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A B S T R A C T

Experiencing pleasure and displeasure is a fundamental part of life. Hedonics guide behavior, affect decision-
making, induce learning, and much more. As the positive and negative valence of feelings, hedonics are core
processes that accompany emotion, motivation, and bodily states. Here, the affective neuroscience of pleasure
and displeasure that has largely focused on the investigation of reward and pain processing, is reviewed. We
describe the neurobiological systems of hedonics and factors that modulate hedonic experiences (e.g., cognition,
learning, sensory input). Further, we review maladaptive and adaptive pleasure and displeasure functions in
mental disorders and well-being, as well as the experience of aesthetics. As a centerpiece of the Human Affectome
Project, language used to express pleasure and displeasure was also analyzed, and showed that most of these
analyzed words overlap with expressions of emotions, actions, and bodily states. Our review shows that hedonics
are typically investigated as processes that accompany other functions, but the mechanisms of hedonics (as core
processes) have not been fully elucidated.
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1. Introduction

Hedonics are experiences of pleasure and displeasure. Thus, he-
donics are core processes and central components of emotional re-
sponses. For example, the emotion ‘fear’ consists of a continuum of
automatically activated defense behaviors (Kozlowska et al., 2015) that
can co-occur with ‘feelings of fear’, that are typically negative in va-
lence (LeDoux and Pine, 2016). In general, the experience of emotions
tends to be more complex than other feelings characterized by non-
valenced mental experiences that accompany body states (based on the
definition of feelings in Damasio and Carvalho, 2013; Berridge and
Kringelbach, 2013; Fontaine et al., 2007). Feelings encompass a wide
range of mental experiences, including, but not limited to, signifying
physiological need (e.g., hunger), tissue injury (e.g., acute pain), op-
timal function (e.g., well-being), the dynamics of social interactions,
and more (e.g., gratitude; Damasio and Carvalho, 2013). Hedonics are
specific fundamental elements of the experience of feelings, con-
tributing the core positive and negative valence to these phenomena.
Specifically, pleasure as the positive valence of feelings involves feel-
ings of enjoyment, happiness, and satisfaction. Pleasure is induced by
events or stimuli that are perceived by an organism as beneficial and
can be caused by the receipt of a desired stimulus or by the omission or
withdrawal of an aversive stimulus or event (Cabanac, 2002). In con-
trast, displeasure is a state of dissatisfaction, disgrace, or disfavor. It is
induced by events or stimuli that are perceived by an organism as ne-
gatively valenced and can be caused by the reception of a punishment
or by the omission or withdrawal of a reward (Cabanac, 2002).

We review findings from affective neuroscience on the core hedonic
processes of feelings, as part of the Human Affectome Project (co-
ordinated by the non-profit organization Neuroqualia). In addition to
reviewing the current state of the art scientific literature, we also ex-
plore the English language words that are used in daily life to convey
feelings. The project seeks to develop a comprehensive, integrated
model of affect that can serve as a common focal point for affective
neuroscience in the future. To that end, the current manuscript focuses
specifically on the neuroscience of hedonics and the language used to
express feelings relating to pleasure and displeasure. The review con-
sists of three main parts. First, we broadly review the current scientific
literature on pleasure and displeasure systems. This includes how
pleasure and displeasure are mutually inhibited and promoted, as well
as how they are modulated. Furthermore, we discuss impairments in
hedonics in mental disorders, as well as optimal hedonic functioning in
well-being, and the experience of aesthetics. Due to the vast amount of
available literature in many of the fields investigated within this re-
view, we selected representative key literature without claiming to be
complete and refer the reader to reviews where appropriate. In the
second part of the document, we review hedonics as they are re-
presented in every-day language and consider how language might
inform the way we approach hedonics-related neuroscience research.
Lastly, we aim to identify the relationships that exist between hedonics
and the other areas of affective neuroscience, particularly those re-
viewed within this special issue (i.e., actions, anger, attention, fear,
happiness, motivation, physiological/bodily states, planning, sadness,
the self, and social processing). The objective of this review is to give a
broad overview of recent developments in hedonics within the field of
affective neuroscience from basic research to applied areas of study,
including clinical research.

2. Topic area review

2.1. Pleasure and displeasure as core hedonic processes

Positive and negative hedonic feelings are powerful motivators of
behavior and likely evolved to facilitate decisions regarding which
behaviors to pursue and which to avoid. For example, sensations from
external stimuli with their accompanying pleasant and unpleasant

qualities are integrated with an organism’s learning history and current
state. This allows an organism to quickly extract meaning and the sig-
nificance of those sensations (Barrett and Bar, 2009; Miskovic and
Anderson, 2018; Schacht and Vrticka, 2018). Further, hedonic experi-
ences are modulated by homeostatic states and corresponding desires of
an organism (Cabanac, 1971) that optimize their behavioral sig-
nificance. Thus, hedonic valence is a property of a complex process of
the individual and their perception.

Through the work of Osgood and Suci (1955), pleasure (or hedonic
valence) emerged as the main factor of affect. However, after this initial
formulation, controversies have ensued regarding whether hedonic
valence should be described by a single bipolar dimension (Bradley and
Lang, 1994; Russell, 1980) or two independent dimensions (Cacioppo
and Berntson, 1994; Watson and Tellegen, 1985). In addition, another
ongoing and long-standing discussion in the field of hedonics relates to
the hierarchical structure of affect, proposing either a dimensional
model (Larsen and Diener, 1985; Tellegen et al., 1999) or models de-
scribing discrete emotion states (Barrett, 1998; Fredrickson, 2001;
Izard, 1992; Zinbarg et al., 2016). Dimensional models argue for
quantitative differences in orthogonal qualities (e.g., valence, arousal),
while discrete models identify several qualitatively different states with
different elicitors and functions (Fredrickson, 1998).

In addition to these ongoing conceptual discussions, hedonics are
difficult to assess at a core phenomenological level. Hedonics are
usually assessed through three distinctive output systems: subjective
experience (e.g., self-reports), overt behavior (e.g., facial expressions,
approach/avoidance, reaction time), and physiological responses (e.g.,
electrophysiology, brain imaging; Bradley and Lang, 1994; Gross and
Barrett, 2011). Using behavior to identify the core processes of he-
donics is complicated because such behavior typically reflects multiple
aspects such as motivation and learned responses in addition to he-
donics, and organisms are adaptive systems with highly flexible beha-
vior (Simon, 1990; Smaldino and Schank, 2012). Further, although self-
reports (in human research) allow introspective insights, they are easily
confounded by various cognitive and social factors such as social de-
sirability, response biases, memory effects, desires, and motivations,
raising issues with the validity of self-reports. These facts may in part
explain why it remains largely unknown how the brain creates affect
(Lindquist et al., 2012). However, the development of mechanistic and/
or computational models of affective responses has been suggested as a
promising approach to overcome those limitations (Scherer, 2009;
Smaldino and Schank, 2012; see Section 4.3).

In sum, research on core hedonic processes has shed light on the
complex bio-psycho-social processes of an individual. However, con-
troversies remain regarding multiple issues, including the dimension-
ality of hedonic valence and the structure of affect. The ultimate goal of
affective neuroscience is to describe the neural mechanisms of emotion
and accompanying aspects such as motivation, planning, feelings, etc.
(Panksepp, 1992). Thus, more research is needed, particularly with
methodologies that overcome past limitations, to solve these discus-
sions.

2.2. Neurobiological systems of hedonics

As stated above, affective neuroscience focuses on the neurobiolo-
gical underpinning of emotions and related phenomena. Accordingly,
the following sub-sections of the review summarize the works on the
neurobiological systems of hedonics. Since pleasure and displeasure
have been typically investigated in separation, we review, first, the
animal and human literature on pleasure and, second, on displeasure.
However, pleasure and displeasure naturally do not occur in separation,
rather they are closely linked. Thus, this section continues with a dis-
cussion on mutual inhibition and promotion of pleasure and dis-
pleasure.
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2.2.1. Pleasure and reward—from animal to human models
Pleasure involves feelings of enjoyment, happiness, and satisfaction.

However, the assessment of hedonic responses independent of moti-
vational drives is challenging, as outline above. For this reason, animal
and human work on the neurobiology of pleasure has focused largely on
the processing of rewards, encompassing both hedonic and motiva-
tional components.

2.2.1.1. Animal work. Early investigations of the functional
neuroanatomy of pleasure and reward in mammals stemmed from the
seminal work by Olds and Milner (Olds and Milner, 1954). A series of
pioneering experiments showed that rodents tend to increase
instrumental lever-pressing to deliver brief, direct intracranial
electrical stimulation of septal nuclei. Interestingly, rodents and other
non-human animals would maintain this type of self-stimulation for
hours, working until reaching complete physical exhaustion (Olds,
1958). This work led to the popular description of the neurotransmitter
dopamine as the ‘happy hormone’.

However, subsequent electrophysiological and voltammetric as-
sessments as well as microdialysis clearly show that dopamine does not
drive the hedonic experience of reward (liking), but rather the moti-
vation to obtain such reward (wanting), that is the instrumental be-
havior of reward-driven actions (Berridge and Kringelbach, 2015; Wise,
1978). Strong causal evidence for this idea has emerged from rodent
studies, including pharmacologically blocking of dopamine receptors or
using genetic knockdown mutations in rodents. When dopamine is
depleted or dopamine neurons destroyed, reward-related instrumental
behavior significantly decreases with animals becoming oblivious to
previously rewarding stimuli (Baik, 2013; Schultz, 1998). In contrast,
hyperdopaminergic mice with dopamine transporter knockdown mu-
tations exhibit largely enhanced acquisition and greater incentive per-
formance for rewards (Pecina et al., 2003). These studies show that
phasic release of dopamine specifically acts as a signal of incentive
salience, which underlies reinforcement learning (Salamone and
Correa, 2012; Schultz, 2013). Such dopaminergic functions have been
related to the mesocorticolimbic circuitry: Microinjections to pharma-
cologically stimulate dopaminergic neurons in specific sub-regions of
the nucleus accumbens (NA) selectively enhance wanting with no ef-
fects on liking. However, microinjections to stimulate opioidergic
neurons increase the hedonic impact of sucrose reward and wanting
responses, likely caused by opioid-induced dopamine release (Johnson
and North, 1992). Importantly, different populations of neurons in the
ventral pallidum (as part of the mesocorticolimbic circuitry) track
specifically the pharmacologically induced enhancements of hedonic
and motivational signals (Smith et al., 2011).

The double dissociation of the neural systems underlying wanting
and liking has been confirmed many times (Laurent et al., 2012),
leading to the concept that positive hedonic responses (liking) are
specifically mediated in the brain by endogenous opioids in ‘hedonic
hot-spots’ (Pecina et al., 2006). The existence of such hedonic hot-spots
has been confirmed in the NA, ventral pallidum, and parabrachial nu-
cleus of the pons (Berridge and Kringelbach, 2015). In addition, some
evidence suggests further hot-spots in the insula and orbitofrontal
cortex (OFC; Castro and Berridge, 2017).

