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Measurements are reported of differential cross sections for the production of a W boson, which decays 
into a muon and a neutrino, in association with jets, as a function of several variables, including the 
transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse 
momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. 
The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector 
at the LHC and corresponds to an integrated luminosity of 5.0 fb−1. The measured cross sections are 
compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-
to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in 
agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, 
the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in 
azimuthal angle between the leading jet and the muon at low values.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

This letter reports measurements of fiducial cross sections for 
W boson production in association with jets at the LHC. Measure-
ments of the production of vector bosons in association with jets 
are fundamental tests of perturbative quantum chromodynamics 
(pQCD). The W + jets processes also provide the main background 
to other, much rarer, standard model (SM) processes, such as tt̄ [1]
and single top-quark production [2], and to Higgs boson produc-
tion and a variety of physics processes beyond the SM. Searches for 
phenomena beyond the SM are often limited by the uncertainty in 
the theoretical cross sections for W (and Z) + jets processes at high 
momentum scales and large jet multiplicities. Therefore, it is cru-
cial to perform precision measurements of W + jets production at 
the LHC.

Leptonic decay modes of the vector boson are often used in the 
measurement of SM processes and in searches for new physics, 
because they provide clean signatures with relatively low back-
ground. This letter focuses on the production of a W boson de-
caying into a muon and a neutrino, as part of a final-state topol-
ogy characterised by one high-transverse-momentum (pT) isolated 

� E-mail address: cms-publication-committee-chair@cern.ch.

muon, significant missing transverse energy (Emiss
T ), and one or 

more jets. The cross sections are measured as a function of the in-
clusive and exclusive jet multiplicities for up to six jets. Differential 
cross sections are measured for different inclusive jet multiplicities 
as a function of the transverse momentum and the pseudorapid-
ity (η) of the jets, where η = −ln[tan(θ/2)], and θ is the polar 
angle measured with respect to the anticlockwise beam direction. 
The cross sections are also measured as a function of the differ-
ence in azimuthal angle between the direction of each jet and that 
of the muon, and of HT, which is defined as the scalar sum of 
the pT of all jets with pT > 30 GeV and |η| < 2.4. It is important 
to study the distribution of the jet pT and the observable HT be-
cause they are sensitive to higher order corrections, and are often 
used to discriminate against background in searches for signatures 
of physics beyond the SM. Additionally, HT is often used to set 
the scale of the hard scattering process in theoretical calculations. 
Finally, the η distributions of jets and the azimuthal separations 
between the jets and the muon are also important, because they 
are sensitive to the modelling of parton emission.

The measurements presented in this letter use proton–proton 
(pp) collision data at a centre-of-mass energy of 

√
s = 7 TeV

recorded with the CMS detector at the LHC in 2011 and correspond 
to an integrated luminosity of 5.0 ± 0.1 fb−1 [3]. These measure-
ments cover high jet multiplicities and higher jet pT than earlier 

http://dx.doi.org/10.1016/j.physletb.2014.12.003
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publications because the centre-of-mass energy and the integrated 
luminosity are higher. Previous studies of leptonic decay modes of 
the W boson in association with jets at the LHC have measured the 
cross sections and cross section ratios for W boson production in 
association with jets in pp collisions with an integrated luminosity 
of 36 pb−1 at 

√
s = 7 TeV with the ATLAS [4] and CMS [5] detec-

tors. Measurements have also been made with pp̄ collisions with 
the D0 detector [6,7] at the Tevatron collider for integrated lumi-
nosities up to 4.2 fb−1, as well as with the CDF detector [8] for 
an integrated luminosity of 320 pb−1. Recent measurements have 
been made with the ATLAS detector with a centre-of-mass energy 
of 7 TeV and an integrated luminosity of 4.6 fb−1 [9].

In order to perform a differential measurement of the W + jets
cross section, a high-purity sample of W → μν events is selected 
and the kinematic distributions are corrected to the particle level 
by means of regularised unfolding [10]. This procedure corrects a 
measured observable for the effects of detector response, finite ex-
perimental resolutions, acceptance, and efficiencies, and therefore 
allows for direct comparison with theoretical predictions. The mea-
sured differential cross sections are compared to the predictions 
of generators such as MadGraph 5.1.1 [11] interfaced with pythia

6.426 [12], sherpa 1.4.0 [13–16], and BlackHat [17,18], interfaced 
to sherpa. The BlackHat + sherpa samples [19] provide parton-
level predictions of W + n (n = 1–5) jets at next-to-leading order 
(NLO), while the MadGraph + pythia and sherpa samples provide 
tree-level calculations followed by hadronisation to produce the fi-
nal states.

