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Introduction
During adolescence the reproductive system 
matures rapidly, driven by changes in the 
gonadal steroid hormones testosterone and 
estradiol (Forest et al. 1976). A disturbance 
in this system during this critical transitional 
stage may have long-term repercussions 
because physiologic parameters reached in 
adolescence are related to endocrine charac-
teristics in adulthood (Root 1973; Roy et al. 
2009; Teilmann et al. 2002).

The possibility that exposure to human-
made materials could disrupt this impor-
tant process is of concern. Polychlorinated 
biphenyls (PCBs) and dichlorodiphenyl-
trichloroethane (DDT) are lipophilic organo-
chlorines that bioaccumulate in adipose tissue 
and fat-rich fluids (Carpenter 1998; Wolff 
and Anderson 1999). PCBs and DDT [or its 
metabolite dichlorodiphenyldichloroethylene 
(p,p´‑DDE)] have been associated with dif-
ferences in measures of sexual maturation in 

girls in some studies (Denham et al. 2005; 
Den Hond et al. 2011; Ouyang et al. 2005; 
Ozen et al. 2012; Su et al. 2012; Vasiliu et al. 
2004; Yang et al. 2005), though not all studies 
(Gladen et al. 2000; Wolff et al. 2008). Such 
differences may reflect altered steroid hor-
mone levels and associated functional changes 
(Bourguignon and Parent 2012). PCBs 
have been shown to inhibit androgen pro-
duction in vitro (in rats) and in vivo (Andric 
et al. 2000; Kovacevic et al. 1995) possibly 
mediated by the aryl hydrocarbon receptor 
(AhR), although some PCB congeners that 
do not bind to the AhR also have some toxic 
properties (Fischer et al. 1998; Oskam et al. 
2003; Yeowell et al. 1987). In addition to the 
organic compounds, lead is associated with 
later sexual maturation in girls (Denham et al. 
2005; Kim et al. 1995; Selevan et al. 2003).

Less research has dealt with endocrine 
disruption of male sexual development by 
metals or organic compounds. In adults, high 

levels of lead can interfere with  reproduction 
(Alexander et al. 1996, 1998; Benoff et al. 
2003a, 2003b). Some PCB congeners and 
congener groups were negatively associ-
ated with testosterone in a population of 
Akwesasne Mohawk men with high PCB 
exposure (Goncharov et al. 2009) and in 
other adult male populations (Abaci et al. 
2009; Dhooge et al. 2006; Pflieger-Bruss 
et al. 2004). PCBs also have been negatively 
associated with adult male sperm counts and 
semen quality (Hauser 2006; Hauser et al. 
2003; Mocarelli et al. 2008; Rignell-Hydbom 
et al. 2004; Toft et al. 2006). These relation-
ships suggest that some persistent organic 
compounds could affect steroid hormones 
during adolescent sexual maturation.

Studies of boys’ sexual maturation and 
its regulating hormones during adolescence 
have produced suggestive but inconsistent evi-
dence of negative relationships with PCBs 
and p,p´‑DDE (Den Hond et al. 2002; Mol 
et al. 2002; Pflieger-Bruss et al. 2004). The 
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Background: Concern persists over endocrine-disrupting effects of persistent organic pollutants 
(POPs) on human growth and sexual maturation. Potential effects of toxicant exposures on 
testosterone levels during puberty are not well characterized.

oBjectives: In this study we evaluated the relationship between toxicants [polychlorinated 
biphenyls (PCBs), dichlorodiphenyldichloroethylene (p,p´-DDE), hexachlorobenzene (HCB), and 
lead] and testosterone levels among 127 Akwesasne Mohawk males 10 to < 17 years of age with 
documented toxicant exposures.

Methods: Data were collected between February 1996 and January 2000. Fasting blood specimens 
were collected before breakfast by trained Akwesasne Mohawk staff. Multivariable regression 
models were used to estimates associations between toxicants and serum testosterone, adjusted for 
other toxicants, Tanner stage, and potential confounders.

results: The sum of 16 PCB congeners (Σ16PCBs) that were detected in ≥ 50% of the population 
was significantly and negatively associated with serum testosterone levels, such that a 10% change 
in exposure was associated with a 5.6% decrease in testosterone (95% CI: –10.8, –0.5%). Of the 
16 congeners, the more persistent ones (Σ8PerPCBs) were related to testosterone, whereas the 
less persistent ones, possibly reflecting more recent exposure, were not. When PCB congeners 
were subgrouped, the association was significant for the sum of eight more persistent PCBs 
(5.7% decrease; 95% CI: –11, –0.4%), and stronger than the sum of six less persistent congeners 
(3.1% decrease; 95% CI: –7.2, 0.9%). p,p´-DDE was positively but not significantly associated 
with serum testosterone (5.2% increase with a 10% increase in exposure; 95% CI: –0.5, 10.9%). 
Neither lead nor HCB was significantly associated with testosterone levels. 

conclusions: Exposure to PCBs, particularly the more highly persistent congeners, may negatively 
influence testosterone levels among adolescent males. The positive relationship between p,p´-DDE 
and testosterone indicates that not all POPs act similarly.
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elucidation of effects from exposure to these 
organics is complicated by the presence of 
lead that can delay boys’ sexual maturation 
(Humblet et al. 2011; Korrick et al. 2011; 
Williams et al. 2010).

