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Abstract The paternal contribution to fertilization and em-
bryogenesis is frequently overlooked as the spermatozoon is
often considered to be a silent vessel whose only function is to
safely deliver the paternal genome to the maternal oocyte. In
this article, we hope to demonstrate that this perception is far
from the truth. Typically, infertile men have been unable to
conceive naturally (or through regular IVF), and therefore, a
perturbation of the genetic integrity of sperm heads in infertile
males has been under-considered. The advent of
intracytoplasmic sperm injection (ICSI) however has led to
very successful treatment of male factor infertility and subse-
quent widespread use in IVF clinics worldwide. Until recently,
little concern has been raised about the genetic quality of
sperm in ICSI patients or the impact genetic aberrations could
have on fertility and embryogenesis. This review highlights
the importance of chromatin packaging in the sperm nucleus
as essential for the establishment and maintenance of a viable
pregnancy.
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Introduction

Currently, there are limited diagnostic tests available to eval-
uate the genetic integrity of a semen sample as, traditionally,
male fertility evaluation has used conventional semen param-
eters (concentration, motility morphology, etc.) Although pro-
viding fundamental information, it has been strongly sug-
gested that this basic evaluation has questionable clinical val-
ue [1]. Within recent years, therefore, several molecular ge-
netic techniques have been developed to assess the genetic
integrity of sperm. This review will focus on our current un-
derstanding of the genetic integrity of sperm and its impact on
fertility and embryogenesis.

The spermatozoon is a highly elaborate and specialized cell
that is formed through the process of spermatogenesis, during
which a complex cellular program of differentiation occurs.
The end result is mature spermatozoa that are essential for
reproduction, fertilization, and normal embryo development.
The sperm cell is unique in morphology, chromatin structure,
and function, and the process of spermatogenesis is character-
ized by a myriad of changes. Essentially, these can be broken
down into three sequential elements: (i) mitotic proliferation
(producing large numbers of spermatocytes); (ii) meiotic re-
combination and chromosome segregation (producing genet-
ically diverse haploid gametes); and (iii) culminates in cyto-
differentiation (re-packaging of the haploid genome for deliv-
ery to the oocyte). In general, transcription and translation are
temporarily disengaged during the post-meiotic stage of sper-
matogenesis (when round cells are extensively remodeled to
form mature spermatozoa) [2]. Furthermore, the storage of
mRNAs encoding for protamines is crucial for the completion
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of spermiogenesis [3]. The structure of sperm chromatin and
perturbations in its integrity that could have a clinical impact
in the form of chromosome aneuploidy, DNA fragmentation,
or chromatin organization will form the backbone of this
review. This review thus addresses the impact of the unique
features of the genetic integrity of sperm in a clinical setting.

Structure of human sperm chromatin

DNA is, in somatic nuclei complexed, condensed and pack-
aged with a family of proteins (histones) into nucleosomes
(chromatin). Histones can be modified by post-translational
modifications that regulate the degree of DNA compaction
and modulate gene expression by restricting or facilitating
access of transcription factors to the DNA. Despite the effica-
cy of histones in regulating DNA compaction and gene ex-
pression, it is clear that an alternative mechanism for DNA
packaging has evolved in sperm cells. The haploid sperm
chromatin undergoes one of the most significant changes
known in biology, in which, the vast majority of histones are
replaced with transition proteins, followed by protamines
resulting in a highly condensed (typically 10% or less volume
than other somatic cell nucleus) [2], relatively transcriptional-
ly inert cell [4, 5]. Normal human sperm chromatin remains
packaged by 5–15 % of histones [6, 7], a higher percentage
compared to other mammalian species, e.g., bulls, stallions,
hamsters, and mice, which retain (<5 %) [8]. Therefore, com-
pared to other mammalian species, human sperm chromatin is
relatively less compact. Interestingly, dye-binding assays such
as aniline blue staining that selectively stain histones are often
used as markers of sperm immaturity [9, 10]. As discussed
later, this has a bearing on recent reports suggesting an epige-
netic role for retained histones (particularly histones carrying
post-translational modifications) in sperm.

