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Abstract 

Management of ecological disturbances requires an understanding of the time scale and 

dynamics of community responses to disturbance events. To characterize long-term seagrass bed 

responses to nutrient enrichment, we established six study sites in Florida Bay, USA. In 24 plots 

(0.25 m2) at each site, we regularly added nitrogen (N) and phosphorus (P) in a factorial design 

for seven years. Five of the six sites exhibited strong P limitation. Over the first two years, P 

enrichment increased Thalassia testudinum cover in the three most P-limited sites. After three 

years, Halodule wrightii began to colonize many of the P-addition plots, but the degree of 

colonization was variable among sites, possibly due to differences in the supply of viable 

propagules. Thalassia increased its allocation to aboveground tissue in response to P enrichment; 

Halodule increased in total biomass but did not appear to change its aboveground: belowground 

tissue allocation. Nutrient enrichment did not cause macroalgal or epiphytic overgrowth of the 

seagrass. Nitrogen retention in the study plots was variable but relatively low, whereas 

phosphorus retention was very high, often exceeding 100% of the P added as fertilizer over the 

course of our experiments. Phosphorus retentions exceeding 100% may have been facilitated by 

increases in Thalassia aboveground biomass, which promoted the settlement of suspended 

particulate matter containing phosphorus. Our study demonstrated that low-intensity pulse 

(short-term) disturbance events such as phosphorus enrichment can initiate a slow, ramped 

successional process that may alter community structure over many years.  

Key words: Aboveground and belowground biomass, epiphyte, eutrophication, macroalgae, 

nutrient, press, pulse, and ramp disturbances, seagrass  
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Introduction 

Differences among plant species in their ability to compete with other species and utilize 

resources can dictate community composition and successional patterns after disturbance events 

(Grime 1977). Disturbance can be broadly defined to include alterations in resources (Pickett and 

others 1989), such as changes in the availability of limiting nutrients that subsequently alter plant 

community structure and composition (Fourqurean and others 1995; Siemann and Rogers 2003). 

These alterations are often caused by anthropogenic nutrient enrichment (Vitousek and others 

1997), which can be characterized as pulse (short-term, discrete events), press (sudden events 

that maintain a constant level), or ramp (events that increase in intensity over time) disturbances 

depending on the intensity and persistence of the nutrient input (Lake 2000). The response of a 

system to any of these types of nutrient loading events is strongly dependent on landscape 

configuration and the availability of propagules (Lotze and others 2000), but in general, nutrient 

additions increase the biomass and growth rate of plants (Tilman 1987; Micheli 1999). Nutrient 

enrichment also frequently shifts the competitive balance from slower-growing species that 

dominate in low nutrient environments to faster-growing species (Duarte 1995; Bargali 1997).  

Urbanized and developed shorelines make coastal ecosystems such as seagrass beds 

vulnerable to anthropogenic impacts. Proximity to urbanized and cultivated terrestrial landscapes 

exposes seagrass beds to runoff replete with anthropogenic nutrients, which can subsequently 

alter vital ecological processes and economic functions of seagrass beds (Martinetto and others 

2006). Within seagrass beds, nutrient input often increases productivity and plant biomass (Lee 

and Dunton 2000) and facilitates the overgrowth or replacement of seagrass by fast-growing, 

opportunistic primary producers (Fourqurean and others 1995; McGlathery 2001).  

Nutrient enrichment in seagrass beds may cause changes that extend over many years, 

especially in oligotrophic systems. For example, in a small-scale pulsed nutrient addition 
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experiment in seagrass beds in Florida Bay, the slow-growing species Thalassia testudinum 

originally responded to fertilization with increases in density and plant size; these increases 

remained until the fertilized sites were colonized by the faster growing species Halodule wrightii 

(Powell and others 1989; Fourqurean and others 1995). After that colonization event, Thalassia 

biomass and density began to decline, and within three years, Halodule biomass exceeded that of 

Thalassia (Fourqurean and others 1995). However, primary production in the fertilized plots 

remained higher than the surrounding area because of the greater mass-specific productivity of 

Halodule, even 20 years after cessation of fertilization (Herbert and Fourqurean 2008).  

The fate of nutrients entering the system will have substantial impacts on ecosystem structure 

and function. If inputs of nitrogen and phosphorus, for example, are retained in the system, then 

even short-term pulsed or episodic deposition can have long-term impacts on community 

characteristics. If those nutrient inputs are quickly lost, then there will be a more rapid return to 

the base state. Herbert and Fourqurean (2008) found that the consequences of three years of 

fertilization, including increases in biomass, increases in biodiversity and enhanced primary 

productivity, persisted for over two decades following the cessation of fertilizer application in 

Florida Bay.  Therefore, it is important to understand the storage of nutrients in the system in 

order to predict the long-term impacts of short-term changes in nutrient input.  

Previous enrichment experiments performed at these sites have unequivocally demonstrated 

strong short-term responses (1.5 years) to phosphorus (P) enrichment at sites in eastern Florida 

Bay, where P addition increased Thalassia percent cover and productivity by approximately 

twofold (Armitage and others 2005). In contrast, Thalassia beds in western Florida Bay showed 

few responses to P addition on that time scale (Armitage and others 2005). However, the 

expected replacement of Thalassia with more opportunistic species like Halodule did not occur 

in that time frame (Powell and others 1989; Fourqurean and others 1995). Furthermore, the 
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storage of the experimental nutrient additions has not yet been quantified. Therefore, the 

objectives of the present study are to (1) characterize longer-term (seven years) response to 

experimental nutrient addition within the benthic producer community, and (2) quantify the fate 

of nutrients added to the system in order to better predict the long-term responses of seagrass bed 

structure to the low-intensity press disturbance events of phosphorus enrichment. 

Methods 

Study design 

To evaluate the long-term effects of N and P enrichment across a P-availability gradient 

within Everglades National Park in Florida Bay, we used a three-way repeated measures 

ANOVA design, where the factors were P addition, N addition, and site. The original study 

concept had two sites nested in each of three major regions of the Bay: Northeast, Interior-

Central, and Gulf, as defined by Zieman et al. (1989) based on macrophyte and sediment 

characteristics. However, subsequent analyses revealed that the region designation did not follow 

expected nutrient-limitation patterns (Armitage and others 2005). Therefore, we considered site 

to be a factor with six independent levels. In September 2002 we established six study sites (all 

depths < 2 m) in Florida Bay. The three eastern sites (Duck, South Nest, Bob Allen; see map in 

Digital Appendix 1) were characterized by a sparse, short T. testudinum canopy with some 

calcareous green macroalgae, primarily Penicillus spp. These three sites occurred in an area of 

severe P limitation (Fourqurean and Zieman 2002; Armitage and others 2005). Two middle sites 

(Rabbit Key, Nine Mile Bank) occurred in a region of intermediate P limitation (Fourqurean and 

Zieman 2002) and featured a dense, tall T. testudinum canopy and little macroalgae. The 

westernmost site (Sprigger Bank) was located in a region that may experience both N and P 

limitation and was characterized by a dense macroalgal-Syringodium filiforme (manatee grass)-T. 
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testudinum assemblage. At each site we established 24 0.25-m2 study plots demarcated with a 

PVC frame secured to the benthos at one meter intervals. 