To evaluate the role of specific toxicants 
on aspects of sexual maturation, an approach 
that models the various exposures suspected 
of influencing maturation is necessary. The 
Akwesasne Mohawk Nation is a community 
with multiple toxicant exposures [PCBs, 
p,p´‑DDE, hexachlorobenzene (HCB), lead] 
and PCB exposures that are substantially 
greater than those in the U.S. population as 
a whole (DeCaprio et al. 2005; Gallo et al. 
2011; Schell et al. 2003). The aim of the pres-
ent research is to estimate the relationship 
of testosterone levels with concurrent levels 
of PCBs, p,p´‑DDE, HCB, and lead among 
male youth with known toxicant exposure 
while controlling for maturational stage.

Methods
Setting. The study was conducted in partner-
ship with the Akwesasne Mohawk Nation, 
a sovereign territory that spans the St. 
Lawrence River, abutting New York State, 
USA, and Ontario and Quebec, Canada. 
Industrialization on the St. Lawrence River and 
some tributaries in the 1950s produced sig-
nificant contamination. One federal Superfund 
site and two New York State Superfund sites 
are proximate to the Akwesasne Nation terri-
tory. The U.S. Food and Drug Administration 
determined that several local species of fish, 
fowl, and game contained levels of environ-
mental contaminants above levels safe for 
human consumption (Fitzgerald et al. 1995; 
Forti et al. 1995; Lacetti 1993; Sloan and Jock 
1990). The Akwesasne population’s history of 
relying on local food sources, which carry the 
heaviest toxicant burden, suggested that this is 
a highly exposed population, and this has been 
confirmed (Schell et al. 2012).

The methods of recruitment, data col-
lection, laboratory analyses, and substitution 
protocol for toxicant measurements below the 
limits of detection (LODs) have previously 
been described in detail (Schell et al. 2003). 
Members of the Akwesasne Mohawk Nation 
were trained in data collection techniques by 
the investigators to collect all anthropometric, 
interview, and hematological data, but had 
no prior knowledge of individual’s exposure 
status. The Institutional Review Board of the 
University at Albany, State University of New 
York, approved the study protocols, and inter-
viewers obtained informed assent from each 
participant and informed consent from the 
parent/guardian.

Participants. Participants were Akwesasne 
Mohawk youth (10 to < 17 years of age) and 
their  mothers/guardians who lived either on or 
within 10 miles of the St. Regis Reservation or 

Reserve between 1996 and 2000. A description 
of the sampling protocol has been published 
[see Schell et al. (2003) for details]. The origi-
nal study sample consisted of 131 males and 
140 females and their mothers/guardians. Four 
males had insufficient serum for testosterone 
and biomarker assays and were excluded, five 
were missing lead values, and two were missing 
triglycerides and cholesterol levels; the final 
sample was 120 males in the present analysis.

Blood collection and laboratory analysis. 
Fasting blood specimens were collected before 
breakfast (0700–1030 hours) by trained 
Akwesasne Mohawk staff. Testosterone level 
and the time of blood collection were not 
related (r = 0.08, p = 0.38). Analyses of the 
PCBs and organochlorines were conducted 
by parallel dual-column (splitless injection) 
gas chromatography with electron capture 
detection on an Agilent 6890 instrument 
(Agilent Technologies, Santa Clara, CA) at the 
University at Albany’s Exposure Assessment 
Laboratory; the instrument was capable of 
capturing 83 separate PCB congeners and 
18 additional congeners as pairs or triplets, 
as well as HCB and p,p´‑DDE (DeCaprio 
et al. 2000, 2005). Data were expressed on a 
whole weight basis (i.e., nanograms per gram 
serum; parts per billion). Blood lead levels 
were measured using Zeeman-corrected graph-
ite furnace atomic absorption  spectrometry 
(LOD, 1.0 μg/dL; Mercury Monitor Model 
100, Pharmacia Corp., Stockholm, Sweden) 
by Le Centre de Toxicologie du Quebec in 
Sainte-Foy Quebec, Quebec, Canada. Serum 
testosterone, estradiol, cholesterol, and tri-
glyceride concentrations were measured 
by the Clinical Chemistry and Hematology 
Labora tory ,  Wadsworth  Center  fo r 
Laboratories and Research, New York State 
Department of Health (Albany, NY), as 
described by Schell et al. (2003).

