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1 Stockholm Environment Institute, Stockholm, Sweden, 2 Stockholm Resilience Center, Stockholm University, Stockholm, Sweden, 3 Center for Middle Eastern
Studies & Department of Water Resources Engineering, Lund University, Lund, Sweden, 4 Department of Earth and Environment, Florida International
University, Miami, Florida, United States of America

Abstract

Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to
assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling
Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM)
scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and
validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection
analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period
1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean
precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease
in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than
+30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between
-40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change
appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may
increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy
season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume
for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation
activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay
River Basin.
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Introduction

Climate change will increase the number of people living in
water stressed regions globally [1,2]. The impact will be worse
for the contemporary African population where about 25%
already experience water stress [3]. Considering population
increase and water use it has been estimated that the portion
of the African population at risk for water stress and scarcity
will increase to 65% in 2025 [4]. Climate change is, however,
expected to exacerbate the current stress on water resources
availability in Africa [1].

In Ethiopia 84% of the population base their daily living from
agricultural production [5]. Agriculture in Ethiopia accounts for

47% of the GDP, 90% of exports, and 85% of employment [6].
The country’s economic policy is agriculturally based
industrialization to reduce poverty and generate economic
development. The heavy reliance of the Ethiopian economy on
rainfed subsistence agriculture makes it particularly vulnerable
to hydrological variability [7]. Moreover climate change may
further reinforce the vulnerability of agriculture by increasing
rainfall variability and evapotranspiration losses [8–11].

Previous research has shown that the water resources of
Ethiopia are highly sensitive to climate change and variability
[7,12–17]. Appropriate adaptation strategies are important
policy options to limit the unprecedented impact of climate
change for the livelihoods of the rural Ethiopian poor [8,17].
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While the focus on considering global impact of climate change
is primarily on societal responses to the local and regional
consequences of large-scale changes [18], most climate
change studies in Ethiopia have been done either at country or
river basin scale. Therefore, results from these studies (e.g.
[12–15,19]) are highly aggregated and have little importance in
informing the impact of climate change at smaller scale (cf.
[20,21]). The present research assesses the impact of climate
change for the Gilgel Abay River, one of the major tributaries of
the Lake Tana – the source of the Upper Blue Nile River. The
Gilgel Abay River and the Lake Tana are important for various
socio-economic purposes. However, due to climate change
and variability, the water level in the lake fluctuates. Different
studies (e.g., [22–24]) have quantified the impact of climate
change on the Gilgel Abay and the Lake Tana Basin. Our study
extends the understanding of the implications of climate
change at the Gilgel Abay River by applying a process-based
hydrological model with finer temporal and spatial resolution.
Process-based hydrological models have a strong physical
foundation for quantifying climate change impact [25].
Therefore, this study can potentially provide valuable insight to
decision makers on the local vulnerability of the Gilgel Abay
River and the Lake Tana regarding future change in rainfall and
temperature because of climate change. Moreover, the
methodology presented in this paper can be a useful approach

to study the impact of climate change on the water resources of
other basins.

Materials and Methods

Study area
The Lake Tana Basin is located in northwestern Ethiopia

(latitude 10.95° and 12.78°N, and longitude 36.89° and
38.25°E) with a drainage area of about 15,000 km2 [26] (Figure
1). It is shared by four administrative zones called Agew Awi,
North Gondor, South Gondor, and West Gojjam. The Lake
Tana, the largest lake in Ethiopia and the third largest in the
Nile Basin, is located in this basin. The climate of the Lake
Tana sub-basin is dominated by tropical highland monsoon
with most of its rainfall (70-90% of total rainfall) occurring
between June and September [10,27]. The major rivers feeding
the Lake Tana are Gilgel Abay, Gumara, Ribb, and Megech.
These rivers contribute more than 93% of the flow [28]. The
Gilgel Abay River with a catchment area of 5,004 km2 is the
largest river discharging into the Lake Tana.

Modeling approach
Global Circulation Model (GCM) derived scenarios of climate

change were used for predicting the future climates of the
study area as they conform to criteria proposed by the