We randomly assigned treatments (control [C], nitrogen only [N], phosphorus only [P], both 

nitrogen and phosphorus [NP]) to six plots per site (at Sprigger Bank, replication decreased to 

three due to the loss of 12 plots from erosion and boat disturbance over the course of the study). 

N was added in the form of slow release nitrogen fertilizer (Polyon, Pursell Technologies Inc., 

38-0-0) and P as granular phosphate rock (Multifos, IMC Global, Ca3(PO4)2). Loading rates of 

1.43 g N m-2 d-1 and 0.18 g P m-2 d-1 (molar N:P ratio 17.6:1) were selected based on potential 

sewage loading rates (MCSM 2001) and previous studies in the region (Ferdie and Fourqurean 

2004). We began bimonthly applications of fertilizer in September 2002 by sprinkling granular 

fertilizer evenly on the sediment surface and gently working it into the sediment by hand. 

Sediment in the control plots was similarly disturbed but no fertilizer was added. Benthic 

fertilizer applications ensured accessibility of nutrients to both aboveground and benthic primary 

producers (Ferdie and Fourqurean 2004; Mutchler and others 2004). Earlier studies confirmed 

that this protocol was effective in enriching sediment, seagrass tissue, and seagrass epiphytes 

(Armitage and others 2005). Bimonthly fertilization continued through April 2006, at which 

point a portion of each plot was destructively sampled for belowground biomass (see detailed 

methods below). After a 16-month recovery period, quarterly fertilization was resumed in 

August 2007 and continued through the end of the study in June 2009.  

Temporal patterns 

Every three months from October 2002 to August 2005, we recorded macrophyte percent 

cover, epiphyte biomass, benthic microalgal biomass, and seagrass and epiphyte tissue nutrient 

content. Macrophyte percent cover monitoring continued as frequently as logistics permitted; 
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measurements were taken in September 2007, April 2008, September 2008, December 2008, and 

June 2009.   

We determined macrophyte (seagrass and macroalgae) percent cover using a modified 

Braun-Blanquet (BB) abundance scale used for extensive monitoring in this region (Fourqurean 

and others 2001). On this scale, 0 = absent; 0.1 = one individual, <5% cover; 0.5 = few 

individuals, <5% cover; 1 = many individuals, <5% cover; 2 = 5–25% cover; 3 = 25–50% cover; 

4 = 50–75% cover; and 5 = 75–100% cover. Seagrass cover measurements began in October 

2002; macroalgal measurements were initiated in February 2004. 

We measured seagrass photosynthetic epiphyte biomass by collecting two T. testudinum 

short-shoots from each plot and removing the epiphytes by gently scraping the leaves with a 

razor blade. Epiphytes were freeze dried and pigments extracted with 90% acetone. The 

chlorophyll a (chl a) concentration was determined using a Shimadzu RF-Mini 150 fluorometer 

with low bandwidth filters (Welschmeyer 1994) following calibration with a chl a standard using 

a Shimadzu UV Mini 1240 spectrophotometer and the spectrophotometric equations of Jeffrey 

and Humphrey (1975). Epiphyte biomass is reported as µg chl a cm-2 of seagrass leaf. Due to 

logistical constraints, epiphytes were collected quarterly from October 2002 through August 

2005 and in April 2006 and April 2008. 

We measured the N and P content and calculated the molar N:P ratio of dried seagrass leaves 

for each of the sampling events through April 2006. N contents were determined using a CHN 

analyzer (Fisons NA1500). P contents were determined by a dry-oxidation, acid hydrolysis 

extraction followed by a colorimetric analysis of phosphate concentration of the extract 

(Fourqurean and others 1992a).  

All data collected over time were analyzed with three-way repeated measures ANOVA, 

where the fixed factors were ± P, ± N, and site. Variances were tested for homoscedasticity with 
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the Fmax test and data were log transformed to conform to the assumptions of ANOVA. To 

compensate for potential violations of sphericity in the data, Greenhouse-Geisser corrections are 

reported. 

Biomass and nutrient budget 

To assess macrophyte (seagrass and macroalgae) and epiphyte biomass responses to the 

enrichment treatments, we destructively sampled a portion of each plot in April 2006. Using a 

circular core (15 cm diameter) to subsample biomass in each plot, we removed all aboveground 

and belowground tissue to a depth of 15 cm. Cores were frozen pending processing in the lab. 

Plants were separated by species, and for seagrass, tissue was divided into aboveground 

(photosynthetic) and belowground tissue (rhizomes + roots + other non-photosynthetic tissue). 

Epiphytes were removed from seagrass leaves by gently scraping with a razor blade. Macroalgal 

tissue was rinsed to remove adhered sediments but epiphytes were not removed from the 

complex thalli. Seagrass and macroalgae tissues were dried at 60˚C and weighed to determine 

biomass.  

To determine the fate of added nutrients, we recorded the N and P content of each component 

of the system. Following the collection of biomass cores in April 2006, we measured the N and P 

content (as described above) of dried seagrass (aboveground and belowground), macroalgal and 

epiphyte tissues. Sediment cores were not collected in April 2006, so we estimated sediment N 

and P content using sediment nutrient data from cores (1 cm diameter, 5 cm deep) that were 

collected from each plot in February 2004. Since these cores were taken earlier in the study, it is 

likely that we underestimated the sediment nutrient content at the time the plant biomass was 

recorded. 

To determine the long-term importance of nutrient enrichment, we calculated the retention 

efficiency of nitrogen and phosphorus within 0.25 m3 compartments (50 x 50 x 100 cm) 
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containing 200 L of water column and 50 L of sediment (sensu Ferdie and Fourqurean 2004). 

The components included in the calculation were seagrass leaves (separated by species), seagrass 

belowground tissue (separated by species), macroalgae, T. testudinum epiphytes, sediment, and 

water column. Quantities of nutrients in each component were calculated as nutrient content as a 

percent of dry weight and biomass (g dry weight). Average values for each treatment at each site 

were used in the budget calculation. Water column nutrient concentrations from April 2006 were 

obtained from the Southeast Environmental Research Center Water Quality Monitoring Network 

at Florida International University. Calculations included net system retention ([total system 

nutrient (g), enriched] - [total system nutrient (g), control] and retention efficiency ([net system 

retention (g)/mass applied (g) x 100%). 

Following this destructive sampling of biomass, the plots were undisturbed (no sampling or 

fertilization) for a period of 16 months, after which the holes created by the core extractions had 

filled in and were no longer visible, and the seagrass canopies had apparently recovered. The 

enrichment effects were still visually evident, so we resumed the study in August 2007 and 

continued with quarterly fertilization and semiannual monitoring of plant percent cover. 

Biomass data were analyzed with a three-way fixed factor ANOVA (P addition, N addition, 

and site) following verification of homoscedasticity with the Fmax test. Biomass data were log 

transformed if necessary to conform to the assumptions of ANOVA. 