During chromatin remodeling/compaction in sperm, natu-
rally occurring DNA strand breaks induced by topoisomerase
II arise to relieve the torsional stresses that accompany the
transition of sperm chromatin from an exclusively nucleoso-
mal to a predominantly protamine-based configuration [11].
Re-packaging with protamines most likely evolved to more
efficiently compact chromatin into as small a volume as pos-
sible and so facilitate safe delivery of the paternal DNA to the
oocyte [2]. Arginine, which is the main component of prot-
amines, is responsible for allowing a higher degree of chro-
matin compaction by neutralizing the strong negative charges
of the phosphate groups in the DNA backbone [12]. Cysteine
residues confer extra stability through intermolecular disulfide
cross-links [13]. These allow the basic protamine packaging
unit (toroid) to be further condensed, with each chromosome
becoming a garland of toroids, clustered by centromeres that
form a chromo-center in the nuclear interior. The telomeres on
the other hand form dimers and tetramers at the nuclear pe-
riphery [14–17]. Evidence for regions of the sperm genome

remaining associated with nucleosomes that retain a more
open conformation comes from studies using salt-washing
and/or limited endonuclease digestion of sperm nuclei
[18–23]. In two such studies, nucleosome-rich, low salt-
washed, and restriction (or micrococcal nuclease) digestion-
sensitive regions were shown to be associated with important
developmental gene sequences involved in embryogenesis
[18, 22]. Other studies suggested that these regions appear to
be associated with hypomethylated DNA [24, 25], indicating
a potentially permissive state for transcriptional activation of
specific gene families involved in early cell differentiation and
embryogenesis, perhaps in the early embryo [7]. Altered pat-
terns of sperm DNA and histone methylation have also been
reported in infertile men [25], supporting earlier studies into
the relationship between DNA methylation and pregnancy
outcome in an IVF setting [26]. Additionally, in comparison
to other mammalian species (e.g., bull cat, boar, ram) that
contain one type of protamine (P1), mouse and human sperm
contain two types of protamines (P1 and P2) [27], both present
in roughly equal quantities. Improper temporal regulation of
these transcripts leading to altered expression of the mature
proteins is associated with male infertility especially when the
1:1 ratio is perturbed [27, 28]. Furthermore, an altered P1/P2
ratio has been correlated with a negative impact on embryo
quality and IVF outcome although at least one study has
shown that a fertility-defining 1:1 ratio is equivocal [29]. As
indicated above, infertile men often present with an increased
histone to protamine ratio compared to fertile counterparts
with a subset of infertile men possessing complete protamine
deficiency [30]. In this regard, mouse knockout models in
which the intermediate DNA re-packaging transition proteins
are lost show impaired fertility and protamine knock-outs are
completely infertile [31, 32]. Therefore, the incorrect distribu-
tion of histones and protamines throughout the genome could
have undesired effects on early embryo development [2, 27].

Sperm aneuploidy and its impact in the clinic

Chromosome aneuploidy (the presence of extra or missing
chromosomes in the sperm head) impacts on embryogenesis
and the health and development of future offspring.
Chromosome aneuploidy is clinically significant, given that
it is the leading cause of pregnancy loss and mental retardation
in humans. Embryonic aneuploidy can arise from several dif-
ferent mechanisms: (1) a non-disjunction event giving rise to
an aneuploid sperm or oocyte, resulting in chromosomally
unbalanced gametes or (2) a mitotic loss (e.g., through ana-
phase lag), gain, or non-disjunction event in the embryo, lead-
ing to mosaicism with the presence of normal and aneuploid
cells [33]. The parental origin of aneuploidies has been
reviewed extensively elsewhere [33–37]. In brief, autosomal
trisomies and trisomy X are typically maternal in origin
(70–100 %). Thus, aneuploidy is predominantly considered to
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be maternal in origin, with advanced maternal age being
a significant risk factor for increased risk of aneuploidy [33].
However, it should be noted that a paternal contribution re-
mains for the aforementioned trisomies. Additionally, certain
clinically viable aneuploidies (e.g., monosomy X, 47, XXY,
and 47, XYY) are predominantly paternal in origin with a
prevalence of 70–80, 50, and 100 %, respectively [38].
Advancing paternal age has less impact on chromosome an-
euploidy with only a slight increased risk emerging for certain
chromosomes [39].

