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Alesker studied a relation between the determinant of a quaternionic Hessian of a function and a specific complex volume form. In
this note we show that similar relation holds for functions of several split-quaternionic variables and point to some relations with
geometry.

1. Introduction

Quaternions are known to have deep relation to the self-
dual Yang-Mills equations in mathematical physics. It is also
known that the self-duality equations have an “indefinite”
version, the basic conformal metric used in their definition
has signature (2, 2). Such equations are not elliptic, but it is
known for more than 30 years that many of the integrable
systems arise as a reduction of the indefinite self-duality
equations [1]. It is also known that the geometry of a
superstring with 𝑁 = 2 supersymmetry was shown in [2, 3]
to be described by a space-time with a pseudo-Kähler metric
of signature (2, 2), whose curvature satisfies the (anti) self-
duality equations.

The split quaternions are indefinite analog of quaternions
and play similar role in the indefinite self-duality equations
as the quaternions play in the positive definite case. It is
well known that spaces with quaternionic-like structures
(e.g., quaternionic-kähler and hyperkähler) form an active
area of research. One topic in it is developing the notion
of quaternionic plurisubharmonic functions [4]. Similar to
the quaternionic case, there are geometric structures on
manifolds of dimension greater than four, related to the split
quaternions. Mathematically, these structures are described
by quadruples (𝑔, 𝐼, 𝑆, 𝑇), where 𝑔 is a signature (2, 2) met-
ric and 𝐼, 𝑆, 𝑇 are parallel endomorphisms of the tangent

bundle with respect to the Levi-Civita connection of 𝑔, such
that

𝐼
2
= −𝑆

2
= −1,

𝑇 = 𝐼𝑆 = −𝑆𝐼,

𝑔 (𝐼𝑋, 𝐼𝑌) = −𝑔 (𝑆𝑋, 𝑆𝑌) = 𝑔 (𝑋, 𝑌) .

(1)

In the literature such structures are called hypersymplectic
[5], neutral hyperkähler [6], parahyperkähler [7, 8], pseudo-
hyperkähler [9], and so forth. A more general condition is
when 𝐼, 𝑆, 𝑇 are parallel with respect to a connection with
skew-symmetric torsion; such structures are considered in
[10]. One of the features is the existence of a nondegenerate
(2, 0)-form given by 𝜔(𝑋, 𝑌) = 𝑔(𝑆𝑋, 𝑌) + 𝑖𝑔(𝑇𝑋, 𝑌). Locally
the metric arises from a single function, called potential,
similar to the Kähler metrics. The function satisfies 𝜕 ∘
𝑆 ∘ 𝜕𝑓 = 𝜔. In the quaternionic case, such potentials in
multidimensional quaternionic space H𝑛 correspond to a
quaternionic plurisubharmonic functions and were consid-
ered from analytical view point first by Alesker [4].

The aim of this paper is to provide an analog of the
results in [4] for functions of split-quaternionic variables.
Although it is unlikely to find an appropriate definition of
plurisubharmonic function because of the indefiniteness, a
meaning of determinant of a split-quaternionic-Hermitian
matrix can be given. As a main result in the paper we show
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that 𝜕 ∘ 𝑆 ∘ 𝜕𝑓 = det(𝑓)𝑑𝑧
1
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑧

2𝑛
, where det is the

Moore determinant of the quaternionic Hessian of 𝑓. The
proof is similar to the proof in [4] and relies on a linear change
of variables formula and the density of the delta functions
of split-quaternionic hyperplanes in H𝑛

𝑠
, which is proven by

Graev [11]. We notice also that split-Lagrangian calibrations
of [12] can be defined naturally for metrics arising from such
functions 𝑓 for which det(𝑓) ̸= 0.

2. The Split Quaternions and Functions on H𝑛
𝑠

2.1. The Algebra of the Split Quaternions. The split quater-
nions H

𝑠
are spanned over R by the basis {1, 𝑖, 𝑠, 𝑡} with

algebraic relations 12 = 𝑠2 = 𝑡2 = 1, 𝑖2 = −1, 𝑖𝑠 = −𝑠𝑖 = 𝑡.
The inner product ⟨⋅, ⋅⟩ is defined by ⟨1, 1⟩ = ⟨𝑖, 𝑖⟩ = 1 and
⟨𝑠, 𝑠⟩ = ⟨𝑡, 𝑡⟩ = −1 (hence the (2, 2) signature). The conjugate
of 𝑞 = 𝑥

0
+ 𝑥
1
𝑖 + 𝑥

2
𝑠 + 𝑥

3
𝑡 is 𝑞 fl 𝑥

0
− 𝑥
1
𝑖 − 𝑥

2
𝑠 − 𝑥

3
𝑡, and

then ⟨𝑞, 𝑞⟩ = 𝑞𝑞 = 𝑥2
0
+ 𝑥2
1
− 𝑥2
2
− 𝑥2
3
.

Another realization of H
𝑠
in HC given by the following

embedding 𝜏:

H
𝑠
∋ (𝑞 = 𝑧 + 𝑤 ⋅ 𝑠) 󳨅→ 𝜏 (𝑞) fl (

𝑧 𝑤

𝑤 𝑧
) ∈ End (C2) (2)

whose usefulness becomes obvious when we notice that it
preserves the norm; that is,

󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩
2

= ⟨𝑞, 𝑞⟩ = 𝑧𝑧 − 𝑤𝑤 = det(
𝑧 𝑤

𝑤 𝑧
) = det 𝜏 (𝑞) . (3)

The embedding 𝜏 above is extended to vectors in H𝑛
𝑠
by

the map

𝜏 : H
𝑛

𝑠
󳨅→ EndR (C

2𝑛
) , (4)

where

𝑞 󳨃󳨀→ 𝜏 (𝑞) fl (𝜏 (𝑞
𝑘
))
𝑘=0,...,𝑛−1

=

(
(
(
(
(

(

𝜏(𝑞
0
)

...

𝜏 (𝑞
𝑘
)

...

𝜏 (𝑞
𝑛−1
)

)
)
)
)
)

)

,

𝑞
𝑘
fl 𝑧

2𝑘
+ 𝑧
2𝑘+1

⋅ 𝑠,

𝜏 (𝑞
𝑘
) = 𝜏 (𝑧

2𝑘
+ 𝑧
2𝑘+1

⋅ 𝑠) fl (
𝑧
2𝑘

𝑧
2𝑘+1

𝑧
2𝑘+1

𝑧
2𝑘

)

(5)

so the embedding looks like

H
𝑛

𝑠
∋ 𝑞 = (

𝑞
0

...

𝑞
𝑛−1

) 󳨃󳨀→ 𝜏 (𝑞) fl(

𝜏(𝑞
0
)

...

𝜏 (𝑞
𝑛−1
)

)

=
(
(

(

(
𝑧
0
𝑤
0

𝑤
0
𝑧
0

)

...

(
𝑧
𝑛−1

𝑤
𝑛−1

𝑤
𝑛−1

𝑧
𝑛−1

)

)
)

)

.

(6)

Similarly for an 𝑛×𝑛 split-quaternionic matrix, we define
its adjointmatrix as the image of the extension of 𝜏 to𝑀

2𝑛
(C)

given by

𝐴 = (𝐴
𝑖𝑗
)
0≤𝑖,𝑗≤𝑛−1

󳨃󳨀→ 𝜏 (𝐴) fl (𝜏 (𝐴
𝑖𝑗
))
0≤𝑖,𝑗≤𝑛−1

, (7)

where 𝐴
𝑖𝑗
= 𝑎
𝑖𝑗
+ 𝑏
𝑖𝑗
⋅ 𝑠 and 𝑎

𝑖𝑗
, 𝑏
𝑖𝑗
∈ C.

A related homomorphism is that of the Studymap, which
we denote by 𝜇, which can be generalized for a matrix
𝑀
𝑛
(H
𝑠
) ∋ 𝑀 = 𝐴 + 𝐵 ⋅ 𝑠, where 𝐴, 𝐵 ∈ 𝑀

𝑛
(C):

𝑀 = 𝐴 + 𝐵 ⋅ 𝑠 󳨃󳨀→ 𝜇 (𝑀) fl (
𝜏 (𝐴) 𝜏 (𝐵)

𝜏 (𝐵) 𝜏 (𝐴)
) . (8)

The Studymap also has an associated determinant, where
detC is the standard determinant of complex matrices, given
by

Sdet (𝑀) fl detC (𝜇 (𝑀)) . (9)

For 𝑞
𝑘
= 𝑧
2𝑘
+𝑧
2𝑘+1

𝑠, we have 𝜏(𝑞
0
⋅ 𝑞
1
) = 𝜏(𝑞

0
) ⋅ 𝜏(𝑞

1
) and

we can check that

𝜏 (𝑞
0
⋅ 𝑞
1
) = (

𝑧
0
𝑧
1
+ 𝑤

0
𝑤
1
𝑧
0
𝑤
1
+ 𝑧
1
𝑤
0

𝑧
0
𝑤
1
+ 𝑧
1
𝑤
0
𝑧
0
𝑧
1
+ 𝑤

0
𝑤
1

)

= (
𝑧
0
𝑧
1
+ 𝑤

0
𝑤
1
𝑧
0
𝑤
1
+ 𝑧
1
𝑤
0

𝑧
0
𝑤
1
+ 𝑧
1
𝑤
0
𝑧
0
𝑧
1
+ 𝑤

0
𝑤
1

)

= (
𝑧
0
𝑤
0

𝑤
0
𝑧
0

) ⋅ (
𝑧
1
𝑤
1

𝑤
1
𝑧
1

) = 𝜏 (𝑞
0
) ⋅ 𝜏 (𝑞

1
) .

(10)

So it is natural to expect that this representation extends
linearly to matrix groups, that is, the following.

Proposition 1. For any split-quaternionic matrices 𝐴 and 𝐵,
we have the following:

(1) 𝜏(𝐴𝐵) = 𝜏(𝐴)𝜏(𝐵) for 𝐴 = 𝐴𝑝×𝑚 and 𝐵 = 𝐵𝑚×𝑙, where
the superscripts are the respective dimensions.

(2) For 𝐴 ∈ 𝑀
𝑛
(H
𝑠
), 𝜏(𝐴∗) = 𝑇𝜏(𝐴)

∗
𝑇, where 𝑇 fl

𝑖𝜏(𝑖) = 𝑖diag ( −𝑖 0
0 𝑖
) = diag ( 1 0

0 −1
).
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(3) For 𝐴 ∈ 𝑀
𝑛
(H
𝑠
), 𝑆𝜏(𝐴) = 𝜏(𝐴)𝑆, where 𝑆 fl 𝜏(𝑠) =

diag ( 0 1
1 0
). Furthermore, if 𝐴 ∈ 𝑈

𝑛
(H
𝑠
) is unitary,

then 𝜏(𝐴)𝐼𝜏(𝐴)𝑡 = 𝐼; that is, 𝐴 is symplectic, and
𝐼 fl 𝑖𝜏(−𝑡) = 𝑖diag ( 0 −𝑖

𝑖 0
) = diag ( 0 1

−1 0
).