Testosterone. Total testosterone was 
measured in unextracted serum specimens. 
A specific rabbit antibody affixed to poly-
propylene tubes (Siemens Diagnostics/
Diagnostic Products, Los Angeles, CA) was 
used in the solid-phase radioimmunoassay 
procedure. A tracer, 125I-labeled testosterone, 
and a Wallace 1470 Wizard gamma coun-
ter (Wallace/PerkinElmer, Waltham, MA) 
were used to measure radioactivity bound 
to the tracer. Instrument-based software cal-
culated logit-log transformations, standard 
curves, and results. The average of dupli-
cate measurements was reported and used. 
Differences in the duplicate measurements 
that exceeded 25% (or if the concentration 
was < 100 ng/dL, then by 25 ng/dL), was the 
rejection criterion causing re-assay of such 
specimens. Among samples > 100 ng/dL the 
variation on duplicate samples was 4.8%, 
and for samples < 100 ng/dL the variation 
between duplicates was 7.7%. The functional 

sensitivity [limit of quantitation (LOQ)] was 
10 ng/dL for testosterone. For statistical anal-
yses all results < 10 ng/dL were set to 5 ng/
dL, one-half of the LOQ.

PCBs and organochlorines. In some par-
ticipants the levels of some PCBs congeners 
were below the laboratory LOD or minimum 
detection limit (MDL). Values below the 
MDL were imputed for each observation by 
sampling values from the distribution below 
the MDL, which was estimated based on the 
observed data using the method described 
by Gupta (1952), as recommended by the 
U.S. Environmental Protection Agency (EPA) 
for distributions where ≥ 50% of the sam-
ples have values above the MDL (U.S. EPA 
1998). This method provides a more appro-
priate representation of the sample variance 
for values below the MDL than do meth-
ods that impute a single value for all samples 
below the MDL. All values of p,p´‑DDE and 
HCB were above the MDL.

Several composite exposure variables were 
evaluated to allow comparison of our results 
with those from other studies (following 
Schell et al. 2003): Σ16PCBs is the sum of 
all congeners with levels > MDL in ≥ 50% 
of the study population samples (PCB con-
geners 52, 70, 74, 84, 87, 95, 99, 101[+90], 
105, 110, 118, 149[+123], 138[+163 +164], 
153, 180, and 187); Σ8PerPCBs, a persis-
tent PCB group (congeners 74, 99, 105, 
118, 138[+163+164], 153, 180, 187); and 
Σ6NonPerPCBs, a nonpersistent group 
(congeners 52, 84, 95, 101[+90], 110, and 
149[+123]). Brackets indicate “minor” coe-
luting congeners based on Aroclor concen-
tration (Hansen 1999). We also estimated 
exposures with estrogenic PCB congeners 
(Σ7EstrogenicPCBs: congeners 52, 70, 95, 
99, 101, 110, and 153), and with PCB-105, 
an antiestrogenic congener (Cooke et al. 
2001; Wolff et al. 1997).

Three composite variables used in a study 
of adult Akwesasne males were calculated 
(Goncharov et al. 2009). Using only conge-
ners detected in ≥ 50% of the sample, we cal-
culated mono-ortho (Σ4MOPCBs; congeners 
118, 105, 74, and 70), di-ortho (Σ8DOPCBs; 
congeners 52, 87, 99, 110, 153, 180, 
138[+163+164], and 90[+101]), and tri- and 
tetra-ortho groups (Σ3TTOPCBs; congeners 
95, 187, and 84).

Anthropometric and sociodemographic 
variables. Each mother–youth pair completed 
interviews to report their sociodemographic 
characteristics, child’s usual diet, whether the 
child was breastfed, and the mother’s repro-
ductive history (Schell et al. 2003, 2008). 
Trained staff measured each child’s height 
and weight following standard anthropo-
metric protocols (Gallo et al. 2005; Lohman 
et al. 1988). Height and weight z-scores 
were computed using EpiInfo 2000 [Centers 
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for Disease Control and Prevention (CDC) 
2001]. Tanner stages (TS) were determined 
by self-assessment in a private room using 
drawings employed in a previously validated 
procedure (Duke et al. 1980; Morris and 
Udry 1980). Drawings were chosen to pro-
vide clearer distinctions between stages and 
were more acceptable to the community than 
photographs of the different stages.

Statistical analysis. Multivariable lin-
ear regression models were used to estimate 
associations of natural log (ln)–transformed 
serum testosterone levels with ln-transformed 
PCB groupings, controlling for other toxi-
cants (p,p´‑DDE, HCB, lead) and relevant 
covariates. We included serum HCB con-
centrations and blood lead levels (both as 
ln-transformed continuous variables) and 
whether the child was breastfed as an infant 
(1 = yes, 0 = no) in all models based on previ-
ous research suggesting associations between 
these factors and serum testosterone (Denham 
et al. 2005; Goncharov et al. 2009; Schell 
et al. 2003). In addition, we included the 
following factors in all models based on cor-
relations with testosterone (p < 0.20): TS 
(categorical as described below), weight-
for-age z-score and height-for-age z-score 
(both as continuous variables), child ciga-
rette use (1 = yes, 0 = no), child alcohol use 
(1 = yes, 0 = no), and ln-transformed serum 
p,p´‑DDE, cholesterol, and triglycerides 
(modeled as continuous variables).