Sperm aneuploidy can be readily identified by either sperm
karyotyping (achieved after fertilization of a human sperm
with a hamster oocyte) or by interphase fluorescence in situ
hybridization (FISH) in human sperm nuclei. Early sperm
aneuploidy studies studied sperm karyotypes, a technically
demanding and labor-intensive method that could only study
a relatively low number of sperm cells from each individual,
that were capable of fertilizing a hamster oocyte. The major
benefit of this method is that it allows both numerical and
structural chromosome aberrations to be identified. The ad-
vent of FISH revolutionized our ability to study sperm aneu-
ploidy allowing thousands of sperm to be studied and was
rapidly adopted as a research tool to investigate the paternal
contribution to aneuploidy. Early cumulative data from the
sperm karyotype studies revealed a higher incidence of struc-
tural chromosome compared to numerical aberrations within
sperm cells (6–7 % versus 1–2 %, respectively) [34, 40].
However, this is based on a relatively small number of karyo-
types and subjects. Therefore, for the remainder of this sec-
tion, we will focus on FISH studies. Several comprehensive
reviews have been published compiling previous studies eval-
uating sperm aneuploidy levels in fertile and infertile patient
cohorts for all chromosomes [38, 41–43]. Taken together, the
vast majority of studies have demonstrated that all men pro-
duce a proportion of aneuploid sperm. However, an increased
percentage of sperm aneuploidy has been significantly asso-
ciated with reduced semen parameters and shown to increase
with the severity of the male factor infertility [38, 41–43].
Furthermore, specific chromosomes namely chromosomes
21, 22 and X, and Y typically display a two- to threefold
increase in chromosome non-disjunction compared to the rest
of the chromosome complement [38, 41–43]. This is perhaps
not surprising as meiotic recombination plays a crucial role in
keeping homologous chromosomes together. The aforemen-
tioned chromosomes have the smallest pairing regions and
usually only present with single chiasmata [40, 44, 45].

The emerging sperm aneuploidy picture from studying males
with different types of infertility (e.g., oligo-, astheno-, terato-,
zoospermia) is that they have on average of threefold increase
with a two- to tenfold higher prevalence of numerical chromo-
some abnormalities compared to their fertile counterparts [44,
46]. Patients with more severe morphological abnormalities in
sperm (e.g., macrocephalic-multi-flagellated sperm,

globozoospermia) manifest 10–30× and 8–10× increase in aneu-
ploidy, respectively, compared to controls [38, 47, 48]. Patients
with oligoasthenoteratozoospermia (OAT) have been studied ex-
tensively using FISH probes by many groups, and an increased
level (up to 30-fold) of aneuploidies (disomy, diploidy,
nullisomy) has been found for all investigated chromosomes
compared to their fertile counterparts [42, 46, 47, 49–56].

In terms of sperm aneuploidy in individuals with numerical
or structural chromosome aberrations (e.g., 47,XXY, 47,XYY,
Robertsonian, or reciprocal translocations) it appears that the
actual observed rates are lower from the theoretical numbers
expected from the behavior of the meiotic trivalents or quad-
rivalents possibly due to some selection against these aneu-
ploid sperm (e.g., an unknown meiotic checkpoint) [38, 47,
48, 56, 57]. Non-mosaic Klinefelter patients are reported to
have an average of 6 % sex chromosome aneuploidy within
their sperm [47]. The proportion of unbalanced gametes in-
creases with structural chromosome aberrations with carriers
of reciprocal and Robertsonian translocations demonstrating a
50 and 15 % frequency of unbalanced gametes, respectively
[38]. Finally, patients with Y microdeletions also appear to
have a small but significant increased risk for sex chromo-
some aneuploidies [58, 59].

