different characteristics of the vascular pathology
which obliterate the pulmonary artery. Blood vessels are
composed of an outer layer of adventitial fibroblasts, a mid-
dle layer of smooth muscle cells (SMC), and an inner layer
of endothelial cells (EC). The medial thickening of pulmo-
nary arteries is considered the earliest pathological change
in PAH [98]. Chronic hypoxia-induced PAH is characterized
by medial thickening [99, 100]. Experimental data from
rodent models attribute the thickening to pulmonary arterial

Table 1: Summary of PAH registry female to male ratios.

Registry Time Cohort Number of patients Female : male ratio References

REVEAL 2006-2007
Mean age 53 yr

IPAH,HPAH,APAH,drug-/toxin-inducedPAH
2525

4.1 : 1 IPAH
3.8 : 1 APAH

5.4 : 1 drug-/toxin-induced
PAH

[83]

French 2002-2003
Mean age 50 yr

IPAH, HPAH, drug-/toxin-induced PAH
674 1.9 : 1 [84]

NIH 1981–1985
Mean age 36 yr
IPAH, HPAH

187 1.7 : 1 [85]

IPAH: Idiopathic PAH; HPAH: Heritable PAH; APAH: Associated PAH.
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SMC hypertrophy and extracellular matrix deposition in
proximal pulmonary arteries [101–103]. In contrast, severe
IPAH is characterized by clustered proliferation of EC that
results in concentric obliteration of the lumina by vascular
structures called plexiform lesions, which consist of the
monoclonal proliferation of EC and are reported in the late
stages of PAH [104]. Three-dimensional analysis of the plex-
iform lesion indicated that plexiform lesion is functionally
important in pathogenesis because blood flow is severely
obstructed along the entire length of a vessel affected by a sin-
gle plexiform lesion [105]. Although both human pulmonary
arterial SMC and EC have been shown to proliferate when
exposed to E2 [97, 106], a difference between these cell types
from PAH patients has been shown with the expression of an
estrogen-synthesizing enzyme. Pulmonary arterial SMC were
shown to highly express aromatase in PAH patients, but it
was absent in human pulmonary arterial EC [32]. Thus, the
cell context-specific difference in aromatase expression can
help to explain why men have more severe PAH. Since men
are ill equipped to defend against a higher body burden of
E2 when compared to women, we propose that the local con-
centration of E2 in pulmonary arteries is higher in men with
PAH. This difference in lung concentration of E2 contributes
to the reported faster progression and severity of PAH in
men. Although proliferative changes in pulmonary arteries
play a significant role in the development of PAH, evidence
from the SuHx model of PAH suggests that fibrosis is a deter-
mining factor in the poor survival rate of male patients with
PAH [107]. In this study, female rats with PAH primarily
showed vasculoproliferative changes in the pulmonary artery
while males showed severe fibrosis in the adventitia and
media of the pulmonary artery. Severe fibrosis observed in
male pulmonary arteries including myocardial fibrosis was
associated with impaired heart function and lower survival
rates compared to females.

Unlike SMC exposed to the local synthesis of E2 by aro-
matase, the proximity of EC to the bloodstream allows these
cells to be directly exposed to circulatory E2. The possibility
that estrogen is involved in the growth of EC in the plexiform
lesion is suggested by the increased incidence (2.8-fold) in
female PAH patients of plexiform lesions compared to their
male counterparts [108]. A plausible mechanism for estro-
gen’s involvement in plexiform lesion growth comes from
evidence that infantile hemangiomas, a different type of vas-
cular lesion, are reported with increased incidence in females

with elevated levels of circulating E2 [109]. The combination
of hypoxia and estrogen has been demonstrated in vitro to
synergistically enhance EC proliferation [110], which we pos-
tulate to also contribute to the growth of plexiform lesions.
Higher circulatory E2 may therefore explain the predomi-
nance of plexiform lesions in women with PAH because it
acts directly on EC proliferation. Plexiform lesions are con-
sidered to be a late pathological event compared to the much
earlier pathology of pulmonary arterial SMC hypertrophy.
This suggests that the plexiform lesions in female PAH
patients can take more time to obstruct the pulmonary artery
unlike the more rapid hypertrophy of SMC that occurs in
men, which can help to explain sex differences in disease
severity. A summary scheme of the sex difference in vessel
obliteration is shown in Figure 1.

