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ARTICLE

Time series modeling of cell cycle exit identifies
Brd4 dependent regulation of cerebellar
neurogenesis
Clara Penas1,8,9, Marie E. Maloof 1,9, Vasileios Stathias1, Jun Long2, Sze Kiat Tan 1, Jose Mier3, Yin Fang4,

Camilo Valdes5, Jezabel Rodriguez-Blanco2, Cheng-Ming Chiang6, David J. Robbins2, Daniel J. Liebl3, Jae K. Lee3,

Mary E. Hatten4, Jennifer Clarke7 & Nagi G. Ayad1

Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the

cell cycle and differentiating into neurons. Dysfunction of this process underlies many neu-

rological diseases including ataxia and the most common pediatric brain tumor, medullo-

blastoma. To better define the pathways controlling the most abundant neuronal cells in the

mammalian cerebellum, cerebellar granule cell progenitors (GCPs), we performed RNA-

sequencing of GCPs exiting the cell cycle. Time-series modeling of GCP cell cycle exit

identified downregulation of activity of the epigenetic reader protein Brd4. Brd4 binding to the

Gli1 locus is controlled by Casein Kinase 1δ (CK1 δ)-dependent phosphorylation during GCP

proliferation, and decreases during GCP cell cycle exit. Importantly, conditional deletion of

Brd4 in vivo in the developing cerebellum induces cerebellar morphological deficits and

ataxia. These studies define an essential role for Brd4 in cerebellar granule cell neurogenesis

and are critical for designing clinical trials utilizing Brd4 inhibitors in neurological indications.
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During postnatal mammalian development, granule cell
progenitors (GCPs) undergo symmetric divisions in the
external germinal layer (EGL) of the brain and exit the

cell cycle within a narrow time frame, resulting in rapid cellular
expansion and differentiation1. However, the fundamental
mechanisms controlling irreversible GCP cell-cycle exit have not
been elucidated. It is essential we discover these mechanisms to
understand cerebellar development, as defects in GCP expansion
have been linked to cerebellar ataxia and the most common
pediatric brain tumor, medulloblastoma2. Epigenetic modifiers
control gene expression without changing DNA sequence. These
modifiers include histone acetyltransferases (HATs) and histone
deacetylases (HDACs). Histone acetyltransferases attach acetyl
groups to lysine residues on histone proteins, while HDACs
remove those modifications3. Histones normally bind DNA
molecules via their positively charged lysine and arginine tails3.
Histone–DNA binding initiates DNA compaction and tran-
scriptional silencing. Histone tail acetylation reduces this positive
charge, attenuates DNA binding and compaction and allows
transcription. Histone deacetylation has the opposite effect, thus
allowing histone–DNA binding and reducing transcription.
Working in combination with HATs (writers) and HDACs
(erasers) are histone-reader proteins, which bind to acetylated
lysines on histones, recruit transcriptional complexes, and med-
iate gene transcription. Among the “reader” proteins are bro-
modomain and extra-terminal domain (BET) proteins. BET
proteins include Brd2, Brd3, Brd4, and BrdT. Tissue expression
studies suggest that Brd4 is heavily expressed in the brain, making
it a likely candidate for modulating neurogenesis in the nervous
system4. Recent sequencing studies have implicated many epi-
genetic regulators in medulloblastoma5. The epigenetic reader
protein Brd4 has been implicated in various cancers, including
medulloblastoma6–13. Brd4 controls expression of the medullo-
blastoma essential gene MYC in G3 medulloblastomas, which
have poor prognosis as well as GLI1 and GLI2 levels in Sonic
hedgehog (SHH)-driven medulloblastomas, which have inter-
mediate prognosis. Highly selective Brd4 inhibitors have been
developed that reduce MYC, GLI1, and GLI2 levels. These inhi-
bitors have gone into clinical trials for multiple cancer indica-
tions, and one Brd4 inhibitor has received fast-track designation
from the FDA for myelofibrosis14,15. However, it is unclear
whether these inhibitors can be given to children suffering from
medulloblastoma, as we do not fully understand the role of Brd4
during normal development. To address this issue, we deleted
Brd4 in the developing cerebellum in mice and find that it is
essential for cerebellar growth. Brd4 knockout leads to cerebellar
ataxia that is linked to defects in cerebellar development starting
at postnatal day 3. These studies suggest that Brd4 inhibitors
may need to be given during a short developmental window in
children to reduce potential negative effects on cerebellar
development.

