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Alesker studied a relation between the determinant of a quaternionic Hessian of a function and a specific complex volume form. In
this note we show that similar relation holds for functions of several split-quaternionic variables and point to some relations with

geometry.

1. Introduction

Quaternions are known to have deep relation to the self-
dual Yang-Mills equations in mathematical physics. It is also
known that the self-duality equations have an “indefinite”
version, the basic conformal metric used in their definition
has signature (2, 2). Such equations are not elliptic, but it is
known for more than 30 years that many of the integrable
systems arise as a reduction of the indefinite self-duality
equations [1]. It is also known that the geometry of a
superstring with N = 2 supersymmetry was shown in [2, 3]
to be described by a space-time with a pseudo-Kéhler metric
of signature (2,2), whose curvature satisfies the (anti) self-
duality equations.

The split quaternions are indefinite analog of quaternions
and play similar role in the indefinite self-duality equations
as the quaternions play in the positive definite case. It is
well known that spaces with quaternionic-like structures
(e.g., quaternionic-kdhler and hyperkahler) form an active
area of research. One topic in it is developing the notion
of quaternionic plurisubharmonic functions [4]. Similar to
the quaternionic case, there are geometric structures on
manifolds of dimension greater than four, related to the split
quaternions. Mathematically, these structures are described
by quadruples (g, I, S, T), where g is a signature (2,2) met-
ric and I,S,T are parallel endomorphisms of the tangent

bundle with respect to the Levi-Civita connection of g, such
that

T =1S=-8I, 1
gIX,IY) = —g (SX,SY) = g(X,Y).

In the literature such structures are called hypersymplectic
[5], neutral hyperkahler [6], parahyperkahler [7, 8], pseudo-
hyperkahler [9], and so forth. A more general condition is
when I,S,T are parallel with respect to a connection with
skew-symmetric torsion; such structures are considered in
[10]. One of the features is the existence of a nondegenerate
(2,0)-form given by w(X,Y) = g(SX,Y) +ig(TX,Y). Locally
the metric arises from a single function, called potential,
similar to the Kédhler metrics. The function satisfies 0 o
S o df = w.In the quaternionic case, such potentials in
multidimensional quaternionic space H” correspond to a
quaternionic plurisubharmonic functions and were consid-
ered from analytical view point first by Alesker [4].

The aim of this paper is to provide an analog of the
results in [4] for functions of split-quaternionic variables.
Although it is unlikely to find an appropriate definition of
plurisubharmonic function because of the indefiniteness, a
meaning of determinant of a split-quaternionic-Hermitian
matrix can be given. As a main result in the paper we show



that 0 e So 0f = det(f)dz, A --- A dz,,, where det is the
Moore determinant of the quaternionic Hessian of f. The
proof is similar to the proofin [4] and relies on a linear change
of variables formula and the density of the delta functions
of split-quaternionic hyperplanes in H, which is proven by
Graev [11]. We notice also that split-Lagrangian calibrations
of [12] can be defined naturally for metrics arising from such
functions f for which det(f) # 0.

2. The Split Quaternions and Functions on H

2.1. 'The Algebra of the Split Quaternions. The split quater-
nions H, are spanned over R by the basis {1,i,s,t} with
algebraic relations 1> = s* = t* = 1,i* = ~1,is = —si = t.
The inner product (-,-) is defined by (1,1) = (i,i) = 1 and
(s,8) = (t,t) = —1 (hence the (2, 2) signature). The conjugate
of g = Xy + X1 + X,5 + x5t is G = xy — x,i — X, — x;3t, and
then (g, q) = qq = Xt + x5 — x5 — x3.

Another realization of H, in H¢ given by the following
embedding t:

zw

I]-ﬂsa(q:z+w.s)<—>1(q)::< )eEnd(Cz) (2)

w z

whose usefulness becomes obvious when we notice that it
preserves the norm; that is,

zZ w
)zdet‘r(q). 3)
w z

lal = (@.q) = 2% - wiw = det(

The embedding 7 above is extended to vectors in H by
the map

7:H! — Endg (CZ”), (4)
where

7(qo)

7 (qi) >

gr—1(q) = (7 (qk))k:O,,..,n—l =
(5)
T (qn—l)
k. = 2ok T 2241 * S
Zok Zokan
T(qy) = 7 (2% + Zop41 - 8) = ( ' )
Zok+1 22k
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so the embedding looks like

9o T (%)

H; 3q= — 7(q) =

Gn1 7(qpe1)

(EO EO) (6)
Wy 2

( Zp-1 Wy )
Wy Zp-1
Similarly for an 2 x 1 split-quaternionic matrix, we define

its adjoint matrix as the image of the extension of 7 to M,,,(C)
given by

A= (Aij)osi,jsrl—l — 7 (4) = (T (Aij))ogi,an—l > 7)
where A;; = a;; + b; - sand a;;, b,; € C.