The letter proceeds as follows: Section 2 presents the CMS de-
tector. Section 3 describes the Monte Carlo (MC) event generators, 
as well as the data samples used for the analysis. The identifica-
tion criteria for the final-state objects (leptons and jets) and the 
selection of the W → μν + jets events are presented in Section 4. 
Section 5 describes the modelling of instrumental backgrounds and 
irreducible physics backgrounds. The procedure used for unfold-
ing is detailed in Section 6, and Section 7 describes the systematic 
uncertainties. Finally, the unfolded distributions are presented in 
Section 8 and compared to theoretical predictions, and Section 9
summarises the results.

2. The CMS detector

The CMS detector, presented in detail elsewhere [20], can be 
described with a cylindrical coordinate system with the +z axis di-
rected along the anticlockwise beam axis. The detector consists of 
an inner tracking system and calorimeters (electromagnetic, ECAL, 
and hadron, HCAL) surrounded by a 3.8 T solenoid. The inner 
tracking system consists of a silicon pixel and strip tracker, pro-
viding the required granularity and precision for the reconstruc-
tion of vertices of charged particles in the range 0 ≤ φ < 2π in 
azimuth and |η| < 2.5. The crystal ECAL and the brass/scintilla-
tor sampling HCAL are used to measure the energies of photons, 
electrons, and hadrons within |η| < 3.0. The HCAL, when com-
bined with the ECAL, measures jets with a resolution �E/E ≈
100%/

√
E [GeV] ⊕ 5% [21]. The three muon systems surrounding 

the solenoid cover a region |η| < 2.4 and are composed of drift 
tubes in the barrel region (|η| < 1.2), cathode strip chambers in 
the endcaps (0.9 < |η| < 2.4), and resistive-plate chambers in both 
the barrel region and the endcaps (|η| < 1.6). Events are recorded 
based on a trigger decision using information from the CMS de-
tector subsystems. The first level (L1) of the CMS trigger system, 
composed of custom hardware processors, uses information from 
the calorimeters and muon detectors to select the most interesting 
events in a fixed time interval of less than 4 μs. The high-level trig-
ger (HLT) processor further decreases the event rate from 100 kHz 
at L1 to roughly 300 Hz.

3. Data and simulation samples

Events are retained if they pass a trigger requiring one isolated 
muon with pT > 24 GeV and |η| < 2.1. Signal and background 
simulated samples are produced and fully reconstructed using a 
simulation of the CMS detector based on Geant4 [22], and sim-
ulated events are required to pass an emulation of the trigger re-
quirements applied to the data. These simulations include multiple 
collisions in a single bunch crossing (pileup). To model the effect 
of pileup, minimum bias events generated in pythia are added to 
the simulated events, with the number of pileup events selected 
to match the pileup multiplicity distribution observed in data.

A W → 	ν + jets signal sample is generated with MadGraph

5.1.1 and is used to determine the detector response in the unfold-
ing procedure described in Section 6. Parton showering and hadro-
nisation of the MadGraph samples are performed with pythia

6.424 using the Z2 tune [23]. The detector response is also de-
termined using a different W + jets event sample generated with
sherpa 1.3.0 [13–16], and is used in the evaluation of systematic 
uncertainties due to the unfolding of the data.

The main sources of background are the production of tt̄, single 
top-quark, Z/γ ∗ + jets, dibosons (ZZ/WZ/WW) + jets, and multijet 
production. With the exception of multijet production, all back-
grounds are estimated from simulation. The simulated samples 
of tt̄ and Z/γ ∗ + jets are generated with MadGraph 5.1.1; single 
top-quark samples (s-, t-, and tW-channels) are generated with
powheg version 1.0 [24–27]; VV samples, where V represents ei-
ther a W boson or a Z boson, are generated with pythia version 
6.424 using the Z2 tune [23]. Parton showering and hadronisa-
tion of the MadGraph and powheg samples are performed with
pythia 6.424. The simulations with MadGraph and pythia use the 
CTEQ6L1 parton distribution functions (PDF) [28]. The simulation 
with sherpa uses the CTEQ6.6m PDF, and the simulations with
powheg use the CTEQ6m PDF.

The W + jets and Z/γ ∗ + jets samples are normalised to next-
to-next-to-leading order (NNLO) inclusive cross sections calculated 
with fewz [29]. Single top-quark and VV samples are normalised 
to NLO inclusive cross sections calculated with mcfm [30–33]. The 
tt̄ contribution is normalised to the NNLO + next-to-next-leading 
logarithm (NNLL) predicted cross section from Ref. [34].