Results
Brd4 phosphorylation decreases during cell-cycle exit of
granule cell progenitors. GCPs undergo cell-cycle exit and dif-
ferentiation when plated on poly-D-lysine/laminin coated plates.
We utilized an in vitro system to isolate purified GCPs at various
times during differentiation and performed RNA sequencing on
purified cell populations from postnatal day (P) 6 mice to
determine their characteristics during the exit process (Fig. 1).
We found that GCPs exited the cell cycle within 24 h of plating as
judged by PI-FACS analysis (Fig. 1a) and EdU incorporation
(Fig. 1b). The mRNA expression of several proliferation markers
decreased during this time period while those of differentiation
markers increased (Fig. 1c). For example, the levels of the cell-

cycle regulator, Cyclin b1, and the bHLH transcription factor
important for maintaining GCPs in a proliferative state, Atoh1,
decreased by 24 h post plating. By contrast, neuron-specific class
III beta-tubulin (Tuj1) and the axonal growth marker, Gap43,
increased at 24 h. To determine the exact timing of changes in
cellular pathways during cell-cycle exit, we performed short-time-
series modeling16 with gene ontology clustering analysis of all
mRNAs expressed at 0, 2, 4, 6, 12, 24, and 48 h after plating
(Fig. 1d). Interestingly, downregulation of cell proliferation
pathways (Cluster #47, Fig. 1d; Supplementary Fig. 1, Supple-
mentary Data 1) occurred at the same time as upregulation of
neuronal development pathways (Cluster #75, Fig. 1d; Supple-
mentary Fig. 1, Supplementary Data 1), suggesting that the two
processes may be temporally and mechanistically linked (Fig. 1d,
Supplementary Fig. 1). Importantly, the SHH pathway, which is a
major regulator of GCP expansion17, is downregulated beginning
at 2 h of GCP cell-cycle exit, with the SHH effectors Gli1 and Gli2
nearing basal levels by 24 h, which is recapitulated in vivo
(Supplementary Figs. 1, 2).

Our prior studies demonstrated that the epigenetic reader
protein Brd4 regulates Gli1 levels in mouse embryonic fibroblasts
(MEFs) by directly binding the Gli1 locus11. Brd4 is part of a
family of bromodomain and extraterminal domain proteins
(BETs) that bind to acetylated lysines on histones and recruit
transcriptional complexes to induce transcription of various genes
involved in cell proliferation, signaling, and inflammation18. To
test whether Brd4-dependent regulation of Gli1 changes during
GCP cell-cycle exit, we performed Brd4 chromatin immunopre-
cipitation (ChIP) analysis in GCPs exiting the cell cycle. Brd4 is
expressed in the developing cerebellum during P6-9 when GCPs
are proliferating and exiting the cell cycle (Supplementary Fig. 3).
As observed in Fig. 2a, Brd4 binding to the Gli1 locus decreased
dramatically within the first 2 h of GCP cell-cycle exit. Brd4
activity has been shown to be regulated by phosphorylation19 and
therefore, we tested whether Brd4 phosphorylation decreases
during cell-cycle exit. Brd4 phosphorylation decreases with the
same kinetics as Brd4 binding to the Gli1 locus during cell-cycle
exit (Fig. 2b, c; Supplementary Fig. 1).

Casein Kinase 1δ inhibition or deletion reduces Brd4 binding
to the Gli1 locus. We have previously demonstrated that Casein
Kinase 1 delta (CK1δ) is required for GCP proliferation, and its
protein levels decrease with the same kinetics as Brd4 phos-
phorylation during cell-cycle exit20 (Fig. 2b). Therefore, we
hypothesized that CK1δ may control Brd4 phosphorylation.
Indeed, in vitro phosphorylation assays using purified Brd4 and
CK1δ demonstrated that Brd4 is a CK1δ substrate in vitro
(Fig. 2d, e). Earlier studies have shown that Brd4 phosphorylation
on serines 492/494 relieves Brd4 autoinhibition, thereby allowing
it to bind to chromatin19. We found that serines 492 and 494 are
necessary for CK1δ-mediated phosphorylation of Brd4 as
mutating both to alanine abrogated the ability of CK1δ to
phosphorylate Brd4 in vitro (Fig. 2d–f). To determine whether
CK1δ controls Brd4 activity in GCPs, we incubated proliferating
GCPs with the selective CK1δ inhibitor, SR-127721, or vehicle in
the presence of SHH and measured Brd4 phosphorylation on
serines 492/494 at 24 h (Fig. 3a, b). SR-1277 treatment decreased
phospho-S492/494 Brd4 levels relative to the total Brd4 (Fig. 3a,
b), which correlated with decreased Brd4 binding to the Gli1
locus as measured by Brd4 ChIP analysis (Fig. 3c). Importantly,
CK1δ inhibition reduced Brd4 association with the Gli1 locus to a
similar extent as treatment with the selective Brd4 inhibitor,
I-BET15122, suggesting that CK1δ activity is required for main-
taining Brd4 in an active state (Fig. 3c). In agreement with this,
conditional deletion of CK1δ in GCPs in vivo reduced Brd4
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phosphorylation on serines 492/494 (Fig. 3d), and binding to the
Gli1 locus (Fig. 3e). Consistent with a direct effect on Brd4, CK1δ
inhibition in Supressor of Fused17 deleted (Sufu−/−) cells that
contain active SHH signaling independent of the membrane