A related homomorphism is that of the Study map, which
we denote by u, which can be generalized for a matrix
M, (H;) > M = A+ B-s,where A, B € M,(C):

<T(A) T(B))
M=A+B -s+— u(M) = . (8)
7(B) 7(A)

The Study map also has an associated determinant, where
det is the standard determinant of complex matrices, given

by
Sdet (M) = det¢ (u (M)). (9)

For q; = 2y + 25515, we have 7(q, - q;) = 7(q,) - 7(q,) and
we can check that

T(Qo‘%):(

Zp2) T Wyw, zyw; + le())

ZoWy + 21wy ZpZ + Wy,

B (zoz1 +Wyw, ZoWw, + z@o) (10)

Zow; + 21w, Zpz| + Wy,

“( 2) (o %) =rta o0

So it is natural to expect that this representation extends
linearly to matrix groups, that is, the following.

Proposition 1. For any split-quaternionic matrices A and B,
we have the following:

(1) 7(AB) = 7(A)1(B) for A = AP and B = B™, where
the superscripts are the respective dimensions.

(2) For A € M,(H,), T(A*) = Tt(A)'T, where T =
it(i) = idiag (¢ 9) = diag (} 9).
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(3) For A € M, (H,), St(A) = 1(A)S, where S = 1(s) =
diag (9}). Furthermore, if A € U,(H,) is unitary,
then T(A)IT(A) = I; that is, A is symplectic, and
I=ir(-t) = idiag (§ ') = diag (5 § ).

Proof. Let C = AB. Then C;; = Zf;; AyBy; and by the
property above we have

p-1 p-1
+(c,) - ( ;Aikgkj> S e (4B
=0

k=0

p-1
= kZT (AT (Bkj)

(t(Ai)> T (Aip)) : (1)

7 (Bipony;)

Il
/N
il g

|~l

—~
>

=

SN—

hl
—~
=
~.
SN—
~_—

Hence

(0 =(r(cy)) = <(ple (A"k)T(B""))-,»)

=7(A)-7(B),

Q
< |
R

0 1 0
aji i ai]- a;

=Tt (A)'T =Tt (A)"T,
(01N [(a} a}
St (A) = diag Lo T

a; a;
= diag _

<

(12)

For the second claim, if the adjoint of U € U(n, Hy)
is unitary as (2n x 2n) matrix, then we show that 7(U) is
symplectic; that is, T(U)I T(U)Y =1

U(nH)>U e UU" =14, = 7 (UU")
(13)
=7 (U)t(U") =1d,,,

but by (12) we have that 7(U") = Tt(U)*T and combined
with (14):

(T(A)S) =St (A) = (ST(A) =7(A)S =

(14)
ST(A)'S = 1(A)
we get that
Id,, =7 U)t(U") =7t U) Tt U)'T
(15)

=7 (U)IS[ST(U)' S| IS = = (U) It (U)' (-1)

and by multiplying the above equation by I on the right we
obtain

I=1dy,I = (v (U) It (U) (D) I
(16)
=7(U) It U)' (-I*) = 7 (U) I (U)'

as needed. O

Following Wan and Wang [13] we define on C*" >
z = (2y,...>2,, 1) the corresponding first-order differential
operators that act as partial derivatives with respect to the
variable in the (ka)th entry, k = 0,...,2n— 1,and ¢ = 0
or 1, in (6),

v00 v01 &Zo aZl
VIO vl 1 azl aZO
= N 17)
V(2r172)0 V(2n72)1 aEZn—Z aEZn—l

V(2nfl)0 V(2nfl)1 aZZn—l azzn—z
and use them to define the analogs of @ and 0 in complex

analysis for the purposes of our study of functions on HJ.
We will denote by d;, 0; the partial derivatives 0, and 85]_ for

notational simplicity.

Definition 2 (the Baston operator). Let D C R*" be a domain.
The operators d,;, d;, and A are defined as

dO = ((U = kadzk> —> dow = kaow de
k k

dy = f o d,f = YV fdz, (18)
k

A=dyd, : fr— Af =dyd, f.



Due to the particular embedding we chose, we can sim-
plify notations and calculations, summarized in the following
lemma.

Lemma 3. Properties of Vi, Vi, dy, dy, and A are as follows:
©)
Af =dyd, f = Z

0<i<j<2n-1

Ajifdz; Ndz;, (19)

where

Vio Via
Ay = ViViy = Vi Vj = det( ) . (20)
Vio Vi

(2) Ajj = =A j; for the same pair of indices i and j.

(3) Let I = {(2k,2k +1) | k=0,...,n—1} = {(0,1),...,
(2n = 2,2n — 1)} such that (clearly) 2k < 2k + 1 for
all k. Letr # s € {0,1,...,n — 1}; then without loss
of generality we can suppose r < s. Then if we consider
the ordered pairs (i, 1,) = (2r,2r + 1) and (jy, j,) =
(25,25 + 1), we have

A . =-A, .. (21)

igji tiJo

Proof. We compute Af as

Af =d,(d, f) = d, ( HZ_ lede1’>
j=0

2n-1 2n-1
(g (Fm)
i= j=

2n—1
Z VioVj1 fdz; Ndz;.
i,j=0

Since both indices i and j run from 0 to 2n — 1, the
“symmetric terms” V;,V;, fdz; A dz; and V)V, fdz; A dz;
both appear, and by the skew-symmetry of the wedge product
(dz; Ndz; = —dz; Ndz)),