Hedonic hot-spots in the brain might be important not only to
generate the feeling of pleasure, but also to maintain a certain level of
pleasure. In line with this assumption, damage to hedonic hot-spots in
the ventral pallidum can transform pleasure into displeasure, illus-
trating that there is no clear-cut border between neurobiological me-
chanisms of pleasure and displeasure but rather many intersections. For
example sweet sucrose taste, normally inducing strong liking responses,
elicits negative and disgust reactions in rats after the damage of a he-
donic hot-spot in the ventral pallidum (Ho and Berridge, 2014). In
addition to hot-spots that might be essential in maintaining a certain
pleasure level, ‘cold-spots’ have been found in the NA, ventral pallidum,
OFC, and insula. In such cold-spots, opioidergic stimulation suppresses

liking responses, which in hot-spots causes a stark increase in liking
responses (Castro and Berridge, 2014, 2017). A balanced interplay
between cold- and hot-spots within the same brain regions such as the
NA, ventral pallidum, OFC, and insula may allow for a sophisticated
control of positive and negative hedonic responses (see ‘affective key-
board’ in Section 2.2.3). In line with such an assumed sophisticated
control, it has to be noted that hedonic hot- and cold-spots are not to be
hardwired in the brain. Depending, for example, on external factors
creating stressful or pleasant, relaxed environments, the coding of va-
lence can change in such hot-spots from positive to negative and vice
versa (Berridge, 2019). Such phenomena have been observed in the NA
(Richard and Berridge, 2011) and amygdala (Flandreau et al., 2012;
Warlow et al., 2017), likely contributing to a fine-tuned control of he-
donic responses dependent on environmental factors.

2.2.1.2. Human work. Confirming results from animal research, a brain
network termed the ‘reward circuit’ has been described in human
research, which includes the cortico-ventral basal ganglia system,
including the ventral striatum (VS) and midbrain (i.e., the ventral
tegmental area; Gottfried, 2011; Richards et al., 2013). Within the
reward circuit, reward-linked information is processed across a circuit
that involves glutamatergic projections from the OFC and anterior
cingulate cortex (ACC), as well as dopaminergic projections from the
midbrain into the VS (Richards et al., 2013).

However, as previously described, reward cannot be equated with
pleasure, given that reward processing comprises wanting and liking
(Berridge et al., 2009; Reynolds and Berridge, 2008). Further, reward
processing is modulated by subjective value and utility, which is formed
by individual needs, desires, homeostatic states, and situational influ-
ences (Rangel et al., 2008). As such, pleasure as a core process is most
closely related to ‘liking’ expressed during reward consumption. During
such reward consumption, human neuroimaging studies have con-
sistently noted a central role of the VS (including the NA) corre-
sponding to results from animal research. The VS is consistently acti-
vated during the anticipation and consumption of reward (Liu et al.,
2011). Interestingly, the VS is also activated during the imagery of
pleasant experiences, including drug use in substance abusers, pleasant
sexual encounters, and athletic success (Costa et al., 2010). Despite a
vast literature emphasizing that the VS is implicated in the processing
of hedonic aspects of reward in humans, this brain area has not been
well parcellated into functional sub-regions (primarily because of lim-
ited resolution in human neuroimaging). Nevertheless, using an ana-
tomical definition of the core and shell of the NA, one study successfully
described differential encoding of the valence of reward and pain in
separable structural and functional brain networks with sources in the
core and shell of the NA (Baliki et al., 2013). This finding again high-
lights the overlaps of pleasure and displeasure systems, rendering the
separated investigation of pleasure and displeasure functions somewhat
artificial.

In addition to the VS, the OFC has received much attention in
human research on reward and hedonic experiences (Berridge and
Kringelbach, 2015). Much of the current knowledge on the functions of
the OFC in hedonic experiences is based on human neuroimaging, be-
cause the translation from animal work has proven to be challenging
because of differences in the prefrontal cortex (PFC; Wallis, 2011). The
OFC has been described in numerous human functional magnetic re-
sonance imaging (fMRI) studies to represent the subjective value of
rewarding stimuli (Grabenhorst and Rolls, 2011). More specifically, the
OFC has been described as the first stage of cortical processing, in
which the value and pleasure of reward are explicitly represented. With
its many reciprocal anatomical connections to other brain regions im-
portant in reward processing, the OFC is in an optimal position to
distribute information on subjective value and pleasure in order to
optimize different behavioral strategies. For example, the OFC is well
connected to the ACC, insular cortex, somatosensory areas, amygdala,
and striatum (Carmichael and Price, 1995; Cavada et al., 2000; Mufson
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and Mesulam, 1982).
Besides the VS and the OFC, multiple other brain regions are in-

volved in reward processing, including the caudate, putamen, tha-
lamus, amygdala, anterior insula, ACC, posterior cingulate cortex, in-
ferior parietal lobule, and sub-regions of the PFC other than the OFC
(Liu et al., 2011). Reward involves processing of complex stimuli that
involve many more components beyond wanting and liking, such as
attention, arousal, evaluation, memory, learning, decision-making, etc.

In addition to higher-level cortical representations, pleasure also
appears to be coded at very low levels of peripheral sensory processing.
As an illustration, hedonic representations of smells are already present
in peripheral sensory cells. There are differences in electrical activity of
the human olfactory epithelium in response to pleasant vs. unpleasant
odors (Lapid et al., 2011). Further, responses to the hedonic valence of
odors involve differential activation of the autonomic nervous system
(e.g., fluctuations in heart rate and skin conductance; Joussain et al.,
2017). Together with the above-described results on central processing
of pleasure, these findings highlight that extensive neurobiological
systems are implicated in the processing of positive hedonic feelings
including peripheral and autonomic components. In line with findings
from the animal work, it can be assumed that environmental factors
such as perceived stress affect these neurobiological systems leading to
plastic changes (Juarez and Han, 2016; Li, 2013) and thus a sophisti-
cated control of hedonic feelings adapted to situational factors.

2.2.2. Displeasure and pain—from animal models to human models
In contrast to pleasure, displeasure is a state of dissatisfaction, dis-

grace, or disfavor. However, while pleasure and positive valence of
hedonics came into the focus of affective neuroscience in recent years,
there is little work on the core processes of displeasure (Lindquist et al.,
2012). Nevertheless, vast research on pain in animals and humans al-
lows an approximation of core processes of displeasure. In addition, in
humans, the role of the OFC in processing displeasure related to pun-
ishment and dyspnea (i.e., breathlessness), as an experience that is
described as inducing strong displeasure, has been investigated.

2.2.2.1. Animal work. Rodents naturally like consuming sweet tastes,
burying objects, exploring enriched environments, interacting with
companions, and exercising (Balcombe, 2006; Meijer and Robbers,
2014; Zukerman et al., 2009). When rodents stop engaging in these
activities, we assume that they no longer find them pleasurable,
satisfying, or enjoyable (Rygula et al., 2005). As such, in rodents,
‘displeasure’ is often characterized by measuring aversion or avoidance
behavior that can be caused by a range of stimuli, including
gastrointestinal distress (Best et al., 1973), chronic social stress
(Lagace et al., 2010), fear (Krypotos et al., 2015), or pain (Pratt
et al., 2013). Pain disrupts all of the aforementioned behaviors, and
by proxy well-being, in lab animals (Burkholder et al., 2012).
Therefore, pain is an especially well fitted stimulus to investigate
processes related to displeasure, particularly because animal research
relies largely on observable behavior.

In rodents, the ‘unpleasantness’ of pain and its affective component
is usually characterized as an avoidance of the pain stimulus, while pain
behaviors such as licking, jumping, and hypersensitivity are assumed to
represent sensory-discriminative components of the processing of no-
ciceptive input. Often, the conditioned place avoidance test, which
measures the percentage of time spent avoiding an aversive context, is
used to distinguish the affective component of pain from its sensory or
reflexive aspects (Urien et al., 2017). Using conditioned place avoid-
ance, multiple brain regions have been shown to play crucial roles in
encoding the affective components of pain, including: the PFC, ACC,
and prelimbic subdivisions (Jiang et al., 2014; Johansen et al., 2001), as
well as the central and basolateral nuclei of the amygdala (BLA; Han
et al., 2015; Neugebauer, 2015; Tanimoto et al., 2003), as discussed in
the following section.

The medial PFC (mPFC) has a critical role in the modulation of

aversive states and decision-making. In the context of pain avoidance,
the prelimbic subdivision of the mPFC but not the infralimbic sub-
division is necessary for acquiring and expressing the learned pain
avoidance response (Jiang et al., 2014). In chronic pain, the mPFC has
been shown to be responsible for the negative affect (both anxiety and
depression phenotypes) developed as a result of chronic pain. Specifi-
cally, increased anxiety has been associated with sciatic nerve injury in
rodents (Sang et al., 2018). Moreover, upregulation of mGluR5, a G-
protein-coupled receptor, in the mPFC amplifies both pain and de-
pressive behaviors in rats experiencing chronic neuropathic pain
(Chung et al., 2017). Together, these studies suggest that the mPFC
plays an important role in the affective responses towards pain and the
affective responses as a result of chronic pain.

Relatd to pain avoidance, the ACC has been highlighted as well as
critical for avoiding pain stimuli, in that ablation of ACC neurons dis-
rupts the ability of rodents to avoid contexts, in which pain was ex-
perienced (Gao et al., 2004; Qu et al., 2011). Moreover, single-neuron
recordings in the ACC reveal that specific populations of ACC neurons
shift their firing rate from a pain-specific signal to encoding the an-
ticipation of pain during conditioning of place avoidance (Urien et al.,
2018). In contrast to acute pain, chronic pain states in animals have
been shown to differentially impact upon sensory and affective abilities.
For instance, chronic peripheral inflammation in rodents has been
shown to alter acute pain representation in ACC neurons, resulting in
increased aversion to noxious stimuli (Zhang et al., 2017), possibly
increasing the feeling of displeasure.

In addition to the PFC and ACC, subcortical structures have been
shown to be important in animal pain models. For example, the
amygdala has been shown to encode sensory specific associations be-
tween environmental cues and painful stimuli in animal models.
Several studies using conditioned place avoidance have shown that the
amygdala (BLA and central nucleus of the amygdala, CeA) is necessary
for the acquisition of an avoidance response to pain, but not the ex-
perience of pain itself (Ansah et al., 2010; Han et al., 2015). Further
evidence suggests that kappa opioid receptor (KOR) signaling in the
CeA specifically promotes the aversiveness of chronic neuropathic pain.
Accordingly, blocking KOR in the CeA in rodents experiencing chronic
pain reducing the aversiveness of the pain state (Navratilova et al.,
2018).

In addition to inducing a state of aversion, pain appears to disrupt
reward functions, possibly contributing to anhedonia in chronic pain
and describing how long-term states of displeasure interact with func-
tions of pleasure. A study by Taylor et al. (2015) revealed that persis-
tent pain activates microglia in the ventral tegmental area in rodents,
which disrupts the reward circuitry by increasing neuronal excitability
resulting in impaired reward behavior. Furthermore, chronic pain
changes galanin signaling, a neuropeptide known for its role in feeding
in the NA, resulting in reduced motivation for food reward in two se-
parate models of chronic pain in mice (Schwartz et al., 2014).

Altogether, these studies indicate a multifaceted neural network of
displeasure and pain whereby the aversive nature of pain is encoded by
regions, such as the ACC, prelimbic subdivisions, mesolimbic circuitry,
and the amygdala. Further, chronic pain as a chronic stressor induced
many changes in the underlying neurobiology, impressively illustrating
how pain can induced neural plasticity, leading to an increase in ne-
gative affect. However, a fundamental difficulty that exists for neu-
roscientists in understanding displeasure is that there is no well-defined
pain-specific neural circuit analogous to the discrete brain regions that
encode pleasure (see Section 2.2.1.1).

2.2.2.2. Human work. Many of the fine-grained results from animal
research on displeasure and particularly pain cannot be directly
replicated in humans. Despite a great advancement in technologies in
recent years, broadly available methods used in human research, such
as functional or structural MRI, still have a coarse spatial and/or
temporal resolution.
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Nevertheless, in line with animal work, a distributed pain proces-
sing brain network, in which affective and sensory components of pain
processing can be dissociated, has been described in human research
related to acute pain. In general, this network comprises the thalamus,
ACC, insula, primary (SI) and secondary somatosensory cortices (SII),
and PFC (Schweinhardt and Bushnell, 2010). More specifically, the so-
called lateral and medial pain system have been identified, with the
lateral system representing sensory-discriminative aspects of pain with
SI and SII as the main structures implicated, and the medial system
representing emotional-motivational aspects of pain with the main
structures implicated being the ACC and the insula (Treede et al.,
1999). Interestingly, in the context of negative hedonics and dis-
pleasure, it has been shown that perceived pain unpleasantness can be
up-regulated, for example by hypnosis, independent of perceived in-
tensity and vice versa with corresponding increases in the medial or
lateral pain brain system (Hofbauer et al., 2001; Rainville et al., 1997).

