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1 Abstract

A large number of engineering, science and computational problems have yet to be solved in

a computationally efficient way. One of the emerging challenges is how evolving technolo-

gies grow towards autonomy and intelligent decision making. This leads to collection of large

amounts of data from various sensing and measurement technologies, e.g., cameras, smart

phones, health sensors, smart electricity meters, and environment sensors. Hence, it is im-

perative to develop efficient algorithms for generation, analysis, classification, and illustration

of data. Meanwhile, data is structured purposefully through different representations, such

as large-scale networks and graphs. Therefore, data plays a pivotal role in technologies by

introducing several challenges: how to present, what to present, why to present. Researchers

explored various approaches to implement a comprehensive solution to express their results

in every particular domain, such that the solution enhances the performance and minimizes

cost, especially time complexity. In this chapter, we focus on data science as a crucial area,

specifically focusing on a curse of dimensionality (CoD) which is due to the large amount

of generated/sensed/collected data, especially large sets of extracted features for a particular
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purpose. This motivates researchers to think about optimization and apply nature inspired

algorithms, such as meta-heuristic and evolutionary algorithms (EAs) to solve large-scale opti-

mization problems. Building on the strategies of these algorithms, researchers solve large-scale

engineering and computational problems with innovative solutions. Although these algorithms

look un-deterministic, they are robust enough to reach an optimal solution. To that end, re-

searchers try to run their algorithms more than usually suggested, around 20 or 30 times, then

they compute the mean of result and report only the average of 20 / 30 runs’ result. This high

number of runs becomes necessary because EAs, based on their randomness initialization, con-

verge the best result, which would not be correct if only relying on one specific run. Certainly,

researchers do not adopt evolutionary algorithms unless they face a problem which is suffering

from placement in local optimal solution, rather than global optimal solution. In this chapter,

we first develop a clear and formal definition of the CoD problem, next we focus on feature

extraction techniques and categories, then we provide a general overview of meta-heuristic

algorithms, its terminology, and desirable properties of evolutionary algorithms.

Keywords: Evolutionary Algorithms, Dimension Reduction (auto-encoder), Data Sci-

ence, Heuristic Optimization, Curse of Dimensionality (CoD), Supervised Learning, Data An-

alytic, Feature Extraction, Optimal Feature Selection, Big Data.

2 Introduction

2.1 Overview

A large number of engineering, science and computational problems have yet to be solved in

a more computationally efficient way. One of the emerging challenges is the evolving tech-

nologies and how they enhance towards autonomy. This leads to collection of large amount

of data from various sensing and measurement technologies, such as cameras, smart phones,

health sensors, and environment sensors. Hence, generation, manipulation and illustration of

data grow significantly. Meanwhile, data is structured purposefully through different repre-

sentations, such as large-scale networks and graphs. Therefore, data plays a pivotal role in

technologies by introducing several challenges: how to present, what to present, why to present.

Researchers explored various approaches to implement a comprehensive solution to express

their results in every particular domain, such that the solution enhances the performance and
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minimizes cost, especially time complexity. In this chapter, we focus on data science as a

crucial area; specifically focusing on curse of dimensionality (CoD) which is due to the large

amount of generated/sensed/collected data, especially large sets of extracted features for a

particular purpose. This motivates researchers to think about optimization and apply nature

inspired algorithms, such as meta-heuristic and evolutionary algorithms (EAs) to solve large-

scale optimization problems. Building on the strategies of these algorithms, researchers solve

large-scale engineering and computational problems with innovative solutions. Although these

algorithms look un-deterministic, they are robust enough to reach an optimal solution. To

that end, researchers try to run their algorithms more than usually suggested, around 20 or

30 times, then they compute the mean of result and report only the average of 20 / 30 runs’

result. This high number of runs becomes necessary because EAs, based on their randomness

initialization, converge the best result, which would not be correct if only relying on one specific

run. Certainly, researchers do not adopt evolutionary algorithms unless they face a problem

which is suffering from placement in local optimal solution, rather than global optimal solution.

In this chapter, we first develop a clear and formal definition of the CoD problem, next we

focus on feature extraction techniques and categories, then we provide a general overview of

meta-heuristic algorithms, its terminology, and desirable properties of evolutionary algorithms.

2.2 Motivation

In the last twenty years, computer usage has proliferated significantly, and it is most likely

that you could find technologies and computers almost anywhere you want to work and live.

A large amount of data is being generated, extracted and presented through a wide variety of

domains, such as business, finance, medicine, social medias, multimedia, all kinds of networks,

and many others sources due to this spectacular growth. This increasingly large amount of

data is often referred to as Big Data. In addition, distributed systems and networks are not

performing as well as they did as in the past [1]. Hence, it is imperative to leverage new

approaches which optimize and learn to use these devices powerfully. Moreover, Big Data also

requires that scientists propose new methods to analyze the data. Obtaining a proper result,

thus, requires an unmanageable amount of time and resources. This problem is known as the

curse of dimensionality (CoD) which is discussed in the next sub-section in detail. Ghareh

mohammadi and Arabnia has discussed application of evolutionary algorithms on images,

specifically focused on image stegnalaysis [2]. But, in this study we expanded our investigation
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and consider large-scale engineering and science problems carefully.

In machine learning, the majority of problems require a fitness function which optimizes

a gradient value to lead a global optimum accurately [3]. This function is also known as

an objective function and may have different structures for different problems. In machine

learning, we work with three categories of data: one supervised, one semi-supervised and one

unsupervised. These categories also have different learning processes based on their types.

Supervised data sets are the most common data set and are characterized by having a ground

truth with which to compare results. Supervised learning algorithms normally take a supervised

data sets and then divide them into two parts: train and test. After that, one of the supervised

learning algorithms learns from train data, predicts test data, and compares the result with

the ground truth to ascertain the accuracy of the algorithm performance. The most common

types of supervised learning algorithms are classification and regression. It is noteworthy that

regression has different algorithms which mainly focus on time series problems. The only

exception is that regression algorithms have a particular algorithm, Logistic regression, which

is considered as a classification, rather than regression, algorithm [4]. In this chapter, we focus

on supervised data sets and supervised learning algorithms .