VoV fdz; Ndz; + V;, Vo fdz; N dz;

= (VioViuf = VaVjof ) dz; Adz; =

2n—1
Af = Z ViOlefdzi AN dzj (23)
i,j=0
12n—1
=3 ZO (VioVir f = VaViof) fdz; Adz;
i, j=

and since any dz; Adz; = 0, the only remaining terms are the
terms with 0 < i < j < 2n— 1, so we can cancel the 1/2 and
write (19) as

Af= )

0<i<j<2n-1

= ) Ayfdzndz,

0<i<j<2n-1

(Viovjlf - Vilvjof) dz; Ndz;

(24)

where A ; is the coeflicient of dz; A dz;th term in Af.
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To demonstrate (2), we use commutation of Vi,V =
Vjﬁvk(x:

_Aji = (Vjovil - levio) = levio - VjOVil
(25)

=VioVj1 = Vi Vjo = Ay

Proving the final claim is done in two nearly identical
calculations, depending on the parity of r and s. We will prove
one case, where without loss of generality we assume r is even
and we still have r < s. This means that V, , = V(5,9 = 05,
Vio = Vorae = O but Vi = Vo = 0551, Vg =
Varyr = Oy and similarly V, o = V50 = 05, Vg =
V(25+1)0 = Oyg41> bUt Vj01 = V(25>1 = ast> lel = V(2s+1)1 = Oy
(in the other case if s was odd we would have the completely
symmetric situation, with 27 + 1’s becoming 2r’s, etc.). So we

calculate

iy =i, =B = VioVin — Vi Vi
= az?azr - aZs+laZr+1 = az?aZr - aZs+laZr+1
= 627825 - a2r+1825+1 (26)

= V(Zr)OV(25+1)1 - V(Zr)lv(25+l)0 = A(2r)(2s+1)

= Aio]'l .
O
Definition 4 (mixed Baston product). For f,,..., f, € C* we
define the mixed Baston product of f;,..., f, as
An(fl""’fn) = Afl /\AfZA”'/\Afn
= Z Ailjl'f1 o Ainjn'fnCIZil Adz]l /\ o /\ dzin
i jies
(27)
Ndz;
= Z ‘Silélgzizzlr:]"Azl jlf [RERYAYS jnf ndzp
iy e

where I = {1,2,...,2n} and 5;‘%‘;212221] is defined to
be the sign of the permutation from (i}, j;,...,%, j,) to
(1,2,3,....2n) if {i, jr | kK = 1,2,...,2n} = I and O
otherwise.

In particular, for f; = f, = --- = f, = f, the mixed
Baston product coincides with the n-times wedged Baston of
f; that s,

8y (f) = Ay (oo f) = (AF) =t \AT
= (Af) A+ A (AS).

n-times

(28)

The results and definitions above will allow us to translate
the n-times wedged Baston of f in terms of the “split-
quaternionic Hessian” of f, defined in terms of the Moore
determinant, which are precisely the next sections.
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2.2. Split-Quaternionic Determinants. Due to the noncom-
mutativity of the multiplication in H, (just as in H) try-
ing to construct an effective definition of determinants is
complicated. There are several ways to define them. The
main results in this direction follow the work of E. Study,
J. Dieudonné, and E. H. Moore, as outlined by Aslaksen
in [14]. However, the problem becomes much simpler if
we are restricted to hyperhermitian matrices; that is, A €
GL,(H,) such that A = A"; then we can define a simple
and useful determinant following the work of E. H. Moore,
called the Moore determinant. This is done by specifying a
certain ordering of the factors in n! terms in the sum over
permutations of the symmetric group S,,.

Definition 5 (the Moore determinant, see [14] or [15]). For
a permutation ¢ € S, write o as a product of disjoint cycles
such that the smallest number is at the front of each factor and
then sort the disjoint cycles in decreasing order according to
the first number of each factor. In other words, write

o= (”11"‘”1rl)(”21"'n2r2)"'<”j1 "‘”jrj)’ (29)

where, for i, we have n;; > ny for all k > 1, and n;; >
ny > -+- > n;;. Then we define the Moore determinant of
a hyperhermitian matrix A = (a;;) [denoted by det(A)] as

det (A) = Z |G| a"n"lz o a"lrlnua"n”zz o anjrjnjl : (30)
€S,

Another equivalent definition of the Moore determinant
is the inductive one (see [15]), defined as, for a hyperhermi-
tian n X n matrix A = (aij), the inductive definition is given
as follows: for n = 1, we have det(A) = a,, and forn > 2

det(A) = ) e4a, det (A (r, k) (31)
k=1

forr e I ={1,2,...,n}, ¢4 = +1ifk = rande, = -1if
k # r,and A(k, r) the hyperhermitian (n— 1) X (n — 1) matrix
obtained by interchanging the kth and rth columns and then
deleting both the kth row and column of the corresponding
matrix. For any matrix A € M, (H,), it can be easily checked
that A- A* = A" - A is also hyperhermitian, which leads to
the equalities

det(A" - A) = dete (u(A)). (32)

The Moore determinant is related to the Study determinant
from (8) as

det(A" - A) = det (1 (A)) = dete (1 (A))
33
= Sdet (A), )

which is given by the middle equality which can be seen
easily by noticing that u(A) and 7(A) are similar matrices
(having the same exact entries in different arrays, except
that the former consists of 4 n-blocks and the latter consists
of n* 2-blocks) and differ by only elementary operations
(shuffling some rows, columns, and signs) so that their
complex determinants are equal.