Similarly, sensory and affective components of pain are differently
affected by different forms of cognitive-emotional pain modulation,
which describes the top-down modulation of perceived pain by cogni-
tive or emotional processes such as expectations, attention/distraction,
and positive/negative affect (independent of the perceived pain;
Bushnell et al., 2013, for review). While attention to pain and distrac-
tion from pain predominately affects perceived pain intensity, positive
and negative affect induced, for example, by odors or music, pre-
dominately affects perceived pain unpleasantness, with positive affect
leading to less perceived unpleasantness and negative affect to in-
creased unpleasantness and thus displeasure (Loggia et al., 2008; Roy
et al., 2008; Villemure and Bushnell, 2009; Villemure et al., 2003).
These findings suggest predominant and direct interactions within the
affective system and thus pleasure and displeasure, independent of the
modalities of the inducing stimuli.

In line with such interactions and with the animal literature re-
viewed above (see Section 2.2.2.1), it has been proposed that chronic
pain is accompanied by a shift in hedonic processing, leading to (1)
impaired processing of rewarding stimuli resulting in diminished po-
sitive affect within the NA, and (2) an increase of a negative stress-
related state resulting in enhanced negative affect (Combined Reward
deficiency and Anti-Reward Model, CReAM; Borsook et al., 2016).
Related to the latter, the habenula has been suggested as a hub in this
increase of a negative stress-related state (Borsook et al., 2016), al-
though evidence on such a central role of the habenula remains scarce.
Such a shift may partially explain manifestations of anhedonia and
impaired motivation, particularly when related to obtaining reward,
that have been described in chronic pain (Marbach et al., 1983). These
processes also may result in high comorbidity between chronic pain and
affective disturbances such as depression (Rayner et al., 2016), which is
characterized by impaired positive affect (see Section 2.4.1).

Corresponding to the described negative hedonic shift in chronic
pain, a shift from nociceptive to emotional-motivational has been de-
scribed (Hashmi et al., 2013), illustrating that the processing of pain
and displeasure is not hard-wired in the brain but can shift depending
on nociceptive input. Specifically, altered functional connectivity be-
tween medial PFC (incorporating parts of the OFC) and the VS (in-
cluding the NA) has been shown to be predictive of the transition from
sub-acute to chronic pain (Baliki et al., 2012), highlighting an inter-
esting overlap with brain regions being involved in the processing of
pleasure and reward.

Another intense sensation, beside pain, that allows the investigation
of displeasure as a core process is dyspnea. Dyspnea or shortness of
breath is an experience described as extremely unpleasant, sometimes
even associated with feelings of impeding death (Banzett et al., 2008),
inducing a strong feeling of displeasure. Different sensory qualities of
dyspnea include air hunger (i.e., the urge to breathe), sense of excessive
work of breathing (i.e., increased impedance of inspiration), and the
feeling chest tightness, which is associated with bronchoconstriction
(Lansing et al., 2009). Similarly to pain perception, sensory and

affective dimensions of dyspnea have been described (Lansing et al.,
2009), which can be distinguished during experimentally induced hy-
percapnia (Wan et al., 2009). When breathing through an inspiratory
resistive load, distraction led to a decrease in perceived unpleasantness
compared to attention to the breathing load while perceived intensity
was in both conditions comparable (von Leupoldt et al., 2007). The
available literature suggests an overlap with brain structures implicated
in pain processing (von Leupoldt et al., 2009). Early studies show an
activation of the insular cortex by air hunger (Banzett et al., 2000) and
during loaded breathing (Peiffer et al., 2001) along with activation of
limbic structures including the ACC and amygdala (Evans et al., 2002;
Liotti et al., 2001). More recent studies separate the affective from the
sensory dimension and conclude that unpleasantness but not intensity
related to dyspnea is processed in the anterior insula and amygdala
(Stoeckel et al., 2018; von Leupoldt et al., 2008). This overlap with
brain processing of acute painful stimuli is suggestive of a brain net-
work of the processing of displeasure, independent of inducing stimuli
and modalities. However, as mentioned above in the context of animal
work on displeasure (see Section 2.2.2.1), it appears that there is no
well-defined neural circuit, processing displeasure similar to the well-
known discrete reward circuit (see Section 2.2.1.1).

Nevertheless, human research has emphasized the role of the lateral
OFC in displeasure (Dunckley et al., 2005; O’Doherty et al., 2001;
Seymour et al., 2007; Small et al., 2001). Activation in the lateral OFC
has been related to the evaluation of punishing stimuli representing
aversive value (Kringelbach and Rolls, 2004; O’Doherty et al., 2001).
However, most studies on the role of the OFC have only investigated
hedonics indirectly by examining processes such as aversive con-
ditioning, reversal learning, or decision-making. Based on such studies,
a consistent observation is that representations of aversive stimuli in
the lateral OFC can result in a change of ongoing behavior (O’Doherty
et al., 2001; Rolls et al., 2003). These study results have suggested that
the lateral OFC codes signals to initiate escape behavior rather than
displeasure being a core process (Berridge and Kringelbach, 2013).

In sum, a circuit comprising a set of distinct brain regions specifi-
cally processing displeasure has not been described yet. Overlaps in the
neural correlates of affective dimensions of pain and dyspnea hint at
such a possible discrete circuit, but more research is needed to specify
such a circuit. Further, results on chronic pain suggest that such a cir-
cuit can be subject to change depending on input, resulting in increased
negative hedonic responses. Similarly, the potential role of the lateral
OFC as one distinct brain region involved in processing displeasure
and/or related escape behavior has to be elucidated.

2.2.3. Mutual inhibition and promotion of pleasure and displeasure
As discussed above in several instances, the investigation of pleasure

and displeasure in separation, with existing research often focusing on
reward or pain, appears unnatural. Rather, many interactions between
positive and negative hedonics are observable, corresponding to a tra-
ditional perspective from psychological research that there exists a
hedonic continuum, ranging from pleasure on one end to displeasure
(often described in terms of pain) on the other (Cabanac, 1979). This is
an intuitive concept and is applicable in several instances. For example,
it has been shown that experiencing pleasure induced by images or
music, or obtaining a reward inhibits experienced pain (Becker et al.,
2013; Kenntner-Mabiala and Pauli, 2005; Roy et al., 2008). In clinical
contexts, the experience of chronic pain suppresses positive feelings and
pleasure (Marbach et al., 1983). The mutual inhibition of pleasure and
displeasure in terms of pain may be mediated by endogenous opioids
(Fields, 2007; Leknes and Tracey, 2008). Further, the NA and ventral
pallidum have been described to contain both hedonic hot-spots and
cold-spots (see Section 2.2.1.1). Moreover, an arrangement of an ‘af-
fective keyboard’, describing graded affective responses related to
neighboring anatomical representations, has been suggested specifi-
cally in the NA medial shell (Richard and Berridge, 2011). Moving from
anterior to posterior locations in the NA medial shell results in a
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gradient of responses from appetitive through mixed to fearful. Those
findings suggest a brain mechanism that may serve to control the bal-
ance between positive and negative affect, possibly particularly im-
portant if stimuli inducing pleasure and displeasure are present si-
multaneously. Importantly, the affective keyboard can be modulated by
environmental factors. Exposure to stressful environments (i.e., bright
lights and loud music) causes NA caudal fear-generating zones to ex-
pand rostrally in rats. Conversely, a preferred home environment (i.e.,
familiar, dark and quiet) caused NA appetitive-generative zones to ex-
pand caudally while shrinking the fear-generating zones (Reynolds and
Berridge, 2008). Similarly, the roles of local D1 and D2 dopaminergic
receptors in the NA shell switch roles depending on a positive or ne-
gative environmental context (Richard and Berridge, 2011). These
findings highlight that the processing of positive and negative affect is
not hardwired in the brain and that hedonic hot-spots underlie neural
plasticity.

Similar to the concept of the affective keyboard, some brain regions
are involved in the modulation of hedonic value in humans. For in-
stance, mid-anterior and mid-lateral regions of the OFC and the medial
edge have been shown to represent changes in perceived pleasure when
the perceived pleasantness of food changes dependent on different
states of satiation (Small et al., 2001). The medial OFC has further been
shown to mediate perceived reductions in perceived pain due to a si-
multaneously obtained reward and thus the intersection of an un-
pleasant and a pleasant experience (Becker et al., 2017b).

The assumed continuum and one-dimensional space between plea-
sure and displeasure is subject to modulatory influences as suggested by
numerous examples in recent research (Ellingsen et al., 2015). Such
modulatory influences are sensory, homeostatic, cognitive, and social-
cultural factors that result in complex interactions of pleasure and
displeasure. An example of such complexities is that of mutual pro-
motion, in which pleasure may promote pain experiences and vice-
versa, or pleasure and pain that are experienced concurrently. A deep
massage or eating hot chili peppers serve as examples of such mixed
affective experiences. Similarly, pain is not always perceived as nega-
tive. An intriguing example of this is experiencing moderate levels of
pain as pleasurable, if this experience represents the avoidance of even
stronger pain (Leknes et al., 2013). This ‘hedonic flip’ was found to be
correlated with increased activation in the VS (including the NA),
ventromedial (vm) PFC, and periaqueductal grey (PAG). Further, if told
that the pain had beneficial effects, people could tolerate ischemic pain
longer (Benedetti et al., 2013), with this effect being linked to the co-
activation of opioid and cannabinoid neurochemical systems. Further,
experiencing strong pain induced by a cold-stressor test increased the
pleasure from eating chocolate (Bastian et al., 2014a). Possibly, en-
hanced pleasure following pain is caused by the release of endogenous
opioids, which both pain and reward can elicit (Smith and Berridge,
2007), leading to a positive shift in hedonic experiences (Leknes and
Tracey, 2008). In addition, heightening of sensory processing and at-
tention may cause pleasure following pain. Given the adaptive asso-
ciation between pain and action readiness, modulated by physiological
arousal and awareness, it is suggested that during the brief period fol-
lowing the offset of pain, heightened arousal levels are maintained,
possibly resulting in a higher level of attention to sensory inputs that
are hedonically positive (Bastian et al., 2014b).

From the available literature, it cannot be concluded when mutual
inhibition or promotion occurs. It may be that both effects can be
present simultaneously, highlighting the complex nature of the inter-
action of pleasure and displeasure. Whether a study reports mutual
inhibition or promotion could be explained in many instances by
methodological aspects. For example, studies testing the pain-inhibiting
effects of a pleasurable event such as viewing a pleasant picture or
obtaining a reward (see above; Becker et al., 2013; Kenntner-Mabiala
and Pauli, 2005; Roy et al., 2008) specifically tested the pain-inhibitory
effects without assessing possible mutual promotion. Nevertheless, it is
likely that in such situations participants perceived pleasure and

displeasure simultaneously as well and possibly the pain enhanced the
pleasure induced by the stimuli.