Results 

Temporal responses  

Seagrass leaf nutrient content reflected nutrient treatments, though the magnitude of the 

responses varied among sites and over time. A highly significant date x site x P interaction (df = 

39, F = 2.3, p < 0.001) was driven by the large decrease in Thalassia leaf N:P ratio in P addition 

treatments at all sites except for the westernmost site, Sprigger Bank (Fig. 1, Digital Appendix 
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2a). The magnitude of the response to P addition was largest at the three eastern sites and 

intermediate at Rabbit Key and Nine Mile Bank. A significant 4-way interaction between date, 

site, P addition, and N addition (df = 31, F = 1.5, p = 0.031) was driven by higher leaf N:P ratios 

in NP relative to P only treatments at Duck and Bob Allen Keys on most dates.  

The response of Thalassia percent cover (as represented by the Braun-Blanquet cover score) 

varied with site and over time (Digital Appendix 2b). Thalassia cover increased in P addition 

treatments (P alone and with nitrogen), but only at the three eastern sites (date x site x P df = 52, 

F = 7.6, p < 0.001; Fig. 2). At those sites, Thalassia response to P addition peaked approximately 

two years into the study (September 2004-February 2005), after which Thalassia cover declined 

to control levels in all treatments at most sites. The exception was Bob Allen Key, where 

Thalassia cover decreased but remained measurably higher in P addition plots. 

There were no interactions between N and P addition for Thalassia cover, but there was a 

significant date x site x N addition interaction (df = 52, F = 1.7, p = 0.001; Digital Appendix 2b). 

This interaction may have been driven by higher Thalassia cover in NP relative to P-only 

treatments at some sites (Duck, Bob Allen) on some dates (May 2004 – May 2005) (Fig. 2). 

There was a significant interaction between date, site, and P addition for Halodule percent 

cover (df = 23, F = 4.2, p < 0.001; Digital Appendix 2b). This interaction was driven by a 

proliferation of Halodule in P addition plots starting in the fourth year of the study at all sites 

except Sprigger Bank (Fig. 2). Halodule rarely occurred in our control or N only plots. In two of 

the three eastern sites (Duck and Bob Allen), Halodule cover was equivalent to or higher than 

Thalassia cover. There were no significant N effects on Halodule cover, and no N x P 

interactions. 

A third species of seagrass, Syringodium filiforme, was common at the westernmost site, 

Sprigger Bank. No statistical analyses were performed on its cover because it occurred only at 
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that site, but qualitative observations suggest that it was consistently more abundant than 

Thalassia (Fig. 2f). Halodule was not found at Sprigger Bank on any of the sampling dates. 

Cover of the two dominant macroalgal groups, calcified green algae and uncalcified red 

algae, varied over time, though the nature of the temporal changes differed between sites (red 

macroalgae date x site df = 7, F = 37.6, p < 0.001; green macroalgae date x site df = 7, F = 11.7, 

p < 0.001; Digital Appendix 2c, Fig. 3). Overall, macroalgal cover was higher at Sprigger Bank 

than at all other sites. There were marginally significant site x P (df = 1, F = 4.4, p = 0.045) and 

site x N (df = 1, F = 4.6, p = 0.042) interactions for red macroalgae (Digital Appendix 2c), but 

the magnitude of the site and date effects were much larger than any nutrient addition effects. 

There were no N x P interactions for either type of macroalgae. 

Thalassia epiphyte biomass (µg chl a cm-2 seagrass leaf) was lower in P and NP treatments 

on some dates at Bob Allen (date x site x P df = 18, F = 3.0, p < 0.001; Digital Appendix 2d, Fig. 

4). Epiphyte biomass was higher at Sprigger Bank than at all other sites, and the magnitude of 

the site effect was much larger than the temporally variable P-addition effect. Epiphyte biomass 

did not change in response to nitrogen addition, and there were no N x P interactions. 

Biomass 

Aboveground Thalassia biomass was impacted by P addition, but that effect varied among 

sites, as revealed by a significant site x P interaction (df = 5, F = 8.8, p < 0.001; Digital 

Appendix 2e, Fig. 5a). Relative to controls, aboveground Thalassia biomass was 2.8-6.7 times 

higher in P-addition plots at the three eastern bay sites, Duck, South Nest, and Bob Allen. There 

was no substantial change in aboveground biomass among treatments at the three western sites. 

The effect of P addition on belowground Thalassia biomass varied significantly among sites 

(site x P df = 5, F = 5.2, p < 0.001; Digital Appendix 2e, Fig. 5b). Belowground biomass was 1.7 

times higher in P addition plots at Bob Allen Keys and about 25% lower in P addition plots at 
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Rabbit and Nine Mile Bank. There was no substantial change in absolute belowground biomass 

among treatments at the other three sites. 

The effect of P addition on the ratio of aboveground to belowground Thalassia biomass also 

varied significantly among sites (site x P df = 5, F = 4.8, p = 0.001; Digital Appendix 2e, Fig. 

5c). Relative to controls, the ratio was 3.3-4.5 times higher (i.e., more relative aboveground 

biomass) in P-addition plots at the three eastern bay sites. There was no substantial change in the 

ratio among treatments at the three western sites. 

Halodule biomass was patchy and was entirely absent from a large number of plots; 

precluding statistical analyses. However, Halodule biomass was substantially higher in P-

addition plots (alone or with nitrogen) at Duck and Bob Allen Keys than in control or nitrogen-

only plots (Fig. 6). At Rabbit Keys and Nine Mile Bank, Halodule biomass was highest in NP 

addition plots. Halodule was absent from Sprigger bank and occurred in only one P-addition plot 

at South Nest Key.  

Macroalgal biomass was highly variable among sites, precluding statistical analyses. Overall, 

there was no macroalgal proliferation or overgrowth of the seagrasses in enriched plots. 

Calcareous green algae (Penicillus spp. and Halimeda spp.) were the most common genera, with 

substantially higher biomass at Sprigger Bank than at all other sites (Fig. 7). Uncalcified red 

algae (e.g., Polysiphonia spp., Laurencia intricata, Palisada poiteaui) were more common in the 

eastern bay (Fig. 7). 

Nutrient retention budget 

Nitrogen and phosphorus concentrations in seagrass above- and belowground tissue, 

macroalgal tissue, Thalassia epiphytes, soil, and the water column are reported in Digital 

Appendix 3. There was little (< 31%) nitrogen retention in nitrogen-only plots at most sites, 

except for one of the western sites, Nine Mile Bank (Table 1). At the three eastern sites, nitrogen 
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retention was higher (24-85%) in plots where both nitrogen and phosphorus were added. Nearly 

all of the phosphorus added to the experimental plots was retained in the study plots, particularly 

within the sediment and belowground Thalassia tissue (Table 1). In most cases, phosphorus 

retention appeared to be greater than 100%, suggesting that the plants or soils were scavenging 

phosphorus from other sources.  