receptor Smoothened also reduced Gli1 levels and Brd4 binding
to the Gli1 locus (Supplementary Fig. 4). Collectively, these stu-
dies suggest that CK1δ-mediated phosphorylation of Brd4 on
serines 492/494 potentiates Brd4 localization to the Gli1 locus
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Fig. 1 Timing of cycle exit in GCPs. a GCPs exit the cell cycle within 24 h of plating as judged by PI-FACS analysis. FACS analysis was performed on GCPs
purified from P6 mice and plated for the time intervals indicated. FlowJo software was then used to assess the percentage of cells in the G1, S, or G2/M
phase. b Purified GCPs exit the cell cycle within 24 h of plating as judged by EdU incorporation studies. GCPs purified from P6 mice were processed for EdU
incorporation, which was normalized to the total number of cells labeled with Hoechst staining. c Purified GCPs from P6 mice were plated and processed
for the RNA expression at the time intervals indicated for the proliferative markers, Ccnb1 and Atoh1, and the differentiation markers, Tuj1 and Gap43. qRT-
PCR was performed and normalized to Gapdh. d Short-time series modeling of mRNAs during cell-cycle exit. Plots represent mRNA expression profiles
during GCP cell-cycle exit. Representative clusters (#47, #75 and their related cellular processes) are shown. The red line represents the consensus for
each cluster. The gray lines represent individual mRNA expression profiles. The associated biological processes as defined by DAVID41 in each cluster are
shown. The identity of each gene in the cluster can be found in Supplementary Data 1. The results are shown as the average values of three independent
experiments and are represented as the mean ± SEM. A one-way ANOVA followed by Bonferroni multiple comparison testing was performed (*p < 0.05,
**p < 0.01). Source data can be found in source data graphs under tabs for a–c
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during GCP proliferation. By contrast, during GCP cell-cycle exit,
rapid downregulation of CK1δ activity is associated with reduced
Brd4 phosphorylation on serines 492/494, decreased Brd4 bind-
ing to the Gli1 locus, and attenuated Gli1 expression.

Brd4 Inhibition reduces granule cell progenitor proliferation
in vitro, ex vivo, and in vivo. Downregulation of Brd4 phos-
phorylation and binding during GCP cell-cycle exit suggests that
it is an essential regulator of SHH signaling in GCPs, and that
disrupting Brd4 activity may limit GCP proliferation. To test this,
we measured the effect of BET inhibition on GCP proliferation
via the Brd4 inhibitor I-BET151. I-BET151 treatment reduced
GCP proliferation and Gli1 expression in vitro (Fig. 4a, b;

Supplementary Fig. 5). Further, I-BET151 treatment of cerebellar
slices ex vivo reduced EdU incorporation in the EGL (Fig. 4c, d).
Finally, treatment of P8 pups with a brain penetrant BET inhi-
bitor, JQ123, also reduced cerebellar GCP proliferation in vivo
(Fig. 4e, f). Collectively, these studies suggest that pharmacolo-
gical inhibition of Brd4 reduces GCP expansion in the developing
cerebellum.

Brd4 deletion reduces GCP proliferation and induces ataxia.
To determine whether genetic disruption of Brd4 affects cerebellar
development, we conditionally deleted Brd4 in GCPs by breeding
Brd4fl/fl mice to Tg (Atoh1-Cre) mice, which express Cre under
the Atoh1 promoter after embryonic day 13.524 (Fig. 5a). Tg

Brd4 ChIP, Gli1 locus

d

f

e

ba c
–3250/–2501
+1250/+2000

4

3

2

1

0
0 02 26 624

Brd4

Ck1δ

Ck1δ
WT-PDID BRD4

S484A/S488A-PDID-BRD4

S492A/S494A-PDID-BRD4

Ck1δ
WT-PDID BRD4

S484A/S488A-PDID-BRD4
S492A/S494A-PDID-BRD4

Anti-Phospho-S492/S494

Anti-BRD4

Anti-CK1δ

225 kDa

150 kDa

90 kDa
75 kDa

50 kDa

37 kDa

37 kDa

37 kDa

37 kDa

30 kDa

Silver stain

Phospho-Brd4 S492/494

Phospho-Brd4
S492/494/total Brd4

2

2

R
el

at
iv

e
pr

ot
ei

n 
le

ve
ls

0

0 1.0

1.0

0.5

0.0

0.5

1.5

Gapdh

0.0

W
T

S48
4/

48
8

PDID

S49
2/

49
4

R
el

at
iv

e 
pr

ot
ei

n
le

ve
ls

6

6

24

24
24

+
+

+
+ +

++
+

+

+

+
+

+

+

+

++
+

+

+

Hours
 post-plating

Radioactive assay

Hours post-plating
Hours post-plating

F
ol

d 
re

sp
ec

t t
o

in
pu

t a
nd

 lg
G
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(Atoh1-Cre+);Brd4fl/fl or Tg (Atoh1-Cre-);Brd4fl/fl mice were
attained, and Brd4 expression in isolated GCPs was analyzed via
qRT-PCR and western blot analysis. As seen in Fig. 5b, c, Brd4
mRNA and protein levels were lower in Tg (Atoh1-Cre+);Brd4fl/fl