The analytical treatment of TS is compli-
cated by its level of measurement (TS is ordi-
nal rather than interval level) and its expected 
association with age-related covariates. TSs 
were grouped based on preliminary analysis of 
variance (ANOVA) models, which indicated 

that mean testosterone levels were comparable 
and not significantly different between TS I 
and II or between TS IV and V, but were sig-
nificantly different between TS I and II (com-
bined), TS III, and TS IV and V (combined). 
Therefore, we modeled TS using two indica-
tor variables (for TS I and II, and for TS IV 
and V) with TS III as the referent category. 
Standardized measures of weight-for-age and 
height-for-age z-scores reduced age-related 
confounding.

The functional form of the dose response 
between ln-transformed PCBs and ln-trans-
formed testosterone was assessed by fitting 
each exposure as a quadratic polynomial (i.e., 
by modeling ln-PCBs and a squared term) 
and using the p-value of the squared term as a 
test for statistically significant departures from 
linearity (data not shown). All p-values were 
> 0.05; therefore, exposures were modeled as 
continuous (ln-transformed) variables. Partial-
regression plots (i.e., added-variable plots) 
and partial-residual plots were also examined 
for evidence of nonlinearity as well as outliers 
and influence (Fox 2008). Linearity in the 
dose response was also supported in these plots 
(data not shown). Nonadditivity (interactions 
evaluated as product terms and interpreted 
based on product term p-values: We tested all 
PCBs groups and HCB, p,p´‑DDE, lead, and 
breastfeeding history because relatively few 
studies have examined the concurrent effects 
of the most common pollutants to which 
 children may be exposed.

To facilitate the interpretation of the 
results, coefficients were reported in the 
regression tables, with the coefficients inter-
preted in the corresponding text. Results are 
reported as the percent difference in serum 

testosterone associated with a 10% increase 
in exposure, which, for ln-transformed expo-
sures, is derived by multiplying the coeffi-
cient for the association with ln-transformed 
testosterone by 10. Statistical analyses were 
conducted using PASW 19 (IBM 2011). An 
alpha level of p ≤ 0.05 was used to define 
 statistical significance.

Results
Sample descriptive measures of testoster-
one, toxicants, covariates, and their pat-
terns of association with TS are shown in 
Table 1. As expected, mean age consistently 
increased with increasing TS [F = 44.62, df 
(degrees of freedom) = 122, 4, p ≤ 0.001]. 
Mean testosterone levels also increased with 
TS (F = 59.94, df = 122, 4, p ≤ 0.001), with 
similar mean values in boys classified as TS I 
or TS II, and as TS IV or TS V. There were 
23 boys in TS I and II with testosterone val-
ues below the LOQ of 10 ng/dL, and two 
boys in TS III were below the LOQ. Height 
increased monotonically with TS (F = 32.30, 
df = 122, 4, p ≤ 0.001). Mean weights also 
differed significantly over TSs (F = 7.85, 
df = 122, 4, p ≤ 0.001), yet in contrast with 
height, this association was not monotonic. 
Forty-eight percent of the males were breast-
fed as infants, 9% currently smoked, and 
6.7% consumed alcohol.

Mean serum PCB, p,p´‑DDE, HCB, and 
lead concentrations were similar to values pre-
viously reported for the combined sample 
of Akwesasne male and female adolescents 
(Schell et al. 2003). The geometric mean 
concentration of Σ8PerPCBs (0.41 ppb) 
measured in 1996–2000 in our study pop-
ulation of 10- to < 17-year-old Akwesasne 

Table 1. Characteristics of adolescent Akwesasne males: mean ± SD for all observations combined (n = 120) and by Tanner stage.