Again focusing on hyperhermitian matrices, we can
manipulate them to get what are also known as self-adjoint
matrices, for which the Pfafians (Pf) can be defined (again
see [15]). They are defined on 2n x 2n skew-symmetric
matrices, so for a hyperhermitian matrix A and matrix (and
endomorphism) T defined in Proposition 1, we define the

map p by
Ar—p(A)=T 1(A). (34)

From this follows the well-known equalities proved by Dyson
[15]:

det (A) = Pf (p (A)) = \/Sdet (A)
(35)

ie., [det(A)]* = detc (1 (A)).
This allows us to prove det is a homomorphism and, in

particular, the following corollary.

Corollary 6. For any hyperhermitian matrix A and any
split-quaternionic matrix C, the matrix C* - A - C is also
hyperhermitian and

det(C*-A-C) = det(C*-C)-det(4).  (36)

Proof. Using the identities (32), (33), and (35) above,
Proposition 1, and the multiplicative properties of complex
determinants and 7, a direct calculation shows

[det(C* - A-C)]’ = det (r(C* - A-C))
= dete (7 ((C7) - 7(4) - 7(0)))
= detc (7 (C")) - detc (7 (4)) - dete (7 (O))

(37)
= detg (7 (C")) det (7 (C)) dete (1 (A))
= [detc (7 (C* - C))] - dete ((A))
= [det (C* - C)]” - [det (A)]?
and the corollary is proved. O

Definition 7 (mixed discriminant of hyperhermitian matri-
ces). Let A,,..., A, be hyperhermitian n x n matrices.
The mixed discriminant [denoted by det(A,,...,A,)] of
Ay,..., A, is defined to be the coeflicient of the monomial
X1 ..., x, divided by n! in the polynomial given by det(x; A, +
-+ x,A,), where det is again the Moore determinant. Note
also that det(A, ..., A) = det(A).

2.3. The “Split-Quaternionic Hessian” of a Function. Let f be
a function of  split-quaternionic variables, where g; = z,; +
Z,i41 + 5. We define the partial derivative with respect to g; as

d
og = O+ (38)

and for q; = Z3; + Zyj41 * S, 1ts conjugate is 4j = 225 ~ Z2j41

i

s, we similarly define the partial derivative with respect to a
conjugate variable as

0

0
— = 0——0~——"S.
aﬁj aqj 2j T O S (39)



This immediately implies that the mixed partials calculation

is
Gl ._i(i>
aqiaq]' 9q; \ 94,

= (3 + 057 - s)(% O 9)

2j+1

= 05035 — 0303577 - S + Oy - § - O35 — Oy - §
By (40)

= aziaz7_ aﬁazj‘ﬂ + (aﬁazj - aZiaﬁ) " S

- a(zzi><27‘) B a(zszzjﬂ)

2 P
+ (a(2i+1)(2j) - a(zi)(2j+1)> °S

since s - 9y = 0 - s which extends from the fact that forz € C
and s € I]-I] sz = E s. This also shows that the matrix

CE:

— = —. (41)
09;09;  0q;0q;

Definition 8 (the “split-quaternionic Hessian” of a function
f). The “split-quaternionic Hessian” (denoted %) of a C*

function defined on a domain D in H? = C*" is defined
analogously to the complex Hessian of a function, only with
respect to split-quaternionic variables. For i, j € {0,1,...,n—
1}

2

ol = g :
7 09,09,
(42)
q 0 . 0 of

f'_)aij(f):

~ 0q,09;’
and Z ((f), the split-quaternionic Hessian of f, is defined as

#,:C* (D) — M, (H,),

f—Z, (f) = [aiqj (f)]i,j:0,1,...,2n—l ’

We now turn to the Monge-Ampere operator. As Alesker
in [4] defined the mixed Monge-Amperé operator in quater-
nionic space of a C* function f is defined as

MA(f): f ¥ det(%,(f))- (44)

Generalized further, for C* functions fi,..., f,, the mixed
discriminant ds is defined as the Moore determinant of
the respective quaternionic Hessian matrices; we follow this
construction to define a similar Monge-A-Ampere operator
to split-quaternionic functions, denoted by

MA (fr..os f,) = det(fi,... £,)

45
d(( af)(i)) w
04,04 04,04

(43)
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Note also that, for f; = f, = --- = f,, = f, the mixed
Monge-Ampereé operator is equal to the regular Monge-
Ampere operator:

det(f) =det(f,..., f) =det#Z,(f). (46)

Lemma 9. For any hyperhermitian n x n matrix A and any
0
. ) we have

n

t
real diagonal real matrix of the form T = ( .
that

i€l

det(A+T)= ) (Ht) det (M;A),  (47)
n}

where M;A is the matrix obtained by deleting rows and
columns with indexes from a nonempty subset I C {1,2,...,n}

(see [4], pg. 10).