Proof. Let 𝐶 = 𝐴𝐵. Then 𝐶
𝑖𝑗
= ∑

𝑝−1

𝑘=0
𝐴
𝑖𝑘
𝐵
𝑘𝑗

and by the
property above we have

𝜏 (𝐶
𝑖𝑗
) = 𝜏(

𝑝−1

∑
𝑘=0

𝐴
𝑖𝑘
𝐵
𝑘𝑗
) =

𝑝−1

∑
𝑘=0

𝜏 (𝐴
𝑖𝑘
𝐵
𝑘𝑗
)

=

𝑝−1

∑
𝑘=0

𝜏 (𝐴
𝑖𝑘
) 𝜏 (𝐵

𝑘𝑗
)

= (𝜏 (𝐴
𝑖0
) , . . . , 𝜏 (𝐴

𝑖(𝑝−1)
))(

𝜏 (𝐵
0𝑗
)

...

𝜏 (𝐵
(𝑝−1)𝑗

)

)

= 𝜏 ((𝐴
𝑖𝑘
)
𝑘=0,...,𝑝−1

) 𝜏 ((𝐵
𝑘𝑗
)
𝑘=0,...,𝑝−1

)
𝑡

= (

𝑝−1

∑
𝑘=0

𝜏 (𝐴
𝑖𝑘
) 𝜏 (𝐵

𝑘𝑗
))

𝑖𝑗

.

(11)

Hence

𝜏 (𝐶) = (𝜏 (𝐶
𝑖𝑗
)) = ((

𝑝−1

∑
𝑘=0

𝜏 (𝐴
𝑖𝑘
) 𝜏 (𝐵

𝑘𝑗
))

𝑖𝑗

)

= 𝜏 (𝐴) ⋅ 𝜏 (𝐵) ,

𝜏 (𝐴
∗
) = 𝜏 (𝐴𝑡) = 𝜏 (𝐴

𝑗𝑖
) = (𝜏 (𝐴

𝑗𝑖
))

= (𝜏 (𝑎
0

𝑗𝑖
+ 𝑠 ⋅ (−𝑎1

𝑗𝑖
))) = ((

𝑎0
𝑗𝑖

−𝑎1
𝑗𝑖

−𝑎1
𝑗𝑖

𝑎0
𝑗𝑖

))

= 𝑇((
𝑎0
𝑗𝑖
𝑎1
𝑗𝑖

𝑎1
𝑗𝑖
𝑎0
𝑗𝑖

))𝑇 = 𝑇((
𝑎0
𝑖𝑗
𝑎1
𝑖𝑗

𝑎1
𝑖𝑗
𝑎0
𝑖𝑗

))

𝑡

𝑇

= 𝑇𝜏 (𝐴)
𝑡
𝑇 = 𝑇𝜏 (𝐴)

∗
𝑇,

𝑆𝜏 (𝐴) = diag(
0 1

1 0
)((

𝑎0
𝑖𝑗
𝑎1
𝑖𝑗

𝑎
1

𝑖𝑗
𝑎
0

𝑖𝑗

))

= diag(
0 1

1 0
)((

𝑎0
𝑖𝑗
𝑎1
𝑖𝑗

𝑎1
𝑖𝑗
𝑎0
𝑖𝑗

))

= ((
𝑎1
𝑖𝑗
𝑎0
𝑖𝑗

𝑎
0

𝑖𝑗
𝑎
1

𝑖𝑗

))

= ((
𝑎0
𝑖𝑗
𝑎1
𝑖𝑗

𝑎1
𝑖𝑗
𝑎0
𝑖𝑗

)) diag(
0 1

1 0
) = 𝜏 (𝐴) 𝑆.

(12)

For the second claim, if the adjoint of 𝑈 ∈ 𝑈(𝑛,H
𝑠
)

is unitary as (2𝑛 × 2𝑛) matrix, then we show that 𝜏(𝑈) is
symplectic; that is, 𝜏(𝑈)𝐼𝜏(𝑈)𝑡 = 𝐼

𝑈 (𝑛,H
𝑠
) ∋ 𝑈 ⇐⇒ 𝑈𝑈

∗
= Id

𝑛
⇐⇒ 𝜏 (𝑈𝑈

∗
)

= 𝜏 (𝑈) 𝜏 (𝑈
∗
) = Id

2𝑛
,

(13)

but by (12) we have that 𝜏(𝑈∗) = 𝑇𝜏(𝑈)
∗
𝑇 and combined

with (14):

(𝜏 (𝐴) 𝑆)
𝑡
= 𝑆𝜏 (𝐴)

𝑡
= (𝑆𝜏 (𝐴))

𝑡

= 𝜏 (𝐴)
𝑡
𝑆 󳨐⇒

𝑆𝜏 (𝐴)
𝑡
𝑆 = 𝜏 (𝐴)

𝑡

(14)

we get that

Id
2𝑛
= 𝜏 (𝑈) 𝜏 (𝑈

∗
) = 𝜏 (𝑈) 𝑇𝜏 (𝑈)

𝑡
𝑇

= 𝜏 (𝑈) 𝐼𝑆 [𝑆𝜏 (𝑈)
𝑡
𝑆] 𝐼𝑆 = 𝜏 (𝑈) 𝐼𝜏 (𝑈)

𝑡
(−𝐼)

(15)

and by multiplying the above equation by 𝐼 on the right we
obtain

𝐼 = Id
2𝑛
𝐼 = (𝜏 (𝑈) 𝐼𝜏 (𝑈)

𝑡
(−𝐼)) 𝐼

= 𝜏 (𝑈) 𝐼𝜏 (𝑈)
𝑡
(−𝐼

2
) = 𝜏 (𝑈) 𝐼𝜏 (𝑈)

𝑡

(16)

as needed.

Following Wan and Wang [13] we define on C2𝑛 ∋

𝑧 = (𝑧
0
, . . . , 𝑧

2𝑛−1
) the corresponding first-order differential

operators that act as partial derivatives with respect to the
variable in the (𝑘𝛼)th entry, 𝑘 = 0, . . . , 2𝑛 − 1, and 𝛼 = 0

or 1, in (6),

(
(
(

(

∇
00

∇
01

∇
10

∇
11

...
...

∇
(2𝑛−2)0

∇
(2𝑛−2)1

∇
(2𝑛−1)0

∇
(2𝑛−1)1

)
)
)

)

fl
(
(
(

(

𝜕
𝑧0

𝜕
𝑧1

𝜕
𝑧1

𝜕
𝑧0

...
...

𝜕
𝑧2𝑛−2

𝜕
𝑧2𝑛−1

𝜕
𝑧2𝑛−1

𝜕
𝑧2𝑛−2

)
)
)

)

, (17)

and use them to define the analogs of 𝜕 and 𝜕 in complex
analysis for the purposes of our study of functions on H𝑛

𝑠
.

We will denote by 𝜕
𝑖
, 𝜕
𝑗
the partial derivatives 𝜕

𝑧𝑖
and 𝜕

𝑧𝑗
for

notational simplicity.

Definition 2 (the Baston operator). Let𝐷 ⊂ R4𝑛 be a domain.
The operators 𝑑

0
, 𝑑
1
, and Δ are defined as

𝑑
0
fl (𝜔 = ∑

𝑘

𝑓
𝑘
𝑑𝑧
𝑘
) 󳨃󳨀→ 𝑑

0
𝜔 fl∑

𝑘

∇
𝑘0
𝜔𝑑𝑧

𝑘

𝑑
1
fl 𝑓 󳨃󳨀→ 𝑑

1
𝑓 fl∑

𝑘

∇
𝑘1
𝑓𝑑𝑧

𝑘

Δ fl 𝑑
0
𝑑
1
: 𝑓 󳨃󳨀→ Δ𝑓 fl 𝑑

0
𝑑
1
𝑓.

(18)
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Due to the particular embedding we chose, we can sim-
plify notations and calculations, summarized in the following
lemma.

Lemma 3. Properties of ∇
𝑘0
, ∇
𝑘1
, 𝑑
0
, 𝑑
1
, and Δ are as follows:

(1)

Δ𝑓 fl 𝑑
0
𝑑
1
𝑓 = ∑

0≤𝑖<𝑗≤2𝑛−1

Δ
𝑖𝑗
𝑓𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗
, (19)

where

Δ
𝑖𝑗
fl ∇

𝑖0
∇
𝑗1
− ∇
𝑖1
∇
𝑗0
= det(

∇
𝑖0
∇
𝑖1

∇
𝑗0
∇
𝑗1

) . (20)

(2) Δ
𝑖𝑗
= −Δ

𝑗𝑖
for the same pair of indices 𝑖 and 𝑗.

(3) Let 𝐼 = {(2𝑘, 2𝑘 + 1) | 𝑘 = 0, . . . , 𝑛 − 1} = {(0, 1), . . . ,
(2𝑛 − 2, 2𝑛 − 1)} such that (clearly) 2𝑘 < 2𝑘 + 1 for
all 𝑘. Let 𝑟 ̸= 𝑠 ∈ {0, 1, . . . , 𝑛 − 1}; then without loss
of generality we can suppose 𝑟 < 𝑠. Then if we consider
the ordered pairs (𝑖

0
, 𝑖
1
) fl (2𝑟, 2𝑟 + 1) and (𝑗

0
, 𝑗
1
) fl

(2𝑠, 2𝑠 + 1), we have
Δ
𝑖0𝑗1

= −Δ
𝑖1𝑗0
. (21)

Proof. We compute Δ𝑓 as

Δ𝑓 fl 𝑑
0
(𝑑
1
𝑓) = 𝑑

0
(

2𝑛−1

∑
𝑗=0

∇
𝑗1
𝑓𝑑𝑧

𝑗
)

= (

2𝑛−1

∑
𝑖=0

∇
𝑖0
𝑑𝑧
𝑖
) ∧ (

2𝑛−1

∑
𝑗=0

∇
𝑗1
𝑓𝑑𝑧

𝑗
)

=

2𝑛−1

∑
𝑖,𝑗=0

∇
𝑖0
∇
𝑗1
𝑓𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗
.