Therefore, although the majority of embryonic aneuploidy
is of maternal origin, the sperm genome has a significant role
in the formation of a euploid embryo and thus the develop-
ment of a healthy offspring. As discussed above, in cases of
male factor infertility, there is an increased risk for transmit-
ting an aneuploid paternal genome to the oocyte. IVF centers
in the UK were surveyed as to whether they routinely perform
sperm aneuploidy screening and if they perceive there to be a
genetic risk to offspring conceived by intracytoplasmic sperm
injection (ICSI) [60]. The vast majority indicated that while
their center rarely performed such screening, there was merit
in doing so [60]. This opinion gains some weight given that
studies to date suggest that there is little to no evidence that
aneuploid sperm are at any disadvantage in fertilizing an oo-
cyte compared to a haploid sperm [47, 48, 56]. A handful of
studies have convincingly demonstrated a distinct lack of se-
lection against chromosomally abnormal sperm. These studies
provide evidence to suggest that increased sperm aneuploidy
translates to increased aneuploidy in embryos [61]. The ap-
proximate threefold increase in sperm aneuploidy observed in
infertile populations is mirrored by a threefold increase in de
novo chromosomal abnormalities in children born after ICSI
[62]. In the case of chromosomal translocations, the high per-
centage of chromosomally unbalanced sperm is shown to
translate to a high proportion of chromosomally unbalanced
embryos [63]. It is clear that certain individuals have an in-
creased risk of producing high levels of sperm aneuploidy
including the following: infertile patients (particularly OAT,
non-obstructive azoospermia) and patients with structural and
numerical chromosome aberrations [38, 47, 48, 56].
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Sperm DNA fragmentation and its impact in the clinic

The need to identify novel markers that can better discriminate
between fertile and infertile men and can assess the genetic
integrity has given rise to the field of sperm DNA fragmenta-
tion. In recent years, this has been of particular interest since
with the advent of assisted reproduction technologies, genetic
defects that can be transmitted as natural selection barriers to
fertilization are bypassed [30]. The effect of abnormal sperm
chromatin on subsequent development will depend on the
severity of the damage and the repair capacity of the oocyte.

The etiology of spermDNA damagewhich is characterized
by single- and double-break strands (SSBs and DSBs) is mul-
tifactorial and can be related to intrinsic and extrinsic factors.
Intrinsic factors include the following: protamine deficiency,
excessive reactive oxygen species (ROS) levels, and abortive
apoptosis; extrinsic factors include the following: environ-
mental exposures, chemotherapy, and possibly lifestyle fac-
tors [8, 64, 65]. As discussed previously during the chromatin
remodeling process in sperm, naturally occurring DNA strand
breaks occur to facilitate the replacement of histones by prot-
amines. Once chromatin is repackaged, these breaks are sub-
sequently resealed [11]. Perturbations within this machinery
of break and repair can cause altered chromatin compaction
and residual breaks in the sperm DNA [11] that can result in
measurable DNA fragmentation in the ejaculate.

Sperm DNA damage has also been associated with high
levels of ROS detected in the semen of approximately 25% of
infertile men [64]. The susceptibility to ROS damage stems
from the presence of unsaturated fatty acids in the plasma
membrane, necessary for membrane fluidity which is required
in the acrosome reaction during fertilization [66]. The only
defence mechanism against ROS is the antioxidant ability of
the seminal plasma and the sperm chromatin compactness
[11]. However, free radicals can be produced both by defec-
tive spermatozoa and semen leukocytes thus inducing sperm
damage and conferring male subfertility [11, 64, 66]. The
window of time during which DNA damage occurs is still
under debate but it most likely occurs during the epididymal
maturation as this is the period during which spermatozoa are
most exposed to ROS [11].

Abortive apoptosis has been postulated as another theory
for DNA damage and has been associated with a form of
selective apoptosis that, under normal conditions, regulates
the production of abnormal sperm in spermatogenesis and
limits the population of germ cells to a number that can be
supported by the Sertoli cells [11, 64, 67]. Over-expression of
this process could lead to oligo- or azoospermia whereas
under-expression could give rise to a high proportion of ab-
normal sperm, which could impair fertilization [67]. Using a
marker for apoptosis (Fas), it was found that less than 10 % of
apoptotic sperm exist in normozoospermic men whereas ap-
proximately 60 % of oligospermic men have more than 10 %

of apoptotic sperm [67]. However, other studies have not
found this correlation so the jury for the definitive association
of DNA fragmentation and apoptotic biomarkers remains elu-
sive [8, 30].

