
Florida International University
FIU Digital Commons

School of Computing and Information Sciences College of Engineering and Computing

2013

PRESEE: An MDL/MML Algorithm to Time-
Series Stream Segmenting
Kaikuo Xu
Chengdu University of Technology

Yexi Jiang
School of Computing and Information Sciences, Florida International University, yjian004@fiu.edu

Mingjie Tang
Purdue University

Changan Yuan
Guangxi Teacher's College

Changjie Tang
Sichuan University

Follow this and additional works at: https://digitalcommons.fiu.edu/cs_fac

Part of the Computer Engineering Commons

This work is brought to you for free and open access by the College of Engineering and Computing at FIU Digital Commons. It has been accepted for
inclusion in School of Computing and Information Sciences by an authorized administrator of FIU Digital Commons. For more information, please
contact dcc@fiu.edu.

Recommended Citation
Kaikuo Xu, Yexi Jiang, Mingjie Tang, Changan Yuan, and Changjie Tang, “PRESEE: An MDL/MML Algorithm to Time-Series
Stream Segmenting,” The Scientific World Journal, vol. 2013, Article ID 386180, 11 pages, 2013. doi:10.1155/2013/386180

https://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fcs_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/cs_fac?utm_source=digitalcommons.fiu.edu%2Fcs_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/coec?utm_source=digitalcommons.fiu.edu%2Fcs_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/cs_fac?utm_source=digitalcommons.fiu.edu%2Fcs_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fcs_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 386180, 11 pages
http://dx.doi.org/10.1155/2013/386180

Research Article
PRESEE: An MDL/MML Algorithm to
Time-Series Stream Segmenting

Kaikuo Xu,1 Yexi Jiang,2 Mingjie Tang,3 Changan Yuan,4 and Changjie Tang5

1 College of Computer Science & Technology, Chengdu University of Information Technology, Chengdu 610225, China
2 School of Computing and Information Sciences, Florida International University, Miami, IN 33199, USA
3Department of Computer Science, Purdue University, West Lafayette, FL 47996, USA
4Guangxi Teachers Education University, Nanning 530001, China
5 School of Computer Science, Sichuan University, Chengdu 610065, China

Correspondence should be addressed to Changan Yuan; yca@gxtc.edu.cn

Received 31 March 2013; Accepted 9 May 2013

Academic Editors: R. Haber, S.-S. Liaw, J. Ma, and R. Valencia-Garcia

Copyright © 2013 Kaikuo Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market,
ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous
algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency.
Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper,
we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the
efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum
message length)methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several
experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show
that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this
algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor
networks data stream.

1. Introduction

Time series stream is everywhere in our daily life. It is widely
used in fields such as ecology, medical care, and enviro-
nment. These applications make time series stream type be
possibly the most frequently encountered type for data min-
ing problems [1]. Hence, in recent years, a large number of
works focus on time series stream mining.

In order to process massive data efficiently, the method
of time series stream segmenting is employed. The primary
purpose of time series segmenting is dimensionality reduc-
tion. To achieve the goal of accelerating later mining tasks,
time-series stream segmenting decomposes the time series
stream into smaller number of segments. After segmenting,
each segment can be described by a simple model like linear
segment and monotonic segment [2]. An example of time-
series segmenting can be seen in Figure 1.

There are several time series stream fitting models pro-
posed, including symbolic mappings [3], adaptive multi-
variate spline [4], hybrid adaptive [5], wavelets [6], Fourier
transforms [7], and piecewise linear representation [8, 9].
However, neither of them could handle different types of time
series streams or is parameter free.

For real-time series application, the algorithm should be
able to handle continuously real-time stream, which means
that the stream could only be scanned once. A lot of real
applications such as sensor network data [10], stock market
trading data [11], or intensive-care unit (ICU) data [12] are
in this form since the data are generated very fast and
the processing time is limited. So, for time series stream
segmentation, the issues of scalability, numerical stability, and
efficiency cannot be avoided.

In this paper, we propose PRESEE to segment time series
stream based on MDL/MMLmethod [13, 14]. MDL/MML is



2 The Scientific World Journal

1465

1460

1455

1450

1445

1440
4500 4600 4700 4800 4900 5000

(a)

1465

1460

1455

1450

1445

1440
4500 4600 4700 4800 4900 5000

(b)

Figure 1: Time series original data (a) and its segmenting result (b).

an information expressingmethod in the field of information
theory. By capturing the characteristics of information distri-
bution in data, it can reduce the size of data while retaining
most of the critical information. PRESEE the following
characteristics has

(1) High scalability. It can process time series stream in
linear time. PRESEE adopts slide window to process
data with the size of gigabytes or even larger scale.

(2) Parameter free. Parameter settings are not essential
in PRESEE for an entry-level user. This may avoid
the trouble of misleading the algorithm by setting any
improper parameters. Of course, if the end users are
the domain experts and have confidence to set proper
parameters, they can set some optional parameters to
accelerate the segmenting speed.

(3) Adaptive. PRESEE can segment the time series data
according to the characteristic of data. Since the
segmenting strategy is based on MDL/MML, it can
segment time series automatically. Violating place
requires more characteristic points while elsewhere
requires less.

(4) Pipeline. PRESEE can output the earlier data while
processing the newly arrived data.Thus, the later time
series stream mining algorithm and PRESEE can run
simultaneously.

The rest of this paper is organized as follows. The related
work is described in Section 2. Some necessary concepts are
introduced in Section 3. A time series stream segmenting
algorithm named PRESEE is presented in Section 4. The
result of experiments is evaluated in Section 5. Finally, the
paper is concluded and future work is discussed in Section 6.

2. Related Work

2.1. Time Series StreamMining. Time series streammining is
possibly the most frequent mining task in recent data mining
community. In particularly, in the last several years, a large
number of papers are related to this area [15–17]. Time series
stream mining derives from traditional time-series mining
[1–4, 11, 18]. As a further requirement of deep understanding
of the time series, it turns into high-dimensional data mining
problem.