Discussion 

The release from phosphorus limitation caused both acute and longer-term effects on 

community composition and biomass. Immediate effects of enrichment included an increase in 

Thalassia cover, but these short-term effects did not reflect the long-term, ecosystem level 

responses. Rather, the most striking outcome of nutrient enrichment in our study was a gradual 

shift in seagrass species from Thalassia to Halodule, with a concurrent increase in Halodule 

biomass. As an ecological opportunist with a high potential intrinsic rate of growth, Halodule has 

been shown to overgrow Thalassia in nutrient-replete conditions in Florida Bay (Fourqurean and 

others 1995).  

Despite the strong Halodule response to P addition, the degree of Halodule colonization was 

independent of the severity of phosphorus limitation at each site. Heterogeneity in the supply of 

viable propagules may have driven the differences in Halodule colonization among sites (Lotze 

and others 2000). One of the most P-limited sites, South Nest Key, had little Halodule 

colonization until the seventh year of the study, whereas the other severely P-limited sites 

experienced substantial Halodule colonization after three years of fertilization. In two of the less 

P-limited sites, Rabbit Key and Nine Mile Bank, Halodule colonized a few plots after one year 

of fertilization, but did not spread into other plots during the rest of the study period. This spatial 

heterogeneity in Halodule recruitment, both within and among sites, strongly suggests that the 

community response to nutrient enrichment is largely influenced by the existing bank of viable 
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seagrass material and the stochastic landings of opportunistic Halodule propagules in our plots. 

Propagule dispersal has been shown to influence species composition in wetland (Campbell and 

others 2003), marine (Reed and others 2000), and terrestrial (Dosch and others 2007) habitats.  

The high level of small- (within sites) and large-scale (among sites) spatial heterogeneity in 

Halodule density suggests that the supply of propagules via dispersal is highly variable, even 

when potential parent plants are established close by (Fourqurean and others 1995).  

Overgrowth of fast-growing macro- or epiphytic algae is a commonly reported manifestation 

of enrichment in seagrass beds (e.g., Duarte 1995; Valiela and others 1997; Hauxwell and others 

2001; Hughes and others 2004), but we did not detect any algal proliferation in enriched plots 

despite the high nutrient loading rates and long duration of our experiments.  Our results parallel 

other regional studies of the controls of epiphytic and macroalgal abundance and further suggests 

that algal loads do not universally increase in seagrass beds during eutrophication. In Florida 

Bay, nutrient availability explained only a small proportion of the variation in epiphyte loads 

(Frankovich and Fourqurean 1997), and in a recent analysis, epiphyte loads were independent of 

natural gradients in nutrient availability across the seagrass beds of southern Florida (Fourqurean 

and others 2010). Macroalgal species composition was highly variable among sites (Armitage 

and others 2005; Armitage and Fourqurean 2009), and this uneven species distribution may have 

obscured a bay-level macroalgal response to nutrients. Alternatively, nutrient enrichment may 

have increased the nutritional quality of algal tissue, subsequently stimulating herbivory and 

effectively preventing algal overgrowth (Heck and others 2006). 

Thalassia increased its allocation to aboveground biomass in enriched treatments, consistent 

with fertilization responses observed in other seagrass species (e.g., Short 1983; Perez and others 

1994; Lee and Dunton 1999). Similar allocation strategies in nutrient-replete conditions have 

been detected in terrestrial grassland systems (Haase and others 2008; Johnson and others 2008). 
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Our study also agrees with previous work showing that enrichment does not cause Halodule to 

increase its allocation to aboveground tissue (Dunton 1996), although total Halodule biomass in 

control and nitrogen-only plots was very low, limiting our ability to accurately calculate 

aboveground: belowground biomass ratios in those treatments.  

A substantial portion of the nutrients that were experimentally added to this system were 

retained in the sediment and belowground seagrass tissue, similar to findings at sites on the 

ocean side of the Florida Keys (Ferdie and Fourqurean 2004). Although the sediment and root 

tissue contained higher absolute quantities of nitrogen than of phosphorus, percent retention of 

phosphorus was remarkably high, often over 100% of the P added as fertilizer over the course of 

our experiments. Furthermore, we likely underestimated sediment nutrient content because those 

measurements were collected earlier in the study. Therefore, our determinations of P content in 

the sediment are conservative and suggest that P retention may be even higher than we 

calculated. Organic acid exudates from Thalassia roots can extract phosphorus bound to 

carbonate sediments like those in Florida Bay (Long and others 2008). Therefore, the dense 

aggregations of Thalassia roots in P-enriched plots may have been able to scavenge phosphorus 

from pools deeper in the sediment (Holmer and others 2006). Accordingly, the highest P 

retention (> 200%) in our study occurred in the two sites with the highest seagrass biomass 

(Rabbit Key and Nine Mile Bank, Fig. 5).  

An alternative or complimentary mechanism driving the greater than 100% phosphorus 

retention rates may be linked to the entrapment of dissolved inorganic phosphorus (DIP) in the 

dense seagrass beds in P-enriched treatments. In carbonate environments, DIP quickly binds to 

particulate matter and settles to the substrate (de Kanel and Morse 1978). Further, seagrass 

ecosystems trap sediments and organic matter from the water column, so that on average, 50% of 

the organic matter deposited in seagrass beds worldwide comes from allochthonous sources 
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(Kennedy and others in review). These sediments contain both organic and inorganic P. Since the 

rate of particle trapping increases in denser seagrass beds (Eckman 1983; Boström and Bonsdorff 

2000), the increased aboveground seagrass biomass in P-addition plots may have accelerated P 

capture from the water column. 

At most sites, phosphorus retention was greater than 100%, but the westernmost site, 

Sprigger Bank, had relatively low (< 67%) P retention. We may have underestimated sediment P 

content, suggesting that absolute P retention may actually be higher than 67%. Nevertheless, 

Sprigger Bank had markedly lower P retention relative to the other five study sites. This is likely 

a consequence of the higher energy environment of Sprigger Bank, which receives higher tidal 

exchange and wave energy than our other sites within the protected waters of Florida Bay.  This 

higher energy environment probably led to increased sediment resuspension and the loss of shed 

seagrass leaves, compared to the more quiescent inner bay sites. Similarly, Ferdie and 

Fourqurean (2004) found P retention was much higher in protected inshore sites compared with 

more exposed sites further offshore in the backreef environment of the Florida Keys. In addition, 

even though nutrient uptake rates tend to be higher in high velocity environments (Morris and 

others 2008), most of the plant biomass at the Sprigger site was macroalgae (Fig. 7). 

Belowground seagrass biomass, where much of the phosphorus was retained in the other sites, 

was quite low (Fig. 5b), limiting the size of the potential P sink at that site.  

In the oligotrophic Florida Bay environment, Thalassia is the dominant seagrass species in 

Florida Bay. Thalassia dominance in nutrient-poor conditions is likely due to its low demand for 

phosphorus, relative to Halodule demands (Fourqurean and others 1992b). In enriched 

conditions, Halodule proliferation and subsequent decreases in Thalassia abundance may be 

attributable to light competition, where Halodule production of aboveground runners limited the 

light available to the Thalassia canopy underneath it (Fourqurean and others 1995).  
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The colonization-competition theory of community organization predicts that the initial 

colonizing species after a disturbance will be the inferior competitor (Tilman and Wedin 1991). 