On the other hand, unsupervised learning algorithms follow the process of using unsuper-

vised data sets which do not have any ground truth to compare their result, which makes

classifying and evaluating the performance of the algorithm problematic. The absence of a

ground truth is increasingly common through all domains such as web-based, engineering, etc

data and it is necessary to address this problem. Unsupervised learning takes more steps to

analyze features and find the most relevant features with the best possible positive relation.

Clustering and representation learning (RL) algorithms are the most common algorithms in

unsupervised learning category. K-means is an important clustering algorithm that attempts

to find k clusters located close to each other. The main problem of k-means is its bias-k to-

wards the problem. In other words, k-means needs to have k number set in advance before

running the algorithms. RL also works for supervised data sets, although its nature behaves

in an independent way per task [5].

Semi-supervised data sets fall somewhere between supervised and unsupervised data sets

in terms of characteristics. This means that semi-supervised learning algorithms take a data

set which provides ground truth value for some instances but not for others. Expectation

maximization (EM) is the most important and robust technique for working with these data

4



sets [6]. More over, EM is also able to handle missing values of a given data set properly. Real

data always involves missing values, and researchers struggle with this problem.

Feature extractor (FE) which is discussed in details in the next section, is almost universal

techniques which are capable of applying on these three types of problems to aim for dimen-

sion reduction. Meanwhile, the majority of problems and data set have been so far used are

supervised data sets. But it does not mean that FE does not apply on unsupervised or semi-

supervised data sets. For instance, for unsupervised data set, it is normal to use dimension

reduction or auto-encoder techniques for that.

There has been numerous challenges in the literature regarding the deployment of evolu-

tionary algorithms for computation, optimization and learning. These studies can be reviewed

in the following major aspects: curse of dimensionality [7, 8], nature-inspired computation

(cite all papers from 2.4 here [9, 1]), nature-inspired meta-heuristic computation (cite all pa-

pers from 2.5 here [10, 11]), and nature-inspired evolutionary computation (cite all papers from

2.6 here [12, 13, 14, 15, 13]). These studies are elaborately reviewed in the following.

2.3 Curse of Dimensionality

Curse of dimensionality is related to the fact that the input data is too huge that no human

being can analyze it. In Machine Learning, recently, researcher work with high-dimensional

data. For instances, if we’re analyzing 3 channel images, such as RGB, HSV images , sized

512x512, we’re working in a space with 512*512*3 dimensions. Altman and Krzywinski [7]

believe that having more data is much better than having few or nothing. This overabundance

of data is called the curse of dimensionality (CoD) which causes problems in big data era such

as data sparsity, multiple testing, which researchers [8] proposed a new approach to solve the

problem, and most importantly over-fitting which is opposite of under-fitting. Beside these

problems, CoD also brings high time complexity problem which makes scientists suffering from

waiting too much time to get a result.

The world of Information technology CoD not only causes a wide range of problems to

scientists, but also has a wide adversely affect other majors, such as engineering [16], medicine

[17, 18], cognitive science [19, 20], bioinformatic [21], and even optimization problems [22, 23, 3].

Classification in Big Data suffers from plenty of problems and issues, one of which is

considered very challenging named CoD. Traditional feature extraction techniques also are not

able to solve this problem technically any more due to some limitation [23]. According to the
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research studies have accomplished, scientist proposed a new approach to solve this problem.

Researchers introduce nature-inspired computation which enable to simulate traditional feature

extraction techniques in a way that improve the performance of classification.

2.4 Nature Inspired computation

Pure and basic machine learning algorithms are not capable of solving emerging challenging

issues in the world of technologies any more. It is needed to adopt a new approach to face

this problems and leverage decent machine learning algorithms. Finally, scientists discovered

that combining machine learning algorithms in a technical way may solve the problems. This

mixture of machine learning techniques is called nature-inspired computation, but it still is

considered an advanced machine learning algorithms.

Majority of scientific and technological developments leverage inspiring from the nature

towards their goal, especially robotics simulate how the nature works. In world of computer

science, each tool or software development process is needed to have strong synchronization, ro-

bustness, manageability, parallelization, scalability, distributedness, redundancy , adaptability,

cooperation. Indeed, the nature provides the same properties. Therefore, the nature-inspired

techniques play an important role in computing environments. Concretely, the nature-inspired

techniques are adopted to develop practical algorithms to solve data-driven optimization prob-

lems [9].

Researchers in [1, 9] categorized nature-inspired computation. In [9] authors classified

them into six different categories such as swarm intelligence, natural evolution, molecular

biology, immune system and biological cells . But here, we provide another applicable way to

express the nature-inspired computation towards solving problems. One meta-heuristic and

one evolutionary computation.

2.5 Nature-inspired Meta-heuristic computation

A meta-heuristic is an advanced procedure developed to seek and generate a sufficiently tuned

solution to data-driven optimization problems. [10]. It involves , high level view, two types of

computations. The first and foremost one is population based computation which is well-known

as an evolutionary algorithms, second one is non-population computation such as Tabu search

(TS), stochastic local search (SLS), iterated local search (ILS), guided local search (GLS). For
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more information about this classification, please refer to [11]. Further, Razavi and Sajedi [24]

proposed a single-based meta-heuristic algorithm, Vortex Search Algorithm (VSA), is inspired

by the vortices. In this chapter, we mainly focus on the former classification, evolutionary

algorithms which is discussed next sub-section properly.

2.6 Nature-inspired evolutionary computation

Evolutionary algorithms (EAs) is invented not more than 28 years and is not pretty old compu-

tational algorithm [12]. Research studies have been accomplished new evolutionary algorithms

in engineering and computational science [13, 14, 15]. EAs are known as population based

algorithm. Their learning process comes from interactions between multiple candidate solu-

tions called food source or population. EAs are particular optimization type of meta-heuristics

designed to solve optimization problems [13]. This chapter discuss classical EAs and other

popular methods including memetic algorithms (MA), particle swarm optimization (PSO),

and artificial bee colony (ABC), ant colony optimization (ACO), grey wolf optimizer (GWO)

and coyote optimization algorithm (COA).