In terms of extrinsic factors, exposure to environmental
pollutants (e.g., pesticides and pollution) has also been asso-
ciated with DNA damage [65, 68]. Chemotherapy treatment
in males of reproductive age has been linked with impaired
spermatogenesis, increased sperm aneuploidy levels, and in-
creased DNA fragmentation [69, 70]. For the most part, stud-
ies have demonstrated that following chemotherapy, recovery
of spermatogenesis and return to baseline aneuploidy levels
may occur months to years after treatment has ceased [70].
However, DNA damage induced seems to be more persistent
than numerical chromosome defects [8, 64, 69]. The impact of
lifestyle factors should not be neglected either, since obesity,
smoking, and certain occupations (e.g., welding, baking) have
been associated with decreased semen quality and increased
levels of DNA damage [30, 67, 71].

The widespread use of ICSI and a desire to improve its
success rates have led to the incentive to develop assays to
test the genetic integrity of sperm. These assays have been
developed in an effort to measure sperm chromatin damage,
aid in the diagnosis of male infertility, and provide predictive
reproductive outcomes. It is beyond the scope of this chapter
to review these tests in detail; however, they can be summa-
rized in three groups: (1) sperm chromatin structural probes
(e.g., chromomycin A3, sperm chromatin structural assay—
SCSA); (2) tests that directly assess DNA fragmentation (e.g.,
TUNEL, COMET assays); and (3) sperm nuclear matrix as-
says (e.g., sperm nuclear matrix stability assay, chromatin dis-
persion test) [8]. Several review articles provide more detailed
description of each technique with principles, detection
methods, and pros and cons of each approach [8, 11, 72, 73].

In order to evaluate the clinical value of the sperm DNA
fragmentation tests, it is important to assess the relationship of
these tests with pregnancy outcomes. Detailed meta-analyses
of published studies have been previously published and will
be discussed briefly [8, 30, 73]. A small number of studies
have shown that whenDNA fragmentation exceeds 30%with
the SCSA test, it indicates a lower likelihood/close to zero
probability for fertilization through natural pregnancies and
intrauterine inseminations (IUIs) [8, 74]. In terms of IVF, the
cohort of studies is quite heterogeneous (n>20) and the trend
seems to indicate that lower IVF pregnancy rates is correlated
with increased sperm DNA fragmentation. When IVF follow-
ed by ICSI comes to the equation, studies suggest surprisingly
that level of DNA damage appears not to significantly impact
ICSI pregnancies, but this can be attributed to the careful
selection of sperm and embryo following ICSI. This selection
process likely abrogates the adverse effects of sperm DNA
damage. When the DNA fragmentation index is assessed by
SCSA, a predictive threshold of 27 % is required for a
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successful pregnancy via IVF and/or ICSI. However, other
groups have demonstrated that pregnancies can occur after
ICSI utilizing sperm with a much high proportion of DNA
damage [8]. This underlines the requirement for long-term
follow-up studies to evaluate any consequences on pregnan-
cies following ICSI utilizing sperm with high levels of sperm
DNA damage. It should be noted that studies have also corre-
lated pregnancy loss after IVF or ICSI with high levels of
sperm DNA damage [73]. High levels of DNA fragmentation
may be unlikely to directly affect fertilization rates since the
embryonic genome starts expression at the 4–8 cell stage.
Therefore, sperm samples with high levels of DNA damage
could have more clinical ramifications during the later stages
of embryonic development (i.e., blastocyst), which may in
part explain its association with pregnancy loss [73].