mice relative to Tg (Atoh1-Cre−);Brd4fl/fl mice, suggesting that
efficient deletion of Brd4 occurs upon Cre expression. Reduced
Brd4 was correlated with lower levels of the positive effectors of
the SHH pathway Gli1 and Gli2, but not the negative regulator
Gli3 (Fig. 5b). Furthermore, the level of the cell-cycle protein
and Gli1 target, cyclin D1, was decreased in GCPs from Tg
(Atoh1-Cre+);Brd4fl/fl mice relative to Tg (Atoh1-Cre−);Brd4fl/fl

mice, suggesting that Brd4 is an essential regulator of cell pro-
liferation in GCPs (Fig. 5c; Supplementary Fig. 6). Although
other BET proteins are expressed during GCP proliferation
(Supplementary Fig. 3), they do not compensate for Brd4 loss
(Supplementary Fig. 6). Indeed, GCPs from Tg (Atoh1-Cre+);
Brd4fl/fl mice proliferated less than those from Tg (Atoh1-Cre−);
Brd4fl/fl mice (Fig. 5d, Supplementary Fig. 6). Consistent with
decreased GCP proliferation, cerebella from Tg (Atoh1-Cre+);
Brd4fl/fl mice were smaller than those from Tg (Atoh1-Cre-);
Brd4fl/fl mice (Fig. 6a, b) as well as had abherant cerebellar layer
formation that persisted throughout early postnatal development
(Fig. 6b; Supplementary Figs. 7, 8). Importantly, reduced cerebellar
size correlated with behavioral deficits in Tg (Atoh1-Cre+);Brd4fl/fl

mice, which exhibited symptoms of cerebellar ataxia not evident

in Tg (Atoh1-Cre−);Brd4fl/fl mice (Fig. 6c; Supplementary
Movies 1–3). Taken together, these studies demonstrate that Brd4
is an essential regulator of GCP proliferation and cerebellar devel-
opment in vivo.

Discussion
We report a novel in vivo function for the epigenetic-reader protein
Brd4. Brd4 controls granule cell progenitor expansion in the
developing cerebellum. Brd4 deletion leads to defects in cerebellar
morphology, which leads to ataxia. Brd4 activity is temporally
regulated during cerebellar granule cell development, as both CK1δ-
dependent phosphorylation of Brd4 on serines 492/494 and Brd4
binding to the Gli1 locus decrease during GCP cell-cycle exit.
Multiple transcriptional and posttranslational mechanisms have
been shown to be required for cell-cycle exit in GCPs in the
developing cerebellum25–28. To our knowledge, this is the first
report demonstrating that the activity of an epigenetic reader pro-
tein is modulated during cell-cycle exit in the developing nervous
system. Interestingly, we find that Brd4 loss from the Gli1 locus
occurs early during cell-cycle exit (within 2 h), suggesting that it
may be an initiating event in the differentiation of cerebellar granule
cells. Future studies are needed to determine how temporally con-
trolling Brd4 activity is linked with phosphorylation, epigenetic, and
ubiquitin pathways that induce cell-cycle exit in the developing
cerebellum25–28. Interestingly, Brd4 phosphorylation down-
regulation during cell-cycle exit correlates with decreases in Gli2
levels in a cluster of cell-cycle genes that decreases after postnatal
day 7 in vivo (Supplementary Fig. 2)29.

We have defined an essential role for Brd4 in the developing
cerebellum. Although other studies have showed that Brd4 is
involved in learning and memory later in development and other
developmental or cellular processes4,23,30–37, ours is the first to
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Tg (Atoh1-Cre) mice and the extent of phospho-Brd4 levels determined via
western analysis. The total Brd4 and Gapdh were included as loading
controls. Note that CK1δ is efficiently deleted in Tg (Atoh1-Cre+);CK1δfl/fl

mice and that phosphorylation at serines S494/494 was lower in these
animals relative to Tg (Atoh1-Cre-);CK1δfl/fl mice. e CK1δ knockout reduces
Brd4 binding to the Gli1 locus. GCPs were purified from Tg (Atoh1-Cre+);
CK1δfl/fl mice or Tg (Atoh1-Cre-);CK1δfl/fl mice, and the amount of Brd4
bound to the Gli1 locus was measured. Note that CK1δ deletion reduced
Brd4 binding to the Gli1 locus. The results are shown as the average values
of three independent experiments and are represented as the mean ± SEM.
A paired t test was performed (*p < 0.05). Source data can be found in
source data graphs under tabs for b, c, e and in source data Fig. 3 and Fig. 4
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demonstrate that Brd4 is required for cerebellar growth. Brd4 is
required for GCP proliferation by controlling the SHH pathway
effectors, Gli1 and Gli2. Brd4 inhibition or deletion reduces GCP
proliferation and responsiveness to SHH signaling. Brd4 deletion
decreases cerebellum size and induces symptoms of cerebellar
ataxia either as a direct effect of neuron loss or indirectly through
the aberrant cerebellum morphology (Fig. 6). Brd4 deletion
reduces levels of Gli2, an essential gene required for vertebrate
development32,33. Therefore, Brd4’s essential role in cerebellar
granule cell development is likely to be related to Gli2 activity
required for proper GCP expansion. Brd4, like Gli2, is a target in
developmental diseases and cancer, and Brd4 inhibitors may be
useful in clinical settings in children10–13. However, cerebellum-
associated developmental disorders and pediatric cerebellar