2.6.1 Evolutionary-based Memetic algorithms

Memetic algorithms (MAs) are one of particular growing research studies within EA. Based

on a population based search and local search, MAs have practically succeeded in a variety

of engineering and science problem domains, in particular for NP-hard optimization problems

[25, 13]. Memetic algorithms intrinsically exploit all available sources, however, traditional EAs

fail to do that. Population based search MAs leverage recombination (or crossover operator)

which is an important process within MAs.For the search process, it is essential to have three

parameters ready: one neighborhood relation, one guiding function, and a search space which

provides borders of the problem.

The search space is also important to provide comprehensive knowledge for guiding function

works. The implication of search space is to influence the dynamics of the search algorithm.

These dynamics stand for the relationships, which are accessible, among the configurations.

Thus, these relationships depend on neighborhood function. For more information about this

topic, please refer to [25].
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2.7 Organization

The rest of this study is organized as follows. In section 2, we have discussed the feature

extraction techniques and their categories. First, feature extraction from a sample object

like image against feature extraction from given data sets are mentioned. Next, the feature

extraction from data set has selected to discover it. It has three types including feature

selection, auto-encoder and feature generation. Then, we introduce nature-inspired algorithms

and their application, together with related pseudocode in solving large-scale engineering and

science problems, particularly CoD problem. The summary of evolutionary algorithms have

been discussed in this chapter is as follows: genetic algorithm (GA), artificial bee colony (ABC),

ant colony optimization (ACO), grey wolf optimizer (GWO), coyote optimization algorithm

(COA) and particle swarm optimization. In general, Figure 1 represents the overall structure

of this study.

Figure 1: Overall structure of this study
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3 Feature Extraction Techniques

It is worth mentioning, in the world of science, ”feature extraction” is used to refer to two

completely separate applications. They are two different processes, one occurring before raw

data generation and one taking place after data has generated. The process of feature extrac-

tion before having raw data works to extract features using some advancing techniques, to

export information from the objects. For example, if we want to extract features from images,

we need to adopt advanced image processing techniques, like a feature extractor, for that end.

Therefore, based on the generated data, we will have a set of raw data. Then, in pre-processing

techniques, a second type of feature extraction is used for dimension reduction. Three major

differences separate these two types of feature extraction. The first difference is their input

value; the input value of the first algorithm is not particular features, but the second feature

extraction accepts only features of any data set. Second, the first type of feature extraction

is domain specific, while the second type is not domain specific. Third, the former does not

adopt machine learning algorithms, but the latter type does. Basically, both of them work

with data, take values and generate outputs. The scope of the first algorithm is dynamic and

would be any multimedia or social networks, etc. On the other hand, the second one has a

almost stationary scope of input data.

General overview of testing and evaluating given data set is shown in fig 2. On the top of

the figure, it clearly presents that three separate steps are required to be done in advance before

generating a proper result. Pre-processing plays a main role in each problem of engineering

and optimization problems. Then, A classification algorithm is selected to make a model based

on the train data. finally, the classifier attempts to predict the test data based on the learned

data.

Once data is generated and data set is ready to be evaluated, we call the data set, raw data

set. This data set is needed to be converted into a standard data set which enables classifiers to

examine in a professional way and obtain a higher performance. The most common problems

of raw data set consist of curse of dimensionality (CoD), heterogeneous features in case of

values and type, missing values, outliers. In this chapter, we discuss in detail how evolutionary

algorithms (EAs) are adopted to solve the CoD problems, the bottom of the figure 2 depicts

the idea where EAs are explicitly embedded into pre-processing and enhances the classifier’s

performance. Concretely, EAs attempts to optimize the process of feature extraction in an

innovative way.
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Feature extraction (FE), which is one of the most popular pre-processing techniques, is

the process of shrinking the number of dimension (features) and the capability of having

adapted diversity while considering strong mapping between features and target values. FE

aims to decrease the feature dimension as minimum possible as it keeps the same performance.

A feature extractor is considered as the best one which is capable of decreasing the feature

dimension and meanwhile improving the performance. The better result obtained by the better

FE. FE techniques are intrinsically classified into three broad groups: one auto-encoder, one

feature selection (FS) and feature generation. The first two of which are the most common

techniques in the scope of dimension reduction. Meanwhile researcher can leverage feature

generation ( such as [26, 27] )to improve a classifier performance. The former technique is

also known as dimension reduction (DR) which attempts to transform given dimension to

a new dimension with strong linear connectivity of original dimension. The most popular

auto-encoder algorithm is principal component analysis (PCA).

PCA completely is used to generate a new dimension using a certain formula and convert

the given data into new dimension. The idea behind PCA is that it leverages singular value

decomposition (SVD) theorem to seek for the most relevant and correlated features and the

relationship between each others. Although PCA is used to emphasize variation and bring out

strong patterns in a data set, it may not guarantee to reach a optimal solution in some data

sets. PCA fails once your special visualization of instances which leads to loss of information.

It tries to convert input data into new dimension using a linear function. Circle-based and sine

or cosine-based distribution of instances are the most popular situations that PCA fails. PCA

failure means that the FE did not obtain a better performance while decreasing the dimension,

not only that, but also it did not yield the same performance. If PCA does not yield a better

result, it means that features are not correlated or have non-linear relationships. However,

researchers often used to enable data easy to explore and visualize, in case for representation

learning (RL) [28].