Figure 1.  The location of the Lake Tana basin in the Ethiopian and the Upper Blue Nile Basin system with meteorological
and river gauging station locations.  
doi: 10.1371/journal.pone.0079296.g001
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Intergovernmental Panel on Climate Change (IPCC) [29]. The
GCMs data are, however, too coarse in resolution to apply
directly for impact assessment [30]. Thus, Statistical Down-
Scaling Model (SDSM) was used to bridge this resolution gap.
SDSM develops statistical relationships, based on multiple
linear regression techniques, between large-scale (predictors)
and local (predictand) climate [31–33]. The downscaling of
GCMs data using SDSM was done following the procedures
suggested by Wilby and Dawson [33]. The quality control
option in SDSM was used for checking missing data and
outliers. The screen variable option (a procedure in SDSM)
was used to choose the appropriate downscaling predictor
variables for model calibration. An unconditional process was
selected for maximum and minimum temperature downscaling
since the predictor-predictand process in temperature
downscaling is not regulated by an intermediate process (cf.
[33]). In unconditional models a direct link is assumed between
the predictors and predictand (e.g., there is no intermediate
process between maximum temperature (predictand) and near
surface specific humidity (predictor)). While in conditional
models, there is an intermediate process between predictors
and predictand (e.g. precipitation amounts depend on the
occurrence of wet-days, which in turn depend on regional-scale
predictors such as humidity and atmospheric pressure). Thus
for precipitation downscaling a conditional process was
assumed. The significance level which tests the significance of
predictor-predictand correlation was set to P-value <0.05. The
model calibration process in SDSM was used to construct
downscaled data based on multiple regression equations given
daily weather data (predictand) and regional scale atmospheric
variables (predictor). The ordinary least squares optimization
technique was used to calibrate the model. The calibrated
model was used to generate synthetic daily weather series
using the observed atmospheric predictor variables and
regression model weights. Validation in SDSM is evaluating the
agreement between the generated weather series and an
independent observed weather data excluded from model
calibration process. The procedures of SDSM downscaling is
provided in Figure 2.

Large-scale predictor variable information was obtained from
the National Center for Environmental Prediction
(NCEP_1961-2001) reanalysis data set for the calibration and
validation, and HadCM3 (Hadley centre Climate Model 3) GCM
(H3A2a_1961-2099 and H3B2a_1961-2099) data for the
baseline and climate scenario periods [34]. The HadCM3 GCM
output was chosen as representative for the experimental area.
When comparing output from different GCMs such as ECHAM4
(European Centre Hamburg Model 4), HadCM3, GFDL
(Geophysical Fluid Dynamics Laboratory’s Rhomboidal 30
truncation), and CCSR (Center for Climate System Research),
they all predict increase in precipitation for the Upper Blue Nile
Basin during, e.g., the 2040-69 period [35]. Thus, it can be said
that the HadCM3 is consistent with most other GCM models.
The spatial variation for precipitation of GCM output, however,
varies depending on model. The HadCM3 GCM predictions for
the Upper Blue Nile Basin regarding precipitation amount and
spatial variability are not extreme as compared to other GCMs
but rather moderate [35] and thus, can be assumed to be

representative for several GCMs. Future precipitation and
temperature scenarios were generated using A2 (medium-high)
and B2 (medium-low) emission scenarios of the IPCC Special
Report on Emission Scenarios for the period 1961-2100
[35,36]. The HadCM3 predictor variables for the A2a and B2a
experiments (the “a” in A2a and B2a refers the ensemble
member in the HadCM3 A2 and B2 experiments [37]) were
obtained on a grid by grid box basis for the study area from the
Environment Canada website [34]. The predictor data
represented a resolution of 2.5° latitude by 3.75° longitude. The
predictors of the NCEP and HadCM3 GCM experiment with
descriptions are presented in Table 1.

The predictand variables used were precipitation and
maximum and minimum temperature at Dangila station (Figure
1), and the data was obtained from the Ethiopian National
Meteorological Services Agency [38]. This meteorological
station was used for downscaling since it has long-term and
high-quality data. All stations in the drainage basin are located
within the same grid box. Consequently, the climate projection
results from this station were assumed to represent other
stations in the drainage basin.

The NCEP reanalysis data that were used to calibrate and
validate the SDSM model covered the period 1960-2001. The
observed data from the Ethiopian National Meteorological
Services Agency were for the period 1990-2001; the data from
1990-1997 and 1998-2001 were used for model calibration and
validation, respectively. A monthly temporal resolution of the
downscaled data was used to derive model parameters. An
ensemble size of 20 values was generated, and the mean of
ensemble members was used for the model validation process
even though individual ensemble members were equally
plausible.

The calibrated model was used to generate ensemble
members of synthetic daily weather series giving daily
atmospheric predictor variables from the HadCM3 A2a and
B2a experiment. The scenario generation produced 20
ensemble members of synthetic weather data for 139 years
(1961-2099), and the mean of the ensemble members was
calculated and used for impact assessment. It was adequate to
consider the mean of the ensemble members since the aim
was to reveal general trends in climate change. The generated
scenario was divided into three time windows of 30 years of
data centered at 2025 (2010-2039), 2055 (2040-2069) and
2085 (2070-2100) henceforth called 2020s, 2050s and 2080s,
respectively.