This lemma is proved as proposition 1.1.11 in Alesker [4];
we will just be using a simple corollary.

Corollary 10. Ift, =--- =t, = 0 in Lemma 9 above, then

det (A +T) = det (A) + ¢, - det (M, A), (48)

where

a *
A= (49)

and My, A is still a hyperhermitian (n — 1) X (n — 1) matrix,
a; €R.

2.4. Linear Change of Variables. In this section we prove
a split-quaternionic change of variables formula for linear
transformations. Since the split quaternions can be repre-
sented by real (2 x 2) matrices, this endeavour is done
easier via a real representation of the matrix algebra. In
this light we define 7R to be the following embedding
(also a homomorphism like 7, see Proposition 1) for a split-
quaternionic vector g = (qy) = (XX 41 i+ X5+ Xg043t) €
H? and matrix A = Ay + A i+ A,s+ A;t, where A; € M, (R):

H; > g — 1= (q)

t 4n
= (x4k,x4k+1,x4k+2,x4k+3)k 01,.m-1 € R™,

GL,(H,) > A+ 13 (A)

(50)
Ay —A; Ay A

Al AO A3 _A2
A2 A3 AO _Al
A3 _AZ Al AO

€ My, (R).
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Using this real embedding the corresponding matrices
I, Sg> and Ty are

0-10 0
10 00
=160 01|
00 -10
0010
0001
=\ 1000 | G
0100
00 01
00 -10
o=l 6.1 00
10 00

and satisfy the split-quaternionic relations (1). Moreover, if we
define

I, = diag (I,), a=1,2,3 (52)

for I, = Iy, I, = Sg, I; = Tk, then one can calculate that
Tr(A) commutes with [; that is

Iy TR (A) =12 (A)-1,, a=1,23. (53)

Fora C' function f: H” — H,, f = foy + fii+ fos + fit,
and the real representation denoted by f® = (fy, £, fo> f3)'>

the partial derivative of f with respect to q; can be written as
the (4 x 4) differential operator

e =(55)

0

X4j - X1 Xyj2 X443 (54)
— X4j+1 X4j X4j+3 - X4jr2 fR
ax4j+2 X4j+3 X4j - X4j+1
ax4j+3 - Xgjra T Xgjrr X4j

and the derivative in the direction g € HY as

(a% f)R
0,f =D, f" = : : (55)

(aqﬂ—lf)R

For a linear transformation A € GL,(H,); A = (a;) H! —
H' g+ q = AqandaC' function f' : H? — H, we define
the pullback via A of f' as f(q) = f'(Aq) [= f'(q")] and
their corresponding real representation denoted as f ® and

fR. Let x = 1p(q) and y = TR(q'), so that y = 13 (A)x, and
f(q) = f'(Aqg), thatis, f*(x) = f ®(1z(A)x)

lTR l l (56)
R4 Tr(A) R4 I R4
Proposition 11. With the same setup as above, we have

P2 1" (0 = ( (A) 2, £ (e (W) %) (57)

that is,
n—-1 ,
aqu (q) = };)akjaq,’(f (Aq) . (58)

Proof. Denote by (aqj)“ the ath column of the functional
operator aqj  f e (aqu)R, for « = 1,2,3,4, and then by
the definitions of (aqj)“ and I it follows directly that

Q

X4J-

(a‘lj )‘x = Iy o >

X4j12

QU

a=1,2,3,4, (59)

QU QU

X4j+3

with the understanding that I, = Id,,, for the « = 1th
column. Hence we have

)

Xyj
0

(gx)“ =0y 10, = 1oy 3 v >, (60)

X4ji2

)

X4j+3

where (2,)% is the ath column of the functional operator
D, : f = (D) Since y = 13(A)x, then by definition
we have y; = Zf:;ol (TR (A)) X so that by the chain rule for
functions of several variables

4n—1

0, " ()= Y (1 (4), 9y, f * (e (A) x) =
k=0 (61)
(2.0)" = [t (D] -3, (1 (A) %)

directly in the first column, that is, (2, f W(x) =
[TR(A)]t(@yf,)l(TR(A)X). Since f = fy+ f1i+ fo5+ fst and



D, is a linear operator, we use the commutation relations
(53) to calculate

(2:)" (%) = 1o10, 5 ()
=y ([ (D) 3, (ma (A) %))
= [0 ()] (10, f ® (10 (4) %))
= [ ] ((2,f") ( (4)x))
=[] (2,£) (7).

for a = 2,3,4.

