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Abstract

In [1, 2], we have explored the theoretical aspects of feature extraction optimization processes for solving large-

scale problems and overcoming machine learning limitations. Majority of optimization algorithms that have

been introduced in [1, 2] guarantee the optimal performance of supervised learning, given offline and discrete

data, to deal with curse of dimensionality (CoD) problem. These algorithms, however, are not tailored for

solving emerging learning problems. One of the important issues caused by online data is lack of sufficient

samples per class. Further, traditional machine learning algorithms cannot achieve accurate training based on

limited distributed data, as data has proliferated and dispersed significantly. Machine learning employs a strict

model or embedded engine to train and predict which still fails to learn unseen classes and sufficiently use online

data. In this chapter, we introduce these challenges elaborately. We further investigate Meta-Learning (MTL)

algorithm, and their application and promises to solve the emerging problems by answering how autonomous

agents can learn to learn?.

Keywords : Meta learning, machine learning, online learning, online optimization, model-based learning,

metric-based learning, gradient descent, low shot learning, few shot learning, one shot learning

1 Introduction

Machine learning algorithms enable researchers to learn from supervised / unsupervised data. Collected data

is mainly offline and it is not evolving over time. Hence, total behavior of future data are vague enough for

us to process. Conventionally, it is not possible to have the entire behaviour learned [3] using the traditional

machine learning, evolutionary algorithms and optimization algorithms discussed earlier [1, 2] .
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Figure 1: Overall structure of this study

Last decade, researchers have studied advanced research paradigms to solve learning process. They aim to

to learn using prior tasks or experiences and leverage them for future learning. One of the promising paradigm

is Meta-learning (MTL). Prior studies investigated MTL methods that learn to update a function or learning

rule [3, 4]. MTL differs from classic machine learning with respect to the level of adaptation [5]. MTL is the

process of learning to learn. It leverages past experiences to ascertain a prior model’s parameters and learning

process i. e. algorithm. MTL investigates how to choose the right bias non-fixed, unlike base-learning where

the bias is fixed a priori [5]. Concretely, MTL studies a setting where a set of tasks ( Ti ) are made available

together upfront. However, it cannot handle sequential and dynamic aspects of problems properly.

In contrast, online learning is the process of learning sequentially, however, it does not leverage past experi-

ences like MTL, i.e., it may not consider how past experience can help to enhance the adaptation to a new task.

The Earliest research studies introduced sequential learning [6, 7] where tasks are revealed one after another

repeatedly. The aim of learning is to learn as independent as possible to attain zero-shot learning with non

task-specific adaptation. We argue that neither setting is ideal for studying continual lifelong learning. MTL

deals with learning to learn, but neglects the sequential and non-stationary aspects of the problem. Online

learning offers an appealing theoretical framework, but does not generally consider how past experience can

accelerate adaptation to a new task. In this work, we motivate and present the online MTL problem setting,

where the agent simultaneously uses past experiences in a sequential setting to learn good priors, and also

adapt quickly to the current task at hand.

The rest of this chapter is organized as follows. In section 2 emerging challenges in machine learning are

2



discussed . After that, applications of MTL using transfer learning are covered. finally we have promises of

MTL. Figure 1 represents the overall structure of this study.

2 Machine learning : challenges and drawbacks

Prior works on learning process, regression and optimization problems, have attempted to learn the behavior

of input data, analyze and categorize it to attain a high performance algorithms. Machine learning (ML) has

been strongly applied to solve supervised and unsupervised problems. ML deploys different algorithms, such

as online learning, multi-task learning and supervised algorithms, including rule based [8, 9], function based

[10, 11], lazy [12], and bootstrap [13]. Some of them are used to transform data, special example would be

dimension reduction for optimization, some to build classifiers like supervised algorithms, others for prediction

like regression, etc. Machine learning still yields subtle drawbacks for time-varying input data which restrict it

to consider properly future and unseen classes to provide general idea and knowledge from data.

Traditionally, machine learning is a machine learns only input data and predict new data which follow the

rule of the equation Pi × D −→ M , where Pi stands for the specific supervised algorithm parameters, D
represents the space of training data distribution and M defines the space of generated models which will be

applied on test data to evaluate the supervised algorithm performance.

Figure 2 presents few machine learning approaches and algorithms which provide different applications

with respect to the wide variety of data such as offline data vs. online data, labeled data vs. unlabeled data,

multi-model data vs. single model data, and multi-domain data vs. single domain data. As it shows, machine

learning has critical drawbacks which cannot handle whole data once. Moreover, it just considers each data as

a new model and each model is separate from previous ones.