Feature selection (FS), the latter one, which is the process of choosing proper sets of

relevant features rather than converting to a new dimension. FS covers the lack of auto-

encoders properly by keeping the original values of features during the process, meanwhile it is

most likely to decrease the number of features / dimension. Feature selection mainly provides

three kinds of categories: filter-based, wrapper-based and embedded FS. Filter-based FS is the

easy technique to implement and can be adapted to each engineering problems independently.
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It tries to examine given data set features separately non-dependently with respect to their

target. It attempts to calculate the goodness of each feature separately. However, the wrapper-

based feature selection relies on a set of selected features and calculated their goodness using

classifiers. Wrapper-based FS is a special kind of filter-based FS such that wrapper-based FS

has capability of using some hyper-parameter function for evaluation. Therefore, the pace

of running filter-based is high in comparison with wrapper-based. So, it is recommended

for real-time systems because of low time complexity. Furthermore, filter-based is cheaper

than wrapper-based. But the wrapper-based feature selection [14, 29, 30] yields a better

result than filter-based feature selection. By advancing technologies, wrapper-based FS also

can be adopted in every system, even real-time decision making system [29]. The third one,

embedded feature selection which is similar to the wrapper-based feature selection to select the

best subsets of features. However, it has a important drawback, which is time complexity in

comparison with earlier feature selection, when it tries to train the model. One of the popular

embedded feature selections is regularization which provides both training and making model

section, together with automatic feature selection at the same time. Furthermore, researchers

[31, 32], proposed another type of feature selection, combined (hybrid) methods, which mixes

evolutionary algorithms together with filter based or wrapper based algorithms.

Feature generation, is considered the third type of feature extractor techniques. Feature

generation is a technique between feature selection and dimension reduction. It starts to

examine the features and tries to generate features using the features. In this case, you first

increase the feature dimension then remove irrelevant features. Unlike dimension reduction, no

new dimension is generated.Feature generation keeps the original features for generating new

features. Then, Feature generation can do feature selection based on the generated features

[26].

4 Bio-inspired evolutionary computation

Engineering problems and other sensitive optimization need to reach the global optimum.

However, machine learning algorithms are not useful anymore. So, it is required scientists

adopt new kind of algorithms have been proved completely in nature for years. In this section,

we provide general overview of nature-inspired algorithms and their terminology. Tables 1 and

2 provide complete definitions for abbreviation which are used in this chapter.

11



Abb Definition

ABC Artificial bee colony

ACOAR Ant colony optimization attribute reduction

BA Bee algorithm

BCO Bee colony optimization

BOA Butterfly optimization algorithm

CNN Convolutional neural network

COA Coyote Optimization Algorithm

CoD Curse of dimensionality

CSO Chicken swarm optimization

CCSO chaotic chicken swarm optimization

CRO Coral reefs optimization

DA Dragonfly algorithm

DR Dimension reduction

EAs Evolutionary algorithms

FE Feature extraction

EM Expectation maximization

EP Evolutionary programming

FS Feature selection

FSA Fish swarm algorithm

Table 1: List of Abbreviations
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Abb Definition

GA Genetic algorithm

GANs Generative adversarial networks

GGA Generational genetic algorithm

GLS Guided local search

GP Genetic programming

GWO Grey Wolf Optimizer

HBMO Honey bee mating optimization

IFAB Image steganalysis using FS based on ABC

IoT Internet of things

ILS Iterated local search

IWOA Improved whale optimization algorithm

MAs Memetic algorithms

ML Machine learning

PCA Principal component analysis

PEAs Parallel evolutionary algorithms

RFPSO RelieF and PSO algorithms

RL Representation learning

RNN Recurrent neural network

SLS Stochastic local search

SSGA Steady state genetic algorithm

SVD Singular value dimension

SVM Support vector machine

TMABC-FS Two-archive multi-objective ABC algorithm for FS

TS Tabu search

VSA Vortex Search Algorithm

WOA Whale Optimization Algorithm

WANFIS Whale adaptive neuro-fuzzy inference system

Table 2: List of Abbreviations (Continued)
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4.1 Overview of evolutionary algorithms

Everything in EA starts to explain the problem and proper solutions. The first important step

in evolutionary algorithm is representation. After that, in each step, EA works based on this

representation. Figure 2 depicts a general overview of each evolutionary algorithm’s procedure.

It is extremely necessary how to present your sample solutions. Two approaches are given: an

one-hot representation and an integer representation. The former one is also known as binary

representation. The number of ”1” in the solution shows the number of parameters have to be

involved to yield a result.”1” represents that which specific features are selected and ”0” stands

for the features which are not considered in a specific solution. In this case, your solution’s

length would be as same as the input feature dimension. If feature dimension become too big,

handling the food source are going to be a challenging issues which waste resources and yields

high time complexity. However, the integer representation works good even with high feature

dimension. But it still has a big disadvantage which you need to set the reduced length of your

feature vector in initialization step.

Second important step is generating a population based on the descriptive model of repre-

sentation. This population mostly is generated randomly with considering the representation

limitation. Third step is fitness function and evaluation process. It is important to provide a

tuned fitness function (objective function) towards their application of the evolutionary algo-

rithms.

The next step is to select two possible solutions as parents of new generations. Selection

strategy has two broad categories. One uniform parent selection and one un-uniform parent

selection. In the former one, each solution has the same chance to be selected. However, the

latter one has different structures and criteria, and parents are selected based on those. The un-

uniform parent selection has different strategies, the most important strategies is proportional

selection which is also as known as roulette wheel, ranked based selection, and tournament

selection.

Roulette Wheel and Tournament are the most widely used selection methods in GA.

Roulette consider the fitness value fore each chromosomes with respect to their probabilities,

using the equation 1 where p[i] stands for the probability of selecting a specific chromosome i,

f[i] goes for the fitness value of each chromosome of index i.
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p[i] = f [i]∑
f [i] (1)

Moreover, the Tournament selection is pretty simpler than Roulette wheel. The idea is

that it takes k chromosomes and selects based on the fitness value of each chromosome. The

best fitness value goes for the lucky chromosome to be selected.

After that, EA tries to reproduce new generation and updated the population. EA take two

parents and regenerates new offspring based on crossover operator. The crossover or recombi-

nation, which is one of genetic operators used to recombine two chromosomes to generate new

offspring. The crossover operator includes uniform crossover, arithmetic crossover and k-point

crossover which is a classical one. Once crossover step is done, mutation should be done with

a specific rate. The mutation may change one or more components.

Finally, the stall condition which is set to check once new generation produced. If the

new generation met the condition, EA stops running and return the best the solution which

satisfied the condition.