(62)

And hence
(479, )" (Aq) = 7 (A 2, 7™ (7)
=15 (A)' D, f™ (1 (A) x) (63)
= (2.£%) 0= (0,f)" @)
and (57) follows. O

Corollary 12 (change of variables under split-quaternionic
linear transformations). If f is a real-valued C* function, then

aZf o aZfI
(@) - (aq;_a% w)a

Proof. If u is real-valued, then 0 u = w. Then by (58)

n—1
0yu; (q) = ) @y u; (Aq) (65)
k=0

and taking the conjugate of both sides gives us

n-1
aﬁi“j (q) = aq,.”j (q) = Zakiaq,Q“; (Aq)
k=0
(66)
n—1 n-1 ,
= Y o (Adday = Y 0, (Aq) .
k=0 k=0
Then applying (58) to the LHS of the line above
n— n-1 af
——— (Aq)a; = = (q)
; aq a /;a%
(67)

o*u'
aq} <ka (a) k]> = W(Q)x

where f.(q) = (0u/0dq,)(Aq) = aqku(Aq), and hence (64)
follows and the corollary is proved. O
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3. Statement of the Theorem
3.1. The Main Result of This Paper

Theorem 13. Let D ¢ R* = H! bea domainand f : D — H,.
Then

A, (f) = (Af)" = (Af) A (Af) A= A (AS)
n-times (68)
=nl-det#,(f)-dz,
where I =1{0,1,...,2n — 1} is a multi-index and dz; = dz, A
dz, A--- Ndz,,_, is the holomorphic volume form in C*".

3.2. Proof of Theorem 13 for the Case n = 2. First we prove
Theorem 13 for the case n = 2 (base case) and then proceed
by induction.

Proof. Let n =
Section 2.1:

Hy > q= (qo) = (ZO o 'S)L—,Lf(q)
q1 2y +23-S T
(Eo 51) (69)
(To (%)) z; 2
71 (q1) '

z, z3
23 2,
The correspoding operators are

2 and consider the embedding 7 from

Voo Vo <620 a%1>

Vio Vi - 9, O (70)
Vao Vo <aEZ z3>

Vio Vi 0, 0,

and we use Lemma 3 to complete the proof:

Af = Z Ajifdz; Ndz;

0<i<j<3

(71)

from which it follows that wedging Af to itself yields
(A1) = (Af) A (8) 72)

where again I = {0,1,...,2(2) — 1} and dz; = dzy Adz; A
dz, A dz, is the holomorphic volume form in (A*)*C*?.

On the other hand (40) tells us how to compute entries in
the split-quaternionic Hessian, which works out beautifully:

2 2

ago = aoﬁ_&n = Ao
2 2

0fy =03~ 03, = Ay, (73)
2 2 2 2

a’fo_azﬁ a§1+(a§o azl) s= A12+A02 S

(74)
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The third row of the above then also implies that

"8?0"2 = 8?0 ‘a_lqo = (‘A 12) (le) - (Aoz) (A_oz)

= AIZA_IZ_ AozA_oz = A02A13 - A03A12’

(75)

so that (Af )V is actually
(Af)z =2 [AmfAzaf - (AozfA 13f — Do fA 12f)]
rdzp =2 [agofa?lf -9 (a_?o )] ~dz;

76

o [Pf S 7o

et| 4 q - dz;
aIOf allf

=2-det#,(f)-dz,

since afj = a_ji [see (41)]. This concludes the proof of
Theorem 13 for the case n = 2. O

3.3. Proof of Induction. We now assume that Theorem 13 is
true for some n — 1 € N; we want to prove by induction
that it holds for #. We consider a C* function f(qp,...,q,_;)
of n variables that has continuous 2nd-order mixed partial
derivatives. First we prove a result in functional analysis
regarding the density of delta functions (on hyperplanes) in
the space of (tempered) distributions, implying that the span
of said delta functions contains the set of smooth functions,
which are dense in the C* functions.

Lemma 14. Linear combinations of delta functions is dense in
the space of generalized functions D(HY) = (S(HY))", where
S(HY) is the Schwartz space of rapidly decreasing functions on
H.

N

Proof. Consider the Fréchet space S(H) with the Fréchet
topology and its dual space Z(HY). We wish to show that
the Schwartz space §(HY) is dense in (Z(H}))", the dual of
the distribution space. It is well known that the evaluation
map is an injection from a topological vector space X into
its double dual X**; hence for X = §(H?) we have a copy of
S < (DHD)" = (SHD)™.

But since §'(HY) is a nuclear Fréchet space which is also
barreled (see [16], pg. 107, 147) then §'(HY) is (semi)reflexive;
that is, S(HY) = (S(H))™ = (2(H)))" as vector spaces
and hence the Schwartz space is trivially dense in the dual
of D(HY). Consider the subspace

S
(77)
= span {0y | E ¢ H-split-quaternionic hyperplane}

and its closure S inside (2(HY))",and suppose S # (D(HD)".
By the Hahn-Banach theorem, there is a linear functional /
such that Ilg = 0 and | g5 > 0. Thus there exists a

nonzero Schwartz function g such that the functional

l:f'—>l(f)==JHng-f¢o. (78)

But then for any (all) 5 € S,
1(8;) = JHnngE: ngzgzg(E) —0e=g=0 (79

since the Radon transform (defined on hyperplanes) % g
E - _[E g (for nonzero g) is injective (proved in [11, 17]),
which is a contradiction since g was assumed to be nonzero.