Focusing on co-occurring pain and reward, the Motivation Decision
Model of Pain describes neurobiological mechanisms of mutual in-
hibition and promotion of pleasure and displeasure and when these
effects are expected (Fields, 2006, 2007). According to the model,
anything that is evaluated as more important than pain in a specific
situation should have antinociceptive effects, leading to a simultaneous
enhanced perception of reward and pleasure. In contrast, if the pain is
viewed as more important, pronociceptive effects should occur, di-
minishing simultaneously the perception of the reward/pleasure. Sup-
porting the model, mice trained to expect chocolate when standing on a
hot plate that was turned off remained (and endured pain) for about
twice as long when the hot plate was turned on compared to a control
group, trained to expect regular food, before escaping (Dum and Herz,
1984). Similarly, if human volunteers had the choice between accepting
a monetary reward that was coupled to a painful electrocutaneous sti-
mulation or rejecting the reward at the benefit of avoiding the pain,
pain was inhibited when participants accepted both reward and pain,
suggesting anti-nociceptive effects, and facilitated when rejecting both,
suggesting pro-nociceptive effects (Becker et al., 2017a). Mutual in-
hibitory and promotional effects are presumed in the model to be ex-
erted via engagement or inhibition of descending opioidergic pathways,
respectively (Fields, 2006, 2007).

In sum, positive and negative hedonic feelings affect each other,
which is reflected in the underlying mechanisms. For example, some
brain regions have been demonstrated to be specifically involved in the
processing of such mutual influence. Further, a fine-grained modulation
of the balance between positive and negative affect appears to be fos-
tered by arrangements such as the affective keyboard, which itself is
subject to neural plasticity dependent on environmental factors.
Similarly, whether mutual inhibition or promotion occurs, depends on
several internal and external factors of an organism and the sur-
rounding situation.

2.3. Modulation of hedonic feelings

Positive and negative hedonic feelings are powerful motivators,
facilitating decisions related to goal-directed behavior. However, in
order to be useful, pleasure and displeasure need to be malleable to
information about external context and internal state, needs, and mo-
tivations of the individual, since the utility of given actions and sen-
sations depend on these factors. Such malleability mirrors (to some
extent) the mutual inhibition and promotion of pleasure and dis-
pleasure, of which the direction and degree depend on internal and
external factors, as discussed above (see Section 2.2.3). Hedonic value
can be modulated by various factors such as behavioral and cognitive
regulatory mechanisms, memory and learning, development and sen-
sitivity windows, and biological factors, including sex differences, and
external influences, which will all be considered in greater detail in the
following sections.

2.3.1. Behavioral and cognitive regulation of hedonics
A powerful modulator of positive and negative hedonic feelings is

expectation. The strong effect of expectations on pleasure and dis-
pleasure is impressively illustrated by placebo or nocebo effects, in
which clinical outcomes, physical performance, or other feelings, are
improved or deteriorated due to positive or negative expectations to-
ward a treatment (Benedetti et al., 2007; Carlino et al., 2014; Finniss
et al., 2010; Geuter et al., 2017). Placebo and nocebo effects have been
investigated in positive affect (Ellingsen et al., 2013; McCabe et al.,
2008; Plassmann et al., 2008) and extensively studied in pain (e.g.,
Amanzio and Benedetti, 1999; Atlas et al., 2012; Eippert et al., 2009;
Jensen et al., 2015; Wager et al., 2004; reviewing the vast amount of
literature on placebo and nocebo effects in pain is beyond the scope of
this review and can be found elsewhere: Damien et al., 2018; Vase

S. Becker, et al. Neuroscience and Biobehavioral Reviews 102 (2019) 221–241

226



et al., 2016). Focusing on hedonics, placebo effects in pain are parti-
cularly interesting phenomena as they describe a transition of hedonic
feelings from a negative affective state and displeasure (induced by
pain) to a positive affective state and pleasure (induced by pain relief).
Functional neuroimaging studies have investigated how expectations
modulate brain activation to produce pain relief or pain increases re-
lated to placebo and nocebo effects (Wager and Atlas, 2015), showing
that activation in regions such as PFC, OFC, rostral ACC, and PAG is
increased in response to placebo treatment, while activation in soma-
tosensory processing regions was reduced (Amanzio et al., 2013; Atlas
and Wager, 2014). A similar modulatory circuit including rostral ACC
and PAG seems to regulate nocebo hyperalgesia (Tinnermann et al.,
2017), leading to increased activation in brain regions commonly as-
sociated with the processing of pain (Bingel et al., 2011; Geuter and
Buchel, 2013; Kong et al., 2008; Schmid et al., 2015). Interestingly,
studies investigating expectation-induced enhancement of perceived
pleasantness have similarly found increases in this circuitry including
the vmPFC, OFC, amygdala, and VS (Ellingsen et al., 2013; Plassmann
et al., 2008), consistent with the view that there may be some common
mechanisms involved in shifts of hedonic value – whether positive or
negative.

In the context of pain research, it has also been shown that also
several cognitive-emotional factors (other than expectation) can mod-
ulate the perception of pain and thus displeasure (Bushnell et al., 2013)
including, perceived control of the painful event and cognitive re-
appraisal. Salomons and colleagues (Salomons et al., 2015) showed, for
example, that acute pain that was perceived by participants to be
controllable was associated with decreased perceived pain accom-
panied by decreased activation in the amygdala and increased activa-
tion in the VS (including the NA). Other results highlight a possibly
mediating role of the dorsolateral PFC in the effects of perceived control
on acute pain (Bräscher et al., 2016; Wiech et al., 2006). Similarly,
cognitive reappraisal of acute pain, leading to increased or decreased
pain perception has been demonstrated to be mediated via the func-
tional connectivity between the VS (including the NA) and vmPFC
(overlapping with the OFC; Woo et al., 2015), again highlighting the
role of brain regions central in pleasure and reward processing in the
modulation of displeasure.

One strategy of modulating hedonic feelings, partially overlapping
with cognitive reappraisal discussed before, is emotion regulation, by
which pleasure and displeasure can be modulated with respect to
duration, intensity, latency, onset/offset, and valence (Gross, 1998,
2014). According to the Process Model of Emotion Regulation, one of
the most widely cited models in this context, emotion regulation can
occur via behavioral strategies such as situation selection (i.e., choosing
which context to put oneself into in order to experience or avoid a
particular emotion) and situation modification (i.e., changing the con-
text in a way that modifies one’s emotions e.g., listening to music;
Gross, 1998, 2014) and via cognitive strategies, such as attentional
deployment (i.e., directing one’s attention within a given context to
modify one’s emotions) and cognitive change (i.e., changing how one
appraises a context to modify one’s emotions; Gross, 1998, 2014). In
addition, the model describes that emotion regulation can occur via
response modulation (i.e., directly modifying the existing behavioral,
experiential, or physiological correlates of one’s emotions), involving
behavioral and/or cognitive processes (Gross, 1998, 2014). Emotion
regulation can serve to upregulate (i.e., to enhance) or downregulate
(i.e., to dampen) components of an emotional response. Several brain
regions that have been related before to the processing of pleasure and
displeasure are implicated in emotion regulation such as the PFC, ACC,
anterior insula, and VS, regardless of which strategy of emotion reg-
ulation is utilized (e.g., Diekhof et al., 2011; Frank et al., 2014; Kohn
et al., 2014; Morawetz et al., 2017). Interestingly, emotion regulation
can be employed consciously and is indeed part of cognitive behavioral
therapy in affective disorders, which are characterized by impaired
hedonic feeling as discussed in Section 2.4.

2.3.2. Learning and memory
Early writings by Darwin describe the striking link between stimuli

and the affective states they elicit that can either be inherited or be
associated by habit – in other words, through learning and memory
(Anderson and Adolphs, 2014). Learning involves the acquisition of
knowledge or skills through study, experience, or being taught, while
memory comprises storing and remembering information.

Evidence suggests that learning plays a major role in the develop-
ment and modulation of likes and dislikes, i.e., the experience of
pleasure or displeasure in response to stimuli (Rozin and Millman,
1987; Wardle and Cooke, 2008), although in some cases preference is
genetically programmed (e.g., preference for sweet taste; Steiner et al.,
2001). Conditioned taste aversion is a prominent example, in which
gastrointestinal malaise, especially nausea and vomiting, lead through
classical conditioning to decreased hedonic value of the ingested taste
in animals (Itoga et al., 2016; Roitman et al., 2010) and humans
(Klosterhalfen et al., 2000). A real life equivalent to conditioned taste
aversion is food poisoning, illustrating stark changes in hedonic ex-
perience in one trial learning situations. Evidence shows that after in-
ducing conditioned taste aversion in rats, the pattern of neural activa-
tion changes in NA (Roitman et al., 2010) and ventral pallidum (Itoga
et al., 2016), suggesting that the NA-ventral pallidum circuit encodes
innate preference as well as learned hedonic value (Itoga et al., 2016).

Evaluative conditioning as another type of learning can also mod-
ulate hedonic feelings, whereby a change in hedonic valence of a sti-
mulus is induced by coupling this stimulus with another valenced sti-
mulus that elicits an affective response. Evaluative conditioning has
been investigated within and across different modalities, e.g. using
odorant, visual, gustatory, auditory, and haptic stimuli (Fu et al., 2018;
Heycke et al., 2017; van den Bosch et al., 2015). For instance, pre-
senting photos of happy babies together with fragrances increased the
pleasantness of those fragrances and increased activation in the OFC
and VS (including the NA) compared to a coupling of the fragrances
with affectively neutral pictures (Hummel et al., 2017). Further, ob-
serving the behavior of others can induce changes in hedonic value via
observational learning. For instance, watching a model showing a facial
disgust expression after consumption of a colored drink decreases the
liking of the same colored drink in the observer (Baeyens et al., 2001).

In addition to associative learning, hedonic value can also be
modulated by non-associative learning, for instance by the phenom-
enon called ‘mere exposure’. The mere exposure effect describes the
phenomenon that (repeated) exposure to a neutral stimulus increases
the liking of this stimulus (Zajonc, 1968). Irrespective of number of
exposures, increased liking has been shown to be associated with in-
creased activation in the anterior insula and the striatum (Green et al.,
2012).

Not only different forms of associative and non-associative learning
modulate hedonic feeling, but also how information on hedonic feelings
is stored and remembered. The effect of memory on hedonic feelings
can be seen in primacy and recency effects, whereby recency effects
appear to have a stronger influence (Murdock Jr, 1962). Memory of the
enjoyment at the end of an pleasant experience rather than the memory
of the enjoyment at its beginning determines how people desire to re-
peat that experience, as shown in gustatory contexts (Garbinsky et al.,
2014). It has been shown that memory for end moments, when people
are most satiated, interferes with memory for initial moments. Conse-
quently, end moments are more influential than initial moments when
people decide how long to wait until consuming a food again
(Garbinsky et al., 2014). This is related to the peak-end rule
(Kahneman, 2000), which states that the retrospective evaluation of
affective episodes does not depend on the feelings over the full duration
of the episode, but on the average of the most intense feeling during the
episode and the feeling at the end of the episode. An intriguing im-
plication of this rule related to displeasure is that extending the dura-
tion of a painful episode while reducing the pain at its end should result
in less remembered unpleasantness of the episode compared to when it
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would have terminated earlier. This has been confirmed in studies that
recorded the pain reported by patients undergoing colonoscopy
(Redelmeier et al., 2003) and students undergoing hand immersion in
cold water (Kahneman et al., 1993).

2.3.3. Development and sensitive windows in the acquisition of hedonic
responses

Learning and memory are processes that are based on prior ex-
periences and thus an individual learning history. However, sensory
hedonics (i.e., pleasurable or displeasurable responses to sensory sti-
muli) are characterized by predisposed (unconditional, universal, ste-
reotyped) in addition to learned responses. Examples of the former are
the positive response to sweet taste and the negative response to bitter
taste, which are present at birth and have an adaptive function of ap-
proach and avoidance of edible and poisonous substances (Steiner et al.,
2001). Some of these predisposed responses seem to be limited to
sensitive windows during development. For example, the rabbit mam-
mary pheromone attracts pups only during the very first days of life
(Schaal et al., 2003). Similarly, in the visual domain, young primates
display a preference for faces over non-face objects, independent of any
experiences with faces (Sugita, 2008).