4. Object identification and event selection

Muon candidates are reconstructed as tracks in the muon sys-
tem that are matched to tracks reconstructed in the inner tracking 
system [35]. Muon candidates are required to have pT > 25 GeV, 
and to be reconstructed within the fiducial volume used for the 
high-level trigger muon selection, i.e. within |η| < 2.1. This ensures 
that the offline event selection requirements are as stringent as 
the trigger. In addition, an isolation requirement is applied to the 
muon candidates by demanding that the relative isolation is less 
than 0.15, where the relative isolation is defined as the sum of the 
transverse energy deposited in the calorimeters (ECAL and HCAL) 
and of the pT of charged particles measured with the tracker in a 
cone of �R = √

(�φ)2 + (�η)2 = 0.3 around the muon candidate 
track (excluding this track), divided by the muon candidate pT. To 
ensure a precise measurement of the transverse impact parame-
ter of the muon track relative to the interaction point, only muon 
candidates with tracks containing more than 10 hits in the silicon 
tracker and at least one hit in the pixel detector are considered. To 
reject muons from cosmic rays, the transverse impact parameter of 
the muon candidate with respect to the primary vertex is required 
to be less than 2 mm.

Jets are reconstructed using the CMS particle-flow algorithm 
[36,37], using the anti-kT [38,39] algorithm with a distance param-
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Fig. 1. The jet multiplicity in data and simulation before (left) and after (right) the b-jet veto. The W + jets contribution is modelled with MadGraph 5.1.1 + pythia 6.424. The 
solid band indicates the total statistical and systematic uncertainty in the W + jets signal and background predictions, as detailed in Section 7. This includes uncertainties in 
the jet energy scale and resolution, the muon momentum scale and resolution, the pileup modelling, the b-tagging correction factors, the normalisations of the simulations, 
and the efficiencies of reconstruction, identification, and trigger acceptance. A substantial reduction in the expected tt̄ background is observed in the right plot.

eter of 0.5. The jet energy is calibrated using the pT balance of 
dijet and γ + jet events [40] to account for the following effects: 
nonuniformity and nonlinearity of the ECAL and HCAL energy re-
sponse to neutral hadrons, the presence of extra particles from 
pileup interactions, the thresholds used in jet constituent selection, 
reconstruction inefficiencies, and possible biases introduced by the 
clustering algorithm. Only jets with pT > 30 GeV, |η| < 2.4, and 
a spatial separation of �R > 0.5 from the muon are considered. 
To reduce the contamination from pileup jets, jets are required to 
be associated to the same primary vertex as the muon. The ver-
tex associated to each jet is the one that has the largest number 
of pT-weighted tracks in common with the jet. The contamina-
tion from pileup jets is estimated with the signal simulation, with 
pileup events simulated with pythia, and found to be less than 1%.

The missing momentum vector, pmiss
T , is defined as the negative 

of the vectorial sum of the transverse momenta of the particles 
reconstructed with the particle-flow algorithm, and the Emiss

T is 
defined as the magnitude of the pmiss

T vector. The measurement 
of the Emiss

T in simulation is sensitive to the modelling of the 
calorimeter response and resolution and to the description of the 
underlying event. To account for these effects, the Emiss

T in W + jets
simulation is corrected for the differences in the detector response 
between data and simulation, using a method detailed in Ref. [41]. 
A recoil energy correction is applied to the W + jets simulation 
on an event-by-event basis, using a sample of Z → μμ events 
in data and simulation. The transverse recoil vector, defined as 
the negative vector sum of the missing transverse energy and the 
transverse momenta of the lepton(s), is divided into components 
parallel and perpendicular to the boson direction. The mean and 
the width of the transverse recoil vector components are parame-
terised as a function of the Z boson pT in data and simulation. The 
ratio of the data and simulation parameterisations is used to adjust 
the transverse recoil vector components in each simulated event, 
and a new Emiss

T is computed using the corrected recoil compo-
nents.

Events are required to contain exactly one muon satisfying 
the conditions described above and one or more jets with pT >

30 GeV. Events are required to have MT > 50 GeV, where MT, the 
transverse mass of the muon and missing transverse energy, is de-

fined as MT ≡
√

2pμ
T Emiss

T (1 − cos�φ), where pμ
T is the muon pT

and �φ is the difference in azimuthal angle between the muon 
momentum direction and the pmiss

T vector.

5. Estimation of the backgrounds and selection efficiencies

All background sources except for the multijet production are 
modelled with simulation. The simulated event samples are cor-
rected for differences between data and simulation in muon identi-
fication efficiencies and event trigger efficiency. A “tag-and-probe” 
method [35] is used to determine the differences between simula-
tion and data for the efficiency of the trigger and for the muon 
identification and isolation criteria. This method uses Z → μμ
events from both data and simulated samples where the “tag” 
muon is required to pass the identification and isolation crite-
ria. The efficiency measurements use the “probe” muon, which is 
required to pass minimal quality criteria. Trigger efficiency cor-
rections are determined as a function of the muon η, and are in 
general less than 5%. Muon isolation and identification efficiency 
corrections are determined as a function of the muon pT and η, 
and are generally less than 2%. Corrections to the simulation are 
applied on an event-by-event basis in the form of event weights.

