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A COMPARISON OF SOME ROBUST 

BIVARIATE CONTROL CHARTS FOR 

INDIVIDUAL OBSERVATIONS 

 
Abstract: This paper proposed and considered some bivariate 

control charts to monitor individual observations from a 

statistical process control. Usual control charts which use 

mean and variance-covariance estimators are sensitive to 

outliers. We consider the following robust alternatives to the 

classical Hoteling’s T2: T2MedMAD, T2MCD, T2MVE A 

simulation study has been conducted to compare the 

performance of these control charts. Two real life data are 

analyzed to illustrate the application of these robust 

alternatives. 
Keywords: Bivariate control chart, False Alarm, Hotelling’s 

T2 statistic, Outliers, Robust estimation, Simulation Study, 

Statistical process control 

 

 

1. Introduction1
 

 

To monitor the quality characteristics in an 

industrial process, control charts are the most 

popular tools used in statistical process 

control (SPC). In many of these industrial 

processes, it is frequently required to 

monitor several quality characteristics at the 

same time. For example, the quality of a 

certain type of tablets may be determined by 

weight, degree of hardness, thickness, width 

and length (Liu, 1995). These quality 

characteristics are clearly correlated and 

therefore the separate univariate control 

charts for monitoring individual quality 

characteristics may not be adequate for 

detecting outliers and changes in the overall 

quality of the product. Thus it is desirable to 

have control charts that can simultaneously 

monitor multivariate measurements.  

                                                           
1
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Because of that, the multivariate control 

charts are the 2 most common tools used in 

such cases. These control charts can take 

into account the simultaneous nature of the 

control scheme and the correlation structure 

between the quality characteristics (Alt, 

1985). 

The multivariate control chart is useful when 

several quality characteristics of a product 

are taken to assess quality. The main 

objective of a multivariate control chart is to 

detect the presence of special causes of 

variation and can be used as a tool to detect 

multivariate outliers, mean shifts, and other 

distributional deviations from the in-control 

distribution. 

 

1.1.  Effect of outliers in Multivariate 

Quality Control Charts 
 

In statistical quality control concepts, an 

outlier is defined as an observation that 

deviates so much from other observations as 

to arouse suspicion that it was generated by a 

different mechanism (Hawkins, 1980). 

mailto:mabushawiesh@hu.edu.jo
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Outliers have a big influence on resulting 

estimates and cause any out-of-control 

observations to remain undetected. 

Outliers can be detected by using univariate 

or multivariate methods. When, there are 

more than one outliers the detection situation 

becomes more difficult due to masking and 

swamping (Rousseeuw and van Zomeren, 

1990). Masking occurs when we fail to 

detect the outliers while swamping occurs 

when observations are incorrectly declared 

as outliers. The identification of outliers in 

multivariate cases is more difficult than in 

the univariate case. For instance, the simple 

graphical methods that can be used to detect 

outliers in a single dimension are often not 

available in higher dimensions. 

Outliers can heavily influence the estimation 

of the variance-covariance matrix and 

subsequently the parameters or statistics that 

are needed to be derived from it. Hence, a 

robust estimate of the variance-covariance 

matrix that will not be affected by outliers is 

required to obtain valid and reliable results 

(Hubert and Engelen, 2007). The modern 

strategy for dealing with masking in the 

univariate case is to substitute the sample 

mean and variance with sample median, 

MED, and median absolute deviation from 

the sample median, MAD, respectively 

(Wilcox and Keselman 2003; Abu-Shawiesh 

et al., 2009). In multivariate case a popular 

strategy is to make multivariate approaches 

more robust by replacing the location and the 

scale estimators with measures of central 

tendency and dispersion that are resistant to 

outliers. 

 

1.2. Constructing the control chart using 

the Hotelling’s T2 Statistic 
 

The Hotelling T2 statistic has widely been 

used in constructing the multivariate control 

charts to monitor the individual or subgroups 

observations. However, it is not robust. In 

the construction of such control charts, Alt 

(1985) has defined two phases: Phase I and 

II. In Phase I, a historical data set of 

observations is analyzed to determine 

whether a process is in-control and to 

estimate the parameters of the in-control 

process, the control limits and to identify and 

eliminate multivariate outliers. In Phase II, 

the estimations and control limits are used to 

check the data obtained during the industrial 

process for detecting any departure from the 

parameter estimates and, as noted by 

(Woodall et al., 2004), it is important to 

distinguish between Phase I and Phase II 

methods and applications. 