Figure 2: General process of evolutionary algorithms
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4.2 Genetic algorithm v.s genetic programming

It is a common mistake that to think Genetic algorithm (GA) is the same genetic programming

(GP). Generally speaking, researchers have used these two algorithms interchangeably. But,

from a technical point of view they are completely different techniques. In this sub-section, we

provide a clear definition of each of them.

4.2.1 Genetic algorithm

Genetic algorithm is one of the basic but important evolutionary algorithm. It has been

applied on majority of problems such as engineering, medicine, finance, etc. GA provides two

kinds of approaches towards solving problems [33]. One steady state genetic algorithm (SSGA)

and one generational genetic algorithm (GGA). They are different based on their procedure

and updating mechanism function of whole process, but they do the same process of parent

selection, reproduction and population update. In the literature, some studies deployed GA

as an effective tool for solving large-scale optimization problems, including optimal allocation

of electric vehicle charging station and distributed renewable resource in power distribution

networks [34], resource optimization in construction projects [35], and allocation of electric

vehicle parking lots in smart grids [36]. Algorithm 1 illustrates a pseudo code of basic GA in

detail.
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Algorithm 1 Implementation of GA algorithm for feature selection

Input: S = {x0,x1,x2, ...,xn}, maxiteration ≥ 0, t=0, αM ∈ [0, 1], randomnumber ∈ [0, 1],
Bestsolution = ∅.

Output: Bestsolution : Anoptimalsubseto f f eatures(F) , F = {x0,x1,x2, ...,xm} , m≤ n ,

(∀fi ∈ F ) ∈ S , Flenдth ≤ Slenдth.

1: for t=0 · · · maxiteration do

2: Call parent selection function

3: Call crossover method to generate offspring

4: if randomnumber ≤ αM then

5: Call mutation function

6: Return offspring

7: end if

8: Call fitness function to evaluate the chromosome

9: if any chromosome obtained the best score then

10: Update the Bestsolution

11: end if

12: end for

In SSGA, GA works with a stationary population which the size of that will be the same

and just it’s solutions get updated each iteration. Moreover, SSGA is an in-place algorithms

which their population do not need another space to update. Like normal process, SSGA

also starts with a problem representation and fitness function, then initialize the selection

strategy, crossover and mutation operators. After that, SSGA takes another step to update

the population with replacement strategy. Figure 3 depicts that how two solution are selected,

crossover and mutation operators are applied and then new solution is replaced with the worse

solution.
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Figure 3: SSGA (steady state genetic algorithm): Process of updating the population

Further, GGA produces a new population each iteration. So, GGA is not a in-place algo-

rithm since it generates a new population each iteration. GGA follows the same structure of

EA except the last step which is replacement. GGA skips this step since it generates a new

population in each iteration. Therefore, the replacement step is not required. Figure 4 shows

complete process of generating a new population (generation t+1) from current population

(generation t).
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Figure 4: GGA (generational genetic algorithm): The process of generating a new population

(generation t+1)

From technical point of view, scientists can apply either GGA or SSGA based on the

problem model and strategies. However, SSGA converges faster than GGA since parents

always are selected through the same population and then replaced the worse solution with the

another best solution. Hence, most of research studies are accomplished using SSA. Moreover,

most Evolutionary algorithms are discussed here also use the same strategies to converge

faster towards global optimum. But, SSGA still has a disadvantage that may stuck in a local

optimum.

4.2.2 Genetic programming

Genetic programming (GP) is proposed by Koza in 1992 [37]. It is noteworthy that this idea

is introduced date back to 50s. GP evolves computer programs which are represented as trees.

Each tree consists of two sections: a function set and second is terminal set. Both of them

provides constant sets of symbols. The former one always play non-leaf nodes role and the latter

one plays leaf nodes role. Figure 5 shows an example of presenting a problem 4 ∗ tan(x) + y2..

19



Figure 5: Tree presentation of a problem

Similar to GA that crossover is conducted on vectors, in GP crossover is done through a

tree and only needs to choose two sub-tree. Figure6 expresses that the first two tree has two

subset which are selected as a parent. Second tree the below are the new offsprings which are

generated based on parents. GP is mostly generational genetic algorithm. Thus, GP is not

a in-place algorithm. GP is useful for solving engineering and computational problems (e.g.,

[38]).
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Figure 6: Crossover operator in genetic programming

Genetic programming has specific advantages over genetic algorithms. Here, we address

the most important characteristics of GP. Genetic programming has a wide variety of repre-

sentation model which makes it pretty flexible against genetic algorithm. This flexibility of

GP comes from it’s tree-based properties. Another important feature of GP is its application

over GA. GP has greater applications in comparison with GA. In spite of considering positive

features of GP, it also has disadvantages which should bear in mind. The most disadvantages

of GP is its speed which is extraordinary slow. Another point is its lack of handling a large

number of input data which makes also hard to handle required related population.

There is still another algorithm that attracts researcher’s attention called evolutionary

programming (EP). Fogel et al [39] originally introduced evolutionary programming. It is

classified as one of the major evolutionary algorithms. It resembles genetic programming, but

it does have a non-variable structure of the program to be optimized. Classical EP develops

gradually finite state machine or every structure similar to it. EO always works with mutation

only and does not consider crossover at all. It worth mentioning that EP uses a fitness function

based on the training sequences. This feature enables EP yields a better result for prediction

in time series problem and sequence problems like DNA and RNA.
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4.3 Artificial bee colony algorithm

In the bees population, the process of mating and generating new offspring, finding new food

sources and gathering the nectar, sharing information in hive, allocating tasks, onlooker and

scout bees; all of these have been inspired properly and nature-based evolutionary algorithms

have been presented. To be specific about the algorithms, honey bee mating optimization

(HBMO), bee colony optimization, bee algorithm (BA) and artificial bee colony (ABC) are

the most popular research studies are accomplished based on these algorithms [40]. Karaboga

et al [40] presents statistical overview of using these algorithms in scientific papers. It is

worth mentioning that ABC has received the highest amount of usage with respect to the

its application in engineering and science problems. Among all research studies had been

done, according to the [40] ABC, BA, BCO and HBMO are found the most useful application,

from the highest number to the lowest number, in large scale engineering problems. ABC

has been considered as the most useful algorithm in several different fields and majority of

research studies leverage ABC in their problems, such as: training neural network (NN), solving

electrical, mechanical, software, control and civil engineering problems, facing wireless sensor

networks issues, optimizing protein structure and most importantly solving image processing

problems. In this chapter, we address emerging challenges like CoD problem in Big Data and

provide practical engineering solutions using ABC and other related algorithms.

