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Highlights 

Ø E. coli topoisomerase I (EcTOP1) physically interacts with RecA. 

Ø EcTOP1 can interact with RecA directly in the absence of DNA. 

Ø RecA interacts with the N-terminal domain of EcTOP1 that forms the active site region. 

Ø RecA interaction with EcTOP1 is stimulated by ATP. 
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ABSTRACT 

 Protein-protein interactions are of special importance in cellular processes, including 

replication, transcription, recombination, and repair. Escherichia coli topoisomerase I (EcTOP1) 

is primarily involved in the relaxation of negative DNA supercoiling. E. coli RecA, the key protein 

for homologous recombination and SOS DNA-damage response, has been shown to stimulate the 

relaxation activity of EcTOP1. The evidence for their direct protein-protein interaction has not 

been previously established. We report here the direct physical interaction between E. coli RecA 

and topoisomerase I. We demonstrated the RecA-topoisomerase I interaction via pull-down assays, 

and surface plasmon resonance measurements. Molecular docking supports the observation that 

the interaction involves the topoisomerase I N-terminal domain that forms the active site. Our 

results from pull-down assays showed that ATP, although not required, enhances the RecA-

EcTOP1 interaction. We propose that E. coli RecA physically interacts with topoisomerase I to 

modulate the chromosomal DNA supercoiling. 
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1. Introduction 

Protein-protein interactions (PPIs) are essential features of almost every cellular process 

(Coulombe et al., 2004; Perkins et al., 2010). Genomic processes including DNA replication, 

transcription, translation, recombination, and repair require an ensemble of proteins (Coulombe et 

al., 2004). PPIs, especially transient protein interactions, are vital in the regulation of the above-

mentioned genomic processes (Perkins et al., 2010; Ngounou Wetie et al., 2013). Proteins involved 

in transient interactions can function as independent units in the cells, and certain post-translational 

modifications on these proteins or binding of ligands can trigger the protein interactions. A 

protein’s function is defined and controlled through interaction with other proteins, or 

biomolecules (Ngounou Wetie et al., 2013).  

Understanding protein-protein interaction network in Escherichia coli would be essential 

in broadening current insight on the fundamental cellular processes. PPIs involved in DNA damage 

response would be important for the development of antibiotic resistance (Marceau et al., 2013). 

We are reporting here a direct physical interaction of RecA, the key player of homologous 

recombination and SOS DNA-damage response in E. coli, with DNA topoisomerase I. RecA 

family of recombinases, conserved in most of the bacteria, are ATP-dependent proteins mediating 

homologous recombination, DNA repair and genome integrity (Karlin and Brocchieri, 1996; Lin 

et al., 2006; Cox, 2007). Homolog searches have provided evidence for conservation of RecA in 

bacteria, archaea, and eukaryotes, although, the functions of the homologs have diversified with 

evolution. Most of the archaeal species have two RecA homologs (RadA and RadB), whereas the 

eukaryotes have multiple representatives of the RecA family (Rad51, Rad51B, Rad51C Rad51D, 

Dmc1, XRCC2, XRCC3, and RecA) (Lin et al., 2006). RecA monomers bind to single-stranded 

DNA (ssDNA) in an ATP-dependent manner forming an active nucleoprotein filament (McGrew 
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and Knight, 2003; Bell, 2005). E. coli RecA, a prototype of RecA family of proteins, has multiple 

roles in the cell. RecA catalyzes the DNA strand exchange mechanism by coupling with ATP 

hydrolysis, promoting the recombination process ( Cox, 1999; Cox, 2002; Lusetti and Cox, 2002; 

Cox, 2003; Renzette and Sandler, 2008). RecA can also function as a coprotease of LexA, and 

UmuD proteins. RecA facilitates the autocatalytic cleavage of LexA repressor, which is required 

for inducing the SOS response (Little, 1991; Harmon et al., 1996). It can also facilitate the 

autocatalytic cleavage of UmuD to an active UmuD’, which is a component of a low fidelity DNA 

polymerase V that is involved in the translesion DNA synthesis (Patel et al., 2010).   

