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Auto-ASD-Network: A technique based on Deep Learning and Support Vector
Machines for diagnosing Autism Spectrum Disorder using fMRI data

TABAN ESLAMI, Department of Computer Science

Western Michigan University

FAHAD SAEED∗, School of Computing and Information Science

Florida International University, Florida

Quantitative analysis of brain disorders such as Autism Spectrum Disorder (ASD) is an ongoing field of research. Machine learning
and deep learning techniques have been playing an important role in automating the diagnosis of brain disorders by extracting
discriminative features from the brain data. In this study, we propose a model called Auto-ASD-Network in order to classify subjects
with Autism disorder from healthy subjects using only fMRI data. Our model consists of a multilayer perceptron (MLP) with two
hidden layers. We use an algorithm called SMOTE for performing data augmentation in order to generate artificial data and avoid
overfitting, which helps increase the classification accuracy. We further investigate the discriminative power of features extracted
using MLP by feeding them to an SVM classifier. In order to optimize the hyperparameters of SVM, we use a technique called Auto
Tune Models (ATM) which searches over the hyperparameter space to find the best values of SVM hyperparameters. Our model
achieves more than 70% classification accuracy for 4 fMRI datasets with the highest accuracy of 80%. It improves the performance of
SVM by 26%, the stand-alone MLP by 16% and the state of the art method in ASD classification by 14%.

The implemented code will be available as GPL license on GitHub portal of our lab (https://github.com/PCDS).

Additional Key Words and Phrases: fMRI; Time series; Pearson’s Correlation Coefficient; ASD; Deep Learning; Classification; MLP

1 INTRODUCTION

Diagnosing brain disorders such as Alzheimer’s, Mild Cognitive Impairment (MCI), Attention Deficit Hyper Activity
Disorder (ADHD) and Autism Spectrum Disorder (ASD) using machine learning and deep learning techniques is an
ongoing field of research [7, 11, 15, 17, 19, 29]. In this study, we focus on ASD disorder which is diagnosed in more
than 1% of children. ASD is a neurological and developmental brain disorder which affects the social communication
and behaviour of the children. This disorder is not curable and continues to adulthood. ASD diagnosis currently relies
on traditional methods like screening the child’s behaviour and interviewing parents [25]. These methods are error
prone which may cause harmful side effects due to overprescribing drugs [27]. In order to diagnose brain disorders
like ASD in a more quantitative manner, research has been pushed towards analyzing brain imaging data such as
Magnetic Resonance Imaging (MRI) and functional Magnetic Resonance Imaging (fMRI) using machine learning and
deep learning techniques.

Generally, MRI and fMRI techniques, provide images from different levels of the brain which are widely used as the
input of machine learning techniques. In fMRI data, the brain is divided into small cubic elements called voxels and the
activity of each voxel over time is extracted as a time series. The statistical association between two voxels which is
also known as their functional connectivity is defined as the correlation between their time series values. Pearson’s
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correlation is the most widely used measure for computing functional connectivity and is calculated using the following
equation:

ρuv =

∑T
t=1(ut − ū)(vt − v̄)√∑T

t=1(ut − ū)2
√∑T

t=1(vt − v̄)2
(1)

In which u and v are two time series of length T and ū and v̄ correspond to their mean value respectively.
Alteration in functional connectivities may cause different brain disorders such as Alzheimer’s, Schizophrenia, and

other disorders [21, 24] which motivated us to consider functional connectivities as the features of our model.
Autism Brain Imaging Data Exchange (ABIDE) initiative has provided a dataset containing fMRI and MRI data