Such predispositions are added by very early, in utero learning ex-
periences reminding of the phenomenon of mere exposure described in
the section before (see Section 2.3.2). For instance, a fetus perceives in
utero odors from the mother’s diet and experiences the mother’s voice
and spoken language, resulting in preferences for these odors, their
mother’s voice and language, which is observable after birth (e.g.,
DeCasper and Fifer, 1980; Mennella et al., 2001; Moon et al., 1993).
Sensitive windows occur also later in life. For example, exposure to
particular odors during infancy and childhood lead to more positive
hedonic responses in adulthood than if these odors were encountered
less often or later in life (Haller et al., 1999; Poncelet et al., 2010).
Despite these insights into the relevance of sensitive windows, it re-
mains elusive whether deficiency of sensory stimulation during such
sensitive periods interferes with later behaviors and experience of he-
donics.

2.3.4. Biological and external modulators of sensory hedonics
In addition to behavioral, cognitive, and developmental factors,

biological characteristics of the sensory system can affect hedonic
feelings directly, modulating sensory hedonics. For example, hedonics
in response to external stimuli are modulated by various internal and
external factors such as biological (e.g., expression of sensory re-
ceptors), physiological (e.g., hormones, age), and psychophysical fac-
tors (e.g., stimulus concentration/intensity, exposure), among others.
This is particularly observable in the domain of olfaction: Due to direct
projections from the olfactory bulb to the amygdala and hippocampus,
olfaction has been considered a basic form of affective processing. Some
olfactory hedonic responses are comparably stable across individuals
(e.g., smells signaling a threat, such as spoiled food), but in general
individuals differ in their responses to most chemical compounds from
the environment. This variability is expressed at the level of olfactory
receptors. Odor perception results from the activation of a combination
of receptors, each receptor being the expression product of one of 400
olfactory genes. For example, individuals carrying one of two different
alleles of the receptor for the body odor androstenone show contrasting
hedonic responses (Keller et al., 2007). However, characteristics of
odorant molecules, sensory exposure, hormonal status, and age are also
strong modulators of hedonic responses to smells. For example, in-
creasing intensity of odorants can lead to a decrease as well as an in-
crease in pleasantness depending on the specific odorant (Cain and
Johnson, 1978; Ferdenzi et al., 2014; Moskowitz et al., 1976). With
respect to hormonal status, women perceive the smell of androstenone
as less unpleasant during their ovulatory phase than during other
phases of the menstrual cycle (Hummel et al., 1991). Further, Joussain
and colleagues (Joussain et al., 2013) showed that with age the hedonic

valence of unpleasant odors remains unchanged, while pleasantness of
positive odors decreases. Interestingly, geography and culture affect
sensory hedonics as well, apart from different genetic backgrounds:
Individuals are exposed and familiarized from birth to adulthood to
very different olfactory environments, foods, and practices that shape
hedonic experiences (Poncelet et al., 2010), likely directly at the level
of the sensory system.

2.3.5. Sex differences
One biological factor that emerges as relevant in various contexts is

sex differences – not only on the context of sensory hedonics, but also in
pain processing and in general emotion processing.

With respect to sensory hedonics, one sex-related factor that causes
variation is the hormonal status of women. Hummel et al. (1991)
showed that women evaluate the smell of androstenone as less un-
pleasant during their ovulatory phase compared to other phases. Fur-
ther, pregnant women perceive some odors as more unpleasant than
non-pregnant women (Kolble et al., 2001). Considering learning (in-
cluding non-associative learning) and memory as discussed above (see
Section 2.3.2), sex differences have been described with repeated ex-
posure to odors. Liking ratings decrease significantly with respect to
repeated exposures in men but not in women (Triscoli et al., 2014).
Further, women have been shown to code odorants more often auto-
biographically than men (Zucco et al., 2012). Interestingly, sex differ-
ences have been shown to moderate sensory hedonics related to the
perception of odors in schizophrenia as a mental illness accompanied by
impaired hedonics: Men suffering from schizophrenia rate pleasant
odors as less pleasant than women suffering from schizophrenia
(Moberg et al., 2003; for details see Section 2.4.1).

Beside olfaction and directly related to sensation, sex differences
have been well described in pain research. Women are more sensitive to
pain compared to men across pain modalities and are overrepresented
as patients with chronic pain (Bartley and Fillingim, 2013; Berkley,
1997; Mogil, 2018). This may be underpinned by differences in ex-
pressions of NMDA-receptors (Dong et al., 2007), opioidergic proces-
sing (Chakrabarti et al., 2010; Liu and Gintzler, 2000; Loyd et al.,
2008), sex chromosomes (Gioiosa et al., 2008), and psychosocial and
cultural factors (Mattos Feijo et al., 2018; Sanford et al., 2002). How-
ever, higher pain sensitivity does not necessarily equate stronger un-
pleasantness. When focusing specifically on pain unpleasantness, no
differences in perceived unpleasantness between women and men were
found, albeit neural correlates differed between sexes (Girard-Tremblay
et al., 2014).

More general, sex differences have been intensely study in emotion
processing. Early studies described that women show higher emotion
expression compared to men, but men and women do not differ in the
experience of emotion (Dimberg and Lundquist, 1990; Kring and
Gordon, 1998). This finding has been replicated several times (e.g., Kret
and De Gelder, 2012; Polackova Solcova and Lacev, 2017), although
other studies also report some differences in the experience of emotion
between women and men (e.g., Deng et al., 2016; Fernandez et al.,
2012). In addition, differences in the neural correlates of emotions have
been described, with women showing distinct activation in the amyg-
dala, hippocampus, and regions of the dorsal midbrain compared to
men. Men show distinct activation in the mPFC, ACC, frontal pole, and
mediodorsal nucleus of the thalamus compared to women, as recently
shown in a large meta-analysis (Filkowski et al., 2017). However, these
studies did not focus specifically on hedonic feelings and their neural
correlates. In addition, although many studies found higher positive
and negative valence ratings in women compared to men, this differ-
ence might be caused by a higher expressiveness in women compared to
men, as described above.

2.4. Applied hedonics

Hedonics have not only been investigated in the context of basic
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research questions such as delineating underlying neurobiological sys-
tems and factors that modulate the experience of hedonic feelings, but
also in applied contexts describing both maladaptive and adaptive
functioning. As the fundamental elements of the experience of feelings
and as powerful positive and negative motivators of behavior, mala-
daptive and adaptive functioning of hedonics can starkly influence well-
being and daily life functioning. Malfunctions of hedonic processes
have been described in several mental disorders resulting, for example,
in anhedonia and impaired motivation. Thereby, malfunctions of he-
donics can lead, in severe cases, to a complete loss of motivational drive
and thus an inability to manage daily functioning. In contrast, adaptive
functioning in terms of successful, well-functioning hedonics foster
long-term well-being and flourishing, leading to good mastering of
various daily and life obstacles and satisfaction. In this context, one
aspect, namely the experience of aesthetics, begins to receive more and
more attention, as a factor that affects humans in many daily situations
by modulating hedonic states. For example, aesthetics as a modulator of
well-being and inducing positive hedonic feelings has been discussed in
the context of interior design and architecture in private and public
places, surrounding the whole industry of wellness and spa-treatments,
and as sources of recreation (Smith et al., 2012).

In the following, such maladaptive and adaptive functioning of
hedonics will be discussed exemplary, focusing on a few notable ex-
amples of mental disorders associated with aberrant hedonic processing
and well-being and flourishing as well as the experience of aesthetics as
examples for adaptive hedonics.

2.4.1. Mental disorders
Mental disorder are commonly accompanied by impaired processing

of pleasurable experiences and heightened processing of displeasurable
experiences and thus malfunctioning of hedonics. As a prototypic ex-
ample of such malfunctioning, major depression will be described in the
following, added by a description of aberrant hedonics in schizophrenia
and attention-deficit/hyperactivity disorder (ADHD) as less well-known
examples. In addition, malfunctioning of hedonics has been considered
as a possible mechanism across different mental disorder diagnoses,
opening novel avenues to mechanism-based therapeutic approach, as
detailed below.

2.4.1.1. Major depression. Major depression is characterized by low
mood for at least two weeks and across most situations. One of the
primary symptoms of major depression is loss of interest and pleasure
(American Psychiatric Association, 2013), which is referred to as
anhedonia (Meehl, 1975). Individuals with depression often
demonstrate significantly lower levels of self-reported extraversion,
which includes facets of reward seeking and well-being (Kotov et al.,
2010) and behavioral activation system functioning (Pinto-Meza et al.,
2006; Wilson et al., 2014). Correspondingly, individuals with major
depression demonstrate diminished responsiveness during the
anticipation and receipt of reward (Liu et al., 2014). Corresponding
to these behavioral observations, several research groups have found
decreased activation in the VS (including the NA) related to reward
processing in patients with major depression compared to healthy
controls (Zhang et al., 2013).

Independent of hedonics, women suffer roughly about twice as often
as men do from major depression (Buckner et al., 2008; Salk et al.,
2017). Interestingly, women with a current or lifetime diagnosis of
major depression report more anhedonia as one core symptom com-
pared to men (Thompson and Bland, 2018). A similar pattern has been
found in the general population in the seasonality of depressive
symptoms, with longer days correlating with reduced anhedonia in
women but not in men (Lyall et al., 2018). Sex differences have also
been described at the level of the brain, for instance, with depressed
women showing altered prefrontal-limbic circuits while depressed men
show altered prefrontal-striatal circuits (Kong et al., 2013), although it
remains open how this relates to altered hedonics, since only few

studies are available in this context (Bangasser and Valentino, 2014).

2.4.1.2. Attention-deficit/hyperactivity disorder. ADHD has often been
conceptualized as disorder of executive function, but recent work has
established the need to integrate emotional and reward functioning into
this conceptualization (Graziano and Garcia, 2016; Shaw et al., 2014).
In general, ADHD is characterized by problems in paying attention,
excessive activity, and difficulties in controlling behavior. However,
several models of ADHD, including the Multiple Pathway Model (Nigg
et al., 2004), suggest that ADHD is associated with disruptions in
positive/approach emotions (preferring small immediate to larger
delayed rewards) and emotion regulation as a modulator of hedonic
feelings as discussed above (see Section 2.3.1). Several brain regions
and networks have been proposed to underlie altered emotion and
reward processing observed in ADHD (Rubia, 2018), including reduced
activation in vmPFC, OFC, and VS (including the NA). Specifically, in
the context of reward anticipation, individuals with ADHD tend to
respond with reduced VS activation (Plichta and Scheres, 2014), while
reward delivery has been associated with increased activation in the
ventral and dorsal striatum (Furukawa et al., 2014). With respect to
positive emotion, patients with ADHD have been shown to display
greater activation in the dorsolateral PFC, left temporal and occipital
cortex, vmPFC/subgenual ACC, striatum, and temporal parietal regions,
as well as enhanced connectivity between amygdala, striatal, and
occipital regions, during a positive emotion distraction task (Hwang
et al., 2015; Passarotti et al., 2010; Posner et al., 2011; Rubia, 2018).
Thus, ADHD appears to be associated with elevated hedonic responding
at reward attainment, but reduced responding to reward anticipation.