(22)

Since both indices 𝑖 and 𝑗 run from 0 to 2𝑛 − 1, the
“symmetric terms” ∇

𝑖0
∇
𝑗1
𝑓𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗
and ∇

𝑗0
∇
𝑖1
𝑓𝑑𝑧

𝑗
∧ 𝑑𝑧

𝑖

both appear, and by the skew-symmetry of the wedge product
(𝑑𝑧
𝑖
∧ 𝑑𝑧

𝑗
= −𝑑𝑧

𝑗
∧ 𝑑𝑧

𝑖
),

∇
𝑖0
∇
𝑗1
𝑓𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗
+ ∇
𝑖1
∇
𝑗0
𝑓𝑑𝑧

𝑗
∧ 𝑑𝑧

𝑖

= (∇
𝑖0
∇
𝑗1
𝑓 − ∇

𝑖1
∇
𝑗0
𝑓) 𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗
󳨐⇒

Δ𝑓 =

2𝑛−1

∑
𝑖,𝑗=0

∇
𝑖0
∇
𝑗1
𝑓𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗

=
1

2

2𝑛−1

∑
𝑖,𝑗=0

(∇
𝑖0
∇
𝑗1
𝑓 − ∇

𝑖1
∇
𝑗0
𝑓)𝑓𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗

(23)

and since any 𝑑𝑧
𝑘
∧𝑑𝑧

𝑘
= 0, the only remaining terms are the

terms with 0 ≤ 𝑖 < 𝑗 ≤ 2𝑛 − 1, so we can cancel the 1/2 and
write (19) as

Δ𝑓 = ∑
0≤𝑖<𝑗≤2𝑛−1

(∇
𝑖0
∇
𝑗1
𝑓 − ∇

𝑖1
∇
𝑗0
𝑓) 𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗

= ∑
0≤𝑖<𝑗≤2𝑛−1

Δ
𝑖𝑗
𝑓𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗
,

(24)

where Δ
𝑖𝑗
is the coefficient of 𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗
th term in Δ𝑓.

To demonstrate (2), we use commutation of ∇
𝑘𝛼
∇
𝑗𝛽

=

∇
𝑗𝛽
∇
𝑘𝛼
:

−Δ
𝑗𝑖
fl − (∇

𝑗0
∇
𝑖1
− ∇
𝑗1
∇
𝑖0
) = ∇

𝑗1
∇
𝑖0
− ∇
𝑗0
∇
𝑖1

= ∇
𝑖0
∇
𝑗1
− ∇
𝑖1
∇
𝑗0
= Δ

𝑖𝑗
.

(25)

Proving the final claim is done in two nearly identical
calculations, depending on the parity of 𝑟 and 𝑠.Wewill prove
one case, where without loss of generality we assume 𝑟 is even
and we still have 𝑟 < 𝑠. This means that ∇

𝑖00
= ∇

(2𝑟)0
= 𝜕
2𝑟
,

∇
𝑖10

= ∇
(2𝑟+1)0

= 𝜕
2𝑟+1

, but ∇
𝑖01

= ∇
(2𝑟)1

= 𝜕
2𝑟+1

, ∇
𝑖11

=

∇
(2𝑟+1)1

= 𝜕
2𝑟
, and similarly ∇

𝑗00
= ∇

(2𝑠)0
= 𝜕

2𝑠
, ∇
𝑗10

=

∇
(2𝑠+1)0

= 𝜕
2𝑠+1

, but ∇
𝑗01
= ∇
(2𝑠)1

= 𝜕
2𝑠+1

, ∇
𝑗11
= ∇
(2𝑠+1)1

= 𝜕
2𝑠

(in the other case if 𝑠 was odd we would have the completely
symmetric situation, with 2𝑟 + 1’s becoming 2𝑟’s, etc.). So we
calculate

−Δ
𝑖1𝑗0

= −Δ
𝑖1𝑗0

= Δ
𝑗0𝑖1

= ∇
𝑗00
∇
𝑖11
− ∇
𝑗01
∇
𝑖10

= 𝜕
2𝑠
𝜕
2𝑟
− 𝜕
2𝑠+1

𝜕
2𝑟+1

= 𝜕
2𝑠
𝜕
2𝑟
− 𝜕
2𝑠+1

𝜕
2𝑟+1

= 𝜕
2𝑟
𝜕
2𝑠
− 𝜕
2𝑟+1

𝜕
2𝑠+1

= ∇
(2𝑟)0

∇
(2𝑠+1)1

− ∇
(2𝑟)1

∇
(2𝑠+1)0

=: Δ
(2𝑟)(2𝑠+1)

= Δ
𝑖0𝑗1
.

(26)

Definition 4 (mixed Baston product). For 𝑓
1
, . . . , 𝑓

𝑛
∈ 𝐶2 we

define the mixed Baston product of 𝑓
1
, . . . , 𝑓

𝑛
as

Δ
𝑛
(𝑓
1
, . . . , 𝑓

𝑛
) fl Δ𝑓

1
∧ Δ𝑓

2
∧ ⋅ ⋅ ⋅ ∧ Δ𝑓

𝑛

fl ∑
𝑖1 ,𝑗1,...

Δ
𝑖1𝑗1
𝑓
1
⋅ ⋅ ⋅ Δ

𝑖𝑛𝑗𝑛
𝑓
𝑛
𝑑𝑧
𝑖1
∧ 𝑑𝑧

𝑗1
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑧

𝑖𝑛

∧ 𝑑𝑧
𝑗𝑛

= ∑
𝑖1 ,𝑗1,...

𝛿
𝑖1𝑗1𝑖2𝑗2 ,...,𝑖𝑛𝑗𝑛

1,2,3,4,...,2𝑛
Δ
𝑖1𝑗1
𝑓
1
⋅ ⋅ ⋅ Δ

𝑖𝑛𝑗𝑛
𝑓
𝑛
𝑑𝑧
𝐼
,

(27)

where 𝐼 = {1, 2, . . . , 2𝑛} and 𝛿
𝑖1𝑗1𝑖2𝑗2 ,...,𝑖𝑛𝑗𝑛

1,2,3,4,...,2𝑛
is defined to

be the sign of the permutation from (𝑖
1
, 𝑗
1
, . . . , 𝑖

𝑛
, 𝑗
𝑛
) to

(1, 2, 3, . . . , 2𝑛) if {𝑖
𝑘
, 𝑗
𝑘
| 𝑘 = 1, 2, . . . , 2𝑛} = 𝐼 and 0

otherwise.
In particular, for 𝑓

1
= 𝑓

2
= ⋅ ⋅ ⋅ = 𝑓

𝑛
= 𝑓, the mixed

Baston product coincides with the 𝑛-times wedged Baston of
𝑓; that is,

Δ
𝑛
(𝑓) fl Δ

𝑛
(𝑓, . . . , 𝑓) = (Δ𝑓)

𝑛 fl:
𝑛

⋀Δ𝑓

fl (Δ𝑓) ∧ ⋅ ⋅ ⋅ ∧ (Δ𝑓)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛-times

.

(28)

The results and definitions above will allow us to translate
the 𝑛-times wedged Baston of 𝑓 in terms of the “split-
quaternionic Hessian” of 𝑓, defined in terms of the Moore
determinant, which are precisely the next sections.
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2.2. Split-Quaternionic Determinants. Due to the noncom-
mutativity of the multiplication in H

𝑠
(just as in H) try-

ing to construct an effective definition of determinants is
complicated. There are several ways to define them. The
main results in this direction follow the work of E. Study,
J. Dieudonné, and E. H. Moore, as outlined by Aslaksen
in [14]. However, the problem becomes much simpler if
we are restricted to hyperhermitian matrices; that is, 𝐴 ∈

GL
𝑛
(H
𝑠
) such that 𝐴 = 𝐴∗; then we can define a simple

and useful determinant following the work of E. H. Moore,
called the Moore determinant. This is done by specifying a
certain ordering of the factors in 𝑛! terms in the sum over
permutations of the symmetric group 𝑆

𝑛
.

Definition 5 (the Moore determinant, see [14] or [15]). For
a permutation 𝜎 ∈ 𝑆

𝑛
, write 𝜎 as a product of disjoint cycles

such that the smallest number is at the front of each factor and
then sort the disjoint cycles in decreasing order according to
the first number of each factor. In other words, write

𝜎 = (𝑛
11
⋅ ⋅ ⋅ 𝑛

1𝑟1
) (𝑛

21
⋅ ⋅ ⋅ 𝑛

2𝑟2
) ⋅ ⋅ ⋅ (𝑛

𝑗1
⋅ ⋅ ⋅ 𝑛

𝑗𝑟𝑗
) , (29)

where, for 𝑖, we have 𝑛
𝑖1
> 𝑛

𝑖𝑘
for all 𝑘 > 1, and 𝑛

11
>

𝑛
21
> ⋅ ⋅ ⋅ > 𝑛

𝑗1
. Then we define the Moore determinant of

a hyperhermitian matrix 𝐴 = (𝑎
𝑖𝑗
) [denoted by det(𝐴)] as

det (𝐴) fl ∑
𝜎∈𝑆𝑛

|𝜎| 𝑎𝑛11𝑛12 ⋅ ⋅ ⋅ 𝑎𝑛1𝑟1𝑛11
𝑎
𝑛21𝑛22

⋅ ⋅ ⋅ 𝑎
𝑛𝑗𝑟𝑗
𝑛𝑗1
. (30)

Another equivalent definition of the Moore determinant
is the inductive one (see [15]), defined as, for a hyperhermi-
tian 𝑛 × 𝑛 matrix 𝐴 = (𝑎

𝑖𝑗
), the inductive definition is given

as follows: for 𝑛 = 1, we have det(𝐴) fl 𝑎
11
and for 𝑛 > 2

det (𝐴) =
𝑛

∑
𝑘=1

𝜖
𝑟𝑘
𝑎
𝑟𝑘
det (𝐴 (𝑟, 𝑘)) (31)

for 𝑟 ∈ 𝐼 = {1, 2, . . . , 𝑛}, 𝜖
𝑟𝑘
= +1 if 𝑘 = 𝑟 and 𝜖

𝑟𝑘
= −1 if

𝑘 ̸= 𝑟, and𝐴(𝑘, 𝑟) the hyperhermitian (𝑛 − 1) × (𝑛 − 1)matrix
obtained by interchanging the 𝑘th and 𝑟th columns and then
deleting both the 𝑘th row and column of the corresponding
matrix. For any matrix 𝐴 ∈ 𝑀

𝑛
(H
𝑠
), it can be easily checked

that 𝐴 ⋅ 𝐴∗ = 𝐴∗ ⋅ 𝐴 is also hyperhermitian, which leads to
the equalities

det (𝐴∗ ⋅ 𝐴) = detC (𝜇 (𝐴)) . (32)

The Moore determinant is related to the Study determinant
from (8) as

det (𝐴∗ ⋅ 𝐴) = detC (𝜏 (𝐴)) = detC (𝜇 (𝐴))

= Sdet (𝐴) ,
(33)

which is given by the middle equality which can be seen
easily by noticing that 𝜇(𝐴) and 𝜏(𝐴) are similar matrices
(having the same exact entries in different arrays, except
that the former consists of 4 𝑛-blocks and the latter consists
of 𝑛2 2-blocks) and differ by only elementary operations
(shuffling some rows, columns, and signs) so that their
complex determinants are equal.