Covariates and toxicantsa All TS I (n = 19) TS II (n = 42) TS III (n = 23) TS IV (n = 32) TS V (n = 11)
Age (years) 13.17 ± 1.95 11.32 ± 1.09 11.93 ± 1.43 13.31 ± 1.51 14.62 ± 1.09 16.04 ± 0.81
Testosterone (ng/dL)b 252.18 ± 279.60 26.41 ± 35.31 48.71 ± 90.71 264.70 ± 252.28 509.88 ± 203.42 555.70 ± 299.24
Height (cm) 157.97 ± 13.39 148.83 ± 8.27 149.79 ± 10.61 156.53 ± 10.45 167.46 ± 9.10 177.56 ± 6.35
Height-for-age z-score 0.12 ± 1.20 0.50 ± 0.93 –0.01 ± 1.29 –0.03 ± 0.91 –0.04 ± 1.41 0.83 ± 0.82
Weight (kg) 62.59 ± 19.04 61.56 ± 20.95 53.37 ± 18.75 62.22 ± 14.54 68.16 ± 16.68 82.39 ± 13.51
Weight-for-age z-score 1.48 ± 1.63 2.73 ± 2.17 1.26 ± 1.71 1.37 ± 1.13 1.13 ± 1.41 1.59 ± 1.08
Triglycerides (mg/dL) 84.65 ± 45.82 103.29 ± 56.19 100.71 ± 51.79 74.17 ± 42.23 68.38 ± 27.56 68.10 ± 29.49
Cholesterol (mg/dL) 158.68 ± 32.80 163.12 ± 35.69 171.18 ± 34.88 161.30 ± 32.75 146.66 ± 25.61 136.00 ± 16.63
Σ16PCBs 0.77 ± 0.41 0.77 ± 0.37 0.88 ± 0.56 0.60 ± 0.21 0.75 ± 0.35 0.74 ± 0.17
Σ8PerPCBs 0.47 ± 0.30 0.41 ± 0.15 0.55 ± 0.43 0.38 ± 0.15 0.46 ± 0.25 0.46 ± 0.16
Σ6NonPerPCBs 0.24 ± 0.16 0.29 ± 0.19 0.26 ± 0.21 0.17 ± 0.07 0.23 ± 0.12 0.22 ± 0.06
Σ7EstrogenicPCBs 0.38 ± 0.22 0.40 ± 0.23 0.44 ± 0.29 0.29 ± 0.11 0.37 ± 0.17 0.35 ± 0.08
Antiestrogenic PCB 0.02 ± 0.02 0.02 ± 0.01 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.01 0.02 ± 0.01
Σ4MOPCBs 0.15 ± 0.09 0.16 ± 0.07 0.17 ± 0.13 0.13 ± 0.06 0.15 ± 0.07 0.14 ± 0.04
Σ8DOPCBs 0.51 ± 0.29 0.51 ± 0.26 0.60 ± 0.39 0.40 ± 0.16 0.50 ± 0.25 0.51 ± 0.15
Σ3TTOPCBs 0.08 ± 0.04 0.08 ± 0.04 0.09 ± 0.05 0.06 ± 0.02 0.07 ± 0.03 0.08 ± 0.01
p,p’-DDE 0.45 ± 0.35 0.31 ± 0.11 0.48 ± 0.50 0.40 ± 0.19 0.51 ± 0.35 0.52 ± 0.25
HCB 0.04 ± 0.02 0.03 ± 0.02 0.04 ± 0.03 0.04 ± 0.02 0.05 ± 0.03 0.03 ± 0.01
Lead (μg/dL) 1.59 ± 0.97 1.48 ± 0.72 1.67 ± 0.94 1.25 ± 0.93 1.79 ± 1.03 1.70 ± 1.23

Σ16PCB: congeners with ≥ 50% detection rate, sum of PCBs 52, 70, 74, 84, 87, 95, 99, 101[+90], 105, 110, 118, 138[+163+164], 149[+123], 153, 180, 187; Σ8PerPCBs: sum of PCBs 74, 99, 105, 
118, 138[+163+164], 153, 180, 187; Σ6NonPerPCBs: sum of PCBs 52, 84, 95, 101[+90], 110, 149[+123]; Σ7EstrogenicPCBs: sum of PCBs 52, 70, 95, 99, 101[+90], 110, 153 (Cooke et al. 2001); 
antiestrogenic PCB: PCB-105 (Cooke et al. 2001); Σ4MOPCBs: sum of PCBs 70, 74, 105, 118 (Goncharov et al. 2009); Σ8DOPCBs: sum of PCBs 52, 87, 99, 110, 138[+163+164], 153, 101[+90] 
(Goncharov et al. 2009); Σ3TTOPCBs: sum of PCBs 84, 95, 187 (Goncharov et al. 2009). Brackets indicate “minor” coeluting congener based on Aroclor concentration (Hansen 1999).
aValues < MDL were imputed from the estimated distribution < MDL (ppb unless otherwise indicated). bThe functional sensitivity for testosterone was 10 ng/dL; for statistical purposes, 
results below the LOQ was set at 5 ng/dL. 
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males exceeded the 95th centile (0.40 ppb) 
of the same congeners (74, 99, 105, 118, 
138 [163 + 164], 153, 180, 187) reported 
by the CDC for 12- to 19-year-old males 
and females based on NHANES (National 
Health and Nutrition Examination Study) 
data collected during 1999–2004 (CDC 
2009). Geometric mean p,p´‑DDE and HCB 
concentrations (0.39 ppb and 0.04 ppb, 
respectively) were lower than corresponding 
values reported by the CDC (1.69 ppb and 
0.07 ppb, respectively).