The Soil and Water Assessment Tool (SWAT) was applied
for the Lake Tana Basin to assess the impact of climate
change on the Gilgel Abay River and the Lake Tana. SWAT is
a physically based model developed to predict the impact of
land management practices on water, sediment, and
agricultural chemical yields in watersheds with varying soil,
land use, and management conditions [39]. SWAT has
previously been applied in the highlands of Ethiopia and has
given satisfactory results [28,40–42]. It simulates the
hydrological cycle, vegetation growth, and nutrient cycling with
a daily time step by disaggregating a river basin into sub-
basins and hydrologic response units (HRU). HRUs are lumped
land areas within the sub-basin that are comprised of unique

Impact of Climate Change on Gilgel Abay River Flow
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land cover, soil, and management combinations. This allows
the model to reflect differences in evapotranspiration and other
hydrologic conditions for different land cover and soil types
[39]. SWAT has different options to calculate the hydrological
components in a watershed. In this study, Hargreaves’s
method was used for the determination of potential
evapotranspiration. Many studies (e.g., [40,42]) have applied
Hargreaves’s method in the Lake Tana Basin with satisfactory
results. Surface runoff was estimated using the Soil
Conservation Service’s curve number method, which is a
nonlinear function of precipitation and retention coefficient [43].
The surface runoff was estimated separately for each HRU and
routed to obtain the total runoff for the watershed. Variable
storage routing method was selected for routing the flow of
water in the channels.

Spatial data.  A digital elevation model (DEM) was used to
delineate the sub-watersheds in the ArcSWAT interface [44].
The ArcSWAT is an ArcGIS extension for the SWAT graphical
user interface. The DEM data was obtained from the CGIAR

Consortium for Spatial Information (CGIAR-CSI) website [45],
and has a resolution of 90 m by 90 m. The stream network
dataset was superimposed onto the DEM to define the location
of the streams. The land use and soil data defined the HRUs.
The stream network, land use/land cover, and soil maps of the
study area were obtained from the Ethiopian Ministry of Water
Resources [46]. The soil physical and chemical properties
required by SWAT were derived from the digital soil map of the
world CD-ROM Africa map sheet [47].

Hydrometeorological data.  The climatic data that were
used for SWAT model setup were also obtained from the
Ethiopian National Meteorological Services Agency [38]. These
data consist of precipitation and maximum and minimum
temperature from nine stations located within and around the
study watershed (Figure 1). The SWAT in-built weather
generator was used to fill in missing data, and to generate
other climatic inputs such as solar radiation, relative humidity,
and wind speed. The daily river flow at the Gilgel Abay gauging
station (Figure 1), which was obtained from the Ethiopian

Figure 2.  SDSM downscaling procedure (modified from Wilby and Dawson [33]).  
doi: 10.1371/journal.pone.0079296.g002
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Ministry of Water Resources [46], was used for SWAT
calibration, validation, and climate change impact analysis.
Calibration of SWAT was performed by adjusting model
parameters within their physical acceptable intervals to achieve
a reasonable agreement between observed and simulated
stream flows (cf. [48]). Validation of SWAT, on the other hand,
was the process of testing the performance of the calibrated
model (i.e. the agreement between observed and simulated
stream flows) without changing parameter values that were set
during the calibration, when simulating the response for a
period other than the calibration period [48].

SWAT is a complex model with many parameters making
calibration complex. Hence, sensitivity analysis was performed
to delimit the number of parameters which affected the fit
between simulated and observed data. A combination of Latin
Hypercube Sampling and One-Factor-At-a-Time sensitivity
analysis methods were used [49]. The concept of Latin-
Hypercube simulation is based on Monte Carlo simulation to
allow for a robust analysis but a stratified sampling approach
for efficient estimation of output statistics while the One-Factor-
At-a-Time is an integration of a local to a global sensitivity
method [49].

The calibration of the model was made for a period of six
years from 1995-2000. SWAT has two calibration tools: manual
calibration helper and auto-calibration. Initially, manual
calibration was used and when the model objective functions
reached a satisfactory level (i.e., Nash-Sutcliff efficiency (ENS)
[50] of above 0.5), the auto calibration process continued. The
manual calibration was done by partitioning stream-flow into
surface runoff and base-flow. The surface runoff was calibrated
by adjusting sensitive parameters which affect surface runoff

Table 1. Daily predictor variable held in the grid box data
archive.