2.1.1. Segmenting. Segmenting is one of the major tasks in
time-series stream mining. In order to process time-series
data efficiently and effectively, segmenting is a key step for
other time-series mining tasks. A lot of algorithms focus on
finding good global segmenting of the time-series data.

There aremainly three characteristics of these algorithms.
Firstly, thesemethods aremainly based ondynamic program-
ming [19, 20], top-down [21], and bottom-up [22] strategies.
Secondly, they require domain expert knowledge to set the
parameters, either the parameter to measure the error [2, 22]
or parameter 𝑘 (𝑘 ≪ 𝑛) to control the number of segments
[19, 21].Thirdly, these algorithms can at most handle millions
of data, and they can hardly to handle stream data (gigabytes
at least) due to the limitation of the algorithms.

Segmenting with slide window can handle large-scale
data. This method is attractive because it can be easily
implemented as an online algorithm. Some existing slide-
window-based algorithms work well, but their performances
are parameter dependent. Since different time-series data
types such as electrocardiogram (ECG), water level, and stock
market own quite different characteristics, it is hard to find a
general set of parameters for all these data types.



The Scientific World Journal 3

2.1.2. MDL/MML. The theory of minimum message length
(MML) and minimum description length (MDL) first
appears in the computation complexity community [23, 24]
then in the categorization community [25]. Its application
in data mining community is the work of climate data seg-
mentation [26], trajectory clustering [27], and social network
mining [28]. So far, to the best of our knowledge, our work
segmenting time-series stream with MDL/MML is the work
with the most features.

3. Preliminary

This section reviews the concepts for time-series datamining.
Section 3.1 introduces terminology about the time series.
Section 3.2 presents the distance function used in this paper.
Section 3.3 is the problem statement.

3.1. Terminology. We first begin with the definition of the
time-series data type.

Definition 1. Time-series: let 𝑅𝑑 denote a set of the observed
values for given variables in the research domain. Let 𝑠𝑖 ∈
𝑅𝑑 be an element observed at time 𝑖. Time-series 𝑆 =

⟨𝑠1𝑠2𝑠3 ⋅ ⋅ ⋅ 𝑠𝑛⟩ is an ordered sequence of n such elements.
From the stream view, the length of 𝑆 is infinite.

Slidewindowmay be a general and effectiveway to handle
massive data that cannot be processed in whole. Thus we
employ slide window idea to do the segmenting task.

Definition 2. Slide window: let B be a user-defined buffer to
hold elements and w be the size of elements that 𝐵 can hold.
The slide window𝑊 = ⟨𝑤1𝑤2 ⋅ ⋅ ⋅ 𝑤𝑤⟩ is the buffer to hold a
continuous subsequence of 𝑆 at any time. All the data in slide
window can be processed by the algorithm in one time.

3.2. Distance Function for Time Series Segments. For the ease
of segmenting, some data transformation work should be
done. Almost all kinds of time series data can be discretized
and transformed in the form of lines. For example, the
original time-series data 𝑆 = ⟨𝑠1𝑠2 ⋅ ⋅ ⋅ 𝑠𝑛⟩ can be discretized
into 𝑛 − 1 lines: 𝑠1𝑠2, 𝑠2𝑠3, . . . , 𝑠𝑛−1𝑠𝑛. The goal of segmenting
is to generate 𝑚 (𝑚 < 𝑛) lines that can represent most of the
characteristics of original lines. There should be a distance
function to measure the distance between the original time-
series line 𝐿𝑜 and the candidate segment 𝐿 𝑠. In order to better
measure the distance between original time-series stream and
its segmenting result, firstly, the distance function should
be simple so that the stream can be processed very fast.
Additionally, the measurement should consider the shape of
stream and its segmenting result. Finally, the focus of factor
in measurement can vary according to different application.
After delving into the character of time-series data, we find
that the best way to measure the distance between time-
series by considering the conciseness and preciseness is to use
Hausdorff metric. Hausdorff metric has been previously used
in the area of pattern recognition and trajectory mining [27,
29]. Previous works proved that it is precise in the scenario

of shape similarity measurement. In the scenario of time-
series segmenting, we represent the segmenting distance by
considering the perpendicular and angle space relationship
based on Hausdorff metric.

Segmenting distance is a quantitative criterion to measure
the quality of segmenting. Smaller distance represents better
segment result for the original stream. The final form of
distance between the original line and the segment it belongs
to is defined in Definition 3.

Definition 3. Segmenting distance. Let 𝐿𝑜 be the original line,
𝐿 𝑠 be the candidate segment, 𝑙𝑝1 and 𝑙𝑝2 be the distances
from the start point and end point of 𝐿𝑜 to 𝐿 𝑠, respectively
(Formula (1)), and 𝜃 (𝐿𝑜, 𝐿 𝑠) be the smaller intersection angle
between two lines. Then the following can be considered.

(1) The perpendicular distance between two lines is
defined as 𝑑𝑝(𝐿𝑜, 𝐿 𝑠) in Formula (2). In Formula (1),
(𝑥𝑝𝑠, 𝑦𝑝𝑠) and (𝑥𝑝𝑒, 𝑦𝑝𝑒) represent the start point and
end point of each original time-series line, respec-
tively; (𝑥𝑠, 𝑦𝑠) and (𝑥𝑒, 𝑦𝑒) represent the coordinates of
the start point and end point of a candidate segment
time-series line (one possible segment solution in the
process of segmenting computation), respectively.

(2) The angle distance between two lines is defined as
𝑑𝑎(𝐿𝑜, 𝐿 𝑠) in Formula (3).

(3) The segmenting distance between two lines is defined
as 𝑑(𝐿𝑜, 𝐿 𝑠) in Formula (4): the weighted sum of
perpendicular distance and angle distance.