A consensus exists within the community that increased
sperm DNA fragmentation is associated with a lower chance
of conceiving through natural, IUI, or IVF, but not ICSI
methods. Current research suggests that couples who may
benefit most from assessment of sperm DNA fragmentation
are couples with recurrent miscarriages [73] or unexplained
male factor infertility [8]. However, the role and impact of
sperm DNA fragmentation on fertilization, embryogenesis,
and development remains rudimentary at best due to the rela-
tively small number of studies and heterogeneous findings [8,
30, 73]. More studies are needed to better understand the
etiology of sperm DNA fragmentation, its potential associa-
tion with increased risk of pregnancy loss, and identification
of the optimal assays. It is clear that these studies are required
to further validate the clinical significance of sperm DNA
damage before assessment of sperm DNA fragmentation is a
routine test in andrology labs and patient management.

Chromatin organization and modification—the Bmissing^
links with the clinic?

Previously, we have discussed the competence aspects of
sperm Bchromatin^ either in the form of chromosome consti-
tution (aneuploidy) or DNA damage and the impact that their
assessment has in the clinic. Such tests have been developed
in an effort to provide patients and clinicians with improved
diagnostic methods for infertile patient and to better predict
ART outcomes. We can thus postulate that a sperm head with
the correct chromosome copy number and absence of DNA
damage is a Bhealthy^ gamete with increased potential for the
faithful transfer from the paternal genome and epigenetic in-
put to the zygote for the development of healthy offspring.
Other markers that can be considered important for nuclear
health and normal cellular function are the appropriate spatio-
temporal organization of the chromatin (i.e., the position of
chromosomes and/or genes within the nucleus) and the epige-
netic marks that the chromatin carries into the egg.

Chromosomes occupy distinct non-random positions in
most interphase nuclei (termed chromosome territories—
CTs) [75–80]. This organization appears to be evolutionary
conserved, and two models (Bgene density related^ and
Bchromosome size related^) have been used to describe the
position of chromosomes in different somatic cell types [81].
Although the functional implication of nuclear organization is
still an active topic of discussion and beyond the main scope
of this chapter, the feature of the distinct non-random position,
the evolutionary conservation, and the changes in the patterns
of organization observed in certain disease conditions (e.g.,
laminopathies, Hutchinson-Gilford progeria, breast cancer)
[82] highlights the importance for the maintenance of stable
architecture for proper cellular function [83].

Any perturbation in nuclear architecture could induce
change in the local gene environment and availability to tran-
scription factors leading to possible mis-regulation or failure
to take part in transcription [84]. It has been hypothesized that
chromatin organization may be crucial for spatial chromatin
differentiation, modifications of the epigenome transmitted to
the embryo, and normal embryogenesis which may have
evolved with other mammalian regulatory systems including
genomic imprinting and X inactivation [85, 86]. Thus, the
study of nuclear organization in the male gamete could have
important ramifications for early embryogenesis when we
take into account the unique features of the haploid sperm
DNA packaging. Although we have a good understanding
of the different chromatin packaging in sperm compared to
other cell types, our understanding of the organization of chro-
matin in spermatogenesis is poor [87].

The vast majority of studies published in this area have
been focused solely on the organization of the mature haploid,
protamine packaged sperm cell [14, 16, 88–96]. Data emerg-
ing from these studies suggest that organization of the human
sperm nucleus is different than that of the somatic cells.
Chromosomes appear to be clustered via their centromeres
to form a chromo-center in the interior of the nucleus, while
the telomeres are preferentially located toward the nuclear
periphery where they form dimers and tetramers [14–17,
95]. The chromo-center appears to be formed by pericentric
heterochromatin from different chromosomes that have a ten-
dency to aggregate [15, 92]. A similar spatial organization has
been shown to be evolutionarily conserved in other mammals
(mouse [89, 97], bovine, pig, horse, and rat) [95]. The orga-
nization of CTs or specific chromosomal regions has been
addressed both radially (i.e., location in relation to the nuclear
interior to the periphery) and in some studies longitudinally
(i.e., distribution in relation to the sperm head and tail) [94].
The hypothesized functional implication of the longitudinal
and radial distribution of chromosomes in human sperm is
thought to be related to the ordered exodus after fertilization.
Thus, the order that the maternal cytoplasmic environment
encounters the paternal genome [98] and potentially remodels
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and repairs DNA damage on the early exiting chromosomes
may be important compared to the late exiting regions of the
genome. It should also be emphasized that the positions of the
sex chromosomes relative to the acrosome are similar in
sperm of all mammals (but not birds), implicating a functional
significance [86].