The dominant background to W + jets production is tt̄ produc-
tion, which has a larger total contribution than that of the W + jets
signal in events with four or more jets. In order to reduce the 
level of tt̄ contamination, a veto is applied to events with one or 
more b-tagged jets. Heavy-flavour tagging is based on a tag algo-
rithm [42] that exploits the long lifetime of b-quark hadrons. This 
algorithm calculates the signed impact parameter significance of 
all tracks in the jet that satisfy high-quality reconstruction and pu-
rity criteria, and orders the tracks by decreasing significance. The 
impact parameter significance is defined as the ratio of the impact 
parameter to its estimated uncertainty. For jets with two or more 
significant tracks, a high-efficiency b-quark discriminator is defined 
as the significance of the second most significant track. The size of 
the tt̄ background is illustrated in Fig. 1, before and after the im-
plementation of the b-jet veto, using the event selection described 
in Section 4. The expected contributions for the different processes 
in Fig. 1 are shown as a function of the jet multiplicity, along with 
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the observed data. Differences in the tagging and mistagging rates 
between data and simulation are measured as a function of the jet 
pT in multijet and tt̄ events [42], and are used to correct the tag-
ging rates of the jets in simulation. For jet multiplicities of 1 to 6, 
the b-jet veto eliminates 44–84% of the predicted tt̄ background, 
while eliminating 3–26% of the predicted W + jets signal. The re-
sulting increase in the signal purity allows for reductions in the 
total uncertainty in the measured cross sections of 6–43% for jet 
multiplicities of 4–6.

The shape and normalisations of the Z/γ ∗ + jets and tt̄ pre-
dictions are cross-checked in selected data samples. The Z + jets 
background is compared to data in a Z-boson dominated data 
sample that requires two well-identified, isolated muons. The tt̄
background is compared to data in a control region requiring at 
least two b-tagged jets. Background estimations from simulation 
and from data control samples agree within the uncertainties de-
scribed in Section 7.

The multijet background is estimated using a data control sam-
ple with an inverted muon isolation requirement. In the control 
sample, the muon misidentification rate for multijet processes is 
estimated in the multijet-enriched sideband region with MT <

50 GeV, and the shape template of the multijet distribution is 
determined in the region with MT > 50 GeV. Contributions from 
other processes to the multijet control region are subtracted, in-
cluding the dominant contribution from W + jets. In order to 
improve the estimation of W + jets in the multijet control re-
gion, the W + jets contribution is first normalised to data in the 
MT > 50 GeV region with the muon isolation condition applied. 
The multijet shape template is then rescaled according to the 
muon misidentification rate. For exclusive jet multiplicities of 1–4, 
the purity of the multijet-enriched inverted-isolation sideband re-
gion is 99.7–98.1%, and the purity of the W + jets contribution to 
the signal region is 92–76%. The multijet estimate corresponds to 
32.7–1.9% of the total background estimate, or 2.6–0.3% of the total 
SM prediction.

6. The unfolding procedure

For the measurement of cross sections, the particle level is de-
fined by a W boson, which decays into a muon and a muon neu-
trino, produced in association with one or more jets. Kinematic 
thresholds on the particle-level muon, MT, and jets are identi-
cal to those applied to the reconstructed objects. Specifically, the 
particle-level selection includes the requirement of exactly one 
muon with pT > 25 GeV and |η| < 2.1, and MT > 50 GeV. The 
particle-level Emiss

T is defined as the negative of the vectorial sum 
of the transverse momenta of all visible final state particles. To 
account for final-state radiation, the momenta of all photons in a 
cone of �R < 0.1 around the muon are added to that of the muon. 
Jets are clustered using the anti-kT [38] algorithm with a distance 
parameter of 0.5. Clustering is performed using all particles af-
ter decay and fragmentation, excluding neutrinos and the muon 
from the W boson decay. Additionally, jets are required to have 
pT > 30 GeV and |η| < 2.4, and to be separated from the muon by 
�R > 0.5.

The reconstructed distributions are corrected to the particle 
level with the method of regularised singular value decomposition 
(SVD) [10] unfolding, using the RooUnfold toolkit [43]. For each 
distribution, the total background, including the multijet estimate 
from data and all simulated processes except the W boson sig-
nal, is subtracted from the data before unfolding. A response ma-
trix, defining the migration probability between the particle-level 
and reconstructed quantities, as well as the overall reconstruc-
tion efficiency, is computed using W + jets events simulated with
MadGraph + pythia. For a given particle-level quantity Q with a 

corresponding reconstructed quantity Q ′ , the migration probabil-
ity from an interval a < Q < b to an interval c < Q ′ < d is defined 
as the fraction of events with a < Q < b that have c < Q ′ < d. The 
unfolding of the jet multiplicity is performed with a response de-
fined by the number of particle-level jets versus the number of 
reconstructed jets. For particle-level jet multiplicities of 1 to 6, 
4 to 51% of simulated events exhibit migration to different values 
of reconstructed jet multiplicity. The unfolding of the kinematic 
distributions of the nth jet is performed with a response defined 
by the kinematic quantity of the nth-highest-pT particle-level jet 
versus that of the nth-highest-pT reconstructed jet. To achieve a 
full migration from the selection of reconstructed events to the 
particle-level phase space, no matching between reconstructed and 
particle-level jets is applied. The contribution from the W → τν
process with a muon in the final state is estimated to be at the 1% 
level, and is not considered as part of the signal definition at the 
particle level.