Consider

𝑙𝑝1(2) =

󵄨󵄨󵄨󵄨󵄨
𝑘 × 𝑥𝑝𝑠(𝑝𝑒) − 𝑦𝑝𝑠(𝑝𝑒) + 𝑏

󵄨󵄨󵄨󵄨󵄨

√𝑘2 + 1
,

(𝑘 =
𝑦𝑠 − 𝑦𝑒

𝑥𝑠 − 𝑥𝑒
, 𝑏 = 𝑦𝑠 − 𝑘 × 𝑥𝑠) ,

(1)

𝑑𝑝 (𝐿𝑜, 𝐿 𝑠) =
𝑙
2

𝑝1
+ 𝑙
2

𝑝2

𝑙𝑝1 + 𝑙𝑝2
, (2)

𝑑𝑎 (𝐿𝑜, 𝐿 𝑠) = 𝐿𝑜 × sin (𝜃 (𝐿𝑜, 𝐿 𝑠)) , (3)

𝑑 (𝐿𝑜, 𝐿 𝑠) = 𝑤𝑝 ⋅ 𝑑𝑝 + 𝑤𝑎 ⋅ 𝑑𝑎. (4)

The sum of weight 𝑤𝑝 and 𝑤𝑎 should be 1, and they can
both be set to 1/2 if there is no special requirement. Figure 2
and Example 4 show an example of how to compute the
distance.

Example 4. As shown in Figure 2, there are 3 original lines
𝐿𝑜1(line 𝑠1𝑠2), 𝐿𝑜2(line 𝑠2𝑠3), and 𝐿𝑜3(line 𝑠3𝑠4) and one seg-
ment𝐿 𝑠(line 𝑠1𝑠4). Since it can be observed that the start point
of 𝐿𝑜1 and 𝐿 𝑠 is the same point, the distance 𝑑(𝐿𝑜1, 𝐿 𝑠) =

𝑤𝑝 ⋅ 𝑙𝑝2 +𝑤𝑎 ⋅ (𝐿𝑜 ⋅ sin 𝜃1). The distance between 𝐿𝑜2 and 𝐿 𝑠 is
𝑑(𝐿𝑜2, 𝐿 𝑠) = 𝑤𝑝 ⋅ (𝑙

2

𝑝2
+ 𝑙
2

𝑝3
)/(𝑙𝑝2 + 𝑙𝑝3) + 𝑤𝑎 ⋅ (𝐿𝑜 ⋅ sin 𝜃2), and

between 𝐿𝑜3 and 𝐿 𝑠 is 𝑑(𝐿𝑜3, 𝐿 𝑠) = 𝑤𝑝 ⋅ 𝑙𝑝3 +𝑤𝑎 ⋅ (𝐿𝑜 ⋅ sin 𝜃3).

3.3. Problem Statement. Given a time series 𝑆 with length
𝑛 (i.e., 𝑆 = ⟨𝑠1𝑠2𝑠3 ⋅ ⋅ ⋅ 𝑠𝑛⟩, n can be infinite), our algorithm



4 The Scientific World Journal

S2

S1

S3

S4

𝜃1 𝜃2

𝜃3
lp3

lp2

Figure 2: Distance between 3 original lines and one segment that
they belong to.

generates a sequence of character points𝐶 = ⟨𝑐1, 𝑐2, 𝑐3 . . . 𝑐𝑚⟩.
For sequence𝐶, each pair 𝑐𝑖 to 𝑠𝑗 has a projection relationship:
𝑔(𝑖) = 𝑗. This means that each 𝑐𝑖 located at 𝑖 in 𝐶 has a
counterpart located at 𝑗 in 𝑆. For each consecutive character
point 𝑐𝑥, 𝑐𝑦 ∈ 𝐶, there exist several points (𝑠𝑖, . . . , 𝑠𝑗) in S such
that 𝑔(𝑥) < 𝑖 < 𝑗 < 𝑔(𝑦). Every pair of 𝑐𝑥, 𝑐𝑦 represents
a segment which is an approximation of lines represented
by several pairs of consecutive points in the original time
series stream 𝑆. Thus, these m character points partition the
original stream into𝑚−1 continuous segments. And for each
𝑠𝑥 ∈ 𝑆, if 𝑠𝑥 is just the start or end point of one segment, it
belongs to two segments; otherwise, it only belongs to one
segment. Figure 3 shows lines representing 𝑆 compared with
lines representing 𝐶.

The segmenting algorithm is implemented under a
pipeline framework shown in Figure 4. Besides the segment-
ing algorithm, we had already implemented the time-series
stream motif mining algorithm. This framework is designed
specifically for handling time-series stream mining. It owns
several advantages as follows.

(1) Data stream is only scanned once.When data flow out
of the slide window, it would never turn back to slide
window again.

(2) Mining tasks can be processed simultaneously. Earlier
data that have been segmented before can be pro-
cessed by following mining task while the later data
is under processing by segmenting task.

4. PRESEE Algorithm

This section first introduces how to use segmenting strategy
based on MDL/MML in our algorithm PRESEE, and then
introduces this algorithm in detail.

4.1. Information-Theory-Based Segmenting Strategy. Our alg-
orithm aims at finding the best segments for time-series. As
for the problem of segmenting, there are two properties to
measure the quality: preciseness and conciseness. Preciseness
measures the distance between the lines represented by
consecutive points of the character point 𝑐𝑖, 𝑐𝑗 in set 𝐶 and
lines represented by consecutive points of original time series
in stream S between the corresponding two character points
𝑐𝑖, 𝑐𝑗. Smaller distance indicates better preciseness.Conciseness
measures how less the character points are used todepict the
certain length of data points in original stream. Less character
points represents better conciseness.

S = ⟨

= ⟨

32.1, 32.6, 33.2, 33.6, 33.9, 34.1, 33.6, 32.8, 33.6, 32.8⟩

n = 10
m = 4

1
1

2
2
3 4

4
5 6 7 8 9 10

C 32.1, 32.2, 34.1, 32.8⟩

g(4) = 10g(3) = 6g(2) = 3 3g(1) = 1

Figure 3: The comparison between original time-series 𝑆 and the
character points 𝐶.