Associations among toxicants and conge-
ners were also examined (see Supplemental 
Material, Methods, Table S1). As expected, 
the different PCB congener groups were 
highly intercorrelated, reflecting the inclu-
sion of many of the same congeners (range 
of r = 0.53–0.94). The levels of Σ16PCBs, 
Σ8PerPCBs, and Σ7EstrogenicPCBs were cor-
related with the level of p,p´‑DDE (r = 0.43, 
0.56, and 0.34 respectively, p < 0.01). HCB 
was correlated with p,p´‑DDE (r = 0.41, 
p ≤ 0.01) and marginally with Σ8PerPCBs 
(r = 0.20, p ≤ 0.05). Nonpersistent PCB 
groupings and the antiestrogenic PCBs were 
not significantly correlated with p,p´‑DDE. 
Lead was not correlated with any of the PCB 
variables or with p,p´‑DDE or HCB.

Testos terone  and toxicant  l eve l s . 
Multivariable regression indicated a signifi-
cant negative association between Σ16PCBs 
and serum testosterone, such that a 10% 
increase in Σ16PCBs was associated with a 
5.6% decrease in testosterone (95% CI: 
–10.8, –0.5%) (for complete model results, 
including associations with model  covariates, 
see Supplemental Material, Table S2). There 
was a positive though nonsignificant asso-
ciation between p,p´‑DDE and testosterone 
based on the same model, such that a 10% 
increase in p,p´‑DDE was associated with 
a 5.2% increase in testosterone (95% CI: 
–0.5, 10.9%, p = 0.07).

Other  ind ice s  o f  PCB exposure 
(Σ8PerPCBs and congener groups used in 
the analysis of adult Akwesasne males) were 
tested using the same multivariable model 
(Table 2). Testosterone was negatively asso-
ciated with Σ8PerPCBs, Σ4MOPCBs, and 
Σ7EstrogenicPCBs. For every 10% increase 
in these PCB groups, mean testosterone levels 
were 5.7% (95% CI: –11.0, –0.4%), 6.2% 
(95% CI: –11.2, –1.2%), and 4.7% (95% CI: 
–9.2, –0.1%) lower, respectively. Associations 
with Σ8DOPCBs and Σ3TTOPCBs were 
also negative, but not significant (–4.6%; 
95% CI: –9.3, 0.1%, p = 0.06 and –4.8% 
95% CI: –10.3, 0.7%, p = 0.09, respectively). 
The nonpersistent PCBs and the antiestro-
genic PCB-105 also were negatively but not 
 significantly associated with testosterone.

There was no clear evidence of non-
additivity between PCBs and HCBs, 

p´p‑DDE, or lead on associations with tes-
tosterone (all interaction p‑values > 0.30). 
Associations between PCBs and testosterone 
were stronger in boys who were not breast-
fed compared with boys who were breastfed, 
though interactions also were not significant. 
For example, a 10% increase in ∑16PCBs was 
associated with a 9.7% decrease in testosterone 
(95% CI: –19.6, 0.2%) among boys who were 
not breastfed, compared with a 4.5% decrease 
(95% CI: –10.7, 1.6%) among boys who were 
breastfed (the interaction of breast feeding by 
∑16PCBs was not significant; p = 0.80).

Discussion
Among male Mohawk youth, testosterone was 
negatively associated with several groupings 
of PCB congeners, and positively associated 
with p,p´‑DDE. Because this is an observa-
tional, cross-sectional study, causality cannot 
be inferred, and, given the sample size, these 
observations should be tested in other samples.

The results are strengthened by certain 
features of the study. First, although focus-
ing on PCBs, we were able to consider sev-
eral other common toxicants, including a 
heavy metal (lead), and two pesticides (HCB 
and p,p´‑DDE). Also, this study employed 
 congener-specific laboratory analysis that 
allowed the calculation of PCB levels in sub-
groups of congeners. This enabled compari-
sons of associations between PCB subgroups 
that might differ in structure and/or persis-
tence with testosterone. The more persistent 
PCBs were clearly associated negatively with 
testosterone, whereas nonpersistent PCBs 
were not. The lack of relationships with the 
nonpersistent congeners suggests that cur-
rent exposure is not influential or is not great 
enough to have an observable effect.

Congener-specific laboratory analyses also 
allowed us to replicate the same structure-
based PCB groups as Goncharov et al. (2009) 

used in their study of Akwesasne men; our 
results in youth were similar in direction 
and statistical significance, suggesting that 
the adult profile may result from a develop-
mental trajectory evident in adolescence. 
Furthermore, we were able to test several PCB 
congener groups used by other investigators 
to evaluate replicability across studies. It is 
important to recognize that the congener 
composition of the PCB composite variables 
overlap (see footnote of Tables 1 and 2).