The b-jet veto is treated as an overall event selection condi-
tion. Events failing this condition are treated as nonreconstructed 
in the unfolding response, so that the cross section obtained after 
unfolding is valid for W boson decays with associated jets of any 
flavour.

7. Systematic uncertainties

The sources of systematic uncertainties considered in this anal-
ysis are described below. The entirety of the unfolding procedure 
is repeated for each systematic variation, and the unfolded data 
results with these variations are compared with the central (un-
varied) results to extract the uncertainties in the unfolded data 
distributions.

In most distributions, the dominant sources of systematic un-
certainty include the jet energy scale and resolution uncertainties, 
which affect the shape of all reconstructed distributions as well as 
the overall event acceptance. The jet energy scale uncertainties are 
estimated by assigning a pT- and η-dependent uncertainty in jet 
energy corrections as discussed in Ref. [40], and by varying the jet 
pT by the magnitude of the uncertainty. The uncertainties in jet 
energy resolution are assessed by increasing the pT difference be-
tween the reconstructed and particle-level jets by an η-dependent 
value [40]. The jet energy uncertainties are determined by varying 
the pT of the jets in data rather than in simulation.

Muon momentum scale and resolution uncertainties also intro-
duce uncertainties in the overall event acceptance. A muon mo-
mentum scale uncertainty of 0.2% and a muon momentum res-
olution uncertainty of 0.6% are assumed [35]. The effects of these 
uncertainties are assessed by directly varying the momentum scale 
and randomly fluctuating the muon momentum in the simulation.

Variations for uncertainties in the energy and momentum 
scales and resolutions affect the size and shape of the background 
distribution to be subtracted from the data distribution, as well 
as the acceptance of W + jets simulated events, which define the 
response matrix used for unfolding. The variations are also prop-
agated to the measurement of Emiss

T , which affects the acceptance 
of the MT > 50 GeV requirement.

Another important source of systematic uncertainty is the 
choice of the generator used in the unfolding procedure. The size 
of this uncertainty is assessed by repeating the unfolding pro-
cedure with a response trained on a separate simulated sample 
generated with sherpa 1.3.0. The absolute value of the difference 
between the data unfolded with a response matrix trained on
sherpa and with a response matrix trained on MadGraph + pythia

is treated as a symmetric uncertainty in the measurement.
Other minor sources of systematic uncertainty include the 

uncertainties in the background normalisation, the b-tagging 
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Table 1
Ranges of uncertainties for the measurement of dσ/dpT of the nth jet in events with n or more jets. The uncertainties displayed include the statistical uncertainty in the 
data minus the background, propagated through the unfolding procedure (Statistical), the jet energy scale and resolution (JES, JER), the choice of generator used in the 
unfolding procedure (Generator), the uncertainty due to a finite number of simulated events used to construct the response matrix (MC stat.), and all other systematic 
uncertainties (Other) detailed in Section 7, including pileup, integrated luminosity, background normalisation, b-tagging, muon momentum and resolution, trigger efficiency, 
muon identification.

n pT [GeV] Statistical [%] JES, JER [%] Generator [%] MC stat. [%] Other [%] Total [%]

1 30–850 0.1–3.2 3.4–24 0.9–9.6 0.2–11 2.3–6.6 4.5–29
2 30–550 0.4–2.4 4.6–12 1.6–13 0.8–11 2.9–5.9 6.9–21
3 30–450 0.6–16 6.0–23 2.7–48 1.0–45 4.5–11 9.4–73
4 30–210 1.6–10 11–15 6.4–21 2.4–23 7.2–26 16–43