Furthermore, figure 2 depicts the relationship between traditional machine learning and advance machine

learning. In traditional machine learning we have to deal with offline and limited amount of data and the

number ground-truth. However, in the world of technology, where data growth have proliferated significantly

and are coming from wherever technology exists, it is very critical to get to know the pattern and rules that

govern whole data and learn the trend of the generated data for a specific domain. For that end, we need to

classify data into three big categories, time series data, offline data and online data. These all categories are

shown in three different aspects : supervised and unsupervised; multi-model data and multi-domain data.

Machine learning involves transfer learning and online learning, which is compatible to learn tasks and

classes, which are consequential. Transfer learning is the theory of transferring knowledge from one task to

another and learning from non-randomness. Meta learner also is one of the bootstrap algorithms which learn

data by sampling given data set and generating different data sets. Meta learner deploys different supervised

algorithms and then select a meta learner to give a vote to make a decision about the class of current instance.
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Figure 2: The general overview of Learning against emerging data

3 Meta-learning algorithms

Meta-learning (MTL) is firstly presented in [3] and [14]. After a decade gap, lately research studies have tried

to deploy MTL again. MTL is a machine which learns the variety of input data. ML methods need to learn new

tasks faster by leveraging previous experiences. MTL does not consider past experiences separately.MTL is the

process of learning how to learn. MTL is an emerging learning algorithms with new challenges and research

questions. It is an extension of transfer learning, which is one of the multi-task learning algorithms. MTL has

covers three different aspects as illustrated in Figure 5. Few shot learning (FSL), one shot learning (OSL) and

zero shot learning (ZSL). FSL and OSL yield highly accurate results as compared with traditional machine

learning algorithms. However, they still have a critical challenge which limits them from converging to optimal

results. Limits of ZSL have been addressed using domain semantic space, where includes all information system

as presented in Figure 5.

3.1 Model-based MTL

Model-based MTL depends on a model and no conditional probabilistic method which enable it to be the best

match for fast learning model where it updates it’s hyper-parameters so fast by training just few examples.

The process of updating their hyper-parameters is done either internal architecture or external meta-learner.

The concept of model-based MTL is having one neural network interact with sequential neural networks to
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accelerate the learning process. In other words, it tries to learn a model per each label using pixel by pixel

value, according to the figure 3. In other words, this model’s algorithms try to train a recurrent model like

the work presented [4], which proposed long short term memory (LSTM). Hochreiter and Schmidhuber [15]

proposed for the first time in 1997 the theory of LSTM. Model-based algorithms take the data set sequentially

and analyze instances one by one. Since Model-based algorithms leverage RNN for learning, they become the

most least efficient model in comparison with other models. Nagabandi et al [16] proposed online deep learning

using MTL towards Continual adaptation for model-based reinforcement learning. Santoro et al [17] proposed

memory-augmented neural network using MTL.

Figure 3: Model-based MTL

3.2 Metric-based learning

Metric-based learning leverages metric space learning, which leads to efficient data processing and is suitable

for few-shot learning. Lets consider that our goal is image classification. As model-based learning tries to learn

each image pixel by pixel which takes long time and time consuming, metric-based learning overcomes this

limitation by leveraging comparing given two images to the network. The output per each input yields a vector,

comparing these two vector states that whether they are similar or not. Figure 4. One of the most common

application of metric-based learning is Siamese network presented in [18]. Koch et al presented Siamese neural

network (SNN) for one-shot learning which achieved strong and better results. The idea behind SNN is that

it tries to use twin or half-twin network to compare the input images. Note that one of the input is already

computed and we only need to take the second image and try to go through the layers and compute the vector.
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Then, SNN tries to compute the distance between them, if the result is small they similar otherwise they

are different. Another application of metric-based learning is [19], where Vinyals et al proposed a matching

network(MN) for one-shot learning.

Figure 4: Metric based MTL

3.3 Gradient decent-based learning

This model of MTL is also known as optimization-based model for tuning the parameter (θ). The idea here

is to leverage stochastic gradient-decent (SGD) and for new given sample, it updates the parametes to be a

universal learner. It may not converg to a local optimal since does not rely on small number of samples.

Although gradient based learning model works good, it still has some drawbacks. Ravi and Larochelle [4]

addressed these problems carefully and provided LSTM-based MTL to overcome those problems. Finn [20]

presented MAML to improve the accuracy of LSTM-based MTL.
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Figure 5: The relation among Machine Learning, Meta Learning, and Information system
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Abb Definition