Although Halodule is generally considered an opportunistic species that quickly colonizes 

following physical disturbances (Gallegos and others 1994; Robbins and Bell 2000; Sheridan 

2004; Di Carlo and Kenworthy 2008), in this study, Halodule was slow to colonize, probably due 

to the small size and patchiness of a viable propagule supply. Furthermore, Halodule persisted in 

the enriched plots for an extended period, possibly because P concentrations in the sediment can 

remain high for decades following enrichment (Herbert and Fourqurean 2008). Changes in 

resource levels have been shown to facilitate species invasions in grasslands as well, where 

opportunistic species can capitalize on increased nutrient availability and, once established, 

accelerate the displacement of the species that were previously present (Siemann and Rogers 

2003).  

The time scale of species shifts in response to ecosystem disturbances is linked to several 

factors, including the supply of viable propagules (Lotze and others 2000), competitive dynamics 

(Fourqurean and others 1995; Rose and Dawes 1999), and resource limitation (Armitage and 

others 2005). In some cases, communities can recover more quickly from occasional pulsed 

disturbance events than from long-term, low-intensity press disturbances (Detenbeck and others 

1992). In Florida Bay, however, even short-term disturbance events such as phosphorus 

enrichment can initiate a slow, ramped successional process that will continue over many years, 

possibly decades, because of the efficient retention of the limiting resource, phosphorus, in the 

ecosystem (Herbert and Fourqurean 2008). This extended time scale must be considered in the 

management and monitoring of disturbances.  
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Figure and table captions 

 

Table 1: Nutrient retention budget for plots with nitrogen (N) and/or phosphorus (P) added at six 

sites in Florida Bay. Budget was calculated in April 2006 after 3.5 years of experimental 

fertilization. Retention efficiencies are reported in percentages; all other units are in grams within 

0.25 m3 compartments (50 x 50 x 100 cm) containing 200 L of water column and 50 L of 

sediment. Average plant and sediment values for each treatment are used in the budget. 

Figure 1: Changes in the molar N:P ratio of Thalassia testudinum aboveground tissue over time 
and in response to nutrient (nitrogen, N and phosphorus, P) enrichment. Sites are listed in order 
from east to west. Bars represent standard error.  
  
Figure 2: Changes in Thalassia testudinum and Halodule wrightii Braun-Blanquet percent cover 
score over time and in response to nutrient enrichment. There were no significant nitrogen 
effects and no nitrogen x phosphorus interactions; therefore, only control and nitrogen + 
phosphorus treatments are shown for clarity. Sites are listed in order from east to west. Bars 

represent standard error. φNote that grey symbols at Sprigger represent Syringodium filiforme; 
Halodule was absent at that site. 
 
Figure 3: Changes in uncalcified red and calcareous green macroalgae Braun-Blanquet percent 
cover score over time and in response to nutrient enrichment. There were no significant nitrogen 
x phosphorus interactions; therefore, only control and nitrogen + phosphorus treatments are 
shown for clarity. Sites are listed in order from east to west. Bars represent standard error.  
 

Figure 4: Changes in Thalassia testudinum epiphyte chlorophyll a concentration (µg cm-2 of 
seagrass leaf) over time and in response to nutrient (nitrogen, N and phosphorus, P) enrichment. 
Sites are listed in order from east to west. Bars represent standard error.  
 
Figure 5: Thalassia testudinum aboveground and belowground biomass (g/m2) at six sites after 
four years of nutrient (nitrogen, N and phosphorus, P) enrichment. Bars represent standard error. 
Note different y-axes. 
 
Figure 6: Halodule wrightii aboveground and belowground biomass (g/m2) at six sites after four 
years of nutrient (nitrogen, N and phosphorus, P) enrichment. Bars represent standard error. Note 
different y-axes. 
 
Figure 7: Macroalgal aboveground biomass (g/m2) at six sites after four years of nutrient 
enrichment. Note different y-axis scale for Sprigger (f). 
 
Digital Appendix 1: Map of Florida Bay and study sites. 
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Table 1 

Duck             

  Nitrogen  Phosphorus  

Treatment C N NP C P NP 

Sediment 61.4 140.2 145.6 2.1 56.3 50.6 

Thalassia aboveground tissue 5.2 10.4 25.5 0.2 1.3 1.7 

Thalassia belowground tissue 61.0 52.5 72.6 1.4 8.9 7.6 

Other seagrass aboveground tissue 0.0 0.0 8.0 0.0 0.2 0.5 

Other seagrass belowground tissue 0.0 0.4 19.1 0.0 0.5 2.2 

Macroalgae 9.2 1.9 1.2 0.1 0.0 0.0 

Thalassia epiphytes 0.5 0.7 1.0 0.0 0.1 0.1 

Water 0.1 0.1 0.1 0.0 0.0 0.0 

Total system 137.3 206.1 273.0 3.8 67.2 62.7 

Net retention  68.8 135.7  63.4 58.9 

Mass applied  376.3 376.3  47.3 47.3 

Retention efficiency (%)  18.3 36.1  134.2 124.6 

          

S Nest         

  Nitrogen  Phosphorus  

Treatment C N NP C P NP 

Sediment 43.0 49.0 127.0 1.5 38.5 49.8 

Thalassia aboveground tissue 16.9 15.2 44.8 0.4 2.2 2.0 

Thalassia belowground tissue 43.8 61.2 61.0 0.8 7.6 7.5 

Other seagrass aboveground tissue 0.0 0.0 0.0 0.0 0.0 0.0 

Other seagrass belowground tissue 0.0 0.0 0.0 0.0 0.0 0.0 

Macroalgae 6.2 3.5 4.8 0.1 0.1 0.1 

Thalassia epiphytes 1.3 1.5 1.8 0.1 0.2 0.2 

Water 0.1 0.1 0.1 0.0 0.0 0.0 

Total system (g) 111.4 130.4 239.5 2.9 48.6 59.5 

Net retention (g)  19.1 128.2  45.8 56.6 

Mass applied (g)  376.3 376.3  47.3 47.3 

Retention efficiency (%)  5.1 34.1  96.8 119.8 
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Bob Allen         

  Nitrogen  Phosphorus   

Treatment C N NP C P NP 

Sediment 108.2 161.1 281.8 4.1 45.3 40.6 

Thalassia aboveground tissue 9.9 4.4 58.0 0.2 3.1 2.5 

Thalassia belowground tissue 45.8 21.5 124.5 1.0 17.0 11.1 

Other seagrass aboveground tissue 0.0 0.0 6.2 0.0 0.3 0.2 

Other seagrass belowground tissue 0.7 0.0 11.3 0.0 0.9 0.8 

Macroalgae 1.6 0.0 4.8 0.0 0.1 0.2 

Thalassia epiphytes 0.1 0.0 0.8 0.0 0.1 0.0 

Water 0.1 0.1 0.1 0.0 0.0 0.0 

Total system (g) 166.3 187.1 487.6 5.3 66.8 55.5 

Net retention (g)  20.8 321.2  61.5 50.2 

Mass applied (g)  376.3 376.3  47.3 47.3 

Retention efficiency (%)  5.5 85.4  130.2 106.3 

          