efficiency, the modelling of the Wb contribution in the signal sim-
ulation, integrated luminosity, the pileup modelling, the trigger 
and object identification efficiencies, and the finite number of sim-
ulated events used to construct the response matrix. Background 
normalisation uncertainties are determined by varying the cross 
sections of the backgrounds within their theoretical uncertainties. 
For the Z + jets process, a normalisation uncertainty of 4.3% is 
calculated as the sum in quadrature of the factorisation/renormal-
isation scale and PDF uncertainties calculated in fewz [29]. For 
the diboson and single top-quark processes, uncertainties are cal-
culated with mcfm [30–33] to be 4% and 6%, respectively. The 
uncertainty in the tt̄ modelling is assessed by taking the differ-
ence between data and simulation in a control region with two or 
more b-tagged jets, and is estimated to be 5 to 12% for jet multi-
plicities of 2 to 6. The estimate of the multijet background has an 
uncertainty based on the limited number of events in the multijet 
sample and in the control regions where the multijet sample nor-
malisation is calculated, and other systematic variations affecting 
the backgrounds in the multijet control regions introduce varia-
tions in the multijet normalisation and template shape. For the 
b-tagging algorithm used to veto events containing b jets, uncer-
tainties in the data/simulation ratio of the b-tagging efficiencies 
are applied. For jets with pT > 30 GeV, these uncertainties range 
from 3.1 to 10.5%. An additional uncertainty is ascribed to the 
normalisation of the Wb content in the simulation by examin-
ing the agreement between data and simulation as a function of 
jet multiplicity in a control region defined by requiring exactly one 
b-tagged jet. An increase in the normalisation of the Wb process 
of 120% is considered, yielding an uncertainty in the measurement 
of 0.5 to 11% for jet multiplicities of 1 to 6. The uncertainty in the 
integrated luminosity is 2.2% [3]. An uncertainty in the modelling 
of pileup in simulation is determined by varying the number of 
simulated pileup interactions by 5% to account for the uncertainty 
in the luminosity and the uncertainty in the total inelastic cross 
section [44], as determined by a comparison of the number of re-
constructed vertices in Z → μμ events in data and simulation. 
Uncertainties in the differences between data and simulation ef-
ficiencies of the trigger, muon isolation, and muon identification 
criteria are generally less than 1%. An additional uncertainty due 
to the finite number of simulated events used to construct the re-
sponse matrix is calculated by randomly varying the content of 
the response matrix according to a Poisson uncertainty in each 
bin.

The effect of the systematic variations on the measured cross 
section as a function of the exclusive jet multiplicity is illustrated 
in Fig. 2. The uncertainties given in Fig. 2 are the total uncertainty 
for each jet multiplicity. The corresponding ranges of systematic 
uncertainty across bins of jet pT are given in Table 1.

8. Results

The cross sections for exclusive and inclusive jet multiplicities 
are given in Fig. 3. In Figs. 4–7 the differential cross sections are 

Fig. 2. The dominant systematic uncertainties in the measurement of the W + jets
cross section as a function of the exclusive jet multiplicity. The systematic uncer-
tainties displayed include the jet energy scale and resolution (JES, JER), the choice 
of generator used in the unfolding procedure (Generator), the statistical uncertainty 
in the data minus the background, propagated through the unfolding procedure 
(Statistical), the uncertainty due to a finite number of simulated events used to 
construct the response matrix (MC stat.), and all other systematic uncertainties 
(Other) detailed in Section 7, including pileup, integrated luminosity, background 
normalisation, b-tagging, muon momentum and resolution, trigger efficiency, muon 
identification. The uncertainties presented here correspond to the weighted average 
of the values shown in Table 1.

presented. The measured W + jets cross sections are compared to 
the predictions from several generators. We consider W + jets sig-
nal processes generated with MadGraph 5.1.1 using the CTEQ6L1 
PDF set, with sherpa 1.4.0 using the CT10 [45,46] PDF set, and with
BlackHat + sherpa [17] using the CT10 PDF set. Predictions from
MadGraph+pythia and sherpa are normalised to the NNLO inclu-
sive cross sections calculated with fewz [29]. The sherpa sample is 
a separate sample from that used for the evaluation of uncertain-
ties in Section 7. The MadGraph and sherpa predictions provide 
leading-order (LO) matrix element (ME) calculations at each jet 
multiplicity, which are then combined into inclusive samples by 
matching the ME partons to particle jets. Parton showering (PS) 
and hadronisation of the MadGraph sample is performed with
pythia 6.426 using the Z2 tune. The MadGraph + pythia calcula-
tion includes the production of up to four partons. The jet match-
ing is performed following the kT-MLM prescription [47], where 
partons are clustered using the kT algorithm with a distance pa-
rameter of D = 1. The kT clustering thresholds are chosen to be 
10 GeV and 20 GeV at the matrix-element and parton-shower 
level, respectively. The factorisation scale for each event is cho-
sen to be the transverse mass computed after kT-clustering of the 
event down to a 2 → 2 topology. The renormalisation scale for the 
event is the kT computed at each vertex splitting. The predictions 
from sherpa include the production of up to four partons. The 
matching between jets and partons is performed with the CKKW 
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Fig. 3. The cross section measurement for the exclusive and inclusive jet multiplicities, compared to the predictions of MadGraph 5.1.1 + pythia 6.426, sherpa 1.4.0, and
BlackHat + sherpa (corrected for hadronisation and multiple-parton interactions). Black circular markers with the grey hatched band represent the unfolded data measure-
ment and its uncertainty. Overlaid are the predictions together with their statistical uncertainties (Theory stat.). The BlackHat + sherpa uncertainty also contains theoretical 
systematic uncertainties (Theory syst.) described in Section 8. The lower plots show the ratio of each prediction to the unfolded data.

matching scheme [47], and the default factorisation and renormal-
isation scales are used.