tumors such as medulloblastoma are associated with deficits in
procedural learning38–40, which could be exacerbated with pro-
longed Brd4 inhibitor usage. Our findings suggest that ther-
apeutic use of Brd4 inhibitors may need to be given during a
temporal window, as Brd4 may be required for proper cerebellar
development in humans.

Methods
Animal husbandry. All mice were housed in an American Association of
Laboratory Animal Care–accredited facility at the University of Miami and were
maintained in accordance with NIH guidelines. Animal use was approved by the
Institutional Animal Care and Use Committee of the University of Miami.

GCP isolation and compound treatment. GCPs were purified from cerebellar
cortex of P6-8 CD1 and Tg (Atoh1-Cre+);CK1δfl/fl mice by using Percoll gradient
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Fig. 4 BET bromodomain protein inhibition reduces Gli1 mRNA levels in purified GCPs and GCP proliferation in vitro, ex vivo, and in vivo. a BET protein
inhibition reduces GCP proliferation in vitro. GCPs were purified from P6 mice and incubated with the indicated concentrations of I-BET151 or DMSO
control for 24 h. Proliferation was then measured using a 3H-thymidine incorporation assay. b BET protein inhibition reduces GCP Gli1 mRNA levels in vitro.
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sedimentation to yield an enriched GCP fraction20. The cells were then pre-plated
on a Petri dish to remove contaminating glia. Purified GCPs were resuspended in
medium (BME, 1.5% glucose, 20 mM glutamine, 10% horse serum, 5% fetal bovine
serum, 1% penicillin/streptomycin) and then plated. For proliferation assays,
GCPs were cultured in suspension in the presence of mouse recombinant SHH
(0.25 ng/mL, 464-SH, R&D Systems); for cell-cycle exit and differentiation assay,
GCPs were plated on poly-D-lysine (100 μg/ml, P6407, Sigma)-laminin (20 μg/ml,
L2020, Sigma)–coated plates. For treatment with compounds, 100 nM of SR- 1277,
the indicated amounts of I-BET151, or DMSO were added to the culture medium
for 24 h.

Cerebellar organotypic slice culture and treatment. Cerebella were isolated
from P8 CD1 mice. Sagittal slices (250 μm) of cerebellar cortex were generated
using a Leica VT1000S vibratome, and slices were plated on Millipore culture
inserts in six-well culture dishes containing 1.5 ml of serum-free medium (Basal
Medium Eagle (Gibco), 0.45% D-(+ )-glucose solution (Sigma), 1× ITS supple-
ment (Sigma), 2 mM L-glutamine (Gibco), 100 U/ml penicillin/streptomycin
(Gibco). The slices were then submerged in 2.5 ml of medium containing DMSO or
I-BET151 (1 μM) for 24 h, after which 1 ml was removed so that the slices were no
longer submerged, and the medium was below the insert.

RNA sequencing. Extracted RNA was sent to the John P. Hussman Institute for
Human Genomics for sequencing. RNA quality was tested by ThermoScientific

NanoDrop or Agilent Bioanalyzer and confirmed to have RIN numbers > 8.5.
Sequencing was performed on Illumina HiSeq2000 with three samples per lane,
generating an average of 95M 2 × 100 bp reads per sample. After quality filtering
and trimming with FastQC remaining RNA-seq reads were aligned to the Ensembl
mouse genome (v.87) using TopHat (v.2.1). For all samples, 80–90% of reads
aligned successfully. Differential expression analysis was performed by CuffDiff 2.2
using the “classic-fpkm” parameter for the normalization method, and the “pooled”
parameter for the dispersion method. Sequencing results from this study have been
deposited in under accession number SRP146255.

Functional annotation analysis. For each STEM profile, we performed functional
annotation analysis using DAVID41 against the Level 5 Gene Ontology Biological
Processes terms (GOTERM_BP_5). To adjust for the false discovery rate, we only
considered terms with a Benjamini–Hochberg adjusted p-value of 0.05.