Again focusing on hyperhermitian matrices, we can
manipulate them to get what are also known as self-adjoint
matrices, for which the Pfaffians (Pf) can be defined (again
see [15]). They are defined on 2𝑛 × 2𝑛 skew-symmetric
matrices, so for a hyperhermitian matrix 𝐴 and matrix (and
endomorphism) 𝑇 defined in Proposition 1, we define the
map 𝜌 by

𝐴 󳨃󳨀→ 𝜌 (𝐴) fl 𝑇 ⋅ 𝜏 (𝐴) . (34)
From this follows the well-known equalities proved byDyson
[15]:

det (𝐴) = Pf (𝜌 (𝐴)) = √Sdet (𝐴)

i.e., [det (𝐴)]2 = detC (𝜏 (𝐴)) .
(35)

This allows us to prove det is a homomorphism and, in
particular, the following corollary.

Corollary 6. For any hyperhermitian matrix 𝐴 and any
split-quaternionic matrix 𝐶, the matrix 𝐶∗ ⋅ 𝐴 ⋅ 𝐶 is also
hyperhermitian and

det (𝐶∗ ⋅ 𝐴 ⋅ 𝐶) = det (𝐶∗ ⋅ 𝐶) ⋅ det (𝐴) . (36)
Proof. Using the identities (32), (33), and (35) above,
Proposition 1, and the multiplicative properties of complex
determinants and 𝜏, a direct calculation shows

[det (𝐶∗ ⋅ 𝐴 ⋅ 𝐶)]2 = detC (𝜏 (𝐶
∗
⋅ 𝐴 ⋅ 𝐶))

= detC (𝜏 ((𝐶
∗
) ⋅ 𝜏 (𝐴) ⋅ 𝜏 (𝐶)))

= detC (𝜏 (𝐶
∗
)) ⋅ detC (𝜏 (𝐴)) ⋅ detC (𝜏 (𝐶))

= detC (𝜏 (𝐶
∗
)) detC (𝜏 (𝐶)) detC (𝜏 (𝐴))

= [detC (𝜏 (𝐶
∗
⋅ 𝐶))] ⋅ detC (𝜏 (𝐴))

= [det (𝐶∗ ⋅ 𝐶)]2 ⋅ [det (𝐴)]2

(37)

and the corollary is proved.

Definition 7 (mixed discriminant of hyperhermitian matri-
ces). Let 𝐴

1
, . . . , 𝐴

𝑛
be hyperhermitian 𝑛 × 𝑛 matrices.

The mixed discriminant [denoted by det(𝐴
1
, . . . , 𝐴

𝑛
)] of

𝐴
1
, . . . , 𝐴

𝑛
is defined to be the coefficient of the monomial

𝑥
1
, . . . , 𝑥

𝑛
divided by 𝑛! in the polynomial given by det(𝑥

1
𝐴
1
+

⋅ ⋅ ⋅ + 𝑥
𝑛
𝐴
𝑛
), where det is again the Moore determinant. Note

also that det(𝐴, . . . , 𝐴) = det(𝐴).

2.3. The “Split-Quaternionic Hessian” of a Function. Let 𝑓 be
a function of 𝑛 split-quaternionic variables, where 𝑞

𝑖
fl 𝑧

2𝑖
+

𝑧
2𝑖+1

⋅ 𝑠. We define the partial derivative with respect to 𝑞
𝑖
as

𝜕

𝜕𝑞
𝑖

fl 𝜕
2𝑖
+ 𝜕
2𝑖+1

⋅ 𝑠; (38)

and for 𝑞
𝑗
fl 𝑧

2𝑗
+ 𝑧
2𝑗+1

⋅ 𝑠, its conjugate is 𝑞
𝑗
fl 𝑧

2𝑗
− 𝑧
2𝑗+1

⋅

𝑠, we similarly define the partial derivative with respect to a
conjugate variable as

𝜕

𝜕𝑞
𝑗

fl
𝜕

𝜕𝑞
𝑗

fl 𝜕
2𝑗
− 𝜕
2𝑗+1

⋅ 𝑠. (39)
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This immediately implies that the mixed partials calculation
is

𝜕2

𝜕𝑞
𝑖
𝜕𝑞
𝑗

fl
𝜕

𝜕𝑞
𝑖

(
𝜕

𝜕𝑞
𝑗

)

fl (𝜕
2𝑖
+ 𝜕
2𝑖+1

⋅ 𝑠) (𝜕
2𝑗
− 𝜕
2𝑗+1

⋅ 𝑠)

= 𝜕
2𝑖
𝜕
2𝑗
− 𝜕
2𝑖
𝜕
2𝑗+1

⋅ 𝑠 + 𝜕
2𝑖+1

⋅ 𝑠 ⋅ 𝜕
2𝑗
− 𝜕
2𝑖+1

⋅ 𝑠

⋅ 𝜕
2𝑗+1

⋅ 𝑠

= 𝜕
2𝑖
𝜕
2𝑗
− 𝜕
2𝑖+1

𝜕
2𝑗+1

+ (𝜕
2𝑖+1

𝜕
2𝑗
− 𝜕
2𝑖
𝜕
2𝑗+1

) ⋅ 𝑠

= 𝜕
2

(2𝑖)(2𝑗)
− 𝜕
2

(2𝑖+1)(2𝑗+1)

+ (𝜕
2

(2𝑖+1)(2𝑗)
− 𝜕
2

(2𝑖)(2𝑗+1)
) ⋅ 𝑠,

(40)

since 𝑠 ⋅ 𝜕
𝑘
= 𝜕
𝑘
⋅ 𝑠 which extends from the fact that for 𝑧 ∈ C

and 𝑠 ∈ H
𝑠
, 𝑠 ⋅ 𝑧 = 𝑧 ⋅ 𝑠. This also shows that the matrix

(𝜕2/𝜕𝑞
𝑖
𝜕𝑞
𝑗
)
𝑖,𝑗=0,...,𝑛−1

is hyperhermitian; that is,

𝜕2

𝜕𝑞
𝑖
𝜕𝑞
𝑗

=
𝜕2

𝜕𝑞
𝑗
𝜕𝑞
𝑖

. (41)

Definition 8 (the “split-quaternionic Hessian” of a function
𝑓). The “split-quaternionic Hessian” (denoted H

𝑠
) of a 𝐶2

function defined on a domain 𝐷 in H𝑛
𝑠
≅ C2𝑛 is defined

analogously to the complex Hessian of a function, only with
respect to split-quaternionic variables. For 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑛 −
1}

𝜕
𝑞

𝑖𝑗
fl

𝜕2

𝜕𝑞
𝑖
𝜕𝑞
𝑗

:

𝑓 󳨃󳨀→ 𝜕
𝑞

𝑖𝑗
(𝑓) fl

𝜕2

𝜕𝑞
𝑖
𝜕𝑞
𝑗

(𝑓) fl
𝜕2𝑓

𝜕𝑞
𝑖
𝜕𝑞
𝑗

,

(42)

andH
𝑠
(𝑓), the split-quaternionic Hessian of 𝑓, is defined as

H
𝑠
: 𝐶
2
(𝐷) 󳨀→ 𝑀

𝑛
(H
𝑠
) ,

𝑓 󳨃󳨀→H
𝑠
(𝑓) fl [𝜕

𝑞

𝑖𝑗
(𝑓)]

𝑖,𝑗=0,1,...,2𝑛−1
.

(43)

We now turn to the Monge-Amperè operator. As Alesker
in [4] defined the mixed Monge-Amperè operator in quater-
nionic space of a 𝐶2 function 𝑓 is defined as

MA (𝑓) : 𝑓 󳨃󳨀→ det (H
𝑠
(𝑓)) . (44)

Generalized further, for 𝐶2 functions 𝑓
1
, . . . , 𝑓

𝑛
, the mixed

discriminant ds is defined as the Moore determinant of
the respective quaternionic Hessian matrices; we follow this
construction to define a similar Monge-A-Amperè operator
to split-quaternionic functions, denoted by

MA (𝑓
1
, . . . , 𝑓

𝑛
) fl det (𝑓

1
, . . . , 𝑓

𝑛
)

fl det((
𝜕2𝑓
1

𝜕𝑞
𝑖
𝜕𝑞
𝑗

) , . . . , (
𝜕2𝑓
𝑛

𝜕𝑞
𝑖
𝜕𝑞
𝑗

)) .
(45)

Note also that, for 𝑓
1
= 𝑓

2
= ⋅ ⋅ ⋅ = 𝑓

𝑛
= 𝑓, the mixed

Monge-Amperè operator is equal to the regular Monge-
Amperè operator:

det (𝑓) fl det (𝑓, . . . , 𝑓) = detH
𝑠
(𝑓) . (46)

Lemma 9. For any hyperhermitian 𝑛 × 𝑛 matrix 𝐴 and any
real diagonal real matrix of the form 𝑇 = (

𝑡1 0

d
0 𝑡𝑛

) we have
that

det (𝐴 + 𝑇) = ∑
𝐼⊂{1,...,𝑛}

(∏
𝑖∈𝐼

𝑡
𝑖
) ⋅ det (𝑀

𝐼
𝐴) , (47)

where 𝑀
𝐼
𝐴 is the matrix obtained by deleting rows and

columns with indexes from a nonempty subset 𝐼 ⊂ {1, 2, . . . , 𝑛}
(see [4], pg. 10).

This lemma is proved as proposition 1.1.11 in Alesker [4];
we will just be using a simple corollary.

Corollary 10. If 𝑡
2
= ⋅ ⋅ ⋅ = 𝑡

𝑛
= 0 in Lemma 9 above, then

det (𝐴 + 𝑇) = det (𝐴) + 𝑡
1
⋅ det (𝑀

{1}
𝐴) , (48)

where

𝐴 = (
𝑎
11

∗

∗ 𝑀
{1}
𝐴
) (49)

and𝑀
{1}
𝐴 is still a hyperhermitian (𝑛 − 1) × (𝑛 − 1) matrix,

𝑎
11
∈ R.