The predictions from MadGraph + pythia and sherpa are 
shown with statistical uncertainties only. These MadGraph +
pythia and sherpa samples are processed through the Rivet

toolkit [48] in order to create particle level distributions, which 
can be compared with the unfolded data. The BlackHat + sherpa

samples represent fixed-order predictions at the level of ME par-
tons of W + n jets at NLO accuracy, for n = 1, 2, 3, 4, and 5 jets. 
Each measured distribution for a given inclusive jet multiplicity 
is compared with the corresponding fixed-order prediction from
BlackHat+ sherpa. The choice of renormalisation and factorisation 
scales for BlackHat + sherpa is Ĥ ′

T/2, where Ĥ ′
T ≡ ∑

m pm
T + EW

T , 
m represents the final state partons, and EW

T is the transverse 
energy of the W boson. Before comparing to data, a nonpertur-
bative correction is applied to the BlackHat + sherpa distribu-
tions to account for the effects of multiple-parton interactions and 
hadronisation. The nonperturbative correction is determined us-
ing MadGraph 5.1.1 interfaced to pythia 6.426 and turning on and 
off the hadronisation and multiple-parton interactions. The mag-
nitude of the nonperturbative correction is typically 1–5%, and is 
calculated for each bin of each measured distribution. The model 
dependence of the nonperturbative correction is negligible [49]. 
The BlackHat + sherpa prediction also includes uncertainties due 
to the PDF and variations of the factorisation and renormalisation 
scales. The nominal prediction is given by the central value of the 
CT10 PDF set, and the PDF uncertainty considers the envelope of 
the error sets of CT10, MSTW2008nlo68cl [50], and NNPDF2.1 [51]
according to the PDF4LHC prescription [52,53]. The factorisation 
and renormalisation scale uncertainty is determined by varying 
the scales simultaneously by a factor 0.5 or 2.0.

The unfolded exclusive and inclusive jet multiplicity distribu-
tions, shown in Fig. 3, are found to be in agreement, within un-

Table 2
Cross section measurements with statistical and systematic uncertainties for inclu-
sive and exclusive jet multiplicities up to 6 jets.

Jet multiplicity Exclusive σ [pb] Inclusive σ [pb]

1 384+15
−17 480+18

−20

2 79.1+6.2
−5.9 95.6+8.5

−8.0

3 13.6+1.9
−1.6 16.6+2.3

−2.0

4 2.48+0.40
−0.36 2.93+0.52

−0.48

5 0.382+0.097
−0.097 0.45+0.12

−0.12

6 0.056+0.020
−0.022 0.067+0.023

−0.026

certainties, with the predictions of the generators and with the 
NLO calculation of BlackHat + sherpa. Table 2 details the mea-
sured cross sections as a function of the inclusive and exclusive jet 
multiplicity.

The jet pT unfolded distributions for inclusive jet multiplicities 
from 1 to 4 are shown in Fig. 4. The predictions of BlackHat +
sherpa are in agreement with the measured distributions within 
the systematic uncertainties, while MadGraph+pythia is observed 
to overestimate the yields up to 50% (45%) for the first (sec-
ond) leading jet pT distributions at high-pT values. The predic-
tions from sherpa are found to agree well for the second-, third-, 
and fourth-leading jet pT distributions, while an excess of slightly 
more than one standard deviation can be seen at high-pT values 
for the leading jet pT distribution. Similar observations hold for 
MadGraph+pythia and sherpa predictions in the HT distributions 
for inclusive jet multiplicities of 1–4, as shown in Fig. 5. Since the
BlackHat + sherpa NLO prediction for HT (≥1 jet) is a fixed-order 
prediction with up to two real partons, contributions from higher 
jet multiplicities are missing, which results in an underestimation 
in the tail of the distribution [54]. Similar observations have been 
made with W + jets measurements at D0 [7] and ATLAS [4]. In 
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Fig. 4. The differential cross section measurement for the leading four jets’ transverse momenta, compared to the predictions of MadGraph 5.1.1 + pythia 6.426, sherpa

1.4.0, and BlackHat + sherpa (corrected for hadronisation and multiple-parton interactions). Black circular markers with the grey hatched band represent the unfolded data 
measurement and its uncertainty. Overlaid are the predictions together with their statistical uncertainties (Theory stat.). The BlackHat + sherpa uncertainty also contains 
theoretical systematic uncertainties (Theory syst.) described in Section 8. The lower plots show the ratio of each prediction to the unfolded data.

general, sherpa models the HT distributions better than other gen-
erators.