Variable Description
temp Mean temperature at 2 m
mslp Mean sea level pressure
p500 500 hPa geopotential height
p850 850 hPa geopotentail height
rhum Near surface relative humidity
r500 Reative humidity at 500 hPa height
r850 Relative humidity at 850 hPa height
shum Near surface specific humidity
s500 Specific humidity at 500 hPa height
s850 Specific humidity at 850 hPa height

Derived variable Description
**_f Geostrophic air flow velocity
**_z Vorticity
**_u Zonal velocity component
**_v Meridional velocity component
**zh Divergence
**th Wind direction

The derived variables have been derived using the geostrophic approximation [33].
** refers to different atmospheric levels: the surface (p_), 850 hPa height (p8) and
500 hPa height (p5)
doi: 10.1371/journal.pone.0079296.t001

(e.g., CN2 – Initial SCS runoff curve number for moisture
condition II, Ch_N2 – Manning’s ‘’n’’ value for the main
channel, and Esco – Soil evaporation compensation factor).
Calibration of surface runoff was performed until a satisfactory
objective function was achieved (i.e., ENS >0.5). Thereby,
calibration of base-flow parameters followed by adjusting the
sensitive parameters which affects groundwater contribution
(e.g., GW_REVAP – Groundwater ‘’revap’’ coefficient, and
GWQMN – threshold depth of water in the shallow aquifer
required for return flow to occur). Similarly, these parameters
were adjusted until the ENS value was above 0.5. After every
adjustment of base-flow parameters, the surface runoff was
checked since the adjustment of base-flow parameters might
affect the surface runoff simulation. Once the water balance
was calibrated, temporal flow calibration was performed at
each step by adjusting parameters which affect the shape of
the hydrograph (e.g., Ch_K – effective hydraulic conductivity in
main channel alluvium, alpha_BF – baseflow alpha factor,
Surlag – surface runoff lag coefficient, and GW_DELAY –
groundwater delay time). The manually calibrated parameter
values were set as initial values for the auto-calibration
process. Finally, the model was validated with a stream flow
data from 2001-2004.

The performance of SWAT was evaluated using statistical
measures to determine the quality and reliability of predictions
compared to observed values. The Nash-Sutcliffe simulation
efficiency (ENS) was the goodness of fit measure used to
evaluate model prediction. The ENS is a normalized statistic that
determines the relative magnitude of the residual variance
compared to the measured data variance [50]. ENS can range
from -∞ to 1. An ENS value of 1 corresponds to a perfect match
of observed stream flow to the simulated stream flow. An ENS

between 0 and 1 are considered as acceptable levels of
performance, whereas an ENS ≤ 0 suggests the observed mean
is a better predictor than the model.

SWAT has the capability to simulate the impact of climate
change through adjustments in the climatic inputs that is read
into the model. In this study changes in precipitation and
temperature were applied to analyze the effect of climate
change on the river flow. The adjustment terms from month to
month climate variables were derived from the SDSM climate
change downscaling results.

Results

Climate projection
The SDSM model resulted in satisfactory multiple regression

equation parameters for maximum and minimum temperature
(Table 2). Thus, it may be inferred that future projections may
also be well replicated [33]. The precipitation downscaling was,
however, characterized by not as good calibration and
verification (Table 2). Rainfall predictions, however, have a
larger degree of uncertainty than those for temperature since
rainfall is highly variable in space and the relatively coarse
GCM models cannot adequately capture this variability [33,51].
However, a graphical comparison between observed average
long term mean monthly precipitation, and maximum and
minimum temperature with corresponding simulations showed

Impact of Climate Change on Gilgel Abay River Flow
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that the results of the SDSM model replicated the basic pattern
of observations (Figure 3).

Results showed a general decrease in annual mean
precipitation for the 2020s and an increase for the 2050s and
2080s (Figure 4). As shown in Figure 4, in the 2020s there may
be a decrease in mean monthly precipitation for all months
except May, June, and July for both scenarios (A2a and B2a).
For the 2020s, the A2a and B2a scenarios displayed both a
mean monthly precipitation decrease by -29% and -30%,
respectively. In the 2020s, mean monthly precipitation increase
reached +19% for the A2a scenario and +18% for the B2a
scenario. The annual mean precipitation in the 2020s may
decrease by -10% and -13% for the A2a scenario and B2a
scenario, respectively. For the 2050s, there may be an early
occurrence and early end of precipitation as compared with the
baseline period. This is reflected by an increase of mean
monthly precipitation in April and a decrease in September.
The overall effect in the 2050s was a small increase of annual
mean precipitation by +4% for the A2a case and +2% for the
B2a case. For the 2050s, an increase in mean monthly

Table 2. R2 for calibration and validation of SDSM
downscaling of precipitation, and maximum and minimum
temperature at the Dangila station.