Hence S = (2(HY))"; that is, the span of delta functions
S is dense in (Z(H?))". O

Proof of Theorem 13 for n > 2. By Lemma 14 and the proper-
ties of the mixed Baston product and mixed discriminant, it
suffices to prove

Ay (Foooon f) =nl-det(fi..., £,)dz;,  (80)

for n > 2 in the case f,(g) = 8z, where E ={q | }; A;q; = 0}
is a split-quaternionic hyperplane, which implies Theorem 13.
We proceed by finding a unitary linear transformation A such
that E = {q | q; = 0}. We can use the pullback functions
(@) = fi(Aq"), and by Corollary 12 we have that

I ._ azflé ! _ ﬁ ! *
fe= <8q£f>?1} (a )> -4 < 94,04, (44 )4 (81)

::A‘Fk'A*,

where g = Aq' and k = 1,...,n. Then

Yxik = Y x(A-F-A")
k x
=A- (Zxka> A=
k

det (Zx,f,i) = det (A' <Zxka> 'A*) (82)
K K

=det(A-A")-det (Zxka>
K

gty

since A is unitary; that is, A+ A* = Id. Hence it follows by the
definition of the mixed discriminant and using the simpler
notation

det (5{zk Aeqe=0p S+ ’fn) (9)
= det (85, 1 quc0p for---> f) (A') (83)
= det (810 3+ 1) (')
where again g = Aq'. From these considerations, it then

suffices to prove (80) in the case where f; = Sy and E =
{g, = 0}. We can compute the split-quaternionic Hessian
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of O, where the derivatives are now weak derivatives of
distributions. For any test function ¢ € C;°(HY) we have

By oy [ . Py, - a¢
(84)
[ 9%,
J. aqj dq B ’

where dq = /\_,dq; is the volume measure on H, and dq|; =
dgq, N\ --- A dg, is the volume measure on E. Translated into

the complex representations, dq = /\Izczldzk Ndz, =: dZ and
dqly = N\itsdz Adz, =: dZ, so that, for j = 1,2,...,n,

o
ag; 3.4 _( 2% - j¢~s)dZ1
(85)
0519 - dZy — 05 dZ, - s.
But letting
22:: le/\dzl/\ /\E;l/\dEZJA
Ndz,, Ndz,,,
EZ:: dzl/\dzl/\ "/\dzi/\gz\i/\”.
Ndz,, Ndz,,,
0
2j~ 1(/’ dz = 262] 1 ¢dZ211 Ndz;
(86)
2n a
=) —(¢-dZ77)Ndz
kzlazk ( 2j 1) k

=d(¢-dZsr),
which means that 821—1(/) dZ = d(¢ - dZ
Oz -dZ = d(¢- de 7) are exact forms and hence by Stokes’
theorem

J aa;b d |E J (aZj——1¢'dzl_

57-1) and similarly

055 -dZ, -s)
- | oz, - | ae-dz, s
= [ 46 aZ) - | a(9-a25)

TA(REN R
=0-0,

(87)

if j#1
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because of the compact support of ¢, and 0E, = {lz;| <
b : i = 3,4,...,2n}. If j = 1 then since dz, and dz,
do not appear in cTZ\T and (fZ\E, respectively, the integral and
hence (06/04, )(¢) may not necessarily be zero. Applying the
partial derivative with respect to g, to (84) with j = 1 we get
the first entry in the split-quaternionic Hessian matrix for 8,
and combining with (87) we obtain

9*6;
82812 _| 94,99,
(aq,.aqj > )
0 0 (88)
Adp 0
0 0

since 9°8/0q;09 ;=0ifi# 1 # j,and the second equality is
by definition for n = 1. Using Corollary 10 we have

n-det (8g, fyr---s f,)

(89)
= Aql5E . det (M{I}FZ’ ey

My,F,),

where M, Fy = (0% /99,09 )i,j=2,..n are the corresponding
hyperhermitian minors of the original matrices. Then from
(89) it follows that for any test function ¢ € Cy°(HY) we have

j ¢ det(Op, o f,)

1
JHn ; . (/5 . Aq15E . det (M{l}F ""’M{I}Fn) (90)

1
JE ; . A‘h [¢ det (M{I}F >)M{1}Fn)]|

q=0"

Since the domain of integration is E = {q; = 0}, the
integral only depends on no more than 2nd-order derivatives
of f,,..., f, in the direction of g,. Thus we can assume that
there exists polynomials p; of order no more than 2 such that
fel@u -4 = pl@) fi(@, - > g) fork =2,3,...om

Let M, F; denote (82fk/aqiaqj)i,jzz,w, and then it
follows that

det (M{I}F e M{I}Fn)
. pn (ql) . det (M{I}FZ’ e

() - det (.0 F).-

=p,(aq)- ’M{I}Fn) (91)

=py(a)-



Advances in Mathematical Physics

Thus we obtain

J ¢ - det (g, for-os f)
e

Jna

— Ay (¢, (q1)-
Ay (.?2""’.?n)'