CNN Convolutional neural network

EGNN Edge-labeling graph neural network

fSL Few-shot learning

GSP Goal-conditioned skill policy

LSL Low-shot learning

MAML Model-agnostic MTL

MANN Memory-augmented neural network

MIL Meta Imitation Learning

MTL Meta-learning

ML Machine learning

MN Matching Network

OSL One-shot learning

PN Prototypical Network

RN Relation network

RNN Recurrent neural network

SAE Semantic AutoEncoder

SNN Siamese neural network

TL Transfer learning

ZSL Zero-shot learning

ZSL-FGVD ZSL Fine-Grained Visual Descriptions

ZSL-H Zero-shot learning by mitigating the Hubness problem

ZSL-KT Zero-shot learning and knowledge transfer

Table 1: Abbreviation of words
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Paper Meta-learning Proposed method Meta-learning Models Conference / journal domain year

[20] Few-shot learning MAML Gradient decent based ICML Image classification 2017

[21] Few-shot learning MAML++ Gradient decent based ICRL Image classification 2019

[22] Few-shot learning probabilistic MAML Gradient decent based NIPS Image classification 2018

[23] Few-shot learning PN Metric based NIPS Image classification 2017

[24] Few-shot learning HML Model based arXiv Image classification 2019

[25] Few-shot learning RN Metric based CVPR Image classification 2018

[4] Few-shot learning LSTM-Metalearner Gradient decent based ICLR Image classification 2017

[26] Few-shot learning EGNN Model based CVPR Image classification 2019

[27] Few-shot learning LSL Metric based CVPR Image classification 2019

[24] One-shot learning HML Model based arXiv Image classification 2019

[17] One-shot learning MANN Model based ICML Image classification 2016

[19] One-shot learning MN Metric based NIPS Image classification 2016

[20] One-shot learning MAML Gradient decent based ICML Image classification 2017

[28] One-shot learning MIL Gradient decent based CoRL Visual imitation 2017

[18] One-shot learning MIL Metric based ICML Image recognition 2015

[29] Zero-shot learning ZSL-FGVD Metric based CVPR Image classification and retrieval 2016

[30] Zero-shot learning ZSL-H Metric based ICLR-workshop Hubness problem 2015

[25] Zero-shot learning RN Metric based CVPR Image classification 2018

[31] Zero-shot learning SAE Metric based CVPR Image classification 2017

[25] Zero-shot learning ZSL-RN Metric based CVPR Benchmark classification 2018

[32] Zero-shot learning ZSL-KT Metric based arXiv Music classification 2019

[33] Zero-shot learning GSP Metric based CVPR-workshop Visual imitation 2018

[34] Zero-shot learning GSP Metric based ICLR Visual imitation 2018

Table 2: An overview of previous studies on Meta-learning.
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4 Promises of meta-learning

Learning to learn is an advance process which provides three promises : one few-shot learning(FSL), one one-

shot learning (OSL), one zero-shot learning(ZSL). Figure 6 presents a general view of each promises. we have

three layers : input data, meta-training, and meta testing. Input data for FZL and OSL are the same type,

particularly images for particular image classification aims. Further, ZSL becomes an independent learning

MTL algorithm which evaluates input data based on domain semantic space and visual information of that

domain.

Figure 6: Structure of meta-learning models

In second layer, FSL tries to learn k-shot tasks, which means MTL is training by leveraging k different

training data set. K-shots had generated in advance before learning process have started. Thus, MTL is

known as a certain type of bootstrap algorithms, however, in k-shot data set we only have specific number of

K instances per class. However, the bootstrap algorithm tries to split given data set with different rate and

would be keeping the ratio of number of classes. MTL attempts to calculate the loss of each shot using loss

function. Furthermore, OSL also ties to learn the task based on k=1 shot learning which means that OSL only

has one shot at a moment. In other words, when it start bootstraping, it only select one sample per class as a

training set. Note that OSL represents a special kind of K-shot or few shot learning. Both FSL and OSL use

the equitation below from [20]. Ti =
∑k

i=1(L(xi ,yi ),q(xi ),q(xt+1 |xt ,qt ))
Further, in second lay, ZSL unlike FSL and OSL algorithms ties to work with domain semantic space rather

than domain files like images. The goal here is to find an optimal mapping from semantic space to vector space.

ZSL tries to map given extracted features to a new space called vector space.
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Finally, last layer stands for the meta-testing which is responsible to predict the given test data and analyze

them. First two algorithms try to predict unseen data using f(θ), however, zsl attempts to solve the problem

by mapping the unseen data to the new vector space.

4.1 Few-shot learning

The first and one of the most common promises of MTL is few-shot learning (FSL). Few-shot classification

is a specific extension of MTL in supervised learning. Lake et al [35] challenged traditional machine learning

algorithms by enabling them to learn every concept from one or few shot of that data set. The idea behind that,

MTL tries to re-sample the given input data set for training using only K samples per each class. In other words,

meta-training process is accomplished by learning k shot meta sets which are selected by replacement. Although

few-shot learning outperforms traditional machine learning algorithms, it has an explanatory challenge, called

task ambiguity. This problem happens when a small task, which is generated from large input data set, to

learn via few-shot learning. After taking a new task, which appears too ambiguous to ascertain a single model

for that task that covers quite a large number of samples.