Other time-series
stream mining

algorithms

Time-series
stream motif

mining

PRESEE
algorithm

Segmented
data C

Original time-
series stream

Original
stream S

Figure 4:Thepipeline for time-seriesmining. All data are processed
as stream. At first the original data are flowed into PRESEE and then
flowed into any other time-series stream mining algorithms.

It is easy to get the conclusion that, when every point
in original stream is the character point, preciseness gets its
maximum. However, such kind of segmenting is meaningless
since it in fact just lets the streamgo through the slidewindow
anddoes not do anywork to compress the stream.Conciseness
reaches the maximum when there are only two character
points for the stream, the start point and the end point.

The best preciseness and best conciseness cannot be satis-
fied at the same time because they are contradictory. There-
fore, we need to do some work to find the optimum tradeoff
between preciseness and conciseness, which generates the best
segmenting 𝐿opt.

In order to find the optimum tradeoff, we intend to
solve this problem in information perspective by employing
the MDL/MML principle in information theory area. We
use MDL/MML in our algorithm because it is parameter
free. MDL/MML can automatically find a proper estimate of
original information. If no proper segmenting solution exists,
the data S are deemed as random data. In our scenario, we
simply keep all the information.

The code of MDL/MML is composed of two parts: 𝐼 =

𝐻 : 𝐷 [30, 31]. H specifies the hypothesis about the infor-
mation (normally selected from a limited set of possible
hypotheses), while 𝐷 specifies the code for the information
based on the hypothesis. The shortest code 𝐼 in all the𝐻 and
𝐷 combinations are the optimum solution for the piece of
information. In our scenario, it are the optimum for stream
segmenting.

The cost of code is represented by its length. In Shannon’s
theory, the length of coding an event 𝐸 in optimum condition
is given by −log

2
(𝐸). In time-series segmenting scenario, the

computation of the formula is as follows:

𝐿 (𝐻) =

𝑤−1

∑
𝑖=1

log
2
(𝑙𝑒𝑛 (𝑠𝑐𝑖𝑠𝑐𝑖+1)) , (5)



The Scientific World Journal 5

𝐿 (𝑆 | 𝐻)

=

𝑤−1

∑
𝑖=1

𝑐𝑖+1−1

∑
𝑘=𝑐𝑖

{log
2
𝑤𝑝𝑑𝑝 (𝑠𝑐𝑖𝑠𝑐𝑖+1 , 𝑠𝑘𝑠𝑘+1)

+ log
2
𝑤𝑎𝑑𝑎 (𝑠𝑐𝑖𝑠𝑐𝑖+1 , 𝑠𝑘𝑠𝑘+1)} ,

(6)

𝐿opt = argmin {𝐿 (𝐻) + 𝐿 (𝑆 | 𝐻)} . (7)

In the first two formulas, w represents the size of data
𝑆, 𝑐𝑥 ∈ 𝐶 represents the character points. The optimum
segmenting is the minimum value of sum of 𝐿(𝐻) and 𝐿(𝑆 |
𝐻). The following is a concrete computation example for
Figure 3. Line 𝑠1𝑠4 is the optimum segmenting for point 𝑠1
through 𝑠4.

Consider
𝐿 (𝐻) = log

2
(𝑙𝑒𝑛 (𝑠1𝑠4)) ,

𝐿 (𝑆 | 𝐻)

= {log
2

1

2
𝑑𝑝 (𝑠1𝑠2, 𝑠1𝑠4) + log

2

1

2
𝑑𝑎 (𝑠1𝑠2, 𝑠1𝑠4)}

+ {log
2

1

2
𝑑𝑎 (𝑠2𝑠3, 𝑠1𝑠4) + log

2

1

2
𝑑𝑝 (𝑠2𝑠3, 𝑠1𝑠4)}

+ {log
2

1

2
𝑑𝑎 (𝑠3𝑠4, 𝑠1𝑠4) + log

2

1

2
𝑑𝑝 (𝑠3𝑠4, 𝑠1𝑠4)} .

(8)

4.2. Algorithm Details. Finding global optima requires com-
puting all partitions possibilities of the points, which is pro-
hibitive for real applications. We present a greedy algorithm
to find local optima.

Algorithm 1 shows the details of the segmenting process.
At first, only the data flowed into slide window are processed.
In lines 5 and 6, the costs of MDLseg and MDLnoseq are
computed, respectively. MDLseq (𝑠𝑖, 𝑠𝑗) denotes the MDL cost
by considering 𝑠𝑖 and 𝑠𝑗 as the character points for points
𝑠𝑥 (𝑖 < 𝑥 < 𝑗). It equals to 𝐿(𝐻) + 𝐿(𝐷 | 𝐻). MDLnoseq(𝑠𝑖, 𝑠𝑗)
denotes theMDL cost by assuming that there are no character
points between 𝑠𝑖 and 𝑠𝑗. It equals to 𝐿(𝐻). In the greedy
strategy, the local optimum solution is the longest segment
that satisfies the inequality (9).

In the algorithm shown previously, the points in slide
window are scanned sequentially only once. The candidate
segmenting (segment with 𝑠𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 and 𝑠𝑐𝑢𝑟𝐼𝑛𝑑𝑒𝑥 as start
point, and end point resp.) grows once per time to test
whether it satisfies inequality (9).

There is a parameter batchSize for this algorithm. The
default value is 1, and the user can set it as a larger integer.
The algorithm will return batchSize + 1 character points per
time. Thus, the algorithm can run faster.

Consider

MDLseq (𝑠𝑖, 𝑠𝑗) < MDLnoseq (𝑠𝑖, 𝑠𝑗) . (9)

PRESEE algorithm calls Algorithm 1 every time when
slide window is full. Algorithm 2 describes PRESEE algo-
rithm in the form of pseudocode.

In line 2, the slide window is filled at the first time. Then
themethodReadIn() is called inwhile loop.ReadIn() takes the

response of filling slide window and checking whether there
is new data. It returns falsewhen no new data exists. In line 4,
Algorithm 1 is called to provide the local optima segmenting
result based on the data in slide window. It is possible that no
proper segment exists. Thus the size of tmpSet is less than 2.
In this scenario, we simply put all the data in slide window
into apprSet and empty the slide window. Otherwise, add at
most first batchSize + 1 points in tmpSet into apprSet. We use
“at most” here because it is possible that all the points in slide
window may be generated less than in batchSize segments.