The topology of DNA is maintained by an important group of evolutionarily conserved 

enzymes called topoisomerases (Wang, 2002). The essential genomic processes such as 

replication, transcription, recombination, and repair can create topological strain or entanglement 

on the double helix of DNA (Vos et al., 2011). Topoisomerases transiently cleave and rejoin DNA 

(Wang, 1971) to resolve the topological strain or entanglement, and maintain the genomic stability 

(reviewed in (Wang, 1971; Berger, 1998; Champoux, 2001; Chen et al., 2013)).   

E. coli DNA topoisomerase I is primarily involved in the relaxation of negatively 

supercoiled DNA by the stand passage mechanism (Brown and Cozzarelli, 1981; Tse-Dinh, 1986; 

Champoux, 2002). It has an important function in preventing excess negative supercoiling of DNA 

(Drlica, 1992)  which can affect global transcription and result in growth inhibition. According to 

a previous report, the relaxation activity of E. coli topoisomerase I is stimulated by RecA; 

suggesting a functional interaction between RecA and topoisomerase I (Reckinger et al., 2007). It 

remains unclear whether this stimulatory effect is due to direct protein-protein interaction between 

E. coli RecA and topoisomerase I, or is only due to the effect of E. coli RecA on DNA 

conformation. More recent results showed that mutations in E. coli topA gene coding for 
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topoisomerase I can diminish the E. coli SOS response to DNA damage and antibiotics treatment 

( Liu et al., 2011; Yang et al., 2015).  The interaction between RecA and topoisomerase I may 

influence the increase in antibiotic resistance (Hastings et al., 2004; Beaber et al., 2004; Thi et al., 

2011) and persistence shown to be associated with the SOS response (Dörr et al., 2009). In this 

study, we tested the hypothesis that E. coli RecA might physically interact with topoisomerase I 

to modulate the topoisomerase I catalytic activity and DNA supercoiling.  

Herein, we present evidence for a direct physical interaction between E. coli RecA, and 

topoisomerase I in solution by pull-down assays (Yang et al., 2015) as well assess the influence of 

ATP, and the domains of topoisomerase I involved in the protein-protein interaction with RecA. 

We further investigated the inter-protein interaction between E. coli RecA and topoisomerase I by 

using surface plasmon resonance (SPR) and molecular docking. SPR is a widely accepted label-

free biophysical tool in order to investigate biomolecular interactions (Wilson, 2002; Willander 

and Al-Hilli, 2009; Tiwari et al., 2014), including PPIs (Berggård et al., 2007; Tiwari et al., 2015), 

whereas molecular docking can be used to provide structural insights for PPIs (Smith and 

Sternberg, 2002; Gray et al., 2003). The structural basis for the protein-protein interaction was 

predicted by molecular docking that shows the N-terminal domain (NTD) of topoisomerase I is 

involved in the interaction with RecA. The NTD (amino acids 1-597) contain the active site for 

DNA cleavage-religation (Lima et al., 1994).  Experimental evidence supporting this prediction 

was provided from pull-down assays.  

 

 

2. Material and methods 
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2.1. Bacterial strains and plasmids 

E. coli strain BW25113 (Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, rph-1, Δ(rhaD-

rhaB)568, hsdR514), obtained from Yale CGSC (Datsenko and Wanner, 2000), was used for 

preparing the cell lysate used in the pull-down of RecA from total cellular proteins.  Plasmid, 

pLIC-ETOP was used for the expression and purification of recombinant E. coli topoisomerase I 

with 6x-His tag (Sorokin et al., 2008).  A plasmid, pLIC-NTD-ETOP was made similarly as pLIC-

ETOP by introducing the coding sequence of the NTD of E. coli topoisomerase I (amino acids 1-

597) into a pLIC-HK cloning vector that allows T7 RNA polymerase-dependent expression of His-

tagged NTD of topoisomerase I for purification (Sorokin et al., 2008).  A pET His6-Mocr TEV 

cloning vector (2O-T) (gift of Scott Gradia, Addgene #29710) was used for expression and 

purification of a recombinant viral protein, His-Mocr (DelProposto et al., 2009) that was used as 

negative control in the pull-down assays.  