2.4. Linear Change of Variables. In this section we prove
a split-quaternionic change of variables formula for linear
transformations. Since the split quaternions can be repre-
sented by real (2 × 2) matrices, this endeavour is done
easier via a real representation of the matrix algebra. In
this light we define 𝜏R to be the following embedding
(also a homomorphism like 𝜏, see Proposition 1) for a split-
quaternionic vector 𝑞 = (𝑞

𝑘
) = (𝑥

4𝑘
+𝑥
4𝑘+1

𝑖+𝑥
4𝑘+2

𝑠+𝑥
4𝑘+3

𝑡) ∈

H𝑛
𝑠
andmatrix𝐴 = 𝐴

0
+𝐴

1
𝑖+𝐴

2
𝑠+𝐴

3
𝑡, where𝐴

𝑖
∈ 𝑀

𝑛
(R):

H
𝑛

𝑠
∋ 𝑞 󳨃󳨀→ 𝜏R (𝑞)

fl (𝑥
4𝑘
, 𝑥
4𝑘+1

, 𝑥
4𝑘+2

, 𝑥
4𝑘+3

)
𝑡

𝑘=0,1,...,𝑛−1
∈ R

4𝑛
,

GL
𝑛
(H
𝑠
) ∋ 𝐴 󳨃󳨀→ 𝜏R (𝐴)

fl(

𝐴
0
−𝐴
1
𝐴
2
𝐴
3

𝐴
1
𝐴
0
𝐴
3
−𝐴
2

𝐴
2
𝐴
3
𝐴
0
−𝐴
1

𝐴
3
−𝐴
2
𝐴
1
𝐴
0

) ∈𝑀
4𝑛
(R) .

(50)
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Using this real embedding the corresponding matrices
𝐼R, 𝑆R, and 𝑇R are

𝐼R fl(

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

),

𝑆R fl(

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

),

𝑇R fl(

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

)

(51)

and satisfy the split-quaternionic relations (1).Moreover, if we
define

I
𝛼
fl diag (𝐼

𝛼
) , 𝛼 = 1, 2, 3 (52)

for 𝐼
1
= 𝐼R, 𝐼2 = 𝑆R, 𝐼3 = 𝑇R, then one can calculate that

𝜏R(𝐴) commutes with I
𝛼
; that is

I
𝛼
⋅ 𝜏R (𝐴) = 𝜏R (𝐴) ⋅ I𝛼, 𝛼 = 1, 2, 3. (53)

For a 𝐶1 function 𝑓 : H𝑛
𝑠
→ H

𝑠
, 𝑓 = 𝑓

0
+ 𝑓
1
𝑖 + 𝑓

2
𝑠 + 𝑓

3
𝑡,

and the real representation denoted by 𝑓R = (𝑓
0
, 𝑓
1
, 𝑓
2
, 𝑓
3
)
𝑡,

the partial derivative of 𝑓 with respect to 𝑞
𝑗
can be written as

the (4 × 4) differential operator

(𝜕
𝑞𝑗
𝑓)

R

fl (
𝜕𝑓

𝜕𝑞
𝑗

)

R

fl(

𝜕
𝑥4𝑗

−𝜕
𝑥4𝑗+1

𝜕
𝑥4𝑗+2

𝜕
𝑥4𝑗+3

𝜕
𝑥4𝑗+1

𝜕
𝑥4𝑗

𝜕
𝑥4𝑗+3

−𝜕
𝑥4𝑗+2

𝜕
𝑥4𝑗+2

𝜕
𝑥4𝑗+3

𝜕
𝑥4𝑗

−𝜕
𝑥4𝑗+1

𝜕
𝑥4𝑗+3

−𝜕
𝑥4𝑗+2

𝜕
𝑥4𝑗+1

𝜕
𝑥4𝑗

)𝑓
R

(54)

and the derivative in the direction 𝑞 ∈ H𝑛
𝑠
as

𝜕
𝑞
𝑓 fl D

𝑥
𝑓
R fl(

(𝜕
𝑞0
𝑓)

R

...

(𝜕
𝑞𝑛−1
𝑓)

R

). (55)

For a linear transformation 𝐴 ∈ GL
𝑛
(H
𝑠
); 𝐴 = (𝑎

𝑖𝑗
) : H𝑛

𝑠
→

H𝑛
𝑠
; 𝑞 󳨃→ 𝑞󸀠 fl 𝐴𝑞 and a 𝐶1 function 𝑓󸀠 : H𝑛

𝑠
→ H

𝑠
we define

the pullback via 𝐴 of 𝑓󸀠 as 𝑓(𝑞) fl 𝑓󸀠(𝐴𝑞) [= 𝑓󸀠(𝑞󸀠)] and
their corresponding real representation denoted as 𝑓

󸀠R and

𝑓
R. Let 𝑥 = 𝜏R(𝑞) and 𝑦 = 𝜏R(𝑞

󸀠), so that 𝑦 = 𝜏R(𝐴)𝑥, and
𝑓(𝑞) = 𝑓

󸀠
(𝐴𝑞), that is, 𝑓R

(𝑥) = 𝑓
󸀠R
(𝜏R(𝐴)𝑥)

Hn

s

Hn

s H
s

𝜏R 𝜏R 𝜏R

R4n R4n R4𝜏R(A

A

) f
󳰀

f
󳰀

R

(56)

Proposition 11. With the same setup as above, we have

D
𝑥
𝑓
R
(𝑥) = (𝜏R (𝐴

∗
))D

𝑦
𝑓
󸀠R
(𝜏R (𝐴) 𝑥) ; (57)

that is,

𝜕
𝑞𝑗
𝑓 (𝑞) =

𝑛−1

∑
𝑘=0

𝑎
𝑘𝑗
𝜕
𝑞
󸀠

𝑘

𝑓
󸀠
(𝐴𝑞) . (58)

Proof. Denote by (𝜕
𝑞𝑗
)𝛼 the 𝛼th column of the functional

operator 𝜕
𝑞𝑗
: 𝑓 󳨃→ (𝜕

𝑞𝑗
𝑓)R, for 𝛼 = 1, 2, 3, 4, and then by

the definitions of (𝜕
𝑞𝑗
)𝛼 and 𝐼

𝛼
it follows directly that

(𝜕
𝑞𝑗
)
𝛼

= 𝐼
𝛼−1

(

𝜕
𝑥4𝑗

𝜕
𝑥4𝑗+1

𝜕
𝑥4𝑗+2

𝜕
𝑥4𝑗+3

), 𝛼 = 1, 2, 3, 4, (59)

with the understanding that 𝐼
0
= Id

4×4
for the 𝛼 = 1th

column. Hence we have

(D
𝑥
)
𝛼

= I
𝛼−1
𝜕
𝑥
= I
𝛼−1

((

𝜕
𝑥4𝑗

𝜕
𝑥4𝑗+1

𝜕
𝑥4𝑗+2

𝜕
𝑥4𝑗+3

))

𝑗=0,...,𝑛−1

, (60)

where (D
𝑥
)𝛼 is the 𝛼th column of the functional operator

D
𝑥
: 𝑓 󳨃→ (D

𝑥
𝑓)R. Since 𝑦 = 𝜏R(𝐴)𝑥, then by definition

we have 𝑦
𝑘
= ∑

4𝑛−1

𝑚=0
(𝜏R(𝐴))𝑘𝑚𝑥𝑚 so that by the chain rule for

functions of several variables

𝜕
𝑥𝑗
𝑓
R
(𝑥) =

4𝑛−1

∑
𝑘=0

(𝜏R (𝐴))𝑘𝑗 𝜕𝑦𝑘𝑓
󸀠R
((𝜏R (𝐴)) 𝑥) 󳨐⇒

(D
𝑥
𝑓)

R
= [𝜏R (𝐴)]

𝑡

⋅ 𝜕
𝑦
𝑓
󸀠R
(𝜏R (𝐴) 𝑥)

(61)

directly in the first column, that is, (D
𝑥
𝑓)1(𝑥) =

[𝜏R(𝐴)]
𝑡
(D
𝑦
𝑓󸀠)1(𝜏R(𝐴)𝑥). Since 𝑓 = 𝑓0 +𝑓1𝑖 + 𝑓2𝑠 + 𝑓3𝑡 and
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D
𝑥
is a linear operator, we use the commutation relations

(53) to calculate

(D
𝑥
𝑓)
𝛼

(𝑥) = I
𝛼−1
𝜕
𝑥
𝑓
R
(𝑥)

= I
𝛼−1

([𝜏R (𝐴)]
𝑡

𝜕
𝑦
𝑓
󸀠R
(𝜏R (𝐴) 𝑥))

= [𝜏R (𝐴)]
𝑡

(I
𝛼−1
𝜕
𝑦
𝑓
󸀠R
(𝜏R (𝐴) 𝑥))

= [𝜏R (𝐴)]
𝑡

((D
𝑦
𝑓
󸀠
)
𝛼

(𝜏R (𝐴) 𝑥))

= [𝜏R (𝐴)]
𝑡

(D
𝑦
𝑓
󸀠
)
𝛼

(𝑦) ,

for 𝛼 = 2, 3, 4.

(62)

And hence

(𝐴
∗
𝜕
𝑞
󸀠𝑓
󸀠
)
R
(𝐴𝑞) = 𝜏R (𝐴)

𝑡
D
𝑦
𝑓
󸀠R
(𝑦)

= 𝜏R (𝐴)
𝑡
D
𝑦
𝑓
󸀠R
(𝜏R (𝐴) 𝑥)

= (D
𝑥
𝑓
R
) (𝑥) = (𝜕

𝑞
𝑓)

R
(𝑞)

(63)

and (57) follows.

Corollary 12 (change of variables under split-quaternionic
linear transformations). If𝑓 is a real-valued𝐶2 function, then

(
𝜕2𝑓

𝜕𝑞
𝑗
𝜕𝑞
𝑘

(𝑞)) = 𝐴
∗
(
𝜕2𝑓󸀠

𝜕𝑞󸀠
𝑗
𝜕𝑞
󸀠

𝑘

(𝐴𝑞))𝐴. (64)

Proof. If 𝑢 is real-valued, then 𝜕
𝑞
𝑘

𝑢 = 𝜕
𝑞𝑘
𝑢.Then by (58)

𝜕
𝑞𝑖
𝑢
𝑗
(𝑞) =

𝑛−1

∑
𝑘=0

𝑎
𝑘𝑖
𝜕
𝑞
󸀠

𝑘

𝑢
󸀠

𝑗
(𝐴𝑞) (65)

and taking the conjugate of both sides gives us

𝜕
𝑞
𝑖

𝑢
𝑗
(𝑞) = 𝜕

𝑞𝑖
𝑢
𝑗
(𝑞) =

𝑛−1

∑
𝑘=0

𝑎
𝑘𝑖
𝜕
𝑞
󸀠

𝑘

𝑢󸀠
𝑗
(𝐴𝑞)

=

𝑛−1

∑
𝑘=0

𝜕
𝑞
󸀠

𝑘

𝑢󸀠
𝑗
(𝐴𝑞)𝑎

𝑘𝑖
=

𝑛−1

∑
𝑘=0

𝜕
𝑞
󸀠

𝑘

𝑢
󸀠

𝑗
(𝐴𝑞) 𝑎

𝑘𝑖
.