From the pseudocode, we can see that the data are
input and output simultaneously (line 4 and line 13), which
guarantees that the earlier data can be processed by later
mining algorithm. Additionally, it is obvious that the stream
is only scanned once and processed once. Thus the time
complexity of both algorithms is O(n), where n is the length
of time-series stream.

5. Empirical Comparison of
the Segmenting Algorithms

In this section, we demonstrate the effectiveness and effi-
ciency of the proposed algorithm through several sets of
experiments on large collections of real and synthetic time-
series datasets. For the effectiveness test, the precision of the
proposed method is compared with nonstream segmenting
algorithm.Then the speed and scalability of the algorithm are
tested with a different scale of datasets ranging from 10M to
10G.

All the experiments are performed on a laptop computer
with 2GHz Intel Core 2Duo CPU and 3G main memories.
The C++ implementation of the algorithm and the related
source code are all available at http://code.google.com/p/ots-
sm/.

5.1. Benchmark Algorithm. The performance of the proposed
algorithm is compared with well-known benchmark algo-
rithms. A good candidate is the BU (bottom-up) algorithm
[22]. It is used as a counterpart in precision algorithm.
Since BU cannot handle stream-like datasets and the time
complexity is uncertain for large datasets, we use slide-
window-based bottom-up (SWBU for short) segmenting
algorithm in the part of efficiency and scalability experiment
instead.

5.2. Dataset. Real Datasets. We consider two sets of real
datasets to evaluate our algorithm. The first set includes
three classical datasets: IBM stock price dataset from 1.2.1961
to 1.6.2010 [32], “Dodgers,” and “ICU” from UCI Machine
Learning Repository [33] used by most of the papers in data
mining and machine learning community. The second set of
real-time stream data is collected from Chinese Terrestrial
Ecosystem Flux Research Network (ChinaFLUX) [34], which
is a long-term national network of micrometeorological flux
measurement sites that measures the net exchange of carbon
dioxide, water vapor, and energy. In this paper, we only
choose part of the flux data from one wild filed survey site



6 The Scientific World Journal

Input: points in slideWindow Seg = ⟨𝑝
1
, 𝑝2, 𝑝3 ⋅ ⋅ ⋅ 𝑝𝑙𝑒𝑛⟩,

batchSize
Output: character points set C = ⟨𝑐𝑖1, 𝑐𝑖2 ⋅ ⋅ ⋅ ⟩
(1) Put 𝑝1 into C
(2) 𝑐𝑢𝑟𝑆𝑖𝑧𝑒 = 0, startIndex = 1, length = 1;
(3) While startIndex + length < len do
(4) curIndex = startIndex + length;
(5) 𝐶𝑜𝑠𝑡seg = MDLseg(𝑆𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥, 𝑠𝑐𝑢𝑟𝐼𝑛𝑑𝑒𝑥); 𝐶𝑜𝑠𝑡noseg =

MDLnoseg(𝑐𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥, 𝑐𝑐𝑢𝑟𝐼𝑛𝑑𝑒𝑥);
(6) If 𝑐𝑜𝑠𝑡seg > 𝑐𝑜𝑠𝑡noseg then
(7) Put 𝑝𝑐𝑢𝑟𝐼𝑛𝑑𝑥𝑒−1 into C;
(8) ++curSize;
(9) If curSize == batchSize then

// enough batch has been processed
(10) Return C;
(11) Else startIndex = curIndex – 1; length = 1;
(12) Else length = length + 1;
(13) If C has only one point do
(14) Return NULL;
(15) Else Put𝑝𝑙𝑒𝑛 into C;

Algorithm 1: Segment in slide window.

Input: windowSize, S = ⟨𝑠1, 𝑠2 ⋅ ⋅ ⋅ ⟩, batchSize
Output: C = ⟨𝑐1, 𝑐2 ⋅ ⋅ ⋅ ⟩
(1) slideWindow = {}, apprSet = {}
(2) Read data into slideWindow
(3) While ReadIn() do
(4) tmpSet = MDLSlideWindow(slideWindow,

batchSize);
(5) If tmpSet.size() < 2 do

// no proper hypothesis is found,
data deemed as random noise

(6) Add all data in slideWindow into apprSet
(7) Empty slideWindow
(8) Else
(9) Add at most first batchSize + 1 points in

tmpSet into apprSet
(10) Take out used points from slideWindow
(11) Output apprSet

Algorithm 2: PRESEE.

located in Yucheng, Shandong, China.Thedata is stored from
2009-03-04 to 2009-11-12 with the number of 38850980.
Synthetic Datasets. The synthetic datasets are generated
according to Formula (10) with parameters in Table 1. The
data is in the format of index, value, where index represents
the timestamp of the record. The monotonically increasing
record serial number is also available. In our experiments,
without loss of generalization, we simply use the latter one.

For synthetic data, the range of values is bounded within
[lb, ub]. The current record value fluctuates (increases, dec-
reases, or remains the same) according to previous record
value.

Consider

Δ = sign× (random () mod (𝑙𝑏 − previous value))

× sharpness.
(10)

The sign is randomly selected as either + or −, and sharp-
ness is a parameter to control the power of fluctuation. It
is easy to observe that when the value would suffer more
resistance when it goes far away from the mean ((𝑢𝑏 − 𝑙𝑏)/2).



The Scientific World Journal 7

Table 1: Parameters for synthetic datasets.