2.2. Purified Proteins 

E. coli topoisomerase I with a N-terminus 6x-His tag (His-EcTOP1) was expressed from 

pLIC-ETOP in E. coli BL21AI by induction with 1mM IPTG, 0.02% L-Arabinose as described 

previously (Sorokin et al., 2008). N-terminal domain of the E. coli topoisomerase I with a N-

terminus 6x-His tag (His-NTD-EcTOP1) was expressed from pLIC-NTD-ETOP in BL21 Star 

(DE3) by induction with 1mM IPTG.  Expression of recombinant His-tagged Mocr was induced 

in BL21 star (DE3) with 1mM IPTG. Ni Sepharose 6 Fast Flow beads (GE Healthcare Life 

Sciences) were used to purify these proteins by affinity chromatography (Cheung et al., 2012) to 

near homogeneity as described previously (Sorokin et al., 2008) with some modifications 

(Supplementary Material, section S1, Fig. S1). Purified E. coli RecA was purchased from New 
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England BioLabs for use in assays involving verification of direct protein-protein interactions with 

topoisomerase I.  

2.3. Pull-down assays to study direct physical interactions between purified proteins 

Pull-down assays were carried out to establish the physical interactions of proteins in 

solution (Yang et al., 2015). An assay involving the incubation of purified RecA and 

topoisomerase I was carried out to study the direct physical interactions between these proteins. 

Purified His-EcTOP1 serves as bait in these assays. Individual pull-down reactions were set up by 

incubating constant amount of bait (10nM) with varying concentrations (0-80nM) of RecA (prey) 

for 2 hours at 4C. The bait-prey interactions were set up in pull-down buffer with 10mM HEPES, 

pH 7.4, 100mM NaCl, 0.5mM MgCl2, 0.005% v/v Tween-20. The HisPur Cobalt Agarose resin 

(Thermofisher), previously equilibrated in the above-mentioned pull-down buffer, was mixed with 

the bait-prey reaction. Following an overnight incubation at 4C, the reactions were centrifuged 

and the supernatant was discarded. The resin pellet was then washed three times in HEPES buffer, 

and the proteins bound to the resin were eluted with pull-down buffer containing 400mM 

imidazole. The eluates were electrophoresed in a polyacrylamide SDS gel, and RecA was detected 

by western blotting (Burnette, 1981) with Anti-RecA monoclonal antibody (MBL International 

Corp.). A C-DiGit blot scanner (LI-COR) was used to detect the chemiluminescent western blot 

signal, and the signal intensity was quantified (Image Studio Digits version 4.0). 

A comparative study was performed to compare the RecA-topoisomerase I binding 

efficiency in the presence, and absence of 5 mM ATP. The assay was carried out with a constant 

amount (10nM) of His-EcTOP1 as bait, and varying concentrations (0-80nM) of RecA as prey.  

An independent similar assay was carried out with a constant amount (10nM) of NTD-EcTOP1 as 

bait, and varying RecA concentrations (0-60nM) as prey in the presence of ATP. 
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2.4. Pull-down assays on E. coli soluble cell lysate  

In this assay, E. coli strain (BW25113) was allowed to grow in LB medium for 16 hrs to 

stationary phase (OD600=2.5), and the culture was pelleted. The cell pellet was suspended in pull-

down buffer with 1mg/ml lysozyme. The suspended cells were subjected to lysis by four freeze-

thaw cycles. The lysate was centrifuged at 13000xg for 2 hrs at 4C. The soluble fraction was 

precleared with HisPur Cobalt Agarose resin before incubation with the bait. Either full length 

purified EcTOP1 or NTD-EcTOP1 was used as bait. A Bacteriophage T7 protein, Mocr, with a N-

terminus 6x-His tag was used as bait in the negative control for the pull-down assay (DelProposto 

et al., 2009).  

Bait (40nM), and total cellular proteins in lysate (150μg) were incubated at 4C for 2 hrs. 

HisPur Cobalt Agarose resin (Thermofisher) was mixed with the reaction, and incubated overnight 

at 4C. On the following day, the resin-reaction mixture was spun, and the supernatant was 

discarded. The bead pellet was washed three times in pull-down buffer with 10mM imidazole to 

minimize non-specific binding of histidine rich proteins to the resin. The proteins bound to the 

resin were finally eluted in 400mM imidazole, and the eluates were subjected to SDS-PAGE 

analysis. A western blot was performed to probe for RNA polymerase, and RecA in the eluates 

using a monoclonal antibody against RNA polymerase beta (BioLegend), and RecA respectively. 