Rabbit         

  Nitrogen  Phosphorus   

Treatment C N NP C P NP 

Sediment 340.7 432.6 331.6 13.1 201.5 191.6 

Thalassia aboveground tissue 57.1 69.4 69.9 2.2 3.7 4.6 

Thalassia belowground tissue 226.8 236.9 217.3 12.0 41.2 37.1 

Other seagrass aboveground tissue 0.0 0.0 3.5 0.0 0.0 0.2 

Other seagrass belowground tissue 0.0 0.0 9.7 0.0 0.0 1.2 

Macroalgae 0.0 0.0 0.0 0.0 0.1 0.0 

Thalassia epiphytes 2.0 3.4 3.2 0.2 0.5 0.8 

Water 0.0 0.0 0.0 0.0 0.0 0.0 

Total system (g) 626.6 742.4 635.2 27.5 247.0 235.6 

Net retention (g)  115.7 8.6  219.5 208.1 

Mass applied (g)  376.3 376.3  47.3 47.3 

Retention efficiency (%)  30.8 2.3  464.6 440.4 

       

       

       

       

       

       

       

       

Table 1 (continued): 
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Nine Mile         

  Nitrogen  Phosphorus   

Treatment C N NP C P NP 

Sediment 258.4 652.1 361.7 15.0 175.7 95.9 

Thalassia aboveground tissue 43.5 84.4 53.7 1.4 3.0 3.0 

Thalassia belowground tissue 240.1 262.4 200.7 11.6 23.8 27.4 

Other seagrass aboveground tissue 0.0 0.3 5.7 0.0 0.0 0.2 

Other seagrass belowground tissue 0.0 1.1 26.5 0.0 0.0 1.1 

Macroalgae 0.6 0.0 0.0 0.0 0.0 0.0 

Thalassia epiphytes 2.2 3.4 2.4 0.3 0.3 0.3 

Water 0.0 0.0 0.0 0.0 0.0 0.0 

Total system (g) 544.9 1003.7 650.6 28.3 202.8 127.8 

Net retention (g)  458.8 105.8  174.4 99.4 

Mass applied (g)  376.3 376.3  47.3 47.3 

Retention efficiency (%)  121.9 28.1  369.2 210.4 

 

Sprigger         

  Nitrogen  Phosphorus   

Treatment C N NP C P NP 

Sediment 107.8 134.3 99.2 19.0 41.1 37.5 

Thalassia aboveground tissue 2.3 0.0 5.8 0.2 0.8 0.4 

Thalassia belowground tissue 9.6 11.7 15.8 2.9 5.0 3.1 

Other seagrass aboveground tissue 15.9 51.1 39.0 1.5 2.6 4.3 

Other seagrass belowground tissue 58.1 83.9 62.5 9.3 13.3 9.2 

Macroalgae 25.2 28.4 38.3 0.9 2.1 1.7 

Thalassia epiphytes 0.7 0.2 0.2 0.1 0.1 0.0 

Water 0.0 0.0 0.0 0.0 0.0 0.0 

Total system (g) 219.6 309.6 260.9 33.8 65.1 56.3 

Net retention (g)  89.9 41.2  31.3 22.5 

Mass applied (g)  376.3 376.3  47.3 47.3 

Retention efficiency (%)  23.9 11.0  66.3 47.5 

 

 

 

  

Table 1 (continued): 
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Digital Appendix 2: Summaries of statistical results. 
 
Digital Appendix 2a: Summary of three-way repeated measures ANOVA for the effects of site, nitrogen 
(N) addition, and phosphorus (P) addition on Thalassia testudinum leaf N:P ratio. Mean square and df 
values for within-subjects effects are adjusted with the Greenhouse-Geisser correction. Bold indicates 
statistically significant effects at p ≤ 0.05.  
 

 df MS F p 
Within-subjects effects    
Date 8 6590.2 44.2 <0.001 
Date*Site 39 1736.7 11.7 <0.001 
Date*P 8 2978.4 20.0 <0.001 
Date*N 8 117.4 0.8 0.611 
Date*P*N 8 202.6 1.4 0.213 
Date*Site*P 39 341.6 2.3 <0.001 
Date*Site*N 39 121.4 0.8 0.783 
Date*Site*P*N 31 230.7 1.5 0.031 
Error 548 149.0   
Between-subjects effects    
Site 5 39693.3 307.5 <0.001 
P 1 139991.0 1084.5 <0.001 
N 1 6164.3 47.7 <0.001 
P*N 1 56634 4.4 0.04 
Site*P 5 7418.9 57.5 <0.001 
Site*N 5 293.1 2.3 0.057 
Site*P*N 4 223.9 1.7 0.152 
Error 70 129.1   
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Digital Appendix 2b: Summary of three-way repeated measures ANOVA for the effects of site, nitrogen 
(N) addition, and phosphorus (P) addition on (a) Thalassia testudinum and (b) Halodule wrightii Braun-
Blanquet cover scores. Mean square and df values for within-subjects effects are adjusted with the 
Greenhouse-Geisser correction. Bold indicates statistically significant effects at p ≤ 0.05.   
(a) Thalassia testudinum 

 df MS F p 
Within-subjects effects    
Date 10 0.32 51.3 <0.001 
Date*Site 52 0.10 15.9 <0.001 
Date*P 10 0.08 13.5 <0.001 
Date*N 10 0.01 1.8 0.051 
Date*P*N 10 0.01 0.9 0.548 
Date*Site*P 52 0.05 7.6 <0.001 
Date*Site*N 52 0.01 1.7 0.001 
Date*Site*P*N 52 0.01 1.3 0.070 
Error 1127 0.01   
Between-subjects effects    
Site 5 7.90 238.4 <0.001 
P 1 2.31 69.6 <0.001 
N 1 0.02 0.6 0.457 
P*N 1 0.02 0.6 0.427 
Site*P 5 0.55 16.7 <0.001 
Site*N 5 0.05 1.3 0.246 
Site*P*N 5 0.01 0.4 0.871 
Error 108 0.03   
(b) Halodule wrightii 

 df MS F p 
Within-subjects effects    
Date 5 1.09 74.1 <0.001 
Date*Site 23 0.15 10.3 <0.001 
Date*P 5 0.44 29.5 <0.001 
Date*N 5 0.01 0.9 0.493 
Date*P*N 5 0.01 0.44 0.802 
Date*Site*P 23 0.06 4.2 <0.001 
Date*Site*N 23 0.01 0.5 0.976 
Date*Site*P*N 23 0.01 0.7 0.869 
Error 544 0.01   
Between-subjects effects    
Site 5 0.39 11.3 <0.001 
P 1 1.52 44.2 <0.001 
N 1 0.07 2.2 0.142 
P*N 1 0.02 0.5 0.476 
Site*P 5 0.15 4.3 0.001 
Site*N 5 0.02 0.7 0.654 
Site*P*N 5 0.02 0.7 0.625 
Error 120 0.03   
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Digital Appendix 2c: Summary of three-way repeated measures ANOVA for the effects of site, nitrogen 
(N) addition, and phosphorus (P) addition on (a) uncalcified red macroalgae and (b) calcified green 
macroalgae Braun-Blanquet cover scores. Mean square and df values for within-subjects effects are 
adjusted with the Greenhouse-Geisser correction. Bold indicates statistically significant effects at p ≤ 
0.05.  
(a) Uncalcified red macroalgae 