On the other hand, using properties of the mixed Baston
product and our inductive hypothesis used in the last equality
we have

J¢A(%ﬁw

(¢ det(MF,, ...

pu(@)ll, o

iy jria foseees n]n
- J (/) Z 81234

s i fises

B0 0p Ay fa = JW 2¢
1245 jysevnsin fin
' Z 61213]4 2iA128E"'Ainjnfn:Jn‘p'AqlsE
iy fye by
P2 (q1) - pa(qr)

1215 jyseenip fin
) Z 61234 2n Aszz o anf

iy fpee

93
[ a1 pala) - pa el o
. . Z 612;23]31’.4.,531”A12]2f2 Ainjn-?”
135250
= Ju-u" Aql [(15 P2 (‘h) Py (‘h)”qlzo
_ ~ 1
Do (oo 7) = | &
Ag (¢ 22 (@) pala)]ly 2o
Ayr (Foes Fa)-
O

Hence combining (93) with (92) we get that the inte-
grands are equal almost everywhere, but since the functions
are continuous, we have equality, and Theorem 13 is proved.

4. Split Quaternions and Structures
on Manifolds

The operator A above can be generalized for any manifold
with a special structure which we call split-hypercomplex
(other known names are parahypercomplex and neutral
hypercomplex). Let M be a manifold and let I be a complex
structure on it; that is, I : TM — TM, I’ = -Id is
integrable almost complex structure. Suppose also that there

1

isS : TM — TM with $ = Id and IS = -SI. If the
+1 eigen-bundles of S are involutive, S is called integrable.
When S is integrable, T = IS again has T°> = Id and it
is known that it is integrable. We call such (M, I, S, T) with
integrable I,S, T split-hypercomplex manifold and (I, S, T)-
split-hypercomplex structure. Clearly the left multiplication
by i,s,t in H? provides such a structure. However, unlike
the complex manifolds, split-hypercomplex ones do not have
nice atlases with “spli-quaternionic-holomorphic” transition
functions, so the local considerations of the previous section
cannot be extended to an arbitrary manifold. For any function
f: M — R, however we can define an analog of the Baston

operator A. Denote by 0 and 0 the standard operators for the

structure I. Then Af = 3SOf is a globally defined 2-form on
M, which is of type (2, 0) with respect to I.

It is known that when 9o S0 f is nondegenerate it defines
a pseudo-Riemannian metric g on M of split signature,
such that I is an isometry and S,T are anti-isometries
of g, called split-hyperhermitian. Any split-hyperhermitian
structure defines 3 nondegenerate 2-forms by w;(X,Y) =
gIX)Y), w(X,Y) = g(SX,Y), wp(X,Y) = g(TX,Y), for
which wg + iw; is nondegenerate (2,0)-form with respect
to I. In particular such metric is necessary of split signature
and M has dimension divisible by four. The relation with a
function f as above is @ S0 df = ws + iwy and conversely,
from nondegenerate form d o $ o 3 f on a split-hypercomplex
manifold, one recovers g.

However not every hyperhermitian metric arises in such a
way. There is an additional integrability condition on g which

is obtained as follows: If wg + iw; = 0SOf for some f, then
O(wg + iwy) = 0. The condition is also equivalent to existence
of a connection V on M for which Vg = VI = VS = VT =
0 and g(TV(X, Y), Z) is totally skew-symmetric, where TV is
the torsion of V [10]. On a split-hyperhermitian manifold M
admitting such connection with skew-torsion, such function
f locally always exists [10] but may not exist globally.
The main result of Section 4 then gives that on H/ = C*"'
(90800f)" = det (. f)dzy A+~ Ndzy,,  (94)
where #; is the split-quaternionic Hessian of f. In the
quaternionic case, this gives rise to the so-called quaternionic
Monge-Amperé equation, which arises if we want to find f
for which the determinant of the quaternionic Hessian is a
given function. The quaternionic Monge-Ampere equation
is elliptic. In the split-quaternionic case, however the corre-
sponding equation is ultrahyperbolic and is not well studied.
On the other side the reduction of self-duality equations in
split signature to two dimensions leads to the equations of
[5] describing the deformations of a harmonic map from a
Riemann surface into compact Lie group, which are elliptic.
In HY natural geometric objects to study are also the split
special Lagrangian submanifolds as studied in [12]. The
description in our terminology is the following. Consider
the form QO = w; — swp which has values in split-complex
numbers D = {x +sy | s° = 1}. Then Q" = Q, +
sQ, for real nondegenerate 2n-forms Q; and Q,. Moreover,
when the structure is hypersymplectic, forms Q; and Q,
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are closed. A split special Lagrangian manifold (of phase
zero) then is defined as a submanifold M of HY of real
dimension 2n, for which the form Q, vanishes on TM and
Q, is nondegenerate. Such manifold is necessarily complex,
since its tangent bundle is preserved by I. This is a partial
case of split special Lagrangian manifolds, which are analogs
of the holomorphic Lagrangian submanifolds in hyperkahler
manifold.
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