Number Data size Lower bound (lb) Upper bound (ub) Sharpness
1 10,000 (10 k) 0 3000 0.001
2 100,000 (100 k) 0 3000 0.001
3 1,000,000 (1M) 0 3000 0.001
4 10,000,000 (10M) 0 3000 0.001
5 10,000,000 (10M) 0 3000 0.002
6 10,000,000 (10M) 0 3000 0.0005
7 10,000,000 (10M) 0 3000 0.0002
8 10,000,000 (10M) 0 3000 0.0001
9 100,000,000 (100M) 0 3000 0.00005
10 1,000,000,000 (1 G) 0 5000 0.00001
11 10,000,000,000 (10G) 0 5000 0.00001

6. Results

Visualization of Segmenting Result. For the ease of observing
the segmenting result, Figure 5 presents the visualization of
three real datasets (IBM stock, ICU, and Dodger). The first
row is the original datasets; the second row is the segmenting
result generated by BU; and the last row is generated by
PRESEE. It is obvious that the charts in the first row seem to
be the most complex because they contain the most detailed
information about the time-series. For the other two rows,
the charts seem to be more concise because segmenting
algorithm removes some of the unimportant information
from original time-series. Nevertheless, the main trends in
the charts are reserved.Thismeans that both algorithms keep
the characteristics of original time-series data.
Precision. We compare our algorithm with BU, which can
process general types of time-series datasets and can find
the global optimum segmenting solution. We evaluate the
result of segmenting algorithm via the error rate measure in
Formula (11). Let 𝑤 be the number of segments and 𝑛 be the
number of points in segment 𝑖. The error rate is computed as
follows:

error rate = 1

𝑤

𝑖<𝑤

∑
𝑖=1

1

𝑛
∑
𝑜𝑗∈𝑠𝑖

𝑑 (𝐿𝑜𝑗 , 𝐿 𝑠𝑖) . (11)

Error rate for fifteen datasets is reported in Table 2. It is
evident that, for generating approximately the same number
of segments, the error rate of bottom-up and PRESEE stays
in the same level. That means that PRESEE can generate
segments based on partial data (data only in slide window)
no worse than segments generated in global perspective.
Problem of Getting Proper Number of Segments. In Table 2,
for the real datasets ChinaFLUX, BU fails to find a proper
number of segments because this kind of data changes
tremendously. This is the flaw of BU. One significant advan-
tage of PRESEE over BU is that users do not need to set
any threshold parameter. The parameter of BU is hard to set.
A little deviation would generate a quite different number
of segments. In order to find out the relationship between
segment size and the parameter error threshold that BU

requires, we run each dataset 100 times to find a proper
parameter that can generate the same number of segments
as PRESEE. Figure 6 shows their relationship for BU. In the
experiment, all three real datasets encounter a big drop of
segments number when the error threshold increases. In
particular, for Dodgers datasets, the number of segments
drops from 6082 to 1958 when the value changes from 1.0 to
1.1, which is very significant. Further experiments show that,
even we only increase the threshold with 0.001, the change is
also tremendous. Such phenomenon indicates that we should
be careful to the error threshold parameter of BU. Such puzzle
can be well avoided by the user of PRESEE.
Efficiency and Scalability. We only test the relative speed
of algorithms since the absolute speed (running time) is
varied according tomachines.The speed of synthetic-dataset-
generated algorithm is used as a benchmark. It reflects the
maximum processing speed that a certain running machine
can reach.

Since the IBM stock, ICU, and Dodger datasets are too
small and not suitable for horizontal comparison in efficiency
and scalability test, we use real-time ChinaFLUX datasets
and the synthetic datasets 1–4 and 9–11 in this experiment.
At first, we compare the efficiency among data generator,
SWBU, and PRESEE. The error rate threshold of SWBU
set as 1.1 means that SWBU can generate comparatively the
same number of segments with PRESEE. Figure 7 shows
the efficiency of different algorithms in logarithmic plot
for synthetic datasets 1–4 and 9–11. It is certain that data
generator owns the best speed since it just generates data
without any extra processing. In this figure, we can find
that the curve of PRESEE is very near to the curve of data
generator and these two are far from the curve of SWBU (near
one order of magnitude). Figure 8 shows its efficiency on
different datasets (datasets ChinaFLUX). Figure 8 indicates
that the efficiency would not be affected by characters of
datasets. Table 3 shows the relative speed of two segmenting
algorithms’ relative speed (with 𝑡seg representing the time cost
of segmenting algorithm and 𝑡gen representing the time cost
of data generator). PRESEE is just a little slower than data
generator with the value 1.1311, while SWBU is nearly one
order ofmagnitude slower.This is because PRESEE is an𝑂(𝑛)



8 The Scientific World Journal

1000

500

0
0 5000 10000

(a)

5

0

−5

×104

0 2000 4000 6000 8000

(b)

0 5000 10000

100

50

0

(c)

1000

500

0
0 5000 10000

(d)

5

0

−5

×104

0 2000 4000 6000 8000

(e)

0 5000 10000

100

50

0

(f)

1000

500

0
0 5000 10000

(g)

5

0

−5

×104

0 2000 4000 6000 8000

(h)

0 5000 10000

50

0

(i)

Figure 5: Time-series streams with their segmenting results: (a) IBM stock price, (b) ICU, and (c) Dodger. (d)–(f) Segmenting result with
bottom-up. (g)–(i) Segmenting result with PRESEE.

Table 2: Precision of datasets.

Number Data size Error rate (BU) Error rate (PRESEE)
1 10,000 (10 k) 2.00201 2.58561
2 100,000 (100 k) 1.75349 2.45916
3 1,000,000 (1M) 1.67456 4.03172
4 10,000,000 (10M) 1.65483 2.28419
5 10,000,000 (10M) 1.66074 2.28695
6 10,000,000 (10M) 1.65577 2.28768
7 10,000,000 (10M) 1.65978 2.28862
8 10,000,000 (10M) 1.66243 2.28124
9 100,000,000 (100M) 1.67212 2.29100
10 100,000,000 (1 G) N/A 2.27872
11 100,000,000 (10G) N/A 2.27984
12 IBM stock price from 1.2.1961 to 1.6.2010 (12087 records) 1.57696 2.38069
13 ICU (7931 records) 0.696307 0.893313
14 Dodger (10082 records) 1.34914 1.08395
15 ChinaFLUX (38850980 records) N/A 1.76781



The Scientific World Journal 9

8000

7000

6000

5000

4000

3000

2000

1000

0
0 2 4 6 8 10 12

Error threshold

Se
gm

en
t n

um
be

r

IBM stock
ICU
Dodgers

Figure 6: Relative of error threshold and segments number for BU.