8. Estrogen-Induced Obliterative Vascular
Lesions

Vessel-obliterating lesions have been reported in female-
biased lung diseases including idiopathic interstitial pneumo-
nia [111], COPD [72], and IPAH [104]. Early appearance of
obliterative vascular lesions observed in mild cases of COPD,
mentioned previously, suggests that the growth of vascular
lesions occurs much earlier than at the end stage of PAH.
Uncontrolled vascular cell growth has been postulated as
the major mechanism involved in PAH pathogenesis [82].
More specifically, the hypertrophic growth of SMC is respon-
sible for progressive thickening of blood vessels of the lung
that ends in obstruction [112]. Proliferative endothelial
lesions that result from a focal budding of EC are also
reported to be an aggressive cell phenotype associated with
a poor prognosis in NSCLC and severe IPAH [104, 113,
114]. Despite progress in understanding IPAH, current ther-
apy (epoprostenol and derivatives, endothelin receptor
antagonists, and phosphodiesterase type 5 inhibitors) has
become a major clinical barrier for the treatment of patients
with end-stage IPAH. Median survival for IPAH patients in
the United States was reported to be only 2.8 years without
treatment [115]. Although these drugs allow clinical, func-
tional, and hemodynamic improvements, the prognosis of
patients remains poor because a critical aspect of end-stage
IPAH is the continual growth of vascular lesion cells which
eventually obliterate the lumen. Antiproliferative agents such
as tyrosine kinase inhibitors have been investigated in IPAH;

Table 2: Models of PAH that support female sex bias and/or detrimental effect of estrogen.

Model Species Findings References

Chronic Hx+ E2 Rat Female develops hypoxic pulmonary hypertension; E2 detrimental [89, 90]

SuHx Rat, mouse Male and female develop PAH; aromatase inhibition protective [32, 92, 93]

Dexfenfluramine Mouse Female only develops PAH; Ovx protective [95]

4,4′-Methylenedianiline Rat Female only develops PAH [62]

Mts1+ Mouse
PAH in female > male

Ovx protective
[96]

SERT+ Mouse Female only develops PAH Ovx protective; E2 detrimental [97]

Hx: Hypoxia; E2: 17β-Estradiol; SuHx: Sugen 5416 plus hypoxia; Mts1+: Overexpression of calcium-binding protein S100A4/Mts1; SERT+: Overexpression of
serotonin transporter; Ovx: Ovariectomized.
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however, safety concerns have restricted the clinical applica-
tion of these drugs, and therefore the need to identify new
therapeutic targets has remained.

The molecular pathogenesis of vessel lumen-obliterating
lesions in humans remains unknown. Largely, the focus has
been on loss-of-function mutations in the BMPR2 gene
observed in approximately 80% of familial PAH and in 20%
of patients with sporadic PAH [116]. In addition to BMPR2,
estrogen receptor signaling has been implicated to be
involved in the pathogenesis of obliterative vascular lesions.
However, these studies have not been consistently focused
on investigating target cells (vascular lesion “initiating” cells)
that are susceptible to genetic and epigenetic instability and
ultimately progress into the plexiform lesion. Investigators
have conveniently used either adult EC or SMC without con-
sidering the in vivo plexiform lesion histopathology. Histo-
pathology of both human and animal model obliterative
vascular lesions suggests they are multicellular and just like
solid tumors that contain stem cells that may be involved in
the pathogenesis of IPAH [117]. Surprisingly, there are
numerous clinical and experimental data of vessel stem cells
in the blood and the lungs of various forms of PAH [118].
Although several different cell types, including vascular
SMC, inflammatory cells, and fibroblasts, are involved in
the vasculoproliferative process, we recognize EC to be the
initial site of injury. Previously, we showed that E2 treatment
leads to an increase in macrophage cell proliferation and
secretion of TNF-α [119, 120] which could contribute to vas-
cular lesion formation via paracrine effects with other cell
types in the vessel wall. Estrogen involvement in immune

responses in lung diseases described previously supports an
inflammatory role in PAH.

Endothelial and smooth muscle cells are directly involved
in the pathology of plexiform lesions. Pulmonary arterial
SMC express aromatase which allows for the local produc-
tion of E2, whereas human pulmonary arterial microvascular
EC do not possess this enzyme [32]. Higher aromatase activ-
ity in pulmonary arterial SMC may lead to locally produced
estrogen that acts in an autocrine or paracrine manner, with
possible cross talk between SMC and EC. Besides estrogen
synthesis, the metabolism of E2 by another enzyme CYP1B1
may contribute to the formation of lumen-obliterating vascu-
lar lesions. CYP1B1 expression is increased in pulmonary
arterial SMC from patients with IPAH [121]. Cytochrome
P450 family member CYP1B1 is a key enzyme involved in
the metabolism of E2 to catechol estrogens and expressed
in the lung. Oxidation of E2 produces 2 catechol estrogens
that, in turn, are further oxidized to the quinones, which
can react with DNA resulting in depurinating adducts that
can lead to mutagenesis. Genetic instability usually associ-
ated with pathological disorders and referring to a range of
genetic alterations from mutations to chromosome rear-
rangements may contribute to the quasi-malignant vascular
lesions observed in PAH patients. In support of this concept,
chromosomal abnormalities and increased DNA damage
have been observed in vessel lumen-obliterating lesions from
PAH patients [122] and we have shown a positive correlation
of oxidative DNA damage (8-OHdG) in benign and malig-
nant vascular tissues [123]. In vivo experimental evidence
in support of genotoxic damage in PAH was shown in the

(i) local E2 by SMC
(ii) SMC hypertrophy, �brosis
(iii) Adventitial/medial thickening
(iv) Rapid event, more severe progression
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Figure 1: Biological sex differences in vessel obliteration.
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SERT+ model of PAH, and female SERT+ mice showed
increased levels of 8-OHdG [124]. We have provided a hypo-
thetical mechanism by which chronic estrogenic stress
induces genetic instability in stem cells that progress to form
the obliterative vascular lesion (Figure 2).