The vast majority of studies examining hedonic responses and re-
ward processes in individuals with ADHD have utilized exclusively
male samples (Plichta and Scheres, 2014), although there are marked
sex differences in the prevalence of ADHD with males outnumbering
females at approximately 3 to 1 (Crowley et al., 2013). A recent study
reported disruptions in fronto-subcortical functional connectivity spe-
cifically among girls with ADHD in the context of a delay discounting
task (Rosch et al., 2018), indicating individual preferences of smaller
immediate rewards over larger, delayed rewards. However, delay dis-
counting incorporates predominately motivational and cognitive as-
pects, because of which conclusions on hedonics as a core process are
hard to derive. Other studies on hedonic and reward processes among
individuals with ADHD have found no sex differences (Meinzer et al.,
2012; Sternat and Katzman, 2016, for review).

2.4.1.3. Schizophrenia. Anhedonia is one of several negative symptoms
typically present in schizophrenia, which is also characterized by
abnormal behavior and a decreased ability to understand reality.
Symptoms frequently include false beliefs, confused thinking, and
hallucinations. Nevertheless, an emotional paradox has been proposed
in schizophrenia, describing a discrepancy between deficits in self-
reported pleasurable experiences, but unaltered stimuli-induced
experience of pleasure when assessed in the laboratory compared to
healthy controls (Gard et al., 2007; Horan et al., 2006). This
discrepancy can be resolved by taking into account wanting and
liking or anticipatory and consummatory pleasure in this context
(Kring and Barch, 2014). Findings from self-report measures (e.g., the
Temporal Experience Pleasure Scale) suggest deficits in anticipatory
pleasure in patients with schizophrenia, but not in consummatory
pleasure (Gard et al., 2006; Li et al., 2015; Mote et al., 2014).
Laboratory-based assessments that focus on consummatory pleasure
reveal comparable hedonic ratings of positive stimuli in patients with
schizophrenia and healthy controls as demonstrated in a meta-analysis
(Cohen and Minor, 2010). Specifically distinguishing anticipatory and
consummatory pleasure, the differential responding of deficits in
anticipatory pleasure but not in consummatory pleasure was
confirmed by using the Anticipatory and Consummatory Pleasure task
in patients with schizophrenia (Gold et al., 2013; Lui et al., 2016;
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Moran and Kring, 2018). On a neurobiological level, hypoactivation of
the VS has been found in patients with schizophrenia during reward
processing using fMRI compared to healthy controls (Arrondo et al.,
2015; Li et al., 2018).

Similar to the observations in depression and ADHD, sex difference
related to positive and negative hedonic feelings have been described in
schizophrenia. In general, men have a higher incidence of schizo-
phrenia than women (1.4:1) and women show a later onset with more
affective symptoms (Abel et al., 2010; Li et al., 2016). Specifically,
using a network analysis approach, blunted affect was highlighted as a
central symptom in women being closely interconnected to the pre-
sence of other negative symptoms such as alogia (i.e., inability to
speak), and asociality (i.e., lack of motivation to engage in social in-
teraction; Strauss et al., 2019). Despite this blunted affect, women with
schizophrenia show increased pleasantness or unpleasantness in re-
sponse to hedonically positive or negative pictures compared to men
with schizophrenia (Heerey and Gold, 2007). Similarly, results on
sensory hedonics related to smells in schizophrenic patients showed
disrupted pleasantness ratings of the odorant molecule of amyle acetate
(smelling like banana) in men but not in women, which could not be
explained by an impairment of odor detection (Moberg et al., 2003).
This result was confirmed by further studies, with men suffering from
schizophrenia rating pleasant odors as more unpleasant than healthy
men and no such difference in women (Walsh-Messinger et al., 2018;
but see Kamath et al., 2013). Correspondingly, an impaired trait he-
donic capacity assessed using self-reports has been described in male
but not female patients with schizophrenia (Yan et al., 2012). Further,
negative picture viewing has been shown to evoke significantly greater
activation in the thalamus, cerebellum, temporal, occipital and pos-
terior cingulate cortex in men suffering from schizophrenia, while
women suffering from schizophrenia exhibited greater activation in the
left middle frontal gyrus (Mendrek et al., 2007).

2.4.1.4. Mechanism-based diagnostic groups. The occurrence of impaired
hedonics in several mental disorders led to the hypothesis of a common
underlying disease mechanism. Supporting this hypothesis, cross-
diagnostic comparisons on effort-cost decision-making in depression
and psychosis show that both diagnostic groups are less willing to
expend effort to obtain rewards compared to healthy controls.
However, despite this phenomenological similarity, different
mechanisms appear responsible: reduced reward responsivity in
depression and deficits of cognitive control in psychosis (Anticevic
et al., 2015; Culbreth et al., 2018). Nevertheless, because several
mental disorders show altered hedonic responses such a cross-
diagnostic approach promises important insights, likely revealing
mechanisms that can be utilized in therapeutic approaches. This is in
line with the National Institute of Mental Health Research Domain
Criteria project (Insel, 2014), which aims for a new description of
mental illnesses, based on dimensions of observable behavior and
neurobiological measures with the goal is to understand the
mechanisms of mental health and disease in terms of varying degrees
of function and dysfunctions.

2.4.2. Hedonics and well-being
Given that numerous mental disorders can be characterized by

malfunctioning hedonics, it is not surprising that adaptive hedonics
have been associated with well-being. Contemporary discussions on
well-being consider a distinction between hedonics and eudaimonia. In
contrast to hedonics, which are typically short-term, immediate reac-
tions, eudaimonia focuses on long-term and future goals such as life
satisfaction, engagement in meaningful activity, flourishing, and long-
term well-being (Peterson et al., 2005; Ryan and Deci, 2001). Im-
portantly, eudaimonia is accompanied by positive affect and positive
hedonic feelings.

From a neurobiological perspective, a small, but growing body of
research has begun to connect eudaimonia and its related components,

to variations in neural circuitry. From a structural perspective, eu-
daimonic well-being has been found to correlate with increased grey
matter in the right insular cortex (Lewis et al., 2014). Specifically, Kong
and colleagues (Kong et al., 2015) found a positive correlation between
life satisfaction and grey matter volume in the right parahippocampal
gyrus. Supporting these findings, causal evidence from a study of twins
suggested that lower subjective well-being was associated with lower
hippocampal volume (Ent et al., 2017). Further, two recent fMRI stu-
dies suggest relations between eudaimonia and the corticostriatal re-
ward circuitry, bridging results on the neurobiology of eudaimonia to
the neurobiological of hedonics. Heller and colleagues (Heller et al.,
2013) showed that individuals with sustained activation in the dorso-
lateral PFC and striatum in response to positive visual stimuli reported
greater well-being. Complementing these findings, Telzer and co-
workers (Telzer et al., 2014) demonstrated in a longitudinal study that
adolescents who showed higher VS activation during prosocial/eu-
daimonic decisions had declines in depressive symptoms over the time
course of one year.

2.4.3. Neuroaesthetics
As more research groups have investigated hedonics and well-being,

there has also been an increase in investigations centered on the related
construct of aesthetics and specifically neuroaesthetics as another ex-
ample of adaptive hedonics. Neuroaesthetics investigate the biological
processes underlying aesthetic experiences. Theoretical models of aes-
thetic engagement encapsulate perceptual, affective, and contextual
components of the experience (Pelowski et al., 2017). Neurobiologi-
cally, these are parts of an aesthetic triad, understanding aesthetic ex-
perience as recruiting sensory-motor, emotion-valuation, and meaning-
knowledge circuits in the brain (Chatterjee and Vartanian, 2014) and
are predominantly relevant to hedonics is the emotion-valuation
system. While it is under debate whether aesthetic emotions are distinct
from adaptive emotions (fear, disgust, etc.), aesthetic liking and plea-
sure experiences appear to recruit similar brain circuits underlying re-
ward processing and motivated behavior. Meta-analyses of neuroima-
ging studies on positive aesthetic appraisal show consistent activation
of the OFC and the VS (Kühn and Gallinat, 2012). Peak moments of
pleasure with music show significant activation of the VS (including the
NA; Salimpoor et al., 2011). Furthermore, recent studies using tran-
scranial magnetic stimulation exciting the left dorsolateral PFC in-
creased liking of music (Mas-Herrero et al., 2017) and visual art
(Cattaneo et al., 2014). Neuroaesthetics are particularly relevant for
understanding hedonics when considering the phenomenon of finding
pleasure in sadness or tragedy in art. However, the field is still young
and further research is needed addressing, for example, the role of
higher meaning and knowledge in aesthetic pleasure, and their ac-
companying neural correlates.

3. Linguistics

As the comprehensive review above illustrates, hedonic feelings
impact a wide-array of behavior and functional domains. However, the
approaches used in affective neuroscience do not always align with
everyday life experience and behavior (e.g., the dissociation of wanting
and liking is typically not readily comprehensible and traceable for a
layperson). This misalignment should not be ignored, because affective
neuroscience focuses on the investigation of neurobiological mechan-
isms of emotions highly relevant in daily life. With such a misalignment
present, it is conceivable that science neglects aspects important in
natural settings. In this context, an interesting observation is that many
aspects and constructs related to hedonic feelings can be found in the
spoken language (see below), but there seems to be variability in how
hedonic feelings are talked about. Since language is a powerful re-
presentation of consciously and unconsciously ongoing processes in the
human mind, the analysis of language might offer novel insights in
areas and interconnections of hedonics with other processes such as
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motivation, planning, bodily processes, and the self, possibly neglected
so far in research. To fill in this important gap, we conducted a review
of the (English) language that people use to express feelings that relate
to pleasure and displeasure, aiming at fostering new views and dis-
cussions on the neuroscience of hedonics.

3.1. Definition of feeling words

The centerpiece of this approach, reviewing the literature to identify
possibly neglected areas of research, was a well-defined comprehensive
definition of feelings. As mentioned in the introduction (Section 1),
feelings are an important component of the emotional response, but
they are not emotions per se (LeDoux, 2015). Further, feelings are not
limited to co-occur with specific emotions. Rather, they can signify
physiological need (e.g., hunger), tissue injury (e.g., pain), optimal
function (e.g., well-being), the dynamics of social interactions (e.g.,
gratitude; Damasio and Carvalho, 2013). Interestingly, this clear deli-
neation between feelings and emotions, which is important in the
context of research, is not represented in every-day language. Here, the
expression of feelings, in particular the hedonic aspects of pleasure and
displeasure, are commonly intermixed with expressions of emotions,
bodily states, actions, etc.