generated from 1112 healthy control and ASD subjects. The data is coming from 17 different brain imaging centers.
Researchers have come up with new techniques for diagnosing ASD using MRI [18] and fMRI [1, 6, 14, 16] data provided
by ABIDE repository. Some of these techniques are based on conventional machine learning techniques such as Support
Vector Machines (SVM) and Random Forest [1, 3, 12]. For example, Bi et al [3], used the random SVM cluster for
classification of healthy from ASD subjects. Various studies used the demographic information of the subjects such
as age, IQ, and handness in their methods or selected subsets of subjects with specific attributes in their analysis. For
instance, Parisot et al. [26], represented the population of the subjects as a graph in which imaging features correspond
to vertices and phenotypic information of the subjects define the weights of the edges connecting them to each other.
There are few studies such as [14] which used only fMRI data without considering any demographic information in
their analysis. Using only fMRI data for classifying ASD vs healthy subjects provides a tool for clinicians to assist
them in decision making process without being biased with other demographic information. Although including other
information may increase the prediction accuracy, our goal is to rely solely on brain fMRI data for detecting ASD
disorder, which is a more challenging task.

Deep Learning techniques such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and
Autoencoders have gained astonishing success in the past few years in many different areas including computer vision,
speech recognition, health care and etc. Different deep learning based methods are also proposed for diagnosing
ASD [2, 4, 10, 13, 20, 23]. For example, Devornel et al. [10] used Long Short-Term Memory Networks (LSTMs) and
obtained 68.5% classification accuracy. Heinsfeld et al. [14] used two denoising autoencoders in order to extract a lower
dimensional feature vector from the data and used their weights as the initial weights of an MLP. Fine-tuning the MLP
resulted in 70% classification accuracy. To the best of our knowledge, this method is the state of the art technique in
ASD classification of whole ABIDE dataset.

Deep Learning models contain a huge number of parameters that should be optimized during the learning process.
Providing large training data for deep learning models, makes them more general to unseen data and avoids problems
like overfitting. Unfortunately, large datasets are not always available. This is the case in the field of neuroimaging
in which scanning subjects and generating more data is a time consuming and costly task. In such cases, techniques
like data augmentation can be useful. Data augmentation methods are shown to be helpful in reducing overfitting and
generalizing deep learning models [22].

In this paper, we propose a deep learning based approach for classification of healthy subjects from ASD patients by
only using fMRI data and without considering any demographic information. In order to increase the number samples
and avoid overfitting, we augment artificial data into training set using a technique called Synthetic Minority Over-
Sampling (SMOTE) [5]. SMOTE was originally proposed in order to oversample minority class in imbalanced datasets.
In this study, we use SMOTE in order to oversample both healthy and ASD class to double the size of the training set,



although the datasets we use here are almost balanced in terms of ASD and healthy subjects. We also investigate the
effectiveness of the features extracted using the deep learning model. To do this, besides doing experiments on the deep
learning model as a classifier, we use its hidden layer which contains extracted features, as the input to SVM classifier.
Considering that SVM has some hyperparameters like kernel function and penalty which their optimal values are not
known beforehand, we use a method called Auto Tune Models (ATM) to automate the hyperparameter tuning process.
Our experiments show significant improvement in classification accuracy by using the oversampling technique and
using SVM.

2 DEEP LEARNING BASED MODEL FOR ASD CLASSIFICATION

The model that is used in this study is a multilayer perceptron with two hidden layers (Fig 2 part D). The input
layer of the network receives the pairwise Pearson’s correlation coefficients of all regions in the brain (functional
connectives) computed using equation 1. Since Pearson’s correlation have a symmetric property, instead of using N 2

pairwise correlations, we use
N (N − 1)

2
distinct correlations extracted from upper triangle (or lower triangle) part of

the correlation matrix and avoid redundant values. Here N refers to the number of brain regions.
Assuming xi is the input of layer i ,Wi is the vector of weights connecting the nodes in layer i to to the nodes in

layer i + 1 and bi as bias value of that layer, layer i + 1 is activated using the following equation:

zi+1 = f (Wixi + bi ) (2)

In which f is the rectifier activation function (ReLU) defined as:

f (x) = x+ = max(0,x) (3)

Softmax function is finally applied to the final output layer, which determines the probability that the input feature
vector corresponds to each classes. Softmax function is computed using the following equation.

zi =
ezi∑k
j=1 e

zj
(4)

In which zi corresponds to the activation of node i . Since in our problem there are two classes (associated with ASD
and Healthy groups), the value of k in equation 4 is equal to 2. The node with the highest probability determines the
class. The classification loss is then computed using negative log likelihood function as Li = −loд(pi ) In which pi is
the probability of correct class computed using the softmax function. The value of the loss is used to optimize the
parameters of the network using backpropagation algorithm.