An additional strength of this study is the 
use of TSs as an independent variable in lieu 
of age or height, which vary widely with mark-
ers of maturation during adolescence, and thus 
are a poor proxy for maturation in statisti-
cal models (Tanner 1962). Because timing of 
maturation itself could be affected by these 
toxicants, it is important to remove the effect 
of timing on testosterone levels. By statistically 
adjusting for maturation as indexed by TS, it 
is possible to estimate the effects of toxicants 
on testosterone independent of the effects on 
timing of sexual maturation.

A weakness, however, is the self- assessment 
of TS. Some researchers have found signifi-
cant correlations between self-assessed TSs and 
hormonal development (Shirtcliff et al. 2009), 
whereas others have found that male adoles-
cents both under- and overestimate their TS 
(Desmangles et al. 2006; Taylor et al. 2001; 
Williams et al. 1988). However, to the best 
of our knowledge, there is no evidence that 
over- or underestimation varies with toxicant 
exposure. Without such evidence, we believe 
that the error is most likely unbiased, although 
bias cannot be ruled out.

Negative associations between PCBs and 
testosterone were weaker for less persistent 
congeners than for more persistent congeners, 
which suggests that earlier exposures may be 
more relevant to the associations. However, it 
is not possible to assess the temporal relation 

Table 2. Predictors of testosterone levels in adolescent males: results of the multivariable regression 
analysis with PCB groupings (n = 120).

Toxicant (ppb)a β (95% CI) p-Value Percent changeb

Σ16PCBs –0.56 (–1.08, –0.05) 0.03 5.6
Σ8PerPCBs –0.57 (–1.10, –0.04) 0.03 5.7
Σ6NonPerPCBs –0.31 (–0.72, 0.09) 0.13 3.1
Σ7EstrogenicPCBs –0.47 (–0.92, –0.01) 0.05 4.7
Antiestrogenic PCB –0.15 (–0.59, 0.29) 0.50 1.5
Σ4MOPCBs –0.62 (–1.12, –0.12) 0.02 6.2
Σ8DOPCBs –0.46 (–0.93, 0.01) 0.06 4.6
Σ3TTOPCBs –0.48 (–1.03, 0.07) 0.09 4.8

Each model controlled for Tanner stages (TS) I and II vs. III, TS IV and V vs. III, weight-for-age z-score, height-for-age 
z-score, breastfed as an infant (yes/no), child’s alcohol use (yes/no), child’s cigarette use (yes/no), triglycerides (mg/dL), 
cholesterol (mg/dL), lead (μ/dL), p,p’-DDE (ppb), and HCB (ppb). Testosterone, cholesterol, triglycerides, lead, p,p’-DDE, 
HCB and PCB variables are ln-transformed. Σ16PCB: congeners with ≥ 50% detection rate, sum of PCBs 52, 70, 74, 
84, 87, 95, 99, 101[+90], 105, 110, 118, 138[+163+164], 149[+123], 153, 180, 187; Σ8PerPCBs: sum of PCBs 74, 99, 105, 118, 
138[+163+164], 153, 180, 187; Σ6NonPerPCBs: sum of PCBs 52, 84, 95, 101[+90], 110, 149[+123]; Σ7EstrogenicPCBs: sum of 
PCBs 52, 70, 95, 99, 101[+90], 110, 153 (Cooke et al. 2001); antiestrogenic PCB: PCB-105 (Cooke et al. 2001); Σ4MOPCBs: 
sum of PCBs 70, 74, 105, 118 (Goncharov et al. 2009); Σ8DOPCBs: sum of PCBs 52, 87, 99, 110, 138[+163+164], 153, 101[+90] 
(Goncharov et al. 2009); Σ3TTOPCBs: sum of PCBs 84, 95, 187 (Goncharov et al. 2009). Brackets indicate “minor” coelut-
ing congener based on Aroclor concentration (Hansen, 1999).
aValues < MDL were imputed from the estimated distribution < MDL. bPercent change associated with a 10% increase 
in exposure. 
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between exposures and the outcome, given 
the cross-sectional study design. Finally, 
because the Akwesasne Mohawk Nation is 
not federally censused, it is not possible to 
know what proportion of the community 
between 10 and < 17 years of age is sampled.

The clinical relevance of the differences 
in testosterone associated with p,p´‑DDE 
and PCB exposures in the study popula-
tion is not known, because reference values 
for serum testosterone concentrations are not 
available (Kronenberg and Williams 2008). 
Nevertheless, associations between environ-
mental exposures and testosterone levels in 
the study population are a concern, given that 
adolescence is a critical period for the estab-
lishment of adult hormone homeostasis (Root 
1973). Similar negative associations estimated 
between PCBs and testosterone in adult 
Mohawk men from the same community sug-
gest the possibility of early-life effects that may 
persist into adulthood (Goncharov et al. 2009).