(66)

Then applying (58) to the LHS of the line above

𝑛−1

∑
𝑗,𝑘=0

𝑎
𝑗𝑖

𝜕2𝑢

𝜕𝑞
𝑗
𝜕𝑞
𝑘

(𝐴𝑞) 𝑎
𝑘𝑖
=

𝑛−1

∑
𝑘=0

𝜕𝑓
𝑘

𝜕𝑞󸀠
𝑗

(𝑞) 𝑎
𝑘𝑖

=
𝜕

𝜕𝑞
𝑗

(

𝑛−1

∑
𝑘=0

𝑓
𝑘
(𝑞) 𝑎

𝑘𝑗
) =

𝜕
2
𝑢
󸀠

𝜕𝑞
𝑗
𝜕𝑞
𝑘

(𝑞) ,

(67)

where 𝑓
𝑘
(𝑞) fl (𝜕𝑢/𝜕𝑞

𝑘
)(𝐴𝑞) = 𝜕

𝑞
𝑘

𝑢(𝐴𝑞), and hence (64)
follows and the corollary is proved.

3. Statement of the Theorem

3.1. The Main Result of This Paper

Theorem13. Let𝐷 ⊂ R4𝑛 ≅ H𝑛
𝑠
be a domain and𝑓 : 𝐷 → H

𝑠
.

Then

Δ
𝑛
(𝑓) fl (Δ𝑓)

𝑛 fl (Δ𝑓) ∧ (Δ𝑓) ∧ ⋅ ⋅ ⋅ ∧ (Δ𝑓)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛-𝑡𝑖𝑚𝑒𝑠

= 𝑛! ⋅ detH
𝑠
(𝑓) ⋅ 𝑑𝑧

𝐼
,

(68)

where 𝐼 = {0, 1, . . . , 2𝑛 − 1} is a multi-index and 𝑑𝑧
𝐼
fl 𝑑𝑧

0
∧

𝑑𝑧
1
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑧

2𝑛−1
is the holomorphic volume form in C2𝑛.

3.2. Proof of Theorem 13 for the Case 𝑛 = 2. First we prove
Theorem 13 for the case 𝑛 = 2 (base case) and then proceed
by induction.

Proof. Let 𝑛 = 2 and consider the embedding 𝜏 from
Section 2.1:

H
2

𝑠
∋ 𝑞 = (

𝑞
0

𝑞
1

) = (
𝑧
0
+ 𝑧
1
⋅ 𝑠

𝑧
2
+ 𝑧
3
⋅ 𝑠
) 󳨃󳨀→⏟⏟⏟⏟⏟⏟⏟

𝜏

𝜏 (𝑞)

= (
𝜏
0
(𝑞
0
)

𝜏
1
(𝑞
1
)
) = (

(
𝑧
0
𝑧
1

𝑧
1
𝑧
0

)

(
𝑧
2
𝑧
3

𝑧
3
𝑧
2

)

).

(69)

The correspoding operators are

(

∇
00
∇
01

∇
10
∇
11

∇
20
∇
21

∇
30
∇
31

) fl(

(
𝜕
𝑧0
𝜕
𝑧1

𝜕
𝑧1
𝜕
𝑧0

)

(
𝜕
𝑧2
𝜕
𝑧3

𝜕
𝑧3
𝜕
𝑧2

)

) (70)

and we use Lemma 3 to complete the proof:

Δ𝑓 = ∑
0≤𝑖<𝑗≤3

Δ
𝑖𝑗
𝑓𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑗 (71)

from which it follows that wedging Δ𝑓 to itself yields

(Δ𝑓)
2 fl (Δ𝑓) ∧ (Δ𝑓) , (72)

where again 𝐼 = {0, 1, . . . , 2(2) − 1} and 𝑑𝑧
𝐼
fl 𝑑𝑧

0
∧ 𝑑𝑧

1
∧

𝑑𝑧
2
∧ 𝑑𝑧

3
is the holomorphic volume form in (Λ4)∗C2(2).

On the other hand (40) tells us how to compute entries in
the split-quaternionic Hessian, which works out beautifully:

𝜕
𝑞

00
= 𝜕
2

00
− 𝜕
2

11
= Δ

01
,

𝜕
𝑞

11
= 𝜕
2

22
− 𝜕
2

33
= Δ

23
,

𝜕
𝑞

10
= 𝜕
2

20
− 𝜕
2

31
+ (𝜕

2

30
− 𝜕
2

21
) ⋅ 𝑠 = −Δ

12
+ Δ

02
⋅ 𝑠

(73)

and when combined with Lemma 3, that gives

Δ
12
= −Δ

03
,

Δ
02
= −Δ

13
.

(74)
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The third row of the above then also implies that

󵄩󵄩󵄩󵄩𝜕
𝑞

10

󵄩󵄩󵄩󵄩
2

= 𝜕
𝑞

10
⋅ 𝜕
𝑞

10
= (−Δ

12
) (−Δ

12
) − (Δ

02
) (Δ

02
)

= Δ
12
Δ
12
− Δ

02
Δ
02
= Δ

02
Δ
13
− Δ

03
Δ
12
,

(75)

so that (Δ𝑓)2 is actually

(Δ𝑓)
2

= 2 [Δ
01
𝑓Δ
23
𝑓 − (Δ

02
𝑓Δ
13
𝑓 − Δ

03
𝑓Δ
12
𝑓)]

⋅ 𝑑𝑧
𝐼
= 2 [𝜕

𝑞

00
𝑓𝜕
𝑞

11
𝑓 − 𝜕

𝑞

10
𝑓(𝜕

𝑞

10
𝑓)] ⋅ 𝑑𝑧

𝐼

= 2 ⋅ det(
𝜕
𝑞

00
𝑓 𝜕

𝑞

01
𝑓

𝜕
𝑞

10
𝑓 𝜕

𝑞

11
𝑓
) ⋅ 𝑑𝑧

𝐼

= 2 ⋅ detH
𝑠
(𝑓) ⋅ 𝑑𝑧

𝐼

(76)

since 𝜕𝑞
𝑖𝑗

= 𝜕
𝑞

𝑗𝑖
[see (41)]. This concludes the proof of

Theorem 13 for the case 𝑛 = 2.

3.3. Proof of Induction. We now assume that Theorem 13 is
true for some 𝑛 − 1 ∈ N; we want to prove by induction
that it holds for 𝑛. We consider a 𝐶2 function 𝑓(𝑞

0
, . . . , 𝑞

𝑛−1
)

of 𝑛 variables that has continuous 2nd-order mixed partial
derivatives. First we prove a result in functional analysis
regarding the density of delta functions (on hyperplanes) in
the space of (tempered) distributions, implying that the span
of said delta functions contains the set of smooth functions,
which are dense in the 𝐶2 functions.

Lemma 14. Linear combinations of delta functions is dense in
the space of generalized functions D(H𝑛

𝑠
) = (S(H𝑛

𝑠
))
∗, where

S(H𝑛
𝑠
) is the Schwartz space of rapidly decreasing functions on

H𝑛
𝑠
.

Proof. Consider the Fréchet space S(H𝑛
𝑠
) with the Fréchet

topology and its dual space D(H𝑛
𝑠
). We wish to show that

the Schwartz space S(H𝑛
𝑠
) is dense in (D(H𝑛

𝑠
))
∗, the dual of

the distribution space. It is well known that the evaluation
map is an injection from a topological vector space 𝑋 into
its double dual 𝑋∗∗; hence for 𝑋 = S(H𝑛

𝑠
) we have a copy of

S(H𝑛
𝑠
) ⊂ (D(H𝑛

𝑠
))
∗
= (S(H𝑛

𝑠
))
∗∗.

But since S(H𝑛
𝑠
) is a nuclear Fréchet space which is also

barreled (see [16], pg. 107, 147) then S(H𝑛
𝑠
) is (semi)reflexive;

that is, S(H𝑛
𝑠
) ≅ (𝑆(𝐻𝑛

𝑠
))
∗∗

= (D(H𝑛
𝑠
))
∗ as vector spaces

and hence the Schwartz space is trivially dense in the dual
ofD(H𝑛

𝑠
). Consider the subspace

𝑆

= span {𝛿
𝐸
| 𝐸 ⊂ H

𝑛

𝑠
-split-quaternionic hyperplane}

(77)

and its closure 𝑆 inside (D(H𝑛
𝑠
))
∗, and suppose 𝑆 ̸= (D(H𝑛

𝑠
))
∗.

By the Hahn-Banach theorem, there is a linear functional 𝑙
such that 𝑙|

𝑆
≡ 0 and 𝑙|

(D(H𝑛
𝑠
))
∗
−𝑆

> 0. Thus there exists a
nonzero Schwartz function 𝑔 such that the functional

𝑙 : 𝑓 󳨃󳨀→ 𝑙 (𝑓) fl ∫
H𝑛
𝑠

𝑔 ⋅ 𝑓 ̸= 0. (78)

But then for any (all) 𝛿
𝐸
∈ 𝑆,

𝑙 (𝛿
𝐸
) = ∫

H𝑛
𝑠

𝑔 ⋅ 𝛿
𝐸
= ∫
𝐸

𝑔 =:R
𝑔
(𝐸) = 0 ⇐⇒ 𝑔 ≡ 0 (79)

since the Radon transform (defined on hyperplanes) R
𝑔
:

𝐸 󳨃→ ∫
𝐸
𝑔 (for nonzero 𝑔) is injective (proved in [11, 17]),

which is a contradiction since 𝑔 was assumed to be nonzero.
Hence 𝑆 = (D(H𝑛

𝑠
))
∗; that is, the span of delta functions

𝑆 is dense in (D(H𝑛
𝑠
))
∗.