 df MS F p 
Within-subjects effects    
Date 7 0.35 35.4 <0.001 
Date*Site 7 0.37 37.6 <0.001 
Date*P 7 0.01 0.7 0.636 
Date*N 7 0.01 1.2 0.314 
Date*P*N 7 0.01 1.4 0.219 
Date*Site*P 7 0.01 1.4 0.214 
Date*Site*N 7 0.02 1.6 0.129 
Date*Site*P*N 7 0.01 0.8 0.608 
Error 185 0.01   
Between-subjects effects    
Site 1 1.74 232.8 <0.001 
P 1 0.01 0.7 0.398 
N 1 0.09 12.5 0.002 
P*N 1 <0.01 0.4 0.540 
Site*P 1 0.03 4.4 0.045 
Site*N 1 0.03 4.6 0.042 
Site*P*N 1 <0.01 <0.1 0.992 
Error 26 0.01   
(b) Calcified green macroalgae 

 df MS F p 
Within-subjects effects    
Date 7 0.13 16.2 <0.001 
Date*Site 7 0.10 11.7 <0.001 
Date*P 7 0.01 1.6 0.150 
Date*N 7 0.01 1.6 0.136 
Date*P*N 7 0.01 1.0 0.452 
Date*Site*P 7 0.01 0.6 0.767 
Date*Site*N 7 0.01 1.4 0.215 
Date*Site*P*N 7 0.01 1.2 0.313 
Error 171 0.01   
    
Site 1 4.15 445.7 <0.001 
P 1 0.03 3.8 0.063 
N 1 0.01 0.8 0.379 
P*N 1 0.03 2.9 0.100 
Site*P 1 0.02 1.8 0.187 
Site*N 1 <0.01 0.3 0.569 
Site*P*N 1 0.01 0.8 0.367 
Error 26 0.01   
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Digital Appendix 2d: Summary of three-way repeated measures ANOVA for the effects of site, nitrogen 
(N) addition, and phosphorus (P) addition on Thalassia epiphyte chlorophyll a concentration. Mean 
square and df values for within-subjects effects are adjusted with the Greenhouse-Geisser correction. 
Bold indicates statistically significant effects at p ≤ 0.05. 
 

 df MS F p 
Within-subjects effects    
Date 6 0.17 20.7 <0.001 
Date*Site 18 0.17 20.7 <0.001 
Date*P 6 0.02 2.7 0.013 
Date*N 6 0.01 0.6 0.739 
Date*P*N 6 <0.01 0.5 0.831 
Date*Site*P 18 0.02 3.0 <0.001 
Date*Site*N 18 0.01 0.8 0.713 
Date*Site*P*N 18 0.01 0.7 0.769 
Error 500 0.01   
Between-subjects effects    
Site 3 1.10 119.2 <0.001 
P 1 0.03 3.5 0.064 
N 1 <0.01 <0.1 0.917 
P*N 1 <0.01 0.1 0.822 
Site*P 3 0.07 7.8 <0.001 
Site*N 3 0.01 0.7 0.550 
Site*P*N 3 <0.01 0.4 0.783 
Error 85 0.01   
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Digital Appendix 2e: Summary of three-way ANOVA for the effects of site, nitrogen (N) addition, and 
phosphorus (P) addition on (a) Thalassia aboveground biomass, (b) Thalassia belowground biomass, and 
(c) the ratio of aboveground to belowground Thalassia biomass. Bold indicates statistically significant 
effects at p ≤ 0.05. 
 
(a) Thalassia aboveground biomass 

 df MS F p 
Site 5 1.87 21.1 <0.001 
P 1 3.30 37.2 <0.001 
N 1 0.02 0.2 0.626 
P*N 1 0.03 0.3 0.557 
Site*P 5 0.78 8.8 <0.001 
Site*N 5 0.07 0.8 0.584 
Site*P*N 4 0.03 0.3 0.868 
Error 93 0.09   
(b) Thalassia belowground biomass 

 df MS F p 
Site 5 2.08 63.2 <0.001 
P 1 0.01 0.3 0.558 
N 1 0.02 0.5 0.479 
P*N 1 0.03 0.9 0.346 
Site*P 5 0.17 5.2 <0.001 
Site*N 5 0.04 1.2 0.304 
Site*P*N 5 0.03 1.0 0.411 
Error 93 0.03   
(c) Ratio of aboveground to belowground Thalassia biomass   

 df MS F p 
Site 5 0.69 13.0 <0.001 
P 1 1.47 27.5 <0.001 
N 1 0.07 1.3 0.262 
P*N 1 0.17 3.2 0.077 
Site*P 5 0.26 4.8 0.001 
Site*N 5 0.12 2.3 0.055 
Site*P*N 4 0.04 0.7 0.577 
Error 91 0.05   
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Digital Appendix 3: Seagrass tissue nutrient content in control (C) and enriched plots (nitrogen, 
N; phosphorus, P; nitrogen + phosphorus, NP) at size sites in Florida Bay. -- indicates that the 
component was not present in that treatment. Water column data were obtained at each site but 
not within the treatment plots. 
 
  Thalassia testudinum   Halodule wrightii   

 C N P NP C N P NP 

Duck         

Aboveground %N 1.95 ± 0.11 1.81 ± 0.01 1.97 ± 0.15 1.88 ± 0.07 -- -- 2.40 2.42 ± 0.36 

Aboveground %P 0.05 ± 0.00 0.05 ± 0.00 0.15 ± 0.01 0.13 ± 0.01 -- -- 0.14 0.15 ± 0.03 

Belowground %N 0.91 ± 0.03 0.92 ± 0.07 0.97 ± 0.08 1.26 ± 0.09 -- 0.77 1.03 1.53 ± 0.05 

Belowground %P 0.02 ± 0.00 0.02 ± 0.00 0.12 ± 0.01 0.14 ± 0.02 -- 0.02 0.11 0.17 ± 0.01 

South Nest           

Aboveground %N 2.45 ± 0.17 2.19 ± 0.09 2.14 ± 0.13 2.14 ± 0.09 -- -- -- -- 

Aboveground %P 0.06 ± 0.00 0.05 ± 0.00 0.11 ± 0.01 0.10 ± 0.01 -- -- -- -- 

Belowground %N 1.14 ± 0.06 1.23 ± 0.07 1.30 ± 0.10 1.37 ± 0.09 -- -- 1.23 -- 

Belowground %P 0.02 ± 0.00 0.02 ± 0.00 0.23 ± 0.04 0.18 ± 0.02 -- -- 0.06 -- 

Bob Allen           

Aboveground %N 2.39 ± 0.06 2.48 ± 0.13 2.21 ± 0.03 2.46 ± 0.12 -- -- 2.45 ± 0.45 2.87 ± 0.07 