Flow cytometry. For flow-cytometric analysis, isolated GCPs were removed from
dishes, washed with PBS and 1% BSA, and fixed with 10% ethanol in PBS overnight
at 4 °C. GCPs were then stained with 69 μM propidium iodide in 38 μM sodium
citrate buffer and 1 μM RNAse A at 37 °C for 30 min. The number of cells in G1, S,
or G2 phases was determined using a fluorescence-activated cell-sorting device
(LSRII, Becton Dickinson) and analyzed by FlowJo software.
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Fig. 5 Conditional deletion of Brd4 in GCPs inhibits the sonic hedgehog pathway and SHH mediated proliferation. a Strategy utilized for deleting Brd4
conditionally in the cerebellum. Brd4tm1a(EUCOMM)Wtsi heterozygous mice were obtained through the Knockout Mouse Project Repository at Baylor
University. These mice were bred to Tg (ACTFLPe) mice to create Brd4fl/+ mice. Brd4fl/+ mice were bred to Tg (Atoh1-cre) mice to obtain conditional cre
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with SHH, incubated with EdU and with or without SHH for 2 h, then plated with fresh media on poly-D-lysine/laminin coated coverslips for 3 h. Cells were
fixed for EdU detection, reaggregates were imaged with a confocal laser-scanning microscope, and EdU positive cells were quantified with ImageJ. The
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0.001, ****p < 0.0001, N.S. no significance). Source data can be found in source data graphs under tabs for Fig. 5b, d and in source data Fig. 5
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3H-thymidine assay. GCPs were plated (3 × 105 cells/well) in 96-well dishes.
DMSO or I-BET151 was added to the medium, and cells were maintained in
culture for 24 h, in the presence of SHH. Then, 1 μCi [methyl-3H]-thymidine
(Amersham) was added to each well, and cells were harvested 22 h later and
analyzed using TopCount (Perkin–Elmer).

EdU incorporation assay. For the in vivo study, P8 CD1 mice were injected
intraperitoneally twice with 10, 25, or 50 mg/Kg of JQ1 during 24 h. Two hours
after the last injection, 50 mg/Kg of EdU was administered subcutaneously over the
top of the neck. One hour after EdU administration, pups were perfused with 4%
paraformaldehyde (PFA). Brains were processed for immunohistochemistry, and
cerebella were cut in 20 μM sections with a cryostat. For the ex vivo proliferation
assays, 1 ml of 25 μM EdU (Invitrogen) was added on top of the slices after 24 h in
culture. Thus, the final concentration was 20 μM EdU per 2.5 -ml medium. Then,
slices were fixed for 2 h with 4% PFA. For in vitro proliferation assays, GCPs were
treated with EdU (20 μM) for 2 h. The cells were then washed with PBS, plated in
poly-D-lysine/laminin-coated dishes for 2–3 h, and further fixed with 4% PFA/30%
sucrose.

Then, sections, slices, or cells were permeabilized and stained using the Click-
iT® EdU Alexa Fluor® 594 Imaging Kit (Invitrogen). Samples were imaged using
the z-stack of a confocal laser-scanning microscope (Olympus, FV1000), and the
images were analyzed using Fiji software (ImageJ).

Immunohistochemistry. Mice were perfused with 4% PFA, and cerebella were
extracted. Cerebella were fixed in 4% PFA for 2 h, embedded in 30% sucrose in
PBS, and cut into 20-μm sections with a cryostat (Leica). Sections were then
permeabilized and blocked in 0.5% Triton X-100, 5% fetal bovine serum for 1 h at
room temperature and incubated overnight at 4 °C with the following primary
antibodies: rabbit anti-Brd4 (1/1000, Bethyl Laboratories Inc.), mouse or rabbit
anti-calbindin (1/1000, Swant300, CB38), and mouse anti-Tag1 (1/1). The slices
were then washed with PBS, and incubated for 4 h at room temperature with the
following secondary antibodies as appropriate: Alexa Fluor® 488 goat anti–rabbit
IgG, Alexa Fluor® 594 goat anti-mouse IgG or Alexa Fluor® 594 goat anti-mouse
IgM (all 1/500, Invitrogen). Sections were then washed with PBS and incubated
with Hoechst stain (Invitrogen) or DRAQ5 (AbCam) before mounting using
ProLong Gold Antifade mounting medium (Invitrogen). Confocal images were
acquired with a confocal laser-scanning microscope and were further analyzed with
Fiji software (ImageJ).

Protein extract preparation, antibodies, and western blot analysis. Cells were
homogenized, and extracts were prepared using lysis buffer (NER buffer from the
NER-PER nuclear and cytoplasmic extraction reagents (Thermo Fisher Scientific),
1× protease inhibitor cocktail, 1 μM microcystin-LR). The soluble fraction was
recovered by centrifugation at 16,000 × g for 10 min at 4 °C. Protein concentration
was measured with the BCA Protein Assay Kit (Pierce Biotechnology), and 30 μg of
protein from each sample was resolved by SDS-PAGE. The resolved bands were
transferred onto a nitrocellulose membrane and subjected to western blotting with
the appropriate antibodies.