Proof of Theorem 13 for 𝑛 > 2. By Lemma 14 and the proper-
ties of the mixed Baston product and mixed discriminant, it
suffices to prove

Δ
𝑛
(𝑓
1
, . . . , 𝑓

𝑛
) = 𝑛! ⋅ det (𝑓

1
, . . . , 𝑓

𝑛
) 𝑑𝑧

𝐼 (80)

for 𝑛 > 2 in the case 𝑓
1
(𝑞) = 𝛿

𝐸
, where 𝐸 = {𝑞 | ∑

𝑖
𝜆
𝑖
𝑞
𝑖
= 0}

is a split-quaternionic hyperplane, which impliesTheorem 13.
We proceed by finding a unitary linear transformation𝐴 such
that 𝐸 = {𝑞 | 𝑞

1
= 0}. We can use the pullback functions

𝑓󸀠
𝑘
(𝑞󸀠) = 𝑓

𝑘
(𝐴𝑞󸀠), and by Corollary 12 we have that

𝐹
󸀠

𝑘
fl (

𝜕2𝑓󸀠
𝑘

𝜕𝑞󸀠
𝑖
𝜕𝑞
󸀠

𝑗

(𝑞
󸀠
)) = 𝐴(

𝜕2𝑓
𝑘

𝜕𝑞
𝑖
𝜕𝑞
𝑗

(𝐴𝑞
󸀠
))𝐴

∗

=: 𝐴 ⋅ 𝐹
𝑘
⋅ 𝐴
∗
,

(81)

where 𝑞 fl 𝐴𝑞󸀠 and 𝑘 = 1, . . . , 𝑛. Then

∑
𝑘

𝑥
𝑘
𝐹
󸀠

𝑘
= ∑
𝑘

𝑥
𝑘
(𝐴 ⋅ 𝐹

𝑘
⋅ 𝐴
∗
)

= 𝐴 ⋅ (∑
𝑘

𝑥
𝑘
𝐹
𝑘
) ⋅ 𝐴

∗
󳨐⇒

det(∑
𝑘

𝑥
𝑘
𝐹
󸀠

𝑘
) = det(𝐴 ⋅ (∑

𝑘

𝑥
𝑘
𝐹
𝑘
) ⋅ 𝐴

∗
)

= det (𝐴 ⋅ 𝐴∗) ⋅ det(∑
𝑘

𝑥
𝑘
𝐹
𝑘
)

= det(∑
𝑘

𝑥
𝑘
𝐹
𝑘
)

(82)

since𝐴 is unitary; that is,𝐴 ⋅𝐴∗ = Id. Hence it follows by the
definition of the mixed discriminant and using the simpler
notation

det (𝛿
{∑
𝑘
𝜆𝑘𝑞𝑘=0}

, 𝑓
2
, . . . , 𝑓

𝑛
) (𝑞)

= det (𝛿
{∑
𝑘
𝜆𝑘𝑞𝑘=0}

, 𝑓
2
, . . . , 𝑓

𝑛
) (𝐴𝑞

󸀠
)

= det (𝛿
{𝑞
󸀠

1
=0}
, 𝑓
󸀠

2
, . . . , 𝑓

󸀠

𝑛
) (𝑞

󸀠
) ,

(83)

where again 𝑞 = 𝐴𝑞󸀠. From these considerations, it then
suffices to prove (80) in the case where 𝑓

1
= 𝛿

𝐸
and 𝐸 =

{𝑞
1
= 0}. We can compute the split-quaternionic Hessian
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of 𝛿
𝐸
, where the derivatives are now weak derivatives of

distributions. For any test function 𝜙 ∈ 𝐶∞
0
(H𝑛
𝑠
) we have

𝜕𝛿
𝐸

𝜕𝑞
𝑗

(𝜙) fl ∫
H𝑛
𝑠

𝜙 ⋅
𝜕𝛿
𝐸

𝜕𝑞
𝑗

𝑑𝑞 = −∫
H𝑛
𝑠

𝜕𝜙

𝜕𝑞
𝑗

⋅ 𝛿
𝐸
⋅ 𝑑𝑞

= ∫
𝐸

𝜕𝜙

𝜕𝑞
𝑗

𝑑𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐸

,

(84)

where 𝑑𝑞 = ⋀𝑛
𝑘=1
𝑑𝑞
𝑘
is the volumemeasure onH

𝑠
and 𝑑𝑞|

𝐸
=

𝑑𝑞
2
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑞

𝑛
is the volume measure on 𝐸. Translated into

the complex representations, 𝑑𝑞 = ⋀2𝑛
𝑘=1
𝑑𝑧
𝑘
∧ 𝑑𝑧

𝑘
=: 𝑑Z and

𝑑𝑞|
𝐸
= ⋀

2𝑛

𝑘=3
𝑑𝑧
𝑘
∧ 𝑑𝑧

𝑘
=: 𝑑Z

1
so that, for 𝑗 = 1, 2, . . . , 𝑛,

𝜕𝜙

𝜕𝑞
𝑗

𝑑𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐸

= (𝜕
2𝑗−1

𝜙 − 𝜕
2𝑗
𝜙 ⋅ 𝑠) 𝑑Z

1

= 𝜕
2𝑗−1

𝜙 ⋅ 𝑑Z
1
− 𝜕
2𝑗
𝜙 ⋅ 𝑑Z

1
⋅ 𝑠.

(85)

But letting

𝑑Z
𝑖
fl 𝑑𝑧

1
∧ 𝑑𝑧

1
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑧

𝑖
∧ 𝑑𝑧

2𝑗
∧ ⋅ ⋅ ⋅

∧ 𝑑𝑧
2𝑛
∧ 𝑑𝑧

2𝑛
,

𝑑Z
𝑖
fl 𝑑𝑧

1
∧ 𝑑𝑧

1
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑧

𝑖
∧ 𝑑𝑧

𝑖
∧ ⋅ ⋅ ⋅

∧ 𝑑𝑧
2𝑛
∧ 𝑑𝑧

2𝑛
,

𝜕
2𝑗−1

𝜙 ⋅ 𝑑Z =
2𝑛

∑
𝑘=1

𝛿
2𝑗−1

𝑘

𝜕𝜙

𝜕𝑧
𝑘

𝑑Z
2𝑗−1

∧ 𝑑𝑧
𝑘

=

2𝑛

∑
𝑘=1

𝜕

𝜕𝑧
𝑘

(𝜙 ⋅ 𝑑Z
2𝑗−1

) ∧ 𝑑𝑧
𝑘

+

2𝑛

∑
𝑘=1

𝜕

𝜕𝑧
𝑘

(𝜙 ⋅ 𝑑Z
2𝑗−1

) ∧ 𝑑𝑧
𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

= 𝑑 (𝜙 ⋅ 𝑑Z
2𝑗−1

) ,

(86)

which means that 𝜕
2𝑗−1

𝜙 ⋅ 𝑑Z = 𝑑(𝜙 ⋅ 𝑑Z
2𝑗−1

) and similarly
𝜕
2𝑗
𝜙 ⋅ 𝑑Z = 𝑑(𝜙 ⋅ 𝑑Z

2𝑗
) are exact forms and hence by Stokes’

theorem

∫
𝐸

𝜕𝜙

𝜕𝑞
𝑗

𝑑𝑞
󵄨󵄨󵄨󵄨𝐸 = ∫

𝐸

(𝜕
2𝑗−1

𝜙 ⋅ 𝑑Z
1
− 𝜕
2𝑗
𝜙 ⋅ 𝑑Z

1
⋅ 𝑠)

= ∫
𝐸

𝜕
2𝑗−1

𝜙 ⋅ 𝑑Z
1
− ∫
𝐸

𝜕
2𝑗
𝜙 ⋅ 𝑑Z

1
⋅ 𝑠

= ∫
𝐸

𝑑 (𝜙 ⋅ 𝑑Z
2𝑗−1

) − ∫
𝐸

𝑑 (𝜙 ⋅ 𝑑Z
2𝑗
)

= ∫
𝜕𝐸

𝜙 ⋅ 𝑑Z
2𝑗−1

− ∫
𝜕𝐸

𝜙 ⋅ 𝑑Z
2𝑗

= lim
𝑏→∞

(∫
𝜕𝐸𝑏

𝜙 ⋅ 𝑑Z
2𝑗−1

− ∫
𝜕𝐸𝑏

𝜙 ⋅ 𝑑Z
2𝑗
)

= 0 − 0, if 𝑗 ̸= 1

(87)

because of the compact support of 𝜙, and 𝜕𝐸
𝑏
= {|𝑧

𝑖
| ≤

𝑏 : 𝑖 = 3, 4, . . . , 2𝑛}. If 𝑗 = 1 then since 𝑑𝑧
1
and 𝑑𝑧

2

do not appear in 𝑑Z
1
and 𝑑Z

2
, respectively, the integral and

hence (𝜕𝛿
𝐸
/𝜕𝑞
1
)(𝜙)may not necessarily be zero. Applying the

partial derivative with respect to 𝑞
1
to (84) with 𝑗 = 1 we get

the first entry in the split-quaternionic Hessian matrix for 𝛿
𝐸
,

and combining with (87) we obtain

(
𝜕2𝛿
𝐸

𝜕𝑞
𝑖
𝜕𝑞
𝑗

) = (

𝜕2𝛿
𝐸

𝜕𝑞
1
𝜕𝑞
1

0

d

0 0

)

= (

Δ
𝑞1
𝛿
𝐸

0

d

0 0

)

(88)

since 𝜕2𝛿
𝐸
/𝜕𝑞
𝑖
𝜕𝑞
𝑗
= 0 if 𝑖 ̸= 1 ̸= 𝑗, and the second equality is

by definition for 𝑛 = 1. Using Corollary 10 we have

𝑛 ⋅ det (𝛿
𝐸
, 𝑓
2
, . . . , 𝑓

𝑛
)

= Δ
𝑞1
𝛿
𝐸
⋅ det (𝑀

{1}
𝐹
2
, . . . ,𝑀

{1}
𝐹
𝑛
) ,

(89)

where𝑀
{1}
𝐹
𝑘
= (𝜕2𝑓

𝑘
/𝜕𝑞
𝑖
𝜕𝑞
𝑗
)
𝑖,𝑗=2,...,𝑛

are the corresponding
hyperhermitian minors of the original matrices. Then from
(89) it follows that for any test function 𝜙 ∈ 𝐶∞

0
(H𝑛
𝑠
) we have

∫
H𝑛
𝑠

𝜙 ⋅ det (𝛿
𝐸
, 𝑓
2
, . . . , 𝑓

𝑛
)

= ∫
H𝑛
𝑠

1

𝑛
⋅ 𝜙 ⋅ Δ

𝑞1
𝛿
𝐸
⋅ det (𝑀

{1}
𝐹
2
, . . . ,𝑀

{1}
𝐹
𝑛
)

= ∫
𝐸

1

𝑛
⋅ Δ
𝑞1
[𝜙 ⋅ det (𝑀

{1}
𝐹
2
, . . . ,𝑀

{1}
𝐹
𝑛
)]
󵄨󵄨󵄨󵄨𝑞1=0

.

(90)

Since the domain of integration is 𝐸 = {𝑞
1
= 0}, the

integral only depends on nomore than 2nd-order derivatives
of 𝑓

2
, . . . , 𝑓

𝑛
in the direction of 𝑞

1
.Thus we can assume that

there exists polynomials 𝑝
𝑘
of order nomore than 2 such that

𝑓
𝑘
(𝑞
1
, . . . , 𝑞

𝑛
) = 𝑝

𝑘
(𝑞
1
)𝑓̂
𝑘
(𝑞
2
, . . . , 𝑞

𝑛
) for 𝑘 = 2, 3, . . . , 𝑛.

