Response to letter regarding article by Patel et al: A Novel Biomarker of Oxidative Stress is Associated with Risk of Death in Patients with Coronary Artery Disease

Riyaz S. Patel
Emory University, University College London

Nima Ghasemzadeh
Emory University

Danny J. Eapen
Emory University

Salman Sher
Emory University

Shawn Arshad
Emory University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.fiu.edu/biostatistics_fac

Part of the [Medicine and Health Sciences Commons](https://digitalcommons.fiu.edu/biostatistics_fac)

Recommended Citation

Patel, Riyaz S.; Ghasemzadeh, Nima; Eapen, Danny J.; Sher, Salman; Arshad, Shawn; Ko, Yian; Veledar, Emir; Samady, Habib; Zafari, A. Maziar; Sperling, Laurence; Vaccarino, Viola; Jones, Dean P.; and Quyyumi, Arshed A., "Response to letter regarding article by Patel et al: A Novel Biomarker of Oxidative Stress is Associated with Risk of Death in Patients with Coronary Artery Disease" (2016). *Department of Biostatistics Faculty Publications*. 30.
https://digitalcommons.fiu.edu/biostatistics_fac/30

This work is brought to you for free and open access by the Robert Stempel College of Public Health & Social Work at FIU Digital Commons. It has been accepted for inclusion in Department of Biostatistics Faculty Publications by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
Response to letter regarding article by Patel et al: A Novel Biomarker of Oxidative Stress is Associated with Risk of Death in Patients with Coronary Artery Disease

Riyaz S. Patel, MD1,2, Nima Ghasemzadeh, MD1, Danny J Eapen, MD1, Salman Sher, MD1, Shawn Arshad, MD1, Yi-an Ko, PhD3, Emir Veledar, PhD4,5, Habib Samady, MD1, A. Maziar Zafari, MD, PhD1,6, Laurence Sperling, MD1, Viola Vaccarino, MD, PhD1,5, Dean P Jones, PhD1, and Arshed A. Quyyumi, MD1,*

1Dept of Medicine, Emory University School of Medicine, Atlanta, GA, USA
2Institute of Cardiovascular Science, University College London, London, UK
3Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA, USA
4Dept of Medicine, Baptist Health South Florida, Fl, USA
5Dept of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
6Dept of Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA

Dear Sirs,

We thank Drs Giral and colleagues for their interest in our work.1 They raise the important query of whether our findings would still persist after adjustment for Gamma Glutamyltransferase (GGT), given that GGT activity hydrolyzes GSH to produce glutamate + cysteiny1 glycine. This point however is not relevant to our description of GSH/CySS as a useful biomarker of cardiovascular disease because our samples were all collected with a preservation solution containing a GGT inhibitor to prevent the very problem that they outline. Their letter is useful, however, in providing an opportunity to re-emphasize the point, that there is need for a GSH preservation solution for this assay. In our preservation solution, we use serine-borate, a well-known inhibitor of GGT that has been widely used to prevent this artifact since its discovery in 1959.2 In our original development of methods, the efficacy of the preservation solution to prevent artifactual degradation was validated by showing that it completely prevented loss of GSH when known concentrations of GSH were added to plasma.3 Earlier studies by CV Smith et al showed that another commonly used GGT inhibitor, acivicin, was not as effective because it required enzyme turnover to obtain complete inhibition.4 In use of the serine-borate-containing preservation solution to study aminothiols we found that the distribution of GSH, Cys-Gly and CySS in freshly collected human plasma showed metabolite correlations indicating that GSH metabolism in vivo in
plasma occurs by two mechanisms, hydrolysis by GGT to Glu + Cys-Gly and reaction of GSH with cystine to produce Cys + cysteine-GSH disulfide. We reiterated the need to inhibit GGT in our most recent description of this method.\(^5\)

References