 Precipitation Maximum temperature Minimum temperature
Calibration 0.42 0.49 0.47
Validation 0.31 0.52 0.46

doi: 10.1371/journal.pone.0079296.t002

precipitation was indicated by +29% for the A2a scenario and
+28% for the B2a scenario. For the 2050s, a decrease in mean
monthly precipitation was indicated corresponding to -12% for
the A2a scenario and -14% for the B2a scenario. For the
2080s, results indicate an increase in mean monthly
precipitation during all months except in September for the A2a
scenario and September and October for the B2a scenario.
The increase in mean monthly precipitation was +34% for the
A2a scenario and +32% for the B2a scenario. The A2a and
B2a scenarios showed an increase in annual mean
precipitation by +19% and +12%, respectively.

The above results would mean a generally increasing
precipitation during the Kiremit (wet season = June–
September) for the long-term future (Figure 4). Results also
indicate a corresponding increase in precipitation for the Belg
(less rainy season = February–May) for 2050s and 2080s. The
Kiremit and Belg are the cropping seasons in Ethiopia. This
gives an insight into the possible impact of climate change on
agriculture in the study area.

The maximum temperature scenario showed that there may
be an increase in mean monthly maximum temperature for all
months except for April, May, and June for the 2020s and
2050s (Figure 5). However, mean monthly maximum
temperature increased for all months in the 2080s (except for
May in B2a scenario). The change in mean monthly maximum
temperature ranged between -2.4 °C in May (2020s) and +5 °C
in September (2080s) for the A2a scenario, and between -2.5
°C in May (2020s) and +4.3 °C in September (2080s) for the
B2a scenario. Seasonally, a pronounced increase in mean
maximum temperature is indicated during the Bega (dry
season = October–January) and Kiremit. The mean monthly,

Figure 3.  Comparision between observed and generated mean daily precipitation and maximum and minimum
temperature in the time step for the Dangila station.  a) precipitation (mm), b) maximum temperature (°C), and c) minimum
temperature (°C). Bega season = October–January, Belg season = February–May, and Kiremit season = June - September.
doi: 10.1371/journal.pone.0079296.g003

Impact of Climate Change on Gilgel Abay River Flow
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seasonal, and annual change in daily maximum temperature
from the baseline period data are shown in Figure 5.

The overall results (2010-2099) for annual mean maximum
temperature showed an increasing trend for both scenarios
(A2a and B2a). The mean maximum temperature increase is
+0.52 oC/decade and +0.34 oC/decade for A2a and B2a
scenarios, respectively.

The annual mean minimum temperature trend increases for
both scenarios (Figure 6). The annual mean minimum
temperature change for 2020s may be negligible. However, for
the 2050s all months except September, October, November,

and December display an increase in mean monthly minimum
temperature for both scenarios. For this period the effect is an
increase in mean minimum temperature during the Belg
season. For the 2080s, there may be an increase in mean
monthly minimum temperature for all months but the increase
will mainly be significant for the Belg months. The change in
mean monthly minimum temperature ranges between -1.4 °C
in October for the 2020s and +4.2 °C in March for the 2080s for
the A2a scenario, and -1.3 °C in October for the 2020s and
+3.8 °C in March for the 2080s for the B2a scenario.

Figure 4.  Percentage change in monthly, seasonal, and annual precipitation for the period 2010-2099 as compared to the
baseline period (1990-2001) at Dangila station.  a) A2a scenario and b) B2a Scenario. Bega season = October–January, Belg
season = February–May, and Kiremit season = June -September.
doi: 10.1371/journal.pone.0079296.g004

Figure 5.  Change in monthly, seasonal and annual mean maximum temperature for the period 2010-2099 as compared to
the baseline period (1990-2001) at Dangila station.  a) A2a scenario and b) B2a scenario. Bega season = October–January, Belg
season = February–May, and Kiremit season = June–September.
doi: 10.1371/journal.pone.0079296.g005

Impact of Climate Change on Gilgel Abay River Flow
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The long term trend analysis (1990-2099) showed that the
annual mean minimum temperature may increase by +0.43 oC/
decade and +0.27 oC/decade for the A2a and B2a scenarios,
respectively.

Hydrological modeling
The watershed delineation and HRU definition for the Lake

Tana Basin resulted in 34 sub-basins and 189 HRUs with a
total watershed area of 14,952 km2. Delineation of the
watershed gave minimum, maximum, and mean elevation in
the basin as 1,759, 4,109, and 2,025 m amsl, respectively.