An interesting finding is that the associa-
tions of PCBs and p,p´‑DDE with testosterone 
were stronger among boys who had not been 
breastfed. It is difficult to attribute the weaker 
effect among the breastfed youth to a mod-
erating effect of breastfeeding because breast-
feeding delivers additional exposure to PCBs 
and other lipophilic compounds (Greizerstein 
et al. 1999). In the Akwesasne sample here, the 
level of PCBs was significantly higher among 
those who had been breastfed compared with 
those not breastfed (Gallo et al. 2011; Schell 
et al. 2003). Toxicants delivered through lac-
tation may not influence some end points if 
the period of developmental sensitivity of an 
end point has passed. In such circumstances, 
lactation essentially delivers an additional 
toxicant burden randomly with regard to the 
dependent variable. This may obfuscate the 
relationship rather than mitigate it. This inter-
pretation is consistent with results regarding 
thyroid hormones (Schell et al. 2009), but is 
limited by the small samples of breastfed and 
not breastfed boys.

Several studies have examined such rela-
tionships among boys within a narrow age 
range. Studies of Flemish adolescents, 
14–15 years of age, from areas differing in 
exposure characteristics examined hormone 
and toxicant levels measured concurrently. 
These studies have produced evidence of 
both stimulated and decreased testosterone 
in relation to marker PCBs and pollution, 
but no associations with p,p´‑DDE (Croes 
et al. 2009; Den Hond et al. 2002; Dhooge 
et al. 2011). Finally, a study of neonatal 
hexachlorobiphenyl exposure in rats found 
decreased adult serum testosterone levels (Xiao 
et al. 2011).

Three studies have evaluated relationships 
between pubertal development and prenatal 
exposure to PCBs, PCDFs (polychlorinated 

dibenzofurans), or p,p´‑DDE. In a longitu-
dinal study of 304 singleton males born in 
the early 1960s and followed through ado-
lescence (Gladen et al. 2004), p,p´‑DDE lev-
els in cord blood were not associated with 
testosterone (p‑values for all tests > 0.10). 
There was some evidence of reduced pubertal 
testosterone in Yucheng boys (n = 21) who 
had experienced an acute prenatal exposure 
to a mixture of PCBs and PCDFs when they 
were compared with matched controls (Hsu 
et al. 2005). PCB levels measured in cord 
blood (PCB-138[+163+164], 153, and 180 
combined) were not associated with serum 
testosterone in Faroese boys at 13–14 years of 
age (Mol et al. 2002). In our analysis, serum 
PCB and p,p´‑DDE concentrations were not 
highly correlated, and mutually adjusted asso-
ciations with testosterone were in opposite 
directions.

Two studies of adult men reported sig-
nificant negative associations between some 
PCBs (mono-, tri-, and di-ortho substi-
tuted PCBs) and testosterone (Goncharov 
et al. 2009; Richthoff et al. 2003). Great 
Lakes sport fish consumers’ PCB levels 
were negatively associated with SHBG (sex 
hormone binding globulin)–bound testos-
terone, though not with total or free testos-
terone (Persky et al. 2001; Turyk et al. 2006). 
Other studies of human populations have 
produced evidence suggesting relationships 
of organochlorines to measures of reproduc-
tive hormones or function (Ferguson et al. 
2012; Richthoff et al. 2003; Rignell-Hydbom 
et al. 2004), or no evidence of a relationship 
in adult men (Hagmar et al. 2001). Of the 
studies of adult men with PCB exposures 
(Ferguson et al. 2012; Goncharov et al. 2009; 
Richthoff et al. 2003; Rignell-Hydbom et al. 
2004), the study of Akwesasne men with 
high exposure has provided the strongest evi-
dence for a relationship of testosterone with 
PCBs (Goncharov et al. 2009). Serum PCB 
levels measured in our study population of 
Akwesasne boys in 1996–2000 were higher 
than serum levels measured in a representative 
sample of U.S. adolescents (age 12–19 years) 
in 1999–2004, but similar to levels measured 
among Akwesasne men during the same time 
period (Goncharov et al. 2009). Differences 
in exposures among populations could 
explain differences in associations among 
studies (Goncharov et al. 2009).

Conclusion
In this study we found significant associations 
between testosterone and Σ16PCBs, with 
stronger associations estimated for more per-
sistent congeners, and p,p´‑DDE in a popu-
lation of adolescent Native American males 
with relatively high PCB exposures. These 
results are consistent with experimental studies 
in animals that found endocrine-disrupting 

chemicals, such as PCBs and p,p´‑DDE, 
modified serum testosterone levels (Ahmad 
et al. 2003; Andric et al. 2000; Kovacevic 
et al. 1995; Xiao et al. 2011), and with stud-
ies of humans that found associations con-
sistent with endocrine modification due to 
those exposures (Croes et al. 2009; Dhooge 
et al. 2011; Goncharov et al. 2009; Persky 
et al. 2001; Richthoff et al. 2003; Turyk 
et al. 2006).
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