Here, we will discuss artificial bee colony (ABC) which is inspired by a set of sequential

processes such as the process of seeking for a bunch of flowers, sharing information in the hive

regarding that and allocating employed, onlooker and scout bees. Karaboga introduced ABC

[41] which is compatible with continues problems in 2005. Algorithm 2 presents a general

procedure of given ABC. A large number of research studies have accomplished using this

algorithm [42, 43] and even convert that into a way that it also works with discrete problems

[14, 30, 18]. Not only those, but also ABC is applied on optimization problems as an optimizer

[44, 45, 46, 43]

Artificial bee colony interact with three groups of bees to have work done. The first group

is employed bees, second is onlooker and last one is scout. In initialization step the number of

these group are set. The employed bees, together with onlooker bees create a population which

has an equal amount of two groups. ABC starts with initialization step which has positive

impact on converging in ABC. Among initialization variables, limit is important criteria and

provides a condition when an employed bee converts into scout bee; at a time, we only have
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one scout bee.

Algorithm 2 Implementation of ABC algorithm for feature selection

Input: S = {x0,x1,x2, ...,xn}, Psize=2 ∗ n, limit ≥ 0, 0 ≤ lowerBound ≤ n/2, lowerBound ≤
upperBound ≤ n, maxiteration ≥ 0, t=0 , v= randomnumber ∈ [0, 1] , v′= randomnumber ∈ [0, 1],
Bestsolution = ∅.

Output: Bestsolution : An optimal subset o f f eatures (F) , F = {x0,x1,x2, ...,xm} , m≤ n ,

(∀fi ∈ F ) ∈ S , Flenдth ≤ Slenдth.

1: Call fitness function to evaluate the whole food source (S) (primary evaluation of each

food)

2: for { dot=0 · · · maxiteration}
3: Call Employed bees to update the food source regarding their evaluation

4: Call Onlooker bees to exploit the local foods to generate new food (solution)

5: Choose parents and generate a new food (solution) based on Vi= fi+v ∗ (fi − fj)
6: if limit is met then :

7: { Call scout bee to explore new (unseen) food source to prevent from local optimum

using

8: Xi= XupperBound+v′ * { (XupperBound -XlowerBound )} }
return NewSolution

9: end if

10: Call fitness function to evaluate the Solution

11: if any Solution obtained the best score then

12: {Update the Bestsolution}
13: end if

14: end for

4.4 Particle swarm optimization algorithm

The particle swarm optimization (PSO) is one of the population-based meta-heuristic algo-

rithms and optimization techniques. PSO is inspired from social–psychological principles [47].

In 1995 Particle swarm optimization first introduced by Kennedy and Eberhart [48]. The PSO

is based on the simulation of common animal social behaviors, for instances: fish schooling,

bird flocking. PSO like other evolutionary algorithms searches for the global optimum rather
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than local optimum. However, the particle swarm trapped into local optimum easily when

feature dimension grows significantly. Algorithm 3 presents a pseudo code for a standard PSO.

The whole process of PSO usually initialize groups of random particles and computes fitness

for each particle within iterations in order to converge into global optimum. Each particle is

considered as a single solution to our problem.

PSO follows two simple yet essential steps to have completed optimization process to find

the minimum optimum or maximum optimum. The first step is communication among parti-

cles. Each particle shares their information with other particles after moving in their direction.

This process makes them find a proper way toward the goal. Each time, based on the problem

(maximum / minimum optimization), particles follows the particle and consider the particle

that match the problem goal. For instance, each iteration particles call fitness function to get

fitness of their location. Then, among the particles, one has the best value which is set to

best personal location. The best value is examined based on the problem, if it is minimum

optimization then the best value goes for the particle that has the minimum value. Moreover,

if the problem is maximum optimization the best value goes for the particle that has the max-

imum value. When this value is set, each particle updates their direction and moves toward

this values. It is obvious that the one has the best value does not move unless other particles

find the best value. The second step which each particle does is to learn. They can learn how

to update their direction after each iteration and tune the parameters.

The PSO does not have parent selection, recombination and mutation steps [49]; thus, this

enables PSO to behave in a particular way in comparison with other evolutionary algorithms.

Concretely, each member within the population do not get updated nor removed. Hao et al

[50] introduced a new PSO with added crossover operator. Zhang et al [51] proposed a binary

PSO with mutation operator to address CoD problem using feature selection techniques to

solve it. The crossover enables the particles does not stop in the local optimum by sharing

the other particles’ information. In [23] PSO is classified into three different versions: classical

PSO, scale-free PSO and binary PSO.

Few parameters are required to adjust, and enable PSO easy to implement, make popular

stochastic and yet powerful swarm-based algorithm. Inertia weight becomes more important

than other due to it’s ability of having a trade-off between the exploration and exploitation

process within a search space. In addition, inertia weight has positive affect convergence rate

in PSO [52].

24



Algorithm 3 Implementation of PSO algorithm for feature selection

Input: S = {x0,x1,x2, ...,xn} , particlesnumber ≥ 1, accelerationcoe f f icients(c1, c2) ∈ [0, 1],
maxvelocity , t=0, minweiдht ,maxweiдht = randomnumber ∈ [0, 1] , Bestsolution = ∅ .

Output: Bestsolution : Anoptimalsubseto f f eatures(F) , F = {x0,x1,x2, ...,xm} , m≤ n ,

(∀fi ∈ F ) ∈ S , Flenдth ≤ Slenдth.