 

 

2.5. SPR 

Biacore T200 SPR instrument was used to record SPR sensorgrams. EcTOP1 was 

immobilized onto CM5 sensor surface using standard amine coupling chemistry. Buffered 
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solutions with various concentrations of RecA were flown over EcTOP1 immobilized sensor 

surface. A detailed explanation of SPR experimental procedures, including data analysis, is 

included in the Supplementary Material (section S2).  

2.6. Molecular docking 

 The formation of inter-protein complex between EcTOP1 and RecA was optimized using 

pyDockWEB (Jiménez-García et al., 2013). Protein coordinates from pdb entries 4RUL (full 

length EcTOP1, (Tan et al., 2015)) and pdb entry 2REB (E. coli RecA, (Story et al., 1992)) were 

used in the docking study as receptor (EcTOP1) and ligand (RecA), respectively. The top ten 

docked complexes from the pyDockWEB outputs, based on energy scoring, were used to predict 

the RecA interaction site on EcTOP1. The output pdb file of the top scored complex was analyzed 

using PDBsum database (Laskowski et al., 1997; Laskowski, 2001). Chimera molecular graphics 

software (Pettersen et al., 2004) was used to visualize the structure and to generate images of the 

docked complexes. 

3. Results  

3.1. Pull-down assay demonstrates a direct physical interaction between E. coli RecA and 

topoisomerase I  

A functional association between E. coli RecA and topoisomerase I have been reported 

previously (Cunningham et al. 1981; Reckinger et al., 2007). More recently, a role of 

topoisomerase I was observed in E. coli SOS response (Liu et al., 2011; Yang et al., 2015), which 

prompted us to verify the possibility of a direct physical interaction between these proteins. 

Purified His-EcTOP1 and RecA were incubated together in the presence of ATP, and pulled-down 

with Cobalt agarose resin. The amount of RecA bound to EcTOP1 was determined by western blot 

analysis of the eluates from the reaction with monoclonal antibodies against RecA. The results 
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(Fig. 1) confirmed the possibility of a direct interaction between these proteins. Pull-down of RecA 

by the resin required the presence of His-EcTOP1. Both E. coli RecA, and topoisomerase I bind 

strongly to single-stranded DNA. However, according to this pull-down result with purified RecA 

and topoisomerase I, the association between these proteins does not require the presence of DNA.      

 

3.2. Influence of ATP on the binding efficiency of RecA with EctopoI  

The functional interactions between E. coli RecA and topoisomerase I were observed in 

the presence of ATP.  According to a previous report (Konola et al., 1994), ATP binds to the P-

loop of RecA. E. coli RecA undergoes ATP dependent conformational change (Cox, 2003) that 

could affect its interaction with topoisomerase I (Cunningham et al. 1981; Reckinger et al., 2007). 

We, therefore tested the influence of ATP on the physical interaction between E. coli RecA and 

topoisomerase I with pull-down reactions in the absence or presence of ATP.  

While the results from the pull-down assay suggested that the protein-protein interaction 

between E. coli RecA and topoisomerase I may not require ATP, the presence of ATP was found 

in pull-down assay to enhance the protein-protein interaction significantly (Fig. 2).  Experimental 

data from one trial of pull-down experiment is shown here. Similar enhancement of the interaction 

by the presence of ATP were seen in two additional trials of the experiment (Supplementary 

Material, section S3, Fig. S3). However, ATP did not appear to be absolutely required for the 

interaction. Direct protein interaction between E. coli RecA and topoisomerase I in the absence of 

ATP has been confirmed by surface plasmon resonance (SPR) measurements (Supplementary 

Material, section S2). We could not obtain meaningful SPR sensorgrams for RecA-EcTOP1 

interactions in the presence of ATP due to technical difficulty (Supplementary Material, section 

S2). 
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3.3. Molecular docking results for the complex formation between RecA and EcTOP1  

 Fig. 3 depicts the binding complex, as predicted by pyDockWEB, between EcTOP1 

(receptor) and RecA (ligand). Fig. 3A shows the surface representation for the binding of EcTOP1 

(green) and with RecA (10 different colors, except green, representing the RecA conformations 

upon binding with EcTOP1). Fig. 3B shows the cartoon representation for the top-scored EcTOP1-

RecA docked complex as well as the interacting amino acid residues, as predicted by PDBsum, 

across the binding interface. The amino acid residues predicted to be responsible for the formation 

of hydrogen bonds and salt bridges are listed in the Supplementary Material (section S4).  