2.1 Oversampling Using SMOTE

As mentioned earlier, deep learning methods need a large amount of data in order to generate reliable results. One issue
we are facing in our classification problem is the lack of enough data, such that each dataset contains less than 200
samples. This motivated us to generate synthetic samples using available data in order to improve the quality of the
model and avoid overfitting. There are some traditional data augmentation methods in the field of computer vision
such as rotating and flipping images, to generate extra training data, but these techniques will not work in our problem
since the nature of features we are using are completely different than images. Instead, we use a method called SMOTE
which was originally proposed for oversampling the minority class in imbalanced datasets [5]. In this method, the
oversampling is performed by generating one or more synthetic samples per training point in the minority class. For



each sample in the minority class, an artificial sample is generated by linear interpolation between two points randomly
selected from its k nearest neighbors. This process is repeated for each sample based on the desired number of artificial
data. In our proposed approach, we utilize this method for generating one artificial point per existing samples in the
training set. Since the length of our features is quite long, we skipped finding k nearest neighbors and instead, picked
candidate samples randomly from the same class as the original sample. This process results in doubling the size of the
training set and improving the prediction performance which will be discussed more in the experiments section.

2.2 Hyperparameter Tuning using ATM

Hidden layers in a deep neural network are known for learning complex features from the input data. The final layer of
the network receives these extracted features from previous layers and performs the classification. We hypothesized
that using these features combining with other classification methods such as SVM could result in high accuracy since
SVM is known as a very effective method in fMRI classification. In this way, we combine the power of deep learning for
extracting features and benefit from the well known SVM method. SVM classifier has different set of hyperparameters,
for example the penalty parameter, kernel function and parameters related to specific kernels such as the degree of
polynomial in the polynomial kernel function. In order to find the optimal hyperparameters for SVM, we used a tool
called Auto-Tuned Models (ATM) [28]. ATM is a scalable multi-method and self optimizing tool which automates and
optimizes the hyperparameter tuning process of machine learning algorithms.

ATM implements a parameter-search algorithm by partitioning the hyperparameter space using a conditional-
parameter tree (CPT). Each branch of the CPT corresponds to fixed hyperpartitions. An example of CPT for SVM
classifier is shown in figure 1. After building the CPT, ATM performs parameter search in two steps. In the first step, the
hyperpartitions are selected based on multi-armed bandit. Then, the hyperparameters within each partition are tuned
based on Gaussian Process technique. ATM provides different options for tuning hyperpartitions (uniform, multi-armed
bandit, hierarchical multi-armed bandit, etc.) and hyperparameters (uniform, Gaussian Process, etc.)

Fig. 1. Example of CPT for SVM classifier

ATM provides a parameter called budget for resource allocation. It could be defined as either the total computation
time, or the total number of classifiers to try. For this study, we set the budget to 50 classifiers. After hyperparameter
tuning by ATM is finished, we use the top 10 classifiers with the highest Cross-Validation accuracy on training set as



the candidate classifiers, and perform the ensemble classification with a voting mechanism to predict the label of each
test sample.

Fig. 2. Overall classification framework of Auto-ASD-Network: A) Time series are extracted from different regions. B) Pairwise
functional connections are computed using Pearson’s correlation. C) Artificial data is generated in feature space by applying SMOTE
algorithm on training data D) multilayer perceptron is trained using training data (This Model can be used for final classification
or features can be extracted from the hidden layer and sent to part E. E) ATM is used for finding the best parameters of SVM on
features extracted from MLP in Part D. Top 10 classifiers are used for predicting the class label of a hold-out test sample (ensemble
classification).