9. Conclusion

Mitogenic and genotoxic effects of estrogen may be a com-
mon pathogenic mechanism to explain the presence of oblit-
erative lesions in lung tissue and vessels. Estrogen has been
shown to promote lung disease in experimental models of
PAH, lung cancer, LAM, and benign metastasizing leio-
myoma (BML) [32, 80, 125, 126]. Studies have reported asso-
ciations between estrogen concentrations in lung disease.
Lung tissues from interstitial pneumonia are reported with
2.8-fold higher levels of E2 [35], NSCLC has high intratu-
moral E2 concentration associated with aromatase expres-
sion [125], and more recently, higher concentrations of E2
have been associated with the risk of PAH in men [31]. Fur-
thermore, higher aromatase activity and circulatory E2 have
been reported to increase the risk of PAH in patients with
portopulmonary hypertension [127]. Based on the evidences
discussed in this review, female gender bias toward oblitera-
tive lung disease may be attributed to the hormone estrogen.

Even though women have a 3-4 times higher prevalence
than men of PAH, circulatory E2 levels cannot explain why
men develop PAH much sooner and have poorer survival.
Pulmonary arterial SMC hypertrophy that contributes to
medial thickening is considered one of the earliest patholog-
ical changes observed in chronic hypoxia-induced PAH. We
postulate that the severity of PAH in males is due to high
local concentration of E2 produced by pulmonary arterial
SMC, which leads to hypertrophy, vasoconstriction, and ves-
sel obstruction. Since males cannot defend against a higher
body burden of E2 unlike females, males succumb to a rapid
and more severe progression of vascular obliteration in PAH.
Females are more susceptible to develop pulmonary vascular
disease characterized by obliterative hyperproliferative vas-
cular lesions because EC are directly exposed to circulatory
E2 from the bloodstream. Higher circulatory E2 found in

women can therefore explain the predominance of plexiform
lesions in female PAH patients. The molecular mechanisms
that underlie sex differences in vessel lumen-obliterating
lesions remain largely unknown, and this is a major hurdle
to identifying novel sex-dependent molecular targets to treat
obliterative vascular lesions. Understanding the molecular
basis of this gender disparity in PAH may offer a new treat-
ment paradigm in this devastating disease that currently
has a high unmet clinical need.

Emerging evidence suggests that a local imbalance
between testosterone and E2 levels influences the develop-
ment of lung disease in COPD and PAH. In light of this
information, we propose that novel therapies targeted against
local tissue production of estrogen may be of clinical benefit
and lead to novel therapeutic strategies in treating estrogen-
dependent lung diseases. The activation of the farnesoid X
receptor (FXR) has been reported to inhibit aromatase at
the level of mRNA, protein, and enzymatic activity [128]
and represents a novel therapeutic mechanism to reduce
local tissue estrogen production in the lung. The potential
inhibitory effect of FXR on aromatase is significant because
a new class of drugs (FXR agonist, such as obeticholic acid
(OCA)) was recently shown to prevent monocrotaline-
induced PAH [129]. Similar cardiopulmonary protective
effects of OCA treatment have been demonstrated also in
blemycin-induced pulmonary fibrosis [130]. FXR activation
by treatment with OCA was shown to protect against
bleomycin-induced lung damage by suppressing epithelial-
to-mesenchymal transition (EMT), inflammation, and colla-
gen deposition. This may be of major benefit in the treatment
of PAH. Endothelial-to-mesenchymal transition (EndMT),
a process similar to EMT, has been implicated to contribute
to obliterative vascular remodeling in idiopathic PAH [131].
Furthermore, the release of cytokines IL-1β, IL-6, TNF-
alpha, and IL-10 by macrophages present in pulmonary
lesions are suggested to play an important role in the path-
ogenesis of PAH [40]. Since FXR activation was shown to
suppress EMT as well as cause a dose-dependent reduction
of proinflammatory cytokines, the FXR class of drugs is highly
innovative therapeutic agents for the treatment of estrogen-
dependent obliterative lung diseases including PAH.

Adult EC
SMC

Vascular lesion cells

Stem cells

Lumen

E2E2

Obliterative vascular lesion

Lumen

E2

Genetic instability
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Figure 2: Estrogen-induced vessel lumen obliteration.
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