3.4. Pull-down assay for complex formation between NTD-EctopoI and RecA 

Molecular docking results (section 3.3) have suggested that the NTD of EctopoI can 

interact with RecA in E. coli. The possibility of the direct interaction of RecA with the NTD-

EctopoI was verified by pull-down assays, involving the direct incubation of purified recombinant 

NTD-EctopoI and RecA, in the presence of ATP. In these assays, NTD-EctopoI (bait) and RecA 

(prey) were incubated with HisPur Cobalt agarose resin, in the presence of ATP. The eluates from 

the pull-down reactions were analyzed by western blotting with monoclonal RecA antibodies. The 

results from the assay suggest that the N-terminal domain of topoisomerase I and RecA can interact 

physically (Fig. 4). 

 

3.5. Pull-down of RecA from E. coli soluble cell lysate by recombinant EcTOP1 and NTD-ECTOP1 

E. coli RecA has a stimulatory effect on the topoisomerase I relaxation activity, suggesting 

a possible protein-protein interaction between RecA and topoisomerase I (Reckinger et al., 2007). 

We were able to verify a direct physical interaction between RecA and EcTOP1 with purified 

proteins in solution (Fig 1A). A pull-down assay using the E. coli cell lysate was performed to 
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further confirm the interaction of E. coli topoisomerase I NTD with E. coli RecA. The cell lysate, 

and EcTOP1 or NTD-EcTOP1 were incubated together with HisPur Cobalt agarose beads that 

have high affinity for the 6x-Histidine tag. The complexes recovered from the beads after the pull-

down protocol were resolved by SDS-PAGE, and analyzed by western blot. The nitrocellulose 

membrane was probed for RecA and RNA polymerase with monoclonal antibodies against RecA 

and RNA polymerase beta subunit respectively. EcTOP1 is known to interact with E. coli RNA 

polymerase via its CTD (Cheng et al., 2003).                                                                        

The results showed that both RecA, and RNA polymerase were pulled down by full-length 

topoisomerase I as expected (Fig. 6, lane 2). The data also confirmed that the NTD of 

topoisomerase I can interact with RecA (Fig. 6, lane 3). Interaction between NTD-EcTOP1 and 

RNA polymerase was not observed, demonstrating the domain specific interactions between 

EcTOP1 and its partners (Cheng et al., 2003).  

4. Discussion 

In a previous study (Reckinger et al., 2007), the stimulation of topoisomerase I relaxation 

activity by E. coli RecA was seen only for topoisomerase I protein from E. coli and not for the 

topoisomerase I proteins from other species. This indicated that the stimulation of relaxation 

activity by RecA was not entirely due to the effect of RecA on DNA conformation.  Even though 

this previous results suggested that E. coli RecA may stimulate topoisomerase I relaxation activity 

via direct protein-protein interaction, data to support such interaction was not available (Reckinger 

et al., 2007). We have presented evidence here for the first time to confirm the direct physical 

interaction between E. coli RecA and topoisomerase I. The presence of DNA was not required for 

this interaction.  ATP, although not absolutely required, can enhance the protein-protein interaction 

between E. coli RecA and topoisomerase I.  E. coli topoisomerase I plays an important role in the 
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regulation of local and global DNA supercoiling (Liu and Wang, 1987; Drlica, 1992). The 

stimulation of topoisomerase I relaxation activity by RecA via direct protein-protein interaction 

allows RecA to add modulation of DNA supercoiling to its multiple roles.  This stimulation of 

topoisomerase I relaxation activity by RecA may enable relaxation-dependent E. coli promoters to 

have higher transcription activities following DNA damage, as observed following norfloxacin 

treatment (Jeong et al., 2006; Reckinger et al., 2007).   