3 EXPERIMENTS AND RESULTS

3.1 ABIDE dataset

As mentioned earlier, ABIDE initiative has gathered and preprocessed brain imaging data from ASD as well as healthy
subjects from different brain imaging centers [8]. While different pipelines are used for preprocessing the data, in
this study, we used C-PAC pipeline in which preprocessing steps include motion correction, slice timing correction,
nuisance signal removal, low frequency drifts, and voxel intensity normalization. ABIDE also provided seven different
parcellation methods in which the brain is parcellated to several different regions. The data that we used for this study is
parcellated to 200 regions using spatially constrained spectral clustering algorithm [9]. It is worth mentioning that each



Table 1. Class membership information of ABIDE-I fMRI dataset for each individual site

Site NYU OHSU USM UCLA
ASD 75 12 46 54

Healthy control 100 14 25 44

data center generated brain imaging data using different parameters and scanning protocols. Parameters like repetition
time (TR), echo time (TE), and openness or closeness of the eyes during the scan are different among each data center.
We used 4 datasets from ABIDE-I repository for conducting our experiments. The class membership information of the
datasets are shown in table 1.

3.2 Classification performance

In order to measure the classification performance of our proposed method, we performed 5-fold Cross-validation and
compared the average accuracy, sensitivity and specificity of each method. Considering TN as the number of correctly
classified healthy subjects, TP as correctly diagnosed ASD subjects, FP as falsely diagnosed with ASD and FN as ASD

subjects diagnosed as healthy, accuracy of classifier is defined as
TP +TN

TP +TN + FP + FN
, sensitivity as

TP

TP + FN
and

specificity as
TN

TN + FP
.

3.3 List of methods

For all methods listed in this section, the feature vector of each sample is the set of pearson’s correlation coefficients
between time series of each pair of brain regions. Since the fMRI data that we use is parcellated to 200 regions, each

feature vector contains 19900 (
200 × 199

2
) distinct pairwise correlation coefficients. The methods that are evaluated for

ASD classification are as follows:

• Method 1: Ref. [14]
In this method, first, two denoising autoencoders extract a lower dimensional representation from the input data.
Then, the weights of the autoencoders are used as initial weights of an MLP. This MLP is trained on the input
data and is used for the final classification.

• Method 2: SVM
SVM is used as the first baseline classifier which is trained on the original input data (19900 pairwise correlation
coefficients).

• Method 3: SVM-ATM
SVM is used as the classifier which is trained on the original input data. SVM hyperparameters are tuned using
ATM technique.

• Method 4: MLP
MLP is used as the second base classifier which is trained on original input data.

• Method 5: MLP-DA
MLP is used as the second baseline classifier which is trained on original data as well as artificial data generated
using SMOTE algorithm.

• Method 6: MLP-SVM-ATM
Similar to methods 1 and 2, however, the input data to SVM are features that are extracted from the hidden



layer of MLP. In this case, MLP is trained by using only original data and no data augmentation is performed.
Parameters of SVM are optimized using ATM.

• Method 7: Auto-ASD-Network
Similar to method 6, SVM is used as the final classifier which receives its input from the last hidden layer of the
MLP, with the addition of the data augmentation using SMOTE for training the MLP. Parameters of SVM are
optimized using ATM.

All the experiments reported in this section are performed on a Linux system containing two Intel Xeon E5-2620
Processors at 2.4 GHz and total 48 GBs of RAM. The system contains an NVIDIA Tesla K-40c GPU with 2880 CUDA
cores and 12 GBs of RAM. CUDA version 8 and PyTorch library were used for performing the experiments.

3.4 Evaluating the effect of ATM

In the first experiment, we evaluated the effect of hyperparameter tuning using ATM. Table 2 shows the classification
performance of SVMwith and without hyperparameter tuning (SVM and SVM-ATM). According to the results in Table 2,

Table 2. Performance comparison of traditional SVM and SVM optimized using ATM (SVM-ATM)

Site Method Accuracy Sensitivity Specificity
OHSU SVM 54 0 100

SVM-ATM 72.3 56.6 83.3
NYU SVM 57.1 0 100

SVM-ATM 69.1 53.3 81
USM SVM 64.7 100 0

SVM-ATM 69.6 84.3 42
UCLA SVM 55.1 100 0

SVM-ATM 72.2 83.8 57

ATM significantly improves the performance of SVM classifier. Without tuning hyperparameters, for all datasets either
sensitivity or specificity is equal to zero, which means that all test subjects are classified either as healthy or ASD.