The following primary antibodies were used: mouse anti-CK1δ (C-8) (1/1000,
Santa Cruz Biotechnology, sc-55553), goat anti-CK1δ (N-19) (1/500, sc-6475, Santa
Cruz Biotechnology), rabbit-anti C-terminal Brd4 (1/2000)19, rabbit anti-Brd4 (1/
1000, A301-985A50, Bethyl Laboratories Inc.), rabbit anti-phospho-Brd4 492/494
(1/2000, ABE1453, Millipore), mouse anti-Gapdh (1/5000, NB300-221, Novus
Biolechne), goat anti-CK2α (1/500, sc-6479, Santa Cruz Biotechnology), mouse
anti-Flag (1/5000, A8592, Sigma), and rabbit anti-cyclin D1 (1/1000, ab134175,
Abcam). The following secondary antibodies were used: anti-goat IgG–HRP (1/
1000, 7074, Cell Signaling), anti-mouse IgG–HRP (1/1000, NXA931, GE
Healthcare) and anti-rabbit IgG–HRP (1/1000, NA9340V, GE Healthcare).

RNA isolation and qRT-PCR. Cells were lysed in 1 mL of TriZol Reagent (Invi-
trogen), and the RNA was purified with the RNeasy Mini Kit (Qiagen). RNA was
then reverse-transcribed with a High Capacity cDNA Reverse Transcripiton Kit
(Applied Biosystems). TaqMan probes were designed with the TaqMan Gene
Expression Assay tool (Applied Biosystems). The qRT-PCR was performed using a
TaqMan® Gene Expression Master Mix (Applied Biosystems) in a CFX384
TouchTM Real-Time PCR Detection System (Bio-Rad). Fold change in gene
expression was estimated using the computed tomography comparative method
and normalizing to the Gapdh computed tomography values and relative to control
samples (Table 1).

In vitro phosphorylation of Brd4 with CK1δ. Purified bacterial Brd4
phosphorylation-dependent interaction domain (PDID) proteins were used for this
study (PDID wild-type, PDID S484/488 A, PDID S492/494 A). In each reaction,
100 ng of PDID protein was incubated with 200 μM of ATP, 1000U of CSNK1D
(NEB, P6030S), and 1X NEBbuffer for protein kinases for 30 min at 30 °C. Laemmli
sample buffer was added to terminate the reactions, and the samples were heated to
95°C and resolved by SDS-PAGE. The resolved bands were transferred onto a
nitrocellulose membrane and subjected to western blotting with the appropriate
antibodies.

In the case of the radioactivity assay, 5 μCi [γ-32P]ATP (Perkin–Elmer,
BLU002H250UC) was added to each reaction. The resolved SDS-PAGE gel was
exposed, and radioactive signal was quantified using a Cyclone phosphor imaging
system (Perkin–Elmer).

Chromatin immunoprecipitation (ChIP). GCPs were collected, cross-linked with
formaldehyde, and further lysed and sonicated. The chromatin was immunopre-
cipitated with antibodies for Brd4 (Bethyl Laboratories Inc., A301-985A50) and
negative control antibody IgG (Abcam, ab37415). DNA–protein cross-links were
reversed, and DNA was purified to be used in the quantitative amplification of Gli1
locus with SYBR Green (−3250 ~−2501, forward primer, TGGCTCACAACCATC
CTGTA, reverse primer, GAGATGCCCTTGCTTCTGTC;+ 1251 ~+ 2000, for-
ward primer, ACCCAGGAATCCAAGGTGTC, reverse primer,
TCCTGAAAGCAGGCAGTAGC) (Table 2).

Generation of Brd4fl/fl mice. Brd4tm1a(EUCOMM)Wtsi (MGI ID: 4441798) hetero-
zygous mice were obtained through the Knockout Mouse Project Repository at
Baylor University from Dr. John Seavitt. These mice were bred to B6.Cg-Tg
(ACTFLPe)9205Dym/J mice (The Jackson Laboratory Stock #005703) to remove
the neomycin resistance gene and LacZ reporter gene (forward primer,
CTTGGGTGGAGAGGCTATTC, reverse primer, AGGTGAGATGACAGGAGA
TC) to create Brd4tm1c heterozygous mice. In parallel, Brd4tm1c heterozygous mice
were bred to homozygosity (hereafter referred to as Brd4fl/fl) or to B6.Cg-Tg (Atoh1-
cre)1Bfri/J mice (The Jackson Laboratory Stock #011104, hereafter referred to as
Tg (Atoh1-cre)) to obtain conditional cre expression in the granule cell lineage.
Brd4fl/fl and Tg (Atoh1-cre+ /−);Brd4fl/+ mice were crossed to generate Tg (Atoh1-
cre+ /−);Brd4fl/fl or Tg (Atoh1-cre−/−);Brd4fl/fl littermates (Table 3). Tg (Atoh1-
cre+ /−);Brd4fl/fl do not breed successfully, therefore, Tg (Atoh1-cre)+ /-;Brd4fl/+

were maintained for experiments.
Genotype primers: Cre forward: AGAACCTGAAGATGTTCGCG; Cre reverse:

GGCTATACGTAACAGGGTGT; Brd4 forward 1: TTTGACCTCTGCTCGTGTA
GTG; Brd4 forward 2: ACCGCGTCGAGAAGTTCCTATT; Brd4 reverse: CATTG
TACCCAGGCTCCTTTCA.