The distributions of the jet η and of the difference in azimuthal 
angle between each jet and the muon are shown in Figs. 6 and 7, 
respectively. The measurements of the jet η agree with predictions 
from all generators, with MadGraph + pythia and BlackHat +
sherpa performing best. The measurements of the �φ between 
the leading jet and the muon are underestimated by as much as 

38% by BlackHat + sherpa, with similar, but smaller, underestima-
tions in predictions from MadGraph + pythia and sherpa.

Examples of the variation in the BlackHat + sherpa prediction 
due to the choice of PDF are given in Fig. 8, in which the pre-
dictions with the MSTW2008nlo68cl, NNPDF2.1, and CT10 PDF sets 
are compared to the measurements from data. The distributions 
determined with the different PDF sets are consistent with one 
another.
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Fig. 5. The differential cross section measurement for HT for inclusive jet multiplicities 1–4, compared to the predictions of MadGraph 5.1.1 + pythia 6.426, sherpa 1.4.0, 
and BlackHat + sherpa (corrected for hadronisation and multiple-parton interactions). Black circular markers with the grey hatched band represent the unfolded data 
measurement and its uncertainty. Overlaid are the predictions together with their statistical uncertainties (Theory stat.). The BlackHat + sherpa uncertainty also contains 
theoretical systematic uncertainties (Theory syst.) described in Section 8. The lower plots show the ratio of each prediction to the unfolded data.

9. Summary

Measurements of the cross sections and differential cross sec-
tions for a W boson produced in association with jets in pp colli-
sions at a centre-of-mass energy of 7 TeV have been presented. The 
data were collected with the CMS detector during the 2011 pp run 
of the LHC, and correspond to an integrated luminosity of 5.0 fb−1. 
Cross sections have been determined using the muon decay mode 
of the W boson and were presented as functions of the jet mul-

tiplicity, the transverse momenta and pseudorapidities of the four 
leading jets, the difference in azimuthal angle between each jet 
and the muon, and the HT for jet multiplicities up to four. The 
results, corrected for all detector effects by means of regularised 
unfolding, have been compared with particle-level simulated pre-
dictions from pQCD.

Predictions from generators, MadGraph + pythia and sherpa, 
and NLO calculations from BlackHat + sherpa, describe the jet 
multiplicity within the uncertainties. The cross section as a func-
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Fig. 6. The differential cross section measurement for the pseudorapidity of the four leading jets, compared to the predictions of MadGraph 5.1.1 + pythia 6.426, sherpa

1.4.0, and BlackHat + sherpa (corrected for hadronisation and multiple-parton interactions). Black circular markers with the grey hatched band represent the unfolded data 
measurement and its uncertainty. Overlaid are the predictions together with their statistical uncertainties (Theory stat.). The BlackHat + sherpa uncertainty also contains 
theoretical systematic uncertainties (Theory syst.) described in Section 8. The lower plots show the ratio of each prediction to the unfolded data.

tion of the pT of the leading jet is overestimated by MadGraph +
pythia and sherpa, especially at high-pT. Some overestimation 
from MadGraph + pythia can also be observed in the second- and 
third-leading jet pT distributions. The cross sections as a func-
tion of pT predicted by BlackHat + sherpa agree with the mea-
surements within uncertainties. The predictions from BlackHat +
sherpa underestimate the measurement of the cross section as a 
function of HT for Njet ≥ 1, since the contribution from W + ≥3
jets is missing from an NLO prediction of W + ≥1 jet. The cross 

sections as a function of HT for Njet ≥ 2, 3, and 4 predicted by
BlackHat+sherpa agree with the measurements within the uncer-
tainties. The distributions of �φ between the leading jet and the 
muon are underestimated by all predictions for �φ values near 
zero, with the largest disagreement visible in BlackHat + sherpa. 
The distributions of �φ between the second-, third-, and fourth-
leading jets and the muon agree with all predictions within uncer-
tainties. No significant disagreement was found in the distributions 
of η of the four leading jets.
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Fig. 7. The differential cross section measurement in �φ(jetn, μ), for n = 1–4, compared to the predictions of MadGraph 5.1.1 + pythia 6.426, sherpa 1.4.0, and BlackHat +
sherpa (corrected for hadronisation and multiple-parton interactions). Black circular markers with the grey hatched band represent the unfolded data measurement and its 
uncertainty. Overlaid are the predictions together with their statistical uncertainties (Theory stat.). The BlackHat + sherpa uncertainty also contains theoretical systematic 
uncertainties (Theory syst.) described in Section 8. The lower plots show the ratio of each prediction to the unfolded data.
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