The analysis included testing the degree of sensitivity of 26
flow parameters and their parameter bound. Alpha_Bf
(baseflow alpha factor) and Gw_Delay (groundwater delay
time) were the most sensitive parameters that affected the
base-flow contribution while CN2 (curve number for moisture
condition-II), Esco (soil evaporation compensation factor),
Ch_N2 (Manning’s ‘’n’’ value for the main channel), and Surlag
(surface runoff lag coefficient) were among the most sensitive
parameters for surface runoff. The eight most sensitive
parameters, their ranking, and description are shown in Table
3.

The manual calibration resulted in a reasonable agreement
between daily observed and simulated streamflow (ENS = 0.54).
The auto-calibration improved the ENS values to 0.74. In Santhi
et al. [52],, the authors suggested that efficiency values greater
than or equal to 0.50 are considered adequate for SWAT
model application. Table 4 also exhibited good agreement
between simulated and measured data.

The hydrographs (Figure 7a) for mean monthly observed and
simulated stream flows after calibration showed a reasonable
agreement. Validation of the model confirmed the model’s
strong predictive capability through ENS values of 0.78 (Figure

Table 3. Parameter sensitivity ranking and final auto-
calibration results.

RankParameter Description Range

Auto-
calibrated
result

1 Alpha_Bf Baseflow alpha factor 0-1 0.4

2 CN2
Initial SCS runoff curve
number for moisture condition
II

-25% -+25% -5%

3 Ch_N2
Manning’s “n” value for the
main channel

0.01-0.3 0.059

4 Ch_K2
Effective hydraulic conductivity
in main channel alluvium

0.01-150 122.86

5 Surlag Surface runoff lag coefficient 0-10 4

6 Esco
Soil evaporation
compensation factor

0-1 0.95

7 Gw_Delay Groundwater delay time 0-500 30.7

8 GW_REVAP
Groundwater “revap”
coefficient

0.02-0.2 0.18

doi: 10.1371/journal.pone.0079296.t003

Table 4. Calibration and validation statistics for measured
and simulated flows at Gilgel Abay River flow gauge station.

 Total flow (m3/s) Average flow (m3/s)  
Period Observed Simulated Observed Simulated % error
Calibration (1995-2000) 129077 124757 58.88 56.91 3.34
Validation (2001-2005) 71196 70657 48.73 48.36 0.75

doi: 10.1371/journal.pone.0079296.t004

Figure 6.  Change in monthly, seasonal, and annual mean minimum temperature for the period 2010-2099 as compared to
the baseline period (1990-2001) at the Dangila station.  a) A2a scenario, b) B2a scenario. Bega season = October–January, Belg
season = February–May, and Kiremit season = June–September.
doi: 10.1371/journal.pone.0079296.g006
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7b). Other statistical measures (Table 4) also proved SWAT’s
strong performance in the basin.

From the calibration and validation results, it may be
deduced that the model represents the hydrological
characteristics of the watershed and can be used for further
analysis.

Climate change impact
The impact of climate change on stream flow was predicted

based on conditional temperature and rainfall changes on a
monthly, seasonal, and annual basis. The effect of climate
change on low flow was also analyzed. The analysis was done
taking the 1990-2001 river flow as baseline flow against which
the future flows for the 2020s, 2050s, and 2080s were
compared. The percentage change in mean monthly flow

volume in both scenarios and for the periods 2020s, 2050s,
and 2080s is presented in Figure 8.

For the 2020s, the mean monthly flow volume shows a
decrease for all months except May-August in the A2a
scenario. For this period a decrease of -43% and an increase
of +58% in mean monthly flow volume are indicated. Increase
in mean monthly flow volume is observed for months which
show a corresponding increase in mean monthly precipitation.
However, August displays a decrease in mean monthly
precipitation by -4% but an increase in mean monthly flow
volume by about +7%. The increase in mean monthly flow
volume in August is mainly due to catchment and groundwater
lag time effects. For the 2020s in the B2a scenario, the same
effect as in the A2a scenario of 2020s is observed.

For the 2050s, increase in precipitation is reflected in an
increase in flow volume and vice versa. March and September

Figure 7.  Hydrograph between mean monthly observed and simulated stream flows at the Gilgel Abay gauging station.  a)
calibration period, and b) validation period.
doi: 10.1371/journal.pone.0079296.g007

Figure 8.  Percentage change in mean monthly, seasonal, and annual flow volume for the period 2010-2099 as compared to
the baseline period (1990-2001) at the Gilgel Abay gauging station.  a) A2a scenario and b) B2a scenario. Bega season =
October–January, Belg season = February–May, and Kiremit season = June–September.
doi: 10.1371/journal.pone.0079296.g008
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however, displayed a decrease in mean monthly precipitation
but an increase in mean monthly flow volume. For September
this is attributed to the effect of the increase in precipitation
during the previous months. March’s exceptional increase in
mean monthly flow volume is more difficult to explain. In the
2050s, the mean monthly flow volume is indicated to increase
by +100% and decrease to -20% for the A2a scenario and
increase to +97% and decrease to -19% for the B2a scenario.