1: for t=0 · · · maxiteration do

2: for i=0 · · · particlesnumber do

3: Call fitness (= objective) function to for the current particle

4: Save the best personal location

5: Save the best global location

6: end for

7: Update the inertiaweiдht

8: for i=0 · · · particlesnumber do

9: Update the velocity

10: Update the position

11: end for

12: if condition met then

13: Return the best global location as the global optimum

14: end if

15: end for

In the literature, some studies deployed PSO as an effective tool for solving large-scale

optimization problems, including optimal allocation of electric vehicle charging station and

distributed renewable resource in power distribution networks [34], designing power system

stabilizers [53], distribution state estimation [54], and reactive power control [55].

4.5 Ant colony optimization (ACO)

Ant colony optimization is another popular evolutionary algorithms which is presented in 1999

by Dorigo, Marco and Di Caro [56], and Socha and Dorigo introduced continues domain of

it [57]. Basically, ACO is one of stochastic search processes. Once Ants explored a new

food source, they try to lay some pheromone to mark the way which leads to the food. The

pheromone is a chemical odorous material which is produced and used by ants to communicate
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with other ants in an indirect way. Each ant tries to produce it and lays it on their way. So

Others can follow the odorous to seek for the food, meanwhile they also produce the same

amount of pheromone. On the other hand, Further, as we inspired natural behavior, this

chemical material is susceptible to be evaporate. Thus, the amount of pheromone on specific

path will increase by keeping ants on the same path, However, each iteration we have reduction

which this amount have negative affect the total amount of pheromone on a particular path.

In other words, if any ants do not select the path used to be chosen, then the path would

disappear. Algorithm 4 presents an overall procedure of ACO for feature selection.

Algorithm 4 Implementation of ACO algorithm for feature selection [58]

Input: S={x0, x1, x2, ..., xn} , K} ≥ 1, η and τ , t = 0, bestsolution =Ø.

Output: Bestsolution : An optimal subset o f f eatures (F) , F = {x0,x1,x2, ...,xm} , m≤ n ,

(∀fi ∈ F ) ∈ S , Flenдth ≤ Slenдth.

1: Call fitness function to calculate the fitness of each feature

2: for t=0 · · · maxIteration do

3: Generate K ants

4: for each ant ∈ Ants(K) do

5: Generate a subset of features

6: call fitness function to evaluate the generated subset

7: Update the best local and global optimum

8: if condition met then

9: Return the best global location as the global optimum

10: else

11: Update the η and τ

12: end if

13: end for

14: end for

4.6 Grey wolf optimizer (GWO)

Grey Wolf Optimizer (GWO) is pretty new evolutionary algorithm which has been presented

not sooner than 2014 which primary works based on the concept of grey wolf society [59]. Mir-

jalili and et al claimed that [59] GWO outperforms other evolutionary algorithms for solving
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large-scale engineering and science problems. The GWO algorithm inspired by the natural

mechanism of animals. The most common behavior which almost wild animal inherited nor-

mally are their attitude to have a kingdom, rule others and having the same hunting mechanism.

It solves the science problems through the following steps:

-First of all, it searches for some animal as prey. In other words, it tries to explore the area

(food source);

-Then, it surrounds the possible prey(s) by exploitation, doing local search to find the

border of sample space;

-Finally, it attacks the prey, doing local search to find the best value within a new area.

’A’ stands for the most important parameter in GWO and adjusts the step size towards the

prey. Thus, ’A’ has positive impact on convergence of this algorithm to the global optimum

by tuning step size which influences both exploitation and exploration. However, GWO still

suffers from stalling in local minimum, So initializing the parameter ’A’ with a proper value

helps it to prevent from stopping in local minimum.
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Algorithm 5 Implementation of GWO algorithm for feature selection

Input: S = {x0,x1,x2, ...,xn}, Xi = (i = 1, 2, ...n), A, t=0 , α , C, maxiteration ≥ 0, Bestsolution ≤
Slenдth.

Output: Bestsolution : An optimal subset o f f eatures (F) , F = {x0,x1,x2, ...,xm} , m≤ n ,

(∀fi ∈ F ) ∈ S , Flenдth ≤ Slenдth.

1: Call fitness function for each search agent to evaluate the whole food source (S) (primary

evaluation of each food)

2: Xα = the best search agent

3: Xβ= the second best search agent

4: Xδ= the third best search agent

5: for t=0 · · · maxiteration do

6: for each search agent do

7: Updatethebestpositiono f currentsearchaдentusinд
−−−→
Xt+1 =

−→
X1+
−→
X2+
−→
X3

3 .

8: end for

9: Update α , A and C.

10: Call fitness function to calculate the fitness of each search agent

11: Update Xω , Xβ , Xδ

12: if any solution obtained the best score then

13: Update the Bestsolution

14: end if

15: end for

4.7 Coyote optimization algorithm (COA)

Coyote Optimization Algorithm (COA) is another yet important population-based meta-heuristic

algorithms which have been inspired from the Canis latrans species and natural coyotes’ be-

haviour. COA has a very certain procedure that works based on the way how these animals

approaching other animals (preys) for catching them. Thus, COA seems to be one particu-

lar type of Grey Wolf Optimizer (GWO) as COA just does the third step of GWO. COA is

presented recently in [13] by Pierezan and Coelho in 2018 to solve large-scale optimization

problems. Algorithm 6 presents a general overview of COA for feature selection.
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Algorithm 6 Implementation of COA algorithm for feature selection [13]

Input: S = {x0,x1,x2, ...,xn} which consists o f Np ∈ N ∗andNc ∈
N ∗are initialized usinд soc

p,t
c,j = lowerBoundj + vj · (upperBoundj − lowerBoundj), t=0 ,

maxiteration ≥ 0, Bestcayotes = ∅.
Output: Bestcayotes : An optimal subset o f f eatures (F) , F = {x0,x1,x2, ...,xm} , m≤ n ,

(∀fi ∈ F ) ∈ S , Flenдth ≤ Slenдth.