As a type IA DNA topoisomerase, EcTOP1 binds to the single-stranded region of 

negatively supercoiled DNA to initiate its relaxation activity (Champoux, 2001). The active site 

region with the Tyr-319 nucleophile for single-stranded DNA cleavage and religation by EcTOP1 

is located in its NTD, formed at the interface between the subdomains that enclose the toroid hole 

in its structure (Lima et al., 1994; Berger, 1998). Molecular docking and pull-down results reported 

here showed that RecA interacts with the NTD of topoisomerase I. The protein-protein interactions 

may either facilitate the loading of negatively supercoiled DNA onto topoisomerase I, or increase 

the catalytic rate of DNA relaxation by inducing conformational change in topoisomerase I. It is 

notable that EcTOP1 interacts with RNA polymerase via its CTD (Cheng et al., 2003) so that the 

transcription-driven negative supercoiling can be relaxed efficiently to prevent hypernegative 

supercoiling of DNA and suppress R-loop stabilization (Tan et al., 2015). Interaction with RecA 

takes place via a different domain in topoisomerase I and may also have functional significance 

for the physiological response of E. coli to DNA damage and antibiotics to improve survival. 

Future studies will investigate further the mechanism of the RecA-topoisomerase I interaction, and 

the physiological consequence of perturbation of this specific protein-protein interaction.   
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Figure captions: 

Fig. 1. Direct physical interaction between purified E. coli RecA and topoisomerase I 

(A) pull-down scheme (B) Pull-down of E. coli RecA by topoisomerase I at an increasing 

RecA:EcTOP1 molar ratios, as measured by western blot using antibodies against RecA. 

Lanes 1-4: Eluates from pull-down reactions with increasing RecA:EcTOP1 molar ratios. 

Lane 5: Negative control in the absence of EcTOP1. (C) Graph showing average values 

(symbols) of RecA band intensities, from three independent experiments, relative to the 

maximal intensity of RecA in the pull-down reactions. The error bars represent standard 

deviations of three measurements. 

 

Fig. 2. ATP promotes binding of E. coli RecA to topoisomerase I.  (A) Comparative 

analysis of ATP’s influence on the direct protein interactions between RecA, and EcTOP1. 

Lanes 1-4: Eluates from pull-down reactions in the presence of 5mM ATP. Lanes 5-8: 

Eluates of pull down reactions devoid of ATP. Lane 9: negative control with no EcTOP1 

present. (B) The quantified RecA band intensities. 

 

Fig. 3. RecA-EcTOP1 complex predicted by molecular docking: (A) Green colored 

surface represents EcTOP1 with light green as its C-terminal domain (CTD) and dark green 

as N-terminal domain (NTD). The surfaces in the other colors represent ten different 

predicted RecA conformations when it binds to EcTOP1, all with NTD of EcTOP1 as the 

binding domain interacting with RecA. (B) Cartoon representation of the top scored docked 

RecA-EcTOP1 complex. EcTOP1 is shown in green color and RecA in blue color.  The 

amino acid residues across the EcTOP1-RecA binding interface that form hydrogen bonds 
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and salt bridges are shown in sticks representation (orange colored sticks for EcTOP1 and 

magenta colored sticks for RecA). 

 

Fig. 4. NTD of EcTOP1 can interact with RecA as efficiently as full length EcTOP1. 

(A) Pull-down of RecA, at an increasing RecA: NTD-EcTOP1 molar ratios, as measured 

by western blot using antibodies against RecA. Lane 1-4: Eluates from the pull-down 

reactions of increasing RecA (prey) to NTD-EctopoI (bait) in the presence of ATP. Lane 

5: negative control for the assay with RecA only. Lane 6, 7: Eluates from reaction carried 

out with full-length EcTOP1, as bait. (B) Quantified RecA band intensities relative to the 

band intensity observed with pull-down reaction corresponding to 1: 6 molar ratios of 

EcTOP1 RecA in lane 7 of Fig. 4A. The average values of three experiments (symbols) are 

shown here with the error bars representing the standard deviations.  

 

Fig. 5. Pull-down of RecA from E. coli cell lysates by EcTOP1 and NTD-EcTOP1. 

Lane 2 and 3 represent the eluates from the pull-down reactions containing EcTOP1, NTD-

EcTOP1 as bait respectively. Lane 1, representing the eluate from the pull-down reaction 

with Mocr as bait, serves as a negative control. 
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Fig. 1. 
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Fig. 5. 

 

 

 



Abbreviations: 

CTD – C-terminal domain 

EcTOP1 – Escherichia coli topoisomerase I 

NTD – N-terminal domain 

PPI – protein-protein interactions 

SPR – surface plasmon resonance 
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