For the 2080s and the A2a scenario, an increase in mean
monthly flow volume for all months except October is indicated.
The increase in mean monthly flow volume may reach +135%,
but a decrease in precipitation in September by -5% may
decrease the mean monthly flow volume by -7% in October.
For the 2080s B2a scenario, the pattern of mean monthly flow
volume change is more or less the same as the A2a scenario
and the increase in mean monthly flow volume is +106%. But a
decrease in mean monthly precipitation in September and
October by -6% and -4% respectively, results in a decreasing
mean monthly flow volume in October and November by -13%
and -5%, respectively.

Results indicate an increase in annual mean flow volume for
the 90-year prediction horizon (Figure 8). The Belg season
shows the larger share in increased flow volume. The indicated
increase is +136% for the 2080s in the A2a scenario and +99%
for the 2080s in the B2a scenario. The Kiremit season also
shows an increase in flow volume; the increase ranges from
+15% to +36% for the A2a scenario and +12% to +32% for the
B2a scenario. However, both scenarios indicate that there
might be a decrease in flow volume during the Bega season.
The decrease is about -30% for both A2a and B2a scenarios.

Climate change will affect both high and low flows owing to
variability in precipitation and temperature. Analyzing low flow
statistics is important for water quality and aquatic habitat
needs. Hydrologic regimes are often quantified using statistics
of flow duration curves (cf. [35]). In this study a 95% flow

exceedance probability was considered to characterize low
flow conditions. It was found, however, that there is no major
effect for low flows at this probability of exceedance. The effect
is visible at 70% exceedance probability indicating that in the
2020s and 2050s the low flow may decrease but increase in
the 2080s for both scenarios. Table 5 and Figure 9 show low
flow statistics at 70% exceedance probability and
corresponding flow duration curves, respectively.

Discussion and Conclusion

We predicted the conditional impact of rainfall and
temperature changes on the hydrology of the Lake Tana Basin
using the HadCM3 GCM A2a and B2a climatic scenarios for
the 2010-2100 period. We applied the SDSM statistical
downscaling tool to evaluate the GCM outputs. The SWAT
model was used to study the consequences of climate change
on the hydrology of Lake Tana Basin. We believe that results
presented in this study are representative for a majority of
GCM output and that therefore our results are plausible
estimates of future effects of climate change. Our temperature
projection results (an increase in mean monthly temperature up
to +2.5 °C in the 2020s, +3.1 °C for the 2050s, +5 °C for the

Table 5. Low flow statistics for Gilgel Abay River flow for
A2a and B2a scenarios at three time windows.

 Periods

Scenarios Baseline* 2020s 2050s 2080s
A2a 1.89 0.79 1.61 2.50
B2a 1.89 0.77 1.35 1.98

* baseline period is not under any of the scenarios
doi: 10.1371/journal.pone.0079296.t005

Figure 9.  Flow duration curve to analyze the low flow at the Gilgel Abay gauging station.  a) A2a scenario and b) B2a
scenario.
doi: 10.1371/journal.pone.0079296.g009
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2080s) are consistent with results reported by several other
previous studies [10,19]. Even so, the SDSM precipitation
weather generation could not satisfactorily replicate the
observed precipitation due its inherent high variability in space
[51]. Precipitation prediction for the Blue Nile is a difficult task
with some climatic models projecting more, and other less
precipitation [10,19,53,54]. The majority of GCMs, however,
indicate a precipitation increase over the Upper Blue Nile Basin
in a 50-100 year perspective. In line with this, our simulated
precipitation results matched observed precipitation in a
satisfactory way (Figure 3a). This suggests that SDSM may
perform well in simulating the future climatic condition of the
study area. As in any type of modeling study the results have to
be judged against uncertainties. Even if we cannot quantify
these uncertainties in this study it is well known that uncertainty
increases along the sequence temperature-precipitation-runoff.
The uncertainty also increases with smaller time and spatial
scale. Consequently, results have to be viewed in this
perspective. On the other hand, similarity in results with other
studies using other approaches corroborates results. In any
case, percentage changes’ of different hydrometeorological
quantities as in this study should not be seen as facts but
instead as an indication of possible future outcomes with a high
degree of uncertainty.