1: Call fitness function to calculate the coyote’s fitness using:

2: f it
p,t
c = f (socp,tc )

3: for t=0 · · · maxiteration do

4: alphap,t = {socp,tc |arдc={1,2,...,Nc }minf (socp,tc )}
5: Calculate the social tendency of the pack based on Nc as follows:

6: if Nc is odd then

7: cult
p,t
j = O

p,t
(Nc+1)

2 ,j

8: else :

9: cult
p,t
j =

O
p,t
Nc
2 , j
+O

p,t

(Nc2 +1), j
2

10: end if

11: for each c coyotes in the p pack do

12: Update the social condition using:

13: soc
p,t
c = soc

p,t
c + r1 · δ1 + r2 · δ2

14: Examine the new social condition using:

15: new f it
p,t
c = f (new soc

p,t
c )

16: update food source with respect to better fitness using:

17: soc
p,t+1
c = new soc

p,t
c

18: end for

19: Birth and death using:

20: pup
p,t
j =


soc

p,t
r1,j
, rndj < Ps or j = j1

soc
p,t
r2,j
, rndj ≥ Ps + Pa or j = j2

Rj , otherwise

21: Transition betweenNcandNp packs usinд Pe = 0.005 · N 2
c

22: Update the coyotes’ information with respect to the age

23: if stop condition met then

24: Return the Bestcoyotes

25: end if

26: end for
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4.8 Other optimization algorithms

Meng et al [60] proposed chicken swarm optimization algorithm (CSO) in 2014. Algorithm

7 presents well-structured pseudocode of CSo for optimized feature selection. Based on per-

formance of CSO, researchers have successfully solved and optimized engineering and science

problems, Directional Reader Antennas Optimization [61], Community detection in social net-

works [62], parameters Optimization of a fuzzy logic system [63].

Algorithm 7 Implementation of CSO algorithm for feature selection

Input: S = {x0,x1,x2, ...,xn}, Np ∈ N ∗ , Nc ∈ N ∗are done usinд soc
p,t
c,j = lowerBoundj + vj ·

(upperBoundj − lowerBoundj) , t=0 , roosterratio, chicksratio, hensratio, f oodposition C, Randomvalue ,

miniteration, maxiteration, chickenSwarmsize .

Output: Bestsolution : Anoptimalsubseto f f eatures(F) , F = {x0,x1,x2, ...,xm} , m≤ n ,

(∀fi ∈ F ) ∈ S , Flenдth ≤ Slenдth.

1: for t=0 · · · maxiteration do

2: call fitness function to compute the fitness using chicken

3: if fitness of chicken ==best f itness then

4: Update the Randomvalue

5: Update the rooster position

6: end if

7: if fitness of chicken ==worst f itness then

8: Update the chicks position

9: end if

10: if fitness of chicken != worst f itness and fitness of chicken != best f itness then

11: Update the Randomvalue

12: Update the hens position

13: end if

14: Update chicken position

15: if t==chickenSwarmsize then

16: Return the best position as the global optimum

17: end if

18: end for

Li et al introduced fish swarm algorithm (FSA) which is another population-based ( or
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swarm-based) evolutionary algorithm [64]. FSA inspired from the behaviors of fish school.

Algorithm 8 shows the process of feature selection using FSA. research studies have applied FSA

to optimize their solution such as neighborhood feature selection [65], multi-modal benchmark

functions solver [66].
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Algorithm 8 Implementation of FSA algorithm for feature selection [13]

Input: S = {x0,x1,x2, ...,xn}, t=0 , maxiteration ≥ 0, Rmin, Lmin, γB (D) =
|POSB (D)γ |
|U | , Bestcayotes =

∅.
Output: bestcayotes : An optimal subset of features (F) , Rmin = F = {x0,x1,x2, ...,xm} , m≤

n , (∀fi ∈ F ) ∈ S , Flenдth ≤ Slenдth.

1: Rmin=C , Lmin=C

2: for t=0 · · · maxiteration do

3: generate total fish (Fish)

4: for each fish K ∈ Fish do

5: RK=Ø, LK=0

6: Choose a f eature αk ∈ C(randomly)
7: UpdateRK ,LKbyRK

⋃
αKand |RK |, respectively

8: end for

9: for each fishK ∈ Fish do

10: Rs = Search(Rk)
11: Rω = Swarm(Rk)
12: R f = Follow(Rk)
13: UpdateRK , LK by seeking for the max f itness through (Rk , Rω , R f )

14: if γRk (D)δ ==γC (D)δ then

15: The f ishK obtained a local reduction and break

16: end if

17: if γRk (D)δ ==γC (D)δandLK ≤ Lmin then

18: updateRmin,LminbyRKandLK , respectively

19: end if

20: end for

21: if stop condition met then

22: Return the Rmin,Lmin

23: end if

24: end for
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5 Conclusion

Both dimension reduction by generating new dimension of features and feature selection by

eliminating irrelevant and redundant features take care of missing values and classify supervised

/ unsupervised data sets; all of these operations come together to solve emerging challenging

Np-hard problems in engineering and the sciences. A large number of data sets, particularly

Big Data, are available to work on. The main problem, here, concerns their features and di-

mensionality, the curse of dimensionality (CoD), which causes yet another important problem,

high time complexity. In this chapter, we addressed these problems and professional approaches

using advanced machine learning algorithms. The studies prove that applying nature-inspired

algorithms, together with machine learning techniques, enabled researchers’ attempts to solve

the CoD problem, which yields a proper running time with a lowest time complexity. It is

noteworthy that evolutionary algorithms are non-dependent domain specific, which provides

an optimized environment for researchers who want to solve their problems or optimize their

approaches. In this chapter, we have explored evolutionary algorithms and their applications

in solving large scale optimization problems, especially the feature extraction process for data

analytics. This chapter provides insightful information for researchers who are seeking for the

application of evolutionary algorithms for engineering, optimization, and data science. Having

said this, in [67], we address the emerging problem, CoD, and an evolutionary-based solution

is presented to solve it. We discuss the feature extraction optimization process in detail, lever-

aging feature extraction and evolutionary algorithms. Then, we provide detailed and practical

examples of applying evolutionary algorithms with a wide variety of domains. we also classify

all research studies based on the most common challenging issues such as stego image clas-

sification, network anomalies detection, network traffics classification, sentiment analysis and

supervised benchmark classification. .
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