The majority of MTL algorithms leverage few-shot learning. FSL has decent important extension : one

Finn et al proposed model-agnostic MTL (MAML) [20], which adapts to new tasks via gradient descent-based

MTL. In [22], Finn et al re-sampled models for a new task using a model distribution. This paper extends

MAML to conduct a parameter distribution that is trained through different lower bound. In [22] Finn et al

addressed the ambiguity problem by proposing probabilistic MAML.

Second important extension is Online learning which is learning process of training data sequentially and

continuously. The next one is online MTL. Finn et al [36] proposed online MTL based on the regret-based

meta-learner. Kim et al [26] proposed EGNN, which applied a deep neural network on a certain model, edge-

labeling graph. Furthermore, Sun et al [37] proposed an advanced Meta-transfer learning for few-shot learning.

Zou and Feng [24] introduced new type of MTL which works based on hierarchy structure, called Hierarchical

MTL(HML). HML overcomes previous MTL limitation which are limited to the tasks where training sets and

identical output structure. HML enables MTL to optimize adaptability of meta-model to tasks, that are similar.

Figure7 provides a general view of few shot learning, one-shot learning and 2-shot learning and generalized

k-shot learning.

11



Figure 7: Few-shot learning structure

4.2 One shot learning

One-shot learning (OSL) is a critical challenge in the applications of deep neural networks. OSL is special type

of few-shot learning or k-shot learning in which it choose k=1 shot for training section. In other words, when

the algorithm starts training, they only leverage from one instance per class at a time with different batches.

The research studies have been done for one-shot learning are listed as following : Matching networks [19]

which is a metric based MTL.
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Figure 8: Machine Learning : ML, Meta-Learning: MTL, Online Machine Learning: OML, Transfer Learning:

TL, Few Shot Learning: FSL, Meta Learner: MLR, One Shot Learning: OSL

4.3 zero shot learning

Zero-shot learning (ZSL) is an emerging paradigm of machine learning which is recently proposed [29, 25, 25, 32]

to yield a better result than supervised learning algorithms by covering the their critical limitations, which work

only with a fixed number of classes. Zero shot learning is as a joint embedding problem of domain specific and

side information, which includes ontology, wikis, dictionary and blogs. To be certain, ZSL overcome few-shot

learning and one shot learning limitation and promised to yield a result better than FSL and OSL. The goal

is to classify unseen samples of different classes without having a training data set. This is possible once you

have proper information about the domain and classes, properties and most importantly the functionality of

the problem. The ZSL process is a journey from feature space to a vector space in which it leverages feature

extraction and dimension reduction algorithms technically. The feature vector describes shared features among

classes. Reed et al [29] applied neural language model to overcome supervised learning limitation. ZSL has

been accomplished for visual recognition [29] , music classification [32], and image classification [25]. More

recent methods have been proposed by Kodirov et al. [31] using auto-encoders for ZSL, Nagabandi et al. [16]

to deploy MTL for online Learning and by Finn et al [36] for online MTL.
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5 Discussion

Choosing the appropriate type of data for machine learning algorithms is an important yet challenging task.

According to [38], it is crucial to select an optimal algorithm to solve each specific problem with to ensure

optimal decision making. They combined experimental result and interviewed with domain experts. It is

essential to know where we are, what are the challenges and what kind of data we have now. Further, what

is the relationship among emerging data with respect to traditional and modern machine learning algorithms.

Figure 8 presents the information to choose which algorithm are suitable, compatible and applicable given the

specific type of data.

In figure 9, we have identified some of the publications in top venues. According to our investigation,

few-shot learning is one of the most promising areas.

Figure 9: A brief studies over promises of Meta-learning

6 Conclusion

Optimizing algorithms to work with offline data is almost ubiquitous in each domain, such as engineering

applications. The majority of studies have determined an optimal way to deal with large-scale problems.

Advancing technologies have people provided data available wherever they have access to internet. Thus, it is

critical to process continues data which is online and introduce an advance learning algorithm to help scientists

to predict future properly. In this chapter, we addressed this problems and investigated an advanced machine
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learning algorithm to solve them optimally using MTL. MTL has three important categories which covers

whole research studies have accomplished in this area. One model based, one metric based, one gradient decent

based, which also known as optimization method. Further, MTL has three critical extension for emerging data

and large-scale problems. The first one, few-shot learning which is practically worked on k-shots of training

classes. The second extension is special type of few-shot learning which here we have only one-shot for each

training classes. The last one but not the least one is zero-shot learning. Although decent work have been

done using FSL and OSL, but ZSL is the promising extension of meta-learning where researchers have no idea

about the new classes and no enough data available.
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