Data size

104

102

106

104 106 108 1010

100

10−2

Ti
m

e c
os

t (
s)

Data generator
PRESEE
Slide window

Figure 7: Efficiency and scalability of different algorithms.

algorithm, but SWBU uses BU, an O(n log n) algorithm, as
the base algorithm in slide window. With larger error rate
threshold set, slower SWBU would run.

Features Affecting Algorithm Efficiency. In this section, we
do some experiments to explore the characteristic of our
algorithm. There are two optional parameters for PRESEE:
window size and batch size.Window size controls the number
of points to process at once; batch size controls how many
result segments are output per time. As is mentioned before,
there is no necessary parameter in PRESEE, so the user can
directly use default values for the two parameters. In order to
see how the two parameters affect the algorithm’s efficiency,

Place 1
Place 2

1200

1000

800

600

400

200

0
0 5 10 15

Records 1 ∗ 1,000,000

Ti
m

e c
os

t (
s)

Figure 8: Efficiency of PRESEE for different datasets. Datasets are
gathered from different places by ChinaFLUX.

Table 3: Relative speed of SWBU and PRESEE compared with data
generated by the data generator.

Algorithm Relative speed (𝑡seg/𝑡gen)
SWBU 9.7114
PRESEE 1.1311

we run synthetic dataset number 3 for 100 times, set window
size from 100 to 1000 and batch size from 1 to 10. Figure 9
shows the triple relationship among the efficiency, window
size, and batch size. This figure indicates that the time cost
decreases while the batch size increases, but if the batch size is
too large, the efficiency of algorithm decreases. The reason is
that more segments output per time can accelerate the speed
of algorithm and let the slide window move faster at first.
Gradually, the efficiency begins to decrease with segments
size increases. There are two reasons why this phenomenon
happens: firstly, the points in slide window do not have
such many segments, the efficiency cannot increase forever.
Secondly, the algorithm would cost extra time to identify the
character points of each segment.
Compress Rate.There is no parameter to control the precision
of result since MDL/MML owns the self-adaptive property.
We do an experiment to see the compress rate (compress
rate = size of result/size of original dataset) on different
kinds of datasets.We choose ChinaFLUX datasets, IBM stock
price, ICU and Dodgers datasets, and synthetic datasets 4–
8 to do the experiments. The four real datasets are quite
different in their appearance and they are different in cycli-
cal/noncyclical, sharp/smooth, degree of noise, dimensions,
and length. The synthetic datasets 4–8 have the same param-
eter on data size and range, and they are generated in the same
way. The only difference is the degree of sharpness.

From Table 4, we can conclude that, for the same kind of
data and with different sharpness, the compress rate is steady.



10 The Scientific World Journal

8

6

4

2

0

Batch size

Window size 1 ∗
100

1

1

2

2

3

3

4

4

5

5

6
6

7
7 88

9
9

10

10

Ti
m

e c
os

t (
s)

Figure 9: Relationship among efficiency, window size, and batch
size.

Table 4: Compress rate of datasets.

Number Data size Compress rate
4 10,000,000 (10M) 1 : 0.27548
5 10,000,000 (10M) 1 : 0.27536
6 10,000,000 (10M) 1 : 0.27537
7 10,000,000 (10M) 1 : 0.27531
8 10,000,000 (10M) 1 : 0.27536
12 IBM stock price 1 : 0.43779
13 ICU 1 : 0.48468
14 Dodgers 1 : 0.35540
15 ChinaFLUX 1 : 0.48194

7. Conclusion and Future Work

In this paper, we have proposed a new algorithm for time-
series stream segmenting that is parameter free, scalable
and self-adaptive. We also undertake several sets of time-
series experiments on a variety of time series data types and
compare themwith the state-of-the art algorithms to evaluate
our algorithm. The empirical results prove that PRESEE
can generate a proper number of segments for time-series
streams.Moreover, it can handle large dataset up to gigabytes.
Finally, the parameters of PRESEE would only affect the
efficiency but not the segmenting result.

In the future, we plan to design a series of time-series
stream mining algorithms under the pipeline framework.
Those algorithms should be able to well concatenate to
the segmenting algorithm. Another direction is to design
the algorithms that can do time-series mining tasks across
multiple streams in real time.

Acknowledgments

This work was supported by NSF under Grant no. 31071700,
the Natural Science Key Foundation of Guangxi under Grant

no. 2011GXNSFD018025, and the Development Foundation
of CUIT under Grant no. KYTZ201108. The authors would
like to thank Dr. Yue Wang for discussing an early version of
this paper.

References

[1] J. F. Roddick andM. Spiliopoulou, “A survey of temporal knowl-
edge discovery paradigms and methods,” IEEE Transactions on
Knowledge and Data Engineering, vol. 14, no. 4, pp. 750–767,
2002.

[2] M. Brooks, Y. Yan, and D. Lemire, “Scale-based monotonicity
analysis in qualitative modelling with flat segments,” in Pro-
ceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI ’05), pp. 400–405, 2005.

[3] C. S. Perng, H. Wang, S. R. Zhang, and D. S. Parker, “Land-
marks: a new model for similarity-based pattern querying
in time series databases,” in Proceedings of the 16th IEEE
International Conference on Data Engineering (ICDE ’00), pp.
33–42, March 2000.

[4] J. Friedman, “Multivariate adaptive regression splines,” Annals
of Statistics, vol. 19, pp. 1–141, 1991.

[5] Z. Luo and G. Wahba, “Hybrid adaptive splines,” Journal of the
American Statistical Association, vol. 92, no. 437, pp. 107–116,
1997.

[6] D. B. Percival andA. T.Walden,WaveletMethods for Time Series
Analysis, Cambridge University Press, New York, NY, USA,
2000.