Assuming a functional significance for the non-random
organization of chromosomes in human sperm with its possi-
ble impact in fertilization, it is reasonable to suggest that al-
tered nuclear organization could be a measurable phenotype in
the sperm of infertile men [91] and could provide an additional
explanation for idiopathic infertility. Early evidence for a clin-
ical impact of chromosome organization in sperm came from
observations that sperm used in ICSI which had not under-
gone the acrosome reaction, showed impaired decondensation
of apically located chromatin [16]. Furthermore, this delay in
decondensation was observed to hinder the progression of the
first mitotic division of the zygote and has provided indirect
evidence to potentially explain the increase in sex chromo-
some aneuploidies observed in offspring after ICSI. This pro-
vides a tentative link with the more firmly established clinical
impact of sperm aneuploidy and DNA fragmentation in nu-
clear health. It has been proposed that some infertile men may
have a different category of sperm chromatin abnormality re-
lated to atypical packing of CTs in sperm, aberrant positioning
of chromosomes, or disturbed telomere-centromere interac-
tions [98]. Currently, the proposed relationship between male
infertility and altered nuclear organization remains hypotheti-
cal, with direct evidence to prove or disprove this link being
somewhat lacking. Indeed, only a handful of studies have tried
to address this link [88, 92, 99–102]. Currently, we are inves-
tigating the 2D and 3D nuclear organization (both radially and
longitudinally) of chromosomes within human sperm [94].
Additionally, we are investigating sub-chromosomal struc-
tures (telomeres, centromeres), imprinted genes, and impor-
tant developmental genes that have been shown to retain his-
tones and unique methylation patterns in the protamine pack-
aged sperm. It is clear that the sperm cell can no longer be
considered a vessel for delivering a silent genome but is rather
an epigenetically poised cell that is crucial for fertilization and
embryogenesis.

Evidence for an epigenetic signature in sperm chromatin
that could affect embryogenesis

As indicated above, differential methylation of sperm DNA
and the deregulated presence of nucleosomes on embryolog-
ically important gene loci appear to correspond with an infer-
tile phenotype [25, 26]. These data suggest the possibility that
in addition to the genome itself, sperm chromatin carries an
epigenetic ‘signature’ to the egg potentially borne onmodified
histones. Histone modifications are numerous and beyond the
scope of this review [2], but because of the known association

of lysine (K)-modified H3 with expression permissive
(H3K36me3) and restrictive (H3K27me3) chromatin do-
mains, reports on differential lysine methylation in sperm
chromatin are particularly intriguing [7, 25]. These studies
follow a raft of earlier reports demonstrating histones in ma-
ture sperm, the earliest of which was with CENPA in bull
sperm [103] and reviewed in [2, 27]. These reports include
microscopic evidence for the transmission and survival to
syngamy of paternal nucleosomes.Moreover, biochemical ev-
idence for the transmission and retention of structurally un-
usual (smaller) sperm nucleosomes containing sperm-specific
histone variants (H2AL1 and H2AL2) has also been put for-
ward [104] and potentially confirmed by proteomic analysis
[105]. Sperm histones may play an essential role in promoting
normal embryogenesis although evidence to date suggests that
neither sperm-specific H2AL isoforms, nor any other histone
modification persists for long following fertilization [106,
107]. Moreover, as the successful generation of (murine)
gynogenic parthenotes following alteration of the H19/Igf2
imprinted locus demonstrates [108], the paternal genome is
actually dispensable altogether with respect to embryonic de-
velopment. It is more likely, therefore, that an epigenetic sig-
nature borne on sperm nucleosomes performs more sperm-
centric functions that may nevertheless be prone to deregula-
tion in infertile men, perhaps by aberrant histone deposition as
reported elsewhere [25, 109]. In this regard, the essential role
of a testis-specific form of the double bromodomain contain-
ing BET family, BRDT in facilitating chromatin reorganiza-
tion during spermiogenesis should be considered, particularly
in view of a potential role for this factor in infertility [110,
111]. BRDT is involved in both the formation of the sperm
chromo-centre and in the regulation of translational control of
stored mRNPs, both vital functions for fertility. On the other
hand, the case for some form of histone-based paternal epige-
netic contribution is supported by reports that differentially
condensed blocks of chromatin containing developmentally
important gene sequences analogous to the nucleosome-
enriched regions of mammalian sperm chromatin. These are
also found in the zebra fish, which does not use protamine to
repackage its genome [112]. Furthermore, two other reports
have shown that the DNA methylome of the zebra fish egg is
fully reprogrammed to resemble the incoming sperm
methylome shortly after fertilization [113, 114]. Interestingly,
a link between gamete/embryo DNA methylation dynamics
and a post-fertilization function for (human) sperm histones
was reported earlier in a study showing that DNA
methylation-free regions in the early embryo correspond with
nucleosome-rich regions in sperm chromatin [115]. These stud-
ies and the findings from Hammoud et al. [7] provide support-
ive evidence of a role for nucleosomal, probably euchromatic
regions of the incoming paternal genome with subsequent
DNA methylation patterns in the early embryo. However, as
the example of gynogenic parthenotes strongly suggests, the
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sperm’s epigenetic influence is not a prerequisite for subse-
quent and successful embryonic development.