Let 𝑀
{1}
𝐹̂
𝑘
denote (𝜕2𝑓̂

𝑘
/𝜕𝑞
𝑖
𝜕𝑞
𝑗
)
𝑖,𝑗=2,...,𝑛

, and then it
follows that

det (𝑀
{1}
𝐹
2
, . . . ,𝑀

{1}
𝐹
𝑛
)

= 𝑝
2
(𝑞
1
) ⋅ ⋅ ⋅ 𝑝

𝑛
(𝑞
1
) ⋅ det (𝑀

{1}
𝐹̂
2
, . . . ,𝑀

{1}
𝐹̂
𝑛
)

= 𝑝
2
(𝑞
1
) ⋅ ⋅ ⋅ 𝑝

𝑛
(𝑞
1
) ⋅ det (𝑓̂

2
, . . . , 𝑓̂

𝑛
) .

(91)
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Thus we obtain

∫
H𝑛
𝑠

𝜙 ⋅ det (𝛿
𝐸
, 𝑓
2
, . . . , 𝑓

𝑛
)

= ∫
𝐸

1

𝑛
⋅ Δ
𝑞1
[𝜙 ⋅ det (𝑀

{1}
𝐹
2
, . . . ,𝑀

{1}
𝐹
𝑛
)]
󵄨󵄨󵄨󵄨𝑞1=0

= ∫
𝐸

1

𝑛!
⋅ Δ
𝑞1
[𝜙 ⋅ 𝑝

2
(𝑞
1
) ⋅ ⋅ ⋅ 𝑝

𝑛
(𝑞
1
)]
󵄨󵄨󵄨󵄨𝑞1=0

⋅ Δ
𝑛−1
(𝑓̂
2
, . . . , 𝑓̂

𝑛
) .

(92)

On the other hand, using properties of the mixed Baston
product and our inductive hypothesis used in the last equality
we have

∫
H𝑛
𝑠

𝜙 ⋅ Δ
𝑛
(𝛿
𝐸
, 𝑓
2
, . . . , 𝑓

𝑛
) = ∫

H𝑛
𝑠

𝜙 ⋅ ∑
𝑖1 ,𝑗1,...

𝛿
𝑖1𝑗1𝑖2𝑗2 ,...,𝑖𝑛𝑗𝑛

1,2,3,4,...,2𝑛

⋅ Δ
𝑖1𝑗1
𝛿
𝐸
⋅ ⋅ ⋅ Δ

𝑖𝑛𝑗𝑛
𝑓
𝑛
= ∫

H𝑛
𝑠

2𝜙

⋅ ∑
𝑖1 ,𝑗1,...

𝛿
12𝑖2𝑗2 ,...,𝑖𝑛𝑗𝑛

1,2,3,4,...,2𝑛
Δ
12
𝛿
𝐸
⋅ ⋅ ⋅ Δ

𝑖𝑛𝑗𝑛
𝑓
𝑛
= ∫

H𝑛
𝑠

𝜙 ⋅ Δ
𝑞1
𝛿
𝐸

⋅ 𝑝
2
(𝑞
1
) ⋅ ⋅ ⋅ 𝑝

𝑛
(𝑞
1
)

⋅ ∑
𝑖2 ,𝑗2,...

𝛿
12𝑖2𝑗2 ,...,𝑖𝑛𝑗𝑛

1,2,3,4,...,2𝑛
Δ
𝑖2𝑗2
𝑓̂
2
⋅ ⋅ ⋅ Δ

𝑖𝑛𝑗𝑛
𝑓̂
𝑛

= ∫
H𝑛
𝑠

Δ
𝑞1
[𝜙 ⋅ 𝑝

2
(𝑞
1
) ⋅ ⋅ ⋅ 𝑝

𝑛
(𝑞
1
)]
󵄨󵄨󵄨󵄨󵄨𝑞1=0

⋅ ∑
𝑖2 ,𝑗2,...

𝛿
12𝑖2𝑗2 ,...,𝑖𝑛𝑗𝑛

1,2,3,4,...,2𝑛
Δ
𝑖2𝑗2
𝑓̂
2
⋅ ⋅ ⋅ Δ

𝑖𝑛𝑗𝑛
𝑓̂
𝑛

= ∫
H𝑛
𝑠

Δ
𝑞1
[𝜙 ⋅ 𝑝

2
(𝑞
1
) ⋅ ⋅ ⋅ 𝑝

𝑛
(𝑞
1
)]
󵄨󵄨󵄨󵄨󵄨𝑞1=0

⋅ Δ
𝑛−1
(𝑓̂
2
, . . . , 𝑓̂

𝑛
) = ∫

𝐸

1

𝑛!

⋅ Δ
𝑞1
[𝜙 ⋅ 𝑝

2
(𝑞
1
) ⋅ ⋅ ⋅ 𝑝

𝑛
(𝑞
1
)]
󵄨󵄨󵄨󵄨𝑞1=0

⋅ Δ
𝑛−1
(𝑓̂
2
, . . . , 𝑓̂

𝑛
) .

(93)

Hence combining (93) with (92) we get that the inte-
grands are equal almost everywhere, but since the functions
are continuous, we have equality, andTheorem 13 is proved.

4. Split Quaternions and Structures
on Manifolds

The operator Δ above can be generalized for any manifold
with a special structure which we call split-hypercomplex
(other known names are parahypercomplex and neutral
hypercomplex). Let𝑀 be a manifold and let 𝐼 be a complex
structure on it; that is, 𝐼 : 𝑇𝑀 → 𝑇𝑀, 𝐼2 = −𝐼𝑑 is
integrable almost complex structure. Suppose also that there

is 𝑆 : 𝑇𝑀 → 𝑇𝑀 with 𝑆2 = 𝐼𝑑 and 𝐼𝑆 = −𝑆𝐼. If the
±1 eigen-bundles of 𝑆 are involutive, 𝑆 is called integrable.
When 𝑆 is integrable, 𝑇 = 𝐼𝑆 again has 𝑇2 = 𝐼𝑑 and it
is known that it is integrable. We call such (𝑀, 𝐼, 𝑆, 𝑇) with
integrable 𝐼, 𝑆, 𝑇 split-hypercomplex manifold and (𝐼, 𝑆, 𝑇)-
split-hypercomplex structure. Clearly the left multiplication
by 𝑖, 𝑠, 𝑡 in H𝑛

𝑠
provides such a structure. However, unlike

the complex manifolds, split-hypercomplex ones do not have
nice atlases with “spli-quaternionic-holomorphic” transition
functions, so the local considerations of the previous section
cannot be extended to an arbitrarymanifold. For any function
𝑓 : 𝑀 → R, however we can define an analog of the Baston
operator Δ. Denote by 𝜕 and 𝜕 the standard operators for the
structure 𝐼. Then Δ𝑓 = 𝜕𝑆𝜕𝑓 is a globally defined 2-form on
𝑀, which is of type (2, 0) with respect to 𝐼.

It is known that when 𝜕∘𝑆∘𝜕𝑓 is nondegenerate it defines
a pseudo-Riemannian metric 𝑔 on 𝑀 of split signature,
such that 𝐼 is an isometry and 𝑆, 𝑇 are anti-isometries
of 𝑔, called split-hyperhermitian. Any split-hyperhermitian
structure defines 3 nondegenerate 2-forms by 𝜔

𝐼
(𝑋, 𝑌) =

𝑔(𝐼𝑋, 𝑌), 𝜔
𝑆
(𝑋, 𝑌) = 𝑔(𝑆𝑋, 𝑌), 𝜔

𝑇
(𝑋, 𝑌) = 𝑔(𝑇𝑋, 𝑌), for

which 𝜔
𝑆
+ 𝑖𝜔

𝑇
is nondegenerate (2, 0)-form with respect

to 𝐼. In particular such metric is necessary of split signature
and 𝑀 has dimension divisible by four. The relation with a
function 𝑓 as above is 𝜕 ∘ 𝑆 ∘ 𝜕𝑓 = 𝜔

𝑆
+ 𝑖𝜔

𝑇
and conversely,

from nondegenerate form 𝜕 ∘ 𝑆 ∘ 𝜕𝑓 on a split-hypercomplex
manifold, one recovers 𝑔.

However not every hyperhermitianmetric arises in such a
way.There is an additional integrability condition on 𝑔which
is obtained as follows: If 𝜔

𝑆
+ 𝑖𝜔

𝑇
= 𝜕𝑆𝜕𝑓 for some 𝑓, then

𝜕(𝜔
𝑆
+ 𝑖𝜔

𝑇
) = 0. The condition is also equivalent to existence

of a connection ∇ on𝑀 for which ∇𝑔 = ∇𝐼 = ∇𝑆 = ∇𝑇 =

0 and 𝑔(𝑇∇(𝑋, 𝑌), 𝑍) is totally skew-symmetric, where 𝑇∇ is
the torsion of ∇ [10]. On a split-hyperhermitian manifold𝑀
admitting such connection with skew-torsion, such function
𝑓 locally always exists [10] but may not exist globally.

The main result of Section 4 then gives that on H𝑛
𝑠
≅ C2𝑛

(𝜕 ∘ 𝑆 ∘ 𝜕𝑓)
𝑛

= det (H
𝑠
𝑓) 𝑑𝑧

1
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑧

2𝑛
, (94)

where H
𝑠
is the split-quaternionic Hessian of 𝑓. In the

quaternionic case, this gives rise to the so-called quaternionic
Monge-Amperè equation, which arises if we want to find 𝑓
for which the determinant of the quaternionic Hessian is a
given function. The quaternionic Monge-Amperè equation
is elliptic. In the split-quaternionic case, however the corre-
sponding equation is ultrahyperbolic and is not well studied.
On the other side the reduction of self-duality equations in
split signature to two dimensions leads to the equations of
[5] describing the deformations of a harmonic map from a
Riemann surface into compact Lie group, which are elliptic.
In H𝑛

𝑠
natural geometric objects to study are also the split

special Lagrangian submanifolds as studied in [12]. The
description in our terminology is the following. Consider
the form Ω = 𝜔

𝐼
− 𝑠𝜔

𝑇
which has values in split-complex

numbers D = {𝑥 + 𝑠𝑦 | 𝑠2 = 1}. Then Ω𝑛 = Ω
1
+

𝑠Ω
2
for real nondegenerate 2𝑛-forms Ω

1
and Ω

2
. Moreover,

when the structure is hypersymplectic, forms Ω
1
and Ω

2
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are closed. A split special Lagrangian manifold (of phase
zero) then is defined as a submanifold 𝑀 of H𝑛

𝑠
of real

dimension 2𝑛, for which the form Ω
2
vanishes on 𝑇𝑀 and

Ω
1
is nondegenerate. Such manifold is necessarily complex,

since its tangent bundle is preserved by 𝐼. This is a partial
case of split special Lagrangian manifolds, which are analogs
of the holomorphic Lagrangian submanifolds in hyperkähler
manifold.
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