3.5 Evaluating the effect of data augmentation

In this experiment, we examined the performance of deep neural network as a classifier, with and without performing
data augmentation (i.e. MLP and MLP-DA). We also measured the performance of hyperparameter tuned SVM trained
using the features extracted from MLP (i.e. MLP-SVM-ATM and Auto-ASD-Network). The results are shown in Table 3.

As the results imply, data augmentation improves the performance of MLP classifier by increasing classification
accuracy. Data augmentation also helps the network to provide better features for SVM classifier, as the performance of
Auto-ASD-Network is better than MLP-SVM-ATM. Overall, among the 4 datasets that we used, Auto-ASD-Network
outperforms other methods as it shows almost equal or higher accuracy. For OHSU dataset, Auto-ASD-Network
significantly outperforms all other methods and achieves 80% accuracy.



Table 3. Performance comparison of different methods with and without data augmentation

Site Method Accuracy Sensitivity Specificity
OHSU Ref. [14] 74 66.6 86.6

MLP 64 62.5 61.6
MLP-DA 74.3 74.1 70.8

MLP-SVM-ATM 78 67.3 84.6
Auto-ASD-Network 80 73 83

NYU Ref. [14] 64.5 78 46
MLP 68.5 44 87

MLP-DA 70 65.1 71.5
MLP-SVM-ATM 69.7 57.3 79

Auto-ASD-Network 70 57.9 79.2
USM Ref. [14] 62 20 84

MLP 64 100 0
MLP-DA 70 70 53.7

MLP-SVM-ATM 72.3 85 42
Auto-ASD-Network 72.4 87.3 45

UCLA Ref. [14] 57.7 58 57.4
MLP 71.9 76.7 64.8

MLP-DA 72.7 77.6 65.2
MLP-SVM-ATM 70.6 75.6 63.6

Auto-ASD-Network 72.2 82.3 59.8

Table 4. Running time of each method

Method Running time
Ref [14] 7 min
SVM 4 sec

SVM-ATM 11.25 min
MLP 2.5 min

MLP-DA 4.8 min
MLP-SVM-ATM 5.3 min

Auto-ASD-Network 7.6 min

3.6 Running Time

We measured the running time of different methods on UCLA dataset which is shown in Table 4. Among all methods,
SVM with no hyperparameter tuning has the fastest running time but the worst performance. Using ATM for optimizing
SVM hyperparameters trained on original feature vectors (19900 pairwise correlations) is the most time-consuming
method since ATM needs to train the SVM several times with a large number of features. Data augmentation almost
doubles the running time due to the increasing number of training samples.



4 CONCLUSION AND FUTUREWORK

In this paper, we focus on the classification of Autism Spectrum Disorder which is on the rise among children. We
propose a method called Auto-ASD-Network, in which we use the power of deep learning for extracting useful patterns
from the data as well as discriminative power of Support Vector Machines classifier which is a very well known approach
in brain disorder classification. Features extracted from the deep learning model are used as the input to the SVM
classifier. In order to increase the generalizability of those features and considering the fact that deep learning methods
are prone to overfitting, we employ a data augmentation method using an oversampling technique called SMOTE and
double the number of items in the training set. We also use a tool called ATM in order to optimize the hyperparameters
of SVM classifier using training features extracted by the deep neural network. We achieve more than 70% accuracy for
4 different datasets. Auto-ASD-Network significantly improved the results of original deep neural network (improved
by 16%), SVM (improved by 26%) and state of the art classifier (improved by 14%) with the maximum accuracy of 80%.

For the future work of this study we will be focusing on designing novel deep learning based models which are able
to diagnose the severity of ASD. We will also improve the performance of deep learning techniques by designing new
data augmentation and simulation methods in order to increase the generalization of the deep-learning methods used
in the diagnosis and the classification of mental disorders.
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