Aboveground %P 0.05 ± 0.00 0.05 ± 0.00 0.19 ± 0.02 0.11 ± 0.01 -- -- 0.14 ± 0.01 0.15 ± 0.05 

Belowground %N 1.06 ± 0.07 1.01 ± 0.07 1.16 ± 0.06 1.25 ± 0.05 0.88 ± 0.05 -- 1.21 ± 0.19 1.29 ± 0.01 

Belowground %P 0.02 ± 0.00 0.03 ± 0.01 0.21 ± 0.03 0.11 ± 0.01 0.02 ± 0.00 -- 0.11 ± 0.02 0.09 ± 0.01 

Rabbit           

Aboveground %N 2.08 ± 0.07 2.24 ± 0.05 1.95 ± 0.06 2.26 ± 0.04 -- -- -- 3.40 ± 0.06 

Aboveground %P 0.08 ± 0.00 0.08 ± 0.00 0.17 ± 0.01 0.14 ± 0.01 -- -- -- 0.19 ± 0.02 

Belowground %N 1.08 ± 0.04 1.19 ± 0.05 1.11 ± 0.05 1.27 ± 0.09 -- -- -- 1.87 ± 0.06 

Belowground %P 0.06 ± 0.00 0.05 ± 0.00 0.26 ± 0.03 0.22 ± 0.03 -- -- -- 0.22 ± 0.02 

Nine Mile           

Aboveground %N 2.12 ± 0.04 2.60 ± 0.29 2.04 ± 0.06 2.29 ± 0.05 -- 2.43 -- 2.84 ± 0.10 

Aboveground %P 0.07 ± 0.00 0.08 ± 0.00 0.14 ± 0.01 0.13 ± 0.01 -- 0.07 -- 0.13 ± 0.01 

Belowground %N 0.98 ± 0.04 0.99 ± 0.02 0.92 ± 0.02 1.10 ± 0.05 -- 1.10 ± 0.2 1.12 1.45 ± 0.09 

Belowground %P 0.05 ± 0.00 0.04 ± 0.00 0.14 ± 0.01 0.15 ± 0.01 -- 0.06 ± 0.01 0.09 0.10 ± 0.02 

Sprigger     Syringodium filiforme    

Aboveground %N 1.17 -- 1.37 0.65 1.92 ± 0.08 2.93 ± 0.13 1.86 ± 0.15 2.62 ± 0.03 

Aboveground %P 0.08 -- 0.15 0.12 0.17 ± 0.05 0.19 ± 0.01 0.27 ± 0.01 0.27 ± 0.06 

Belowground %N 0.52 1.11 0.94 1.10 0.67 ± 0.03 1.08 ± 0.09 0.72 ± 0.09 1.07 ± 0.08 

Belowground %P 0.16 0.22 0.24 0.21 0.11 ± 0.05 0.13 ± 0.01 0.19 ± 0.00 0.16 ± 0.01 
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Digital Appendix 3 (continued): 
  C N P NP C N P NP 

Macroalgae Thalassia epiphytes   

Duck 

%N 1.12 ± 0.13 1.32 ± 0.63 -- 1.04 0.46 ± 0.10 0.58 ± 0.15 0.53 ± 0.07 0.52 ± 0.06 

%P 0.01 ± 0.00 0.01 ± 0.00 -- 0.02 0.02 ± 0.00 0.02 ± 0.00 0.05 ± 0.01 0.05 ± 0.01 

South Nest     

%N 0.84 ± 0.09 1.07 ± 0.06 1.36 ± 0.08 1.55 ± 0.29 0.33 ± 0.04 0.35 ± 0.07 0.41 ± 0.05 0.39 ± 0.03 

%P 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.03 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.04 ± 0.00 

Bob Allen     

%N 1.00 ± 0.44 -- 1.23 ± 0.32 1.56 ± 0.42 0.57 ± 0.05 0.81 0.62 ± 0.09 0.75 ± 0.08 

%P 0.02 ± 0.01 -- 0.08 0.05 ± 0.01 0.02 ± 0.00 0.03 0.08 ± 0.03 0.05 ± 0.00 

Rabbit     

%N -- -- 1.34 ± 0.10 -- 0.70 ± 0.06 0.79 ± 0.07 0.58 ± 0.04 0.70 ± 0.06 

%P -- -- 0.05 ± 0.01 -- 0.06 ± 0.00 0.06 ± 0.01 0.16 ± 0.02 0.22 ± 0.10 

Nine Mile     

%N 2.15 -- -- -- 0.62 ± 0.06 0.55 ± 0.03 0.61 ± 0.03 0.63 ± 0.07 

%P 0.06 -- -- -- 0.08 ± 0.04 0.05 ± 0.00 0.07 ± 0.00 0.06 ± 0.00 

Sprigger     

%N 1.02 ± 0.01 1.10 ± 0.38 1.03 ± 0.14 1.43 ± 0.36 0.41 -- 0.46 0.49 

%P 0.03 ± 0.00 0.05 ± 0.01 0.04 ± 0.00 0.07 ± 0.02 0.04 -- 0.06 0.07 

    

  Sediment Water column (ppm)   

Duck     

%N 0.12 ± 0.01 0.28 ± 0.09 0.12 ± 0.00 0.29 ± 0.09 0.37   

%P 0.00 ± 0.00 0.00 ± 0.00 0.11 ± 0.02 0.10 ± 0.02 0.01       

South Nest     

%N 0.09 ± 0.01 0.10 ± 0.01 0.11 ± 0.02 0.25 ± 0.13 0.34   

%P 0.00 ± 0.00 0.00 ± 0.00 0.08 ± 0.02 0.10 ± 0.02 0.01       

Bob Allen     

%N 0.22 ± 0.01 0.32 ± 0.05 0.21 ± 0.01 0.56 ± 0.19 0.40   

%P 0.01 ± 0.00 0.01 ± 0.00 0.09 ± 0.02 0.08 ± 0.02 0.01       

Rabbit     

%N 0.68 ± 0.05 0.87 ± 0.05 0.66 ± 0.04 0.66 ± 0.02 0.20   

%P 0.03 ± 0.00 0.03 ± 0.00 0.38 ± 0.08 0.40 ± 0.18 0.01       

Nine Mile     

%N 0.52 ± 0.02 1.30 ± 0.29 0.50 ± 0.02 0.72 ± 0.10 0.14   

%P 0.03 ± 0.00 0.03 ± 0.00 0.35 ± 0.07 0.19 ± 0.03 0.01       

Sprigger     

%N 0.22 ± 0.02 0.27 ± 0.10 0.16 ± 0.01 0.20 ± 0.02 0.08   

%P 0.04 ± 0.00 0.03 ± 0.00 0.08 ± 0.02 0.08 ± 0.03 0.01       
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