Further, feelings are not consistently defined and our definitions for
these terms evolve over time (Tissari, 2016) contributing to the ob-
served divergence between common language and scientific definitions.
Moreover, while some feelings may be universally experienced across
cultures (e.g., hunger, pain, cold, fatigue, etc.), other feelings are un-
derstood to be culturally constructed (e.g., gratitude, Boiger and
Mesquita, 2012; optimism, Joshi and Carter, 2013). Based on these
considerations and in the attempt to create a linguistic inventory of
articulated language, the Human Affectome Project first defined feelings
in a manner that would allow understanding the full range of terms to
be considered with the awareness that variations in terminology are
going to exist in day-to-day usage, between languages, and across cul-
tures as follows:

A “feeling” is a fundamental construct in the behavioral and neurobio-
logical sciences encompassing a wide range of mental processes and in-
dividual experiences, many of which relate to homeostatic aspects of
survival and life regulation (Buck, 1985; Damasio and Carvalho, 2013;
LeDoux, 2012; Panksepp, 2010; Strigo and Craig, 2016). A broad
definition for feeling is a perception/appraisal or mental representation
that emerges from physiological/bodily states (Damasio and Carvalho,
2013; LeDoux, 2012; Nummenmaa et al., 2014), processes inside
(e.g., psychological processes) and outside the central nervous system,
and/or environmental circumstances. However, the full range of feelings
is diverse as they can emerge from emotions (Buck, 1985; Damasio and
Carvalho, 2013; Panksepp, 2010), levels of arousal, actions
(Bernroider and Panksepp, 2011; Gardiner, 2015), hedonics (pleasure
and pain) (Buck, 1985; Damasio and Carvalho, 2013; LeDoux, 2012;
Panksepp, 2010), drives (Alcaro and Panksepp, 2011; Kozlowska
et al., 2015), and cognitions (including perceptions/appraisals of self
(Ellemers, 2012; Frewen et al., 2013; Northoff et al., 2009), motives
(Higgins and Pittman, 2008), social interactions (Damasio and
Carvalho, 2013; Gilam and Hendler, 2016; LeDoux, 2012; Panksepp,
2010), and both reflective (Holland and Kensinger, 2010) and an-
ticipatory perspectives (Buck, 1985; Miloyan and Suddendorf, 2015)).
The duration of feelings can vary considerably. They are often re-
presented in language (Kircanski et al., 2012) (although they can
sometimes be difficult to recognize and verbalize) and some feelings can
be influenced/shaped by culture (Immordino-Yang et al., 2014). Feel-
ings that are adaptive in nature (Izard, 2007; Strigo and Craig, 2016)
serve as a response to help an individual interpret, detect changes in, and
make sense of their circumstances at any given point in time. This in-
cludes homeostatic feelings that influence other physiological/body
states, other mental states, emotions, motives, actions, and behaviors in

support of adaptation and well-being (Damasio and Carvalho, 2013;
Strigo and Craig, 2016). However, some feelings can be maladaptive in
nature and may actually compete and/or interfere with goal-directed
behavior.
A “feeling” is not a synonym for the term “emotion”. There is standing
debate between researchers who posit that discrete emotion categories
correspond to distinct brain regions (Izard, 2010) and those who argue
that discrete emotion categories are constructed of generalized brain
networks that are not specific to those categories (Lindquist et al.,
2012). However, both groups acknowledge that in many instances,
feelings are a discernable component/constituent of an emotional re-
sponse (which tends to more complex).

Based on this definition of feelings, a formal linguistic analysis was
done resulting in nine broad categories of feelings: Physiological or
Bodily states, Attraction and Repulsion, Attention, Social, Actions and
Prospects, Hedonics, Anger, General Wellbeing, and Other (Siddharthan
et al., 2018). Specifically, the hedonics category was described as
“Feelings that relate to pleasurable and painful sensations and states of
mind, where pleasurable includes milder feelings related to comfort and
pleasure (e.g. comfortable, soothed, etc.) and painful likewise includes
feelings related to discomfort and suffering (e.g. suffering, uncomfortable,
etc.) in addition to pain”. It has to be noted that used terms such as
‘painful’ or ‘pain’ were based on a linguistic approach, not necessarily
reflecting neuroscientific approaches, in which pain is separated into
physical pain and emotional/psychological pain (Papini et al., 2015).
The hedonics category did not include feelings of Anger, Fear, Attrac-
tion, and Repulsion or General Wellbeing (e.g., happiness or sadness).

3.2. Analysis of feeling words related to hedonics

Of the feeling words identified in the review of the (English) lan-
guage (Siddharthan et al., 2018), 101 feeling words were assigned to
the hedonics category based on the linguistic analysis and reviewed by
subjective description (cf. Supplementary Table 1).

3.2.1. Hedonic continuum
Almost two thirds of the words were found to be related to pleasure

(64%) and roughly one-third (34%) was related to displeasure. On one
hand, this distribution mirrors a bias in the research literature with
more research in different fields on positive hedonics and a major focus
on pain in the context of displeasure with only few other research fields
investigating negative hedonics. On the other hand, this distribution fits
well with the finding that in humans, positive feelings predominate
over negative ones, which has been confirmed across cultures (Diener
and Diener, 1996). The reviewed feeling words involve different de-
grees of hedonic intensity and can be organized on a continuum, ran-
ging from positive to negative valence, with extreme pleasure (e.g.,
euphoria) on one end, to pleasure (e.g., delight), comfort (e.g., lan-
guor), and relief (e.g., relief). The term ‘bittersweet’ can be located in
the middle between positive and negative valence. The continuum
proceeds in the negative range with discomfort (e.g., uncomfortable), to
displeasure (e.g., hurt), to extreme displeasure (e.g., tormented), which
represents the other end. Few words (7%), refer to a change in valence
from negative to positive or less negative (e.g., alleviate) or a mixture
between positive and negative valence (e.g., bittersweet). The affective
keyboard that has been described in the NA and suggested to control
hedonic balance, particularly when pleasant and unpleasant stimuli are
present simultaneously (see Section 2.2.3; Richard and Berridge, 2011),
may be viewed as a neural correlate of such words that concurrently
relate to positive and negative valence.

3.2.2. Overlap with topics other than hedonics
As mentioned above, although words in the hedonic category

needed to be related to pleasure and displeasure by definition, they
were not necessarily restricted to the pure sensation of such pleasure
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and displeasure. Subcategorizing the words, they can be differentiated
into those that constitute such general descriptors for hedonic valence
(e.g., pleasant) and others that are more specific and relate to other
topics such as bodily states, attention, social, actions, anticipation, fear,
sadness, happiness, and the self (cf. Fig. 1 and Supplementary Table 1).

However, no apparent connections to the categories of anger and
motivation emerged with the words in the hedonics category. As dis-
cussed in Section 2, hedonic value is closely connected to motivation
(see also Fig. 1). Organisms are motivated to repeat behavior that has
been associated with pleasant feelings (approach behavior) and stop
behavior that has been associated with displeasurable feelings (avoid-
ance, escape behavior). This pattern of approach and avoidance/escape
behavior can be linked to the concept of comfort zones (Panksepp,
2010). According to the free energy principle (Friston, 2005), any agent
acting in an uncertain world needs to maximize its chances of visiting or
staying at comfort zones (desired states). In the long-run, organisms
must trade-off between consuming immediate rewards (exploitation)

and acquiring new information (exploration) to avoid surprising (dan-
gerous) encounters in the future. Pleasure and displeasure emerge from
the movement toward and away from the comfort zones, respectively,
and thus motivate behavior.

Anger appears to be an exception in this concept of comfort zones
and motivated behavior. While pleasant feelings typically lead to ap-
proach behavior and negative feelings to avoidance/escape behavior,
anger is somewhat counterintuitively associated with approach beha-
vior although it represents a negative feeling (Carver and Harmon-
Jones, 2009; Fig. 1). Neural correlates support this view by showing
anger-induced brain activation mostly in the left hemisphere, which has
been associated with approach-oriented motivational tendencies
(Carver and Harmon-Jones, 2009). This is consistent with recent evi-
dence that shows that motivational direction (approach vs. withdrawal)
and affective valence (positive vs. negative) are not always aligned
(Harmon-Jones, 2018). Interestingly, descriptions of anger are missing
in the word list of the hedonic category, possibly reflecting this

Fig. 1. Organizational structure of the hedonics-related feeling
words. The illustration shows that hedonic value is an integral
part of most of the categories of feelings that have been in-
vestigated in the Human Affectome Project. Categories that were
missing from or were additionally found in the analysis of the
hedonic terms are displayed in grey. For example, fun has been
identified as a potential additional category. Further, hedonic
value and motivation (which did not emerge in the word list)
seem to be closely connected, in the sense that, based on, for ex-
ample, needs, preferences, and desires, positive hedonic value can
induce approach and negative hedonic value can induce avoid-
ance/escape behavior thus motivating an organism. However,
anger, which did not emerge in the hedonics-related word list,
holds an exceptional position, as it refers to a negative affective
state leading to approach behavior (cf. Section 3).
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exceptional position of anger compared to the other categories of
feelings.

The analysis of the feeling words related to hedonics identified fun
(e.g., merry; Fig. 1) as an additional subcategory, which has not been
addressed separately within the Human Affectome Project. Possibly, this
category represents a linguistic equivalent to the proposed primary-
process (basic) emotional system PLAY (Panksepp, 2010). The PLAY
system characterizes intense social joy due to social engagement (e.g.,
festive). Activation of the PLAY system by rough-and-tumble play or
tickling of rats is typically accompanied by specific ultrasonic vocali-
zations (chirping sounds) and might resemble laughter in humans, e.g.,
due to humorous cartoons or jokes (Panksepp, 2007). Intriguingly,
laughter in humans and chirping sounds in rats have been described to
activate the mesolimbic circuit, brain regions that have been associated
with other pleasurable feelings, as well (Panksepp, 2007). However,
PLAY and the category of ‘fun’ are not broadly represented in the field
of affective neuroscience, possibly highlighting a neglected area in re-
search, which nevertheless make up a large part in human feelings of
pleasure.

Notably, the words in the hedonic category frequently refer to
bodily states. In the pleasurable range, a comparatively large subsample
of words refers to love and sexuality (e.g., sensual); this observation has
an equivalent in the neuroscientific literature because in many human
studies sexually appealing images are used as a reward and in animal
studies engagement in sexual behavior. With respect to negative va-
lence, mostly pain states are addressed (e.g., lash) and this is, as well,
reflected in neuroscientific research, as discussed above (see Section
2.2.2).

However, pain-related terms are also used to describe so-called
states of emotional or psychological pain, induced for example by social
rejection. In most of these cases, the same word has at least two
meanings, one referring to actual bodily pain (e.g., sting: cause a
stinging pain; "The needle pricked his skin") and another one referring
to emotional or psychological pain (e.g., sting: cause an emotional pain,
as if by stinging; "His remark stung her"). In contrast, research clearly
differentiates between pain related to nociception and (potential) tissue
damage and displeasing feelings induced by social rejection, exclusion,
and loss as a result of an intense discussion on overlaps and their
functional meaning in the neural correlates of both phenomena. For
example, neuroscientific research has started to explore neural corre-
lates of states of emotional and psychological pain and found that
during emotional/psychological pain compared to physical pain states,
fine-grained differences in patterns of brain activation emerge, despite
parallels in activated brain regions (Krishnan et al., 2016; Woo et al.,
2014). However, with respect to language, it is obvious that context can
bend linguistic applications, such that a single defined term can have
different meanings for people based on their experiences or the situa-
tion that they are in.

Although vast overlaps in the explored feeling words and the neu-
roscientific literature were found, it stands out that terms describing
feelings specifically elicited by tastes and smells are missing in the word
list. In contrast, affective neuroscience related to hedonics has tastes
and smells clearly in focus, particularly due to direct brain pathways
promoting strong feelings and emotional responses to tastes and smells
important for survival. Food stimuli are frequently used as rewards in
human and animal experimental research to induce pleasurable states.
Terms related to food emerge in the word list of the category on phy-
siological/bodily states, but here, they only convey states of hunger and
satiation without an obvious reference to hedonics (cf. Review on
Physiological states; Pace-Schott et al., 2019, this issue). Correspond-
ingly, evidence shows that olfactory and gustatory stimuli are typically
not associated with modality-specific affective terms: Rather, they elicit
- in many cultures - a wide variety of unspecific feelings (Ferdenzi et al.,
2013) including some that refer to pleasurable and displeasurable affect
(e.g., disgusted, repelled, pleasantly surprised, delighted).

4. Cross-topic relationships of hedonics

As touched already in the review section (see Section 2) and then
linguistics section (see Section 3), there seems to be a natural overlap of
hedonics as the core process of feelings, with emotions such as fear,
anger, happiness, and sadness, as well as motivation, attention, and
planning, i.e., the topics discussed in this special issue. Much work in
the field of affective neuroscience has been dedicated to emotions,
motivation, attention, and planning. In contrast, how the brain creates
the core processes of pleasure and displeasure has not received as much
attention (Lindquist et al., 2012). As noted previously (see Section 2),
most of the work on hedonics has been done in relation to the pro-
cessing of reward and pain, thus being almost inseparably linked to
motivation. In these studies, affective and motivational aspects of re-
ward and pain are not necessarily separated; reward and pain are
sometimes even equated – falsely – with positive and negative affect,
ignoring motivational aspects. A similar interconnection of hedonics
with other processes was revealed in the analysis of the language re-
presented in the hedonics category (see Section 3): While some of the
words in the hedonics word list clearly relate to the pure sensation of
pleasure and displeasure, the majority of words showed overlaps with
other processes and topics of this special issue, such as fear, sadness,
happiness, physiological/bodily states, etc., although the word lists
were created with the prerequisite that a word will appear only on one
list.