An alternative possibility is that modified sperm histones
introduced into the oocyte on fertilization provide an essential
role in facilitating the sperm’s ‘acceptance’ by the egg as a
complementary agent. Such a hypothesis is not so outlandish
when considering the risk the sperm poses to the oocyte as an
invasive cell. Ideas of ‘confrontation,’ ‘recognition,’ and ‘con-
solidation’ have already been put forward in relation to the
potential introduction and management of potentially harmful
parasitic mobile elements [116] and also ‘tolerance’ of sex-
skewing bacterial endosymbionts such as Wolbachia [117,
118]. Such a hypothesis is fully compatible with roles for
sperm histones, modified or not, and of course, paternal
DNA methylation in male fertility without over stating their
importance in the support of embryogenesis per se. The ap-
parent preferential localization of sperm histones to the ex-
ome, confirmed in independent studies [7, 18, 119], is likely
part of the matching process required for successful syngamy
(a particularly attractive notion assuming nucleosomal
stretches of sperm chromatin have more immediate access to
maternal factors at fertilization than protamine-bound re-
gions). This adds further importance to the potential role of
nuclear organization as this may function as an additional
layer of epigenetic regulation. Such proposed studies will ul-
timately identify the spatio-temporal localization of targeted
genes throughout spermatogenesis and identify whether nu-
clear organization is perturbed in infertile men. This field re-
mains an active area of research with possible ramifications
for improved screening (in combination with standard tests),
diagnosis, and predictions of ART treatment efficacy.

Conclusions

It is self-evident that the paternal genome is critical for the
promotion of normal fertilization and embryogenesis and with
infertility affecting approximately one in six couples of the
western world and male factor contributing to around 50 %
of cases, there is an unequivocal need for further research into
the male gamete. Understanding the role(s) played by the
sperm’s unique and specialized chromatin structure in confer-
ring a fertile phenotype is also preferable, and the advent of
ART makes the evaluation and impact of sperm chromatin
structure all the more important. The ultimate goal is the de-
velopment of rapid reliable tests that can assess the genomic
integrity of sperm to be used in ART and to identify novel
aspects of chromatin integrity (e.g., genome organization) that
may play a crucial role in fertilization and early embryogene-
sis. The development of such tests outlined in this chapter
aims to further our understanding of paternal contribution
and requirements for normal fertilization and embryogenesis.
The goal is to create an Barsenal^ of analytical tools to better

diagnose and assess the genetic integrity of the paternal ge-
nome to facilitate the transfer of the single euploid embryo.
Undoubtedly, the development of reliable tools to assess the
integrity of the paternal genome will assist andrologists, em-
bryologists, clinicians, and couples undertaking ART to allow
more informed decisions to be taken regarding their reproduc-
tive choices.
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