[7] R. A. C. Faloutsos and A. Swami, “Efficient similarity search
in sequence databases,” in Proceedings of the 4th Conference on
Foundations of Data Organization and Algorithms, pp. 69–84,
1993.

[8] V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen,
and J. Allan, “Mining of concurrent text and time series,” in
Proceedings of the 6th International Conference on Knowledge
Discovery and Data Mining, pp. 37–44, 2000.

[9] X. Ge and P. Smyth, “Segmental semi-Markov models for
endpoint detection in plasma etching,” IEEE Transactions on
Semiconductor Engineering. In press.

[10] K. Teymourian, M. Rohde, and A. Paschke, “Knowledge-based
processing of complex stock market events,” in Proceedings
of the 15th International Conference on Extending Database
Technology (EDBT ’12), pp. 594–597, 2012.

[11] L. A. Tang, X. Yu, S. Kim, J. Han, C. C. Hung, and W. C.
Peng, “Tru-alarm: trustworthiness analysis of sensor networks
in cyber-physical systems,” in Proceedings of the 10th IEEE Inter-
national Conference on DataMining (ICDM ’10), pp. 1079–1084,
Sydney, Australia, December 2010.

[12] ICU USER GUIDE, 2012, http://userguide.icu-project.org/icu-
data.

[13] J. David and C. Mackay, Information Theory, Inference &
Learning Algorithms, Cambridge University Press, New York,
NY, USA, 2003.

[14] P. Grünwal, The Minimum Description Length Principle, MIT
Press, Boston, Mass, USA, 2007.

[15] X. Lian and L. Chen, “Efficient similarity search over future
stream time series,” IEEE Transactions on Knowledge and Data
Engineering, vol. 20, no. 1, pp. 40–54, 2008.

[16] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, “Con-
tinuous trend-based classification of streaming time series,” in



The Scientific World Journal 11

Advances in Databases and Information Systems, vol. 3631 of
Lecture Notes in Computer Science, pp. 294–308, 2005.

[17] X. S. Wang, L. Gao, and M. Wang, “Condition evaluation for
speculative systems: a streaming time series case,” inProceedings
of the 2ndWorkshop on Spatio-Temporal Database Management
(STDBM ’04), pp. 65–72, 2004.

[18] P. P. Rodrigues, J. Gama, and J. P. Pedroso, “ODAC: hierarchical
clustering of time series data streams,” in Proceedings of the 6th
SIAM International Conference on Data Mining, pp. 499–503,
Bethesda, Md, USA, April 2006.

[19] E. Bingham, A. Gionis, N. Haiminen, H. Hiisilä, H. Mannila,
and E. Terzi, “Segmentation and dimensionality reduction,” in
Proceedings of the 6th SIAM International Conference on Data
Mining, pp. 372–383, April 2006.

[20] E. Terzi and P. Tsaparas, “Efficient algorithms for sequence
segmentation,” in Proceedings of the 6th SIAM International
Conference on Data Mining, pp. 316–327, April 2006.

[21] D. Lemire, “A better alternative to piecewise linear time series
segmentation,” in Proceedings of the 7th SIAM International
Conference on Data Mining, pp. 545–550, April 2007.

[22] J. Hunter and N. Mcintosh, “Knowledge-based event detection
in complex time series data,” inProceedings of the Joint European
Conference on Artificial Intelligence in Medicine and Medical
Decision Making (AIMDM ’99), pp. 271–280, 1999.

[23] A. R. Barron and T. M. Cover, “Minimum complexity density
estimation,” IEEE Transactions on Information Theory, vol. 37,
no. 4, pp. 1034–1054, 1991.

[24] J. Rissanen, “Modeling by shortest data description,” Automat-
ica, vol. 14, no. 5, pp. 465–471, 1978.

[25] C. S. Wallace and D. M. Boulton, “An information measure for
classification,”Computer Journal, vol. 11, no. 2, pp. 185–194, 1968.

[26] Q. Q. Lu, “An MDL approach to the climate segmentation
problem,” Annals of Applied Statistics, vol. 4, no. 1, pp. 299–319,
2010.

[27] J. G. Lee, J. Han, and K. Z. Whang, “Trajectory clustering: a
partition-and-group framework,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’07), pp. 593–604, June 2007.

[28] K. Xu, C. Tang, C. Li, Y. Jiang, and R. Tang, “AnMDL approach
to efficiently discover communities in bipartite network,” in
Database Systems for Advanced Applications, vol. 5981 of Lecture
Notes in Computer Science, pp. 595–611, 2010.

[29] C. S. Wallace and D. L. Dowe, “Minimum message length and
Kolmogorov complexity,” Computer Journal, vol. 42, no. 4, pp.
281–283, 1999.

[30] P. Grunwald, I. J. Myung, and M. Pitt, Advances in Minimum
Description Length:Theory andApplications,MITPress, Boston,
Mass, USA, 2005.

[31] IBM Stock Price, http://finance.yahoo.com.
[32] A. Asuncion and D. J. Newman, UCI Machine Learning Reposi-

tory, Irvine, University of California, School of Information and
Computer Science, 2007, http://archive.ics.uci.edu/ml/datasets.

[33] G. R. Yu, X. F. Wen, X. M. Sun, B. D. Tanner, X. Lee, and J.
Y. Chen, “Overview of ChinaFLUX and evaluation of its eddy
covariance measurement,” Agricultural and Forest Meteorology,
vol. 137, no. 3-4, pp. 125–137, 2006.

[34] J. Cheng, Y. Zhou, B. Wang, X. Wang, and J. Li, “SROS: sensor-
based real-time observing system for ecological research,” in
Proceedings of the International Conference on Web Information
Systems andMining (WISM ’09), pp. 396–400, Shanghai, China,
November 2009.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


	Florida International University
	FIU Digital Commons
	2013

	PRESEE: An MDL/MML Algorithm to Time-Series Stream Segmenting
	Kaikuo Xu
	Yexi Jiang
	Mingjie Tang
	Changan Yuan
	Changjie Tang
	Recommended Citation


	tmp.1490979195.pdf.mlVlw