Commonly the assessment of hedonics is confounded by other re-
lated constructs, such as motivation, emotion, or attention, possibly
contributing to the fact that research on pure hedonic aspects of feelings
is limited. Often motivational aspects can be registered by external
observers through behavior and are therefore easy to assess, while af-
fective responses are in most instances not directly observable and thus
have to be inferred indirectly. Even in human research, where subjects
can be asked to evaluate pleasure and displeasure, on verbal and nu-
merical rating scales, such assessments are often confounded, for ex-
ample, by social desirability, cognitive biases, and demand character-
istics. In addition, evaluation of hedonic aspects independent of, for
example, the motivation to achieve or avoid something is very chal-
lenging.

In addition to assessments that might be confounded by other
components of feelings, another reason for a focus of research on pro-
cesses other than hedonics might be that pleasure and displeasure are
not directly related to needs in terms of homeostasis. Healthy organisms
strive to achieve states that maintain homeostasis and pleasure and
displeasure are important indicators of homeostatic needs (e.g., the
feeling of hunger is typically uncomfortable or aversive) and their sa-
tisfaction (e.g., eating, particularly of high-caloric food, feels pleasur-
able in hungry state). Possibly, without hedonic feelings, a driving
factor important for well-being and even survival would be missing,
leading to impaired motivational drive to satisfy various needs. Such
effects can be observed, for example, in depression, in which anhedonia
is one of the core symptoms and which is accompanied by impaired
motivational drive, leading in severe cases to a strong neglect of
homeostatic needs (Belujon and Grace, 2017; Husain and Roiser, 2018),
as noted earlier in the context of malfunctioning of hedonics in mental
disorders (see Section 2.4.1).

4.1. Relationship of hedonics with physiological/bodily states

One intersection of hedonics with other research topics discussed in
this special issue can be found with physiological/bodily states. In this
context, the ‘somatic marker hypothesis’ has gained significant re-
cognition and acceptance in the field of affective neuroscience
(Damasio and Carvalho, 2013; Damasio, 1996). This hypothesis pro-
poses that feelings are represented bodily as ‘somatic markers’ and that
these bodily representations guide behavior, in particular decision-
making. Based on lesion studies, among other evidence, the OFC (and
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vmPFC) has been proposed to play an essential role in coding, proces-
sing, and utilization of somatic markers in decision-making, with le-
sions leading to impaired planning and organization of beneficial be-
havior represented, for example, in starkly increased risky and
irrational behavior (Bechara, 2004; Pujara et al., 2015). Importantly,
the hypothesis assumes a ‘body loop’, i.e., that physiological changes in
the body can trigger emotions by inducing feelings with positive or
negative valence. Similarly, a clear delineation between hedonics and
bodily states appears lacking in situations, in which hedonics are di-
rectly induced by sensory stimuli such as in physical pain and olfaction.
Here, a physiological process is needed as the basis for the induction of
positive and negative affect.

4.2. Relationship of hedonics with emotions

In addition to the intersection with physiological/bodily states,
hedonics seem inseparably interconnected with emotions such as fear,
anger, sadness, and happiness. For example, hedonic well-being, as one
component of subjective well-being, has been defined as consisting of
the balance between feelings of happiness, anger, sadness, etc. (Steptoe
et al., 2015). However, this intuitively compelling assumption is not
necessarily represented in research. In research on fear conditioning,
for example, affect and hedonics were even explicitly avoided as poorly
defined concepts (LeDoux, 2000). In many instances of this research
and other research on emotion, affective stimuli are used to induce
emotions such as fear, anger, sadness, and happiness, but primary
outcomes focus, for example, on physiological responses or emotion
regulation. The latter concept of emotion regulation proves to be a
particularly important topic in this context. In the context of such re-
search on anger, an interesting intersection with hedonics is observable,
namely the research on revenge. Revenge is associated with positive
hedonic feelings and shows overlap, for example, in neural correlates
with pleasure and reward processing (Chester, 2017). A similar
paradox, i.e., the induction of pleasure by processes related to negative
affect, received attention in the context of research on sadness: Lis-
tening to sad music can induce pleasure (Eerola et al., 2018). Inter-
estingly, such ambivalent states where hedonics and the underlying
emotion seem to contradict are represented in our everyday language,
as discussed above (see Section 3.2.2).

Apart from this line of research, sadness and happiness are essential
constructs in the concept of hedonic well-being (Steptoe et al., 2015),
delineating a strong intersection with research on hedonics. In parti-
cular in the context of research on happiness, this intersection becomes
obvious with pleasure being defined as a central component of happi-
ness and a translation that has been made of results from hedonic re-
sponses to reward, to the investigation of happiness (Berridge and
Kringelbach, 2011; Kringelbach and Berridge, 2009).

4.3. Relationship of hedonics with motivation, attention, planning, action,
and social interaction

The strong intersection of research on hedonics and motivation has
been outlined above (see Section 2). Despite these strong interconnec-
tions, research has aimed at doubly dissociating hedonics and motiva-
tion, highlighting dissociable underlying mechanisms. Nevertheless,
hedonic feelings act as strong motivators driving behavior and decision-
making. Moreover, hedonic feelings and motivation can enhance or
diminish each other and are subject to other modulating factors as
discussed above (see Section 2.3). Accordingly, hedonic feelings can be
modulated by homeostatic states and corresponding desires of an or-
ganism (Cabanac, 1971), with this modulation resulting in a change of
motivational drive. For instance, sugar consumption is known to be
modulated by hunger (Berridge, 1991), and saline ingestion by sodium
depletion (Berridge et al., 1984).

Illustrating the close relationship of affective valence, motivation,
and learning (Rolls, 2000), hedonic experiences can serve, for example,

as cues in Pavlovian learning, resulting in stimulus-stimulus associa-
tions that allow predictions in future situations. Further, (perceptual)
control theory (Toates, 1986) suggests that affective valence is related
to (prediction) error signals in the brain as important modulators of
learning and approach/avoidance motivation. For instance, affective
valence has been described as the rate of discrepancy reduction over
time (Carver and Scheier, 1990; Chang et al., 2010; Hsee and Abelson,
1991), reward prediction error (Keramati and Gutkin, 2011; Rutledge
et al., 2014), and the rate of change of prediction error over time
(Joffily and Coricelli, 2013). Importantly, this brings hedonics to the
realm of computational models of perception, learning, attention, and
action in neurosciences and, more specifically, the predictive coding
theory (Clark, 2013).

Despite this close relationship to motivation and learning, hedonics
seem to play only a minor role in the research on attention, planning,
and action. Yet hedonics clearly influence planning (to achieve pleasure
and avoid displeasure) and actions can induce pleasure and displeasure,
so greater focus on these relationships is needed. In contrast, hedonics
are frequently included as considerations in research on social emo-
tions. For example, social interactions are often a source of positive or
negative affect, guiding such interactions and strongly affecting social
behavior (Fehr and Camerer, 2007). Group behavior, cohesiveness, and
group dynamics are also regulated by social hedonic feelings
(Goldenberg et al., 2016).

4.4. Relationship of hedonics with the self

Another area of research represented in this special issue is the self,
with feelings related to self-appraisal with respect to many different
categories (e.g., size, weight, intelligence, fitness, self-esteem, identity,
belonging, etc.). At a first glance, intersections with research on he-
donics seem lacking. However, a few interesting intersections can be
found. For example, research has pointed out that hedonic pleasure
increases when related to conscious self-regulation in terms of self-li-
censing compared to impulsive hedonic consumption (de Witt Huberts
et al., 2014). Similarly, self-regulation with respect to weight can be
related to pleasure: Hedonic perception of food decreased in people
after obesity surgery the more they perceived that they themselves in-
vested in the procedure (Alfonsson et al., 2017; Husted and Ogden,
2014). Further, self-interest can result in hedonic feelings, but only if
such self-interest is externally imposed (Berman and Small, 2012).

5. Conclusions

Pleasure and displeasure are fundamental elements of life that affect
behavior, cognitions, perception, and social interaction. Despite the
apparent omnipresence of hedonics in daily life, hedonics have not been
the main focus for the field of affective neuroscience. Truly subjective
in their nature, assessment and quantification of hedonics require in-
trospection and/or are confounded by closely coupled aspects such as
motivation. Correspondingly, insights on the neurobiological basis of
pleasure and displeasure predominantly come from research on reward
and pain, which mainly elicit approach and avoidance behaviors (as
manifestations of motivation). While animal research allows sophisti-
cated methodological procedures creating the possibility of dissociating
motivational and hedonic responses, this is not possible in human re-
search. However, human research can make use of our access to in-
trospection and verbal reports.

In addition to the description of psychobiological mechanisms of
pleasure and displeasure, affective neuroscience has described mutual
inhibition and promotion of positive and negative affect. This finding
appears particularly interesting because it is relevant in clinical con-
texts: Several disorders seem to be characterized by increased negative
affect with reduced positive affect at the same time, possibly leading to
a self-sustaining negative feedback loop (e.g., such as described in
chronic pain and depression). Besides alterations of hedonics by clinical
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states, the experience of pleasure and displeasure can be modulated by
various factors either without awareness of a person or with awareness
and possibly self-control. For example, early processing in perception,
exposure in early childhood, learning, cognition, and memory can
modulate pleasure and displeasure as well as active emotion regulation
strategies. Such interactions and modulation highlight the complex
nature of hedonics with a large inter- and intra-individual variation.

Although hedonics have been carefully considered in focused re-
search on this topic, in some related fields such as psychology and in
research on well-being, rich and rigorous work on the neurobiological
mechanisms of hedonics as core processes is still lacking. For example,
precise roles of genetics, culture, learning, and habit in explaining such
variation remains largely unknown. Further, because research on
pleasure and displeasure has focused on investigations of the processing
of reward and physical pain, differences in brain representations of
hedonic valence might have been underestimated. It is conceivable that
a brain hub or circuit exists that processes hedonics independent of
specific modalities and across positive and negative valence.

The idea of such a hedonic hub or circuit that strongly intersects
with other brain regions would fit the observation that hedonics play a
central role in many aspects of feelings such as actions, attention,
motivation, physiological/bodily states, planning, the self, and social,
and emotions such as anger, fear, happiness, sadness, as reviewed and
discussed in the Human Affectome Project. Interestingly, such extensive
intersections have also been found in the linguistic approach when
analyzing the word list in the hedonics category. With the only ex-
ceptions of ‘anger’ and ‘motivation’, all other above-mentioned aspects
of feelings and emotions were represented in the word list of the he-
donics category, in line with the conclusion that the neuroscientific
investigation of hedonics as a core process is challenging, because he-
donics seem almost inseparably linked to other processes.

In sum, hedonics as the core process of positive and negative affect
need further investigation to better understand the different mechan-
isms and layers of hedonic experiences. Deeper knowledge of pure
hedonic mechanisms might fertilize affective neuroscience as it might
lead to a clearer separation of processes, resulting in precise models and
new hypotheses on the role of hedonics. In clinical contexts when ne-
gative and positive affect are altered this knowledge could be used to
establish novel mechanism-based treatments independent of specific
diagnoses. By making progress on both basic and applied questions
related to hedonics, we hope this review, as well as other publications
from the Human Affectome Project, can advance progress in affective
neuroscience and related disciplines.
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