In view of the above, the SDSM downscaling indicates an
annual mean precipitation decrease for the 2020s by -10%
(A2a scenario) and -13% (B2a scenario). The annual mean
precipitation will increase by 3.8% and 2.2% for 2050s in the
A2a and B2a scenarios. For the 2080s the annual mean
precipitation may increase with +19.3% (A2a scenario) and
12% (B2a scenario). Seasonally, precipitation may increase in
the Kiremit in the 90-year horizon as well as in the Belg after
2040. Abdo et al. [24] found that rainfall in the Kiremit season
may decrease for the A2a scenario and the forthcoming
century, a decrease in the 2020s, and a slight increase in the
2050s and 2080s for the B2 scenarios. A multimodal average
precipitation projection for the entire Blue Nile basin by Beyene
et al. [19] for the Kiremit showed an increase in precipitation for
the 2020s and 2080s but a decrease in the 2050s. Our and
partly Abdo et al.’s [24] and Beyene et al.’s [19] results’,
indicate that rainfall may increase during the Kiremit season.
As Kiremit and Belg are the cropping seasons in Ethiopia,
climate change may have positive implications for the rainfed
agricultural sector even if the increase in the maximum and
minimum temperature has a contradictory effect by increasing
evapotranspiration.

The runoff is expected to change according to temperature
and precipitation changes. The coming decades may thus bring
less runoff (indicated by the simulated -46% decrease in mean
monthly flow volume in the 2020s). However, the mid and later
part of the coming century may bring increase in runoff
(indicated increase up to +135% in mean monthly flow volume
during the 2080s). There may be a significant increase in flow
volume during the Belg season (indications of up to +136%)
and an increase in flow volume during the Kiremit season
(indications of up to +36%). Overall there may be an annual
increase in flow volume in the Gilgel Abay river flow due to
climate change. Taye et al. [23] showed that the mean annual

flow change at the Lake Tana outlet may range from -81% to
+75%. On the other hand, it has been found a dominant
declining annual streamflow for the Gilgel Abay river using nine
GCMs (other than HaDCM3) [54]. This owing to that the GCMs
they applied showed a precipitation decrease. Similarly, Abdo
et al. [24] observed a decrease in runoff for the coming century
except in the 2050s. We may conclude that the difference in
results is mainly a result from the different GCM results. Based
on our results, the increase in Belg season flow would have
paramount importance for small scale irrigation activities
practiced by local farmers. As the Gilgel Abay is the largest
tributary river feeding in to Lake Tana, any change in river flow
is likely to affect the lake. Besides, as the basin is small, it is
assumed that the impact of climate change will be more or less
the same in other tributary rivers. Hence, it can be concluded
that climate change overall may result in an increase in flow
volume into Lake Tana based on HadCM3 rainfall and
temperature projections. This may have positive as well as
negative implications for the socio-economic conditions of the
region. The increase in flow will help to harness a significant
amount of water for the ongoing dam projects in the Gilgel
Abay River basin. However, it may also aggravate the recurrent
flooding problems in the area surrounding Lake Tana.

The cascade of models used in this study showed a
satisfactory performance. Even so, it is undeniable that there
are uncertainties due to inherent assumptions in all used
models [55]. In general, many of these uncertainties are related
to the generation of regional climate information from the
general climate change scenarios [56]. These include
uncertainties regarding future emissions of greenhouse gases,
differing responses of GCMs to the resulting concentrations of
emissions, and uncertainties related to downscaling techniques
[55,57]. Downscaled scenarios in this study were generated
using only one GCM model experiment. Downscaled scenarios
using other GCM models running the same experiment may
likely produce different, but equally plausible results [58].
Especially precipitation changes simulated by GCMs in much
of Africa involve considerable uncertainty [55,59,60] because of
the inability of climate model predictions to account for the
influence of land cover changes on future climate and the
relatively poor representation in many models of some aspects
of climate variability that are important for Africa (e.g., ENSO)
[60]. For example there is not a clear agreement between
different GCMs how the rainfall in the Sahel, the Guinean
Coast and the southern Sahara will change [55,60–63].
However, there is a robust increase in rainfall in East Africa,
with 18 of 21 models projecting an increase in the core of this
region [55]. We observed a general increase in precipitation
with HaDCM3 downscaling in the Lake Tana Basin. This
suggests that increase in runoff could be one of the plausible
scenarios. Uncertainties are also pertinent to the hydrologic
modeling applied for the impact assessment [64]. These
include input uncertainty, parameter uncertainty, and model
structure uncertainty. Moreover, we assumed that the land
cover will remain the same over the analysis period; however,
the land cover will change due to natural and anthropogenic
influences. Hence the results of this study should be
considered as indicators of the future changes on climate and
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hydrology rather than actual estimations. However, results
presented in this paper can still provide invaluable insight to
decision makers on the degree of vulnerability of Lake Tana
Basin to climate change, which is important to design
appropriate adaptation and mitigation strategies.
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