Behavioral testing. For ataxia rank composite scoring, we followed the composite
scoring method for ataxia outlined in Guyenet et al.42 with modifications. Briefly,
blinded researchers scored Tg (Atoh1-cre+ /-);Brd4fl/fl or Tg (Atoh1-cre−/−);
Brd4fl/fl mice on the ledge test, on the hindlimb clasping test, and on the gait test.
These three composite tests are used most frequently to establish ataxia severity.
Composite scores were averaged and compared in Tg (Atoh1-cre+ /−);Brd4fl/fl

or Tg (Atoh1-cre−/−);Brd4fl/fl mice. We used a rotarod paradigm to examine
mouse balance, coordination and muscle function simultaneously. Mice were
trained with rotarod twice daily for 5 days in the accelerating mode (5–40 rotations
per minute over 2.5 min), and the latency to fall and speed were recorded after the
training period. Average latency times and speed for the testing interval were
compared in Tg (Atoh1-cre+ /−);Brd4fl/fl or Tg (Atoh1-cre−/−);Brd4fl/fl mice.

Differentially expressed gene analysis. The gene-collapsed Affymetrix gene
expression data were downloaded from GEO (GSE74400) and Differentially
Expressed Genes (DEGs) compared with P0 were identified using limma43. The
expression levels of subset of cell-cycle and neuronal-related genes belonging to the
STEM-generated Profile 47 were then plotted (Supplementary Fig. 2) showing a

Table 1 Accession numbers for genes used in quantitative
PCR

Gene TaqMan® Gene Expression Master Mix
(Applied Biosystems) accession number

Cyclin B1 Mm01322149_mH
Atoh1 Mm00476035_s1
Tuj1 Mm00727586_s1
Gap43 Mm00500404_m1
Gapdh Mm99999915_g1
Brd4, exon 4-5 Mm01348074_m1
Brd4, exon 5-6 Mm00480392_m1
Brd4, exon 7-8 Mm00480394_m1
Brd2 Mm01271171_g1
Brd3 Mm00469733_m1
Gli1 Mm00494654_m1
Gli2 Mm01293117_m1
Gli3 Mm00492337_m1
Cyclin A1 Mm00432337_m1
Cyclin D1 Mm00432359_m1
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similar expression pattern to that from Supplementary Fig. 1. Furthermore, to
quantify the overlap between the DEGs of the two data sets, we calculated the
pairwise percentage of overlap among all time points, as shown in Supplementary
Fig. 2. The percentage of overlap is defined as the number of DEGs that were
common between the two data sets divided by the total number of DEGs in the
corresponding RNA-seq Timeseries timepoint.

Mouse embryonic fibroblast (MEF) cultures. MEF Sufu−/− cells11 were main-
tained in DMEM media with 10% neonatal calf serum and 1% penicillin/strepto-
mycin. Overall, 1 × 105 cells per well were plated in a 12-well plate. In all, 100 nM
of SR-653234 or SR-1277 CK1δ inhibitors were added into the media. DMSO was
used as a vehicle control, 100 nM of GDC0449 as negative control, and 10 μM
GANT-61 as positive control. Twenty-four hours later, RNA was extracted and
SHH target gene expression was examined by Taqman probe-based qRT-PCR.
Brd4 ChIP analysis was performed as described as above.

siRNA transfections in GCP cultures. GCPs were isolated from P6 CD1 pups,
and 7.5 × 105 cells per well were plated in suspension in a 48-well plate. Cells were
transfected with 1 µM SMARTpool Accell Mouse Brd4 siRNA (57261, E-041493-
00, Dharmacon GE Helathcare) or 1 µM SMARTpool Accell Mouse GFP Scramble
siRNA (D-001950-01-05, Dharmacon GE Helathcare) in low-serum media (Accell
siRNA delivery media (Dharmacon GE Helathcare), 1.5% glucose, 20 mM gluta-
mine, 2% horse serum, 1% fetal bovine serum, 1% penicillin/streptomycin) with
mouse recombinant SHH (0.25 ng/mL). Cells were collected 72 h post transfection,
and RNA isolation and qRT-PCR were performed as described.

Statistical analysis. All experiments were conducted independently at least three
times. Statistical analysis was performed with Prism software (Graphpad). Fig-
ures 1b, c, 2c, e, 4a, b, f: one-way ANOVA followed by Bonferroni multiple
comparison testing (p < 0.05). Figures 3b, e, 4d: paired t test (p < 0.05). Figure 5b:
one-way ANOVA followed by Tukey’s multiple comparison testing (p < 0.05).
Figure 5d: two-way ANOVA followed by Bonferonni’s multiple comparison testing
(p < 0.05). Figure 6c: for ataxia rank scores Mann–Whitney test (p < 0.05) and for
rotarod testing unpaired t test (p < 0.05).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all transcriptional data supporting the findings of this study are
freely available from the databases provided within this paper. Sequencing results from
this study have been deposited in under accession number SRP146255. All other data
supporting the findings of this study are available from the corresponding author, Dr.
Nagi G. Ayad, upon request.
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