To construct the control chart using 

Hotelling’s T2 statistic, let us assume that 

   (             )
 
 denote a p x 1 vector 

that represents the p quality characteristics of 

the ith observation, and i= 1, 2, … , n, where 

n is the sample size. We also assume that the 

Xij’s are iid    (   ) when the process is 

in-control. If the process parameter values 

are unknown, data will be collected when the 

process in-control. Then, the mean vector   

and the variance-covariance matrix    will 

be replaced respectively by  ̅ and S, where 

 ̅ is the sample mean vector and S is the 

sample variance-covariance matrix. 

The Hotelling’s T2 control chart is then 

constructed using these estimated 

parameters. As mentioned before, the control 

chart is first used to test retrospectively 

whether the process was in-control (Phase I), 

then after the initial control chart has been 

established, the resulted control chart can be 

used to monitor the process on-line, that is, 

the values of individual observation are 

plotted one-at-a time on the chart as each 

new observation is obtained (Phase II). In 

this paper, we will consider control charts in 

Phase I. The statistic plotted on the 

Hotelling’s T
2
 control chart for each initial 

observations is calculated as follows: 

 

  
  (    ̅)

    (    ̅)                      (1) 

            

 

where  ̅and S are the sample mean vector 

and sample variance covariance matrix. 

Then the UCL of this control would be: 
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 (   )

(   )
                                     (4) 

 

where          is the (   )   percentile 

point of the F distribution with v1 and v2 

degrees of freedom, and α is the desired false 

alarm probability. The lower control limit 

(LCL) is usually set to zero. 

 

1.3. Robust Alternatives to Hotelling’s T2 

Control Chart 
 

Robust estimation has been a useful 

approach in statistics due to good properties 

shown under some deviations of 

distributional assumptions and existence of 

outliers. Johnson (1987) found that the 

traditional Hotelling’s T
2 

statistic cannot 

resist the departure from the normal 

distribution. Moreover, Croiser (1988) 

mentioned that the robustness against the 

multiple outliers is necessary in the 

multivariate quality control. Likewise, 

Brooks (1985) took notice about the outliers; 

these data errors increase in case of the 

development of manufacturing system 

because of the huge collecting of data. It is 

now evident that the Hotelling’s T
2
 statistic, 

which is based on the classical estimators, is 

easily affected by outliers (Rousseeuw and 

Leroy, 2003; Sullivan and Woodall, 1996). 

There have been many robust methods of 

estimating the variance-covariance matrix of 

a multivariate data. Such methods include 

Minimum Volume Ellipsoid (MVE), 

Minimum Covariance Determinant (MCD), 

S-Estimator, M-Estimator and 

Orthogonalized Gnanadesikan-Kettering 

(OGK) methods. Using these robust 

methods, various alternatives to Hotelling’s 

T
2
 have been proposed in order to avoid the 

negative effect of outliers on the control 

chart’s behavior. Oyeyemi and Ipinyomi 

(2010) proposed a robust method for 

estimating covariance matrix for multivariate 

data. 

Surtihadi (1994) used the median as a robust 

location estimator. He constructed a robust 

bivariate control chart based on the bivariate 

sign tests of Blumen and Hodges. Moreover, 

he found that this control chart needs fewer 

assumptions than the traditional control 

chart. Also, it needs the underlying 

distribution to be continuous and symmetric; 

as a result, this control chart has a good 

protection in the presence of the extreme 

data error. 

Vargas (2003) proposed a control chart 

based on robust estimators of location and 

dispersion using the minimum volume 

ellipsoid (MVE) estimators. Simulation 

studies showed that the robust Hotelling’s T
2
 

statistic that are using the minimum volume 

ellipsoid (MVE) estimators are efficient in 

detecting the multiple outliers and can deal 

with the masking effect. 

Jensen et al. (2007) studied the high 

breakdown estimation method based on most 

popular robust estimators the minimum 

volume ellipsoid (MVE) and the minimum 

covariance determinant (MCD). They 

determined which estimator of them is better 

to use in the robust control charts in terms of 

detection of multiple outliers.  

Vargas and Lagos (2007) compared four 

multivariate control charts for process 

dispersion and among the schemes 

compared, a new control chart based on 

robust estimation of the variance-covariance 

matrix proved to be very effective in 

detecting changes in the process dispersion 

matrix. 

Alfaro and Ortega (2008) proposed a new 

alternative robust Hotelling’s T
2
 controlled 

charts to the traditional Hotelling’s T
2
 

control charts. They replaced the sample 

mean vector in the traditional Hotelling’s T
2 

statistic by the trimmed mean vector, and the 

variance covariance matrix by the trimmed 

variance covariance matrix to construct the 

alternative robust Hotelling’s T
2 

statistic. 

They concluded that the new robust 

Hotelling’s T
2 

statistic is more effective in 

detection outliers. 

Alfaro and Ortega (2009) has developed four 

alternatives robust Hotelling’s T
2
 charts to 

the traditional Hotelling’s T
2
 chart, these 
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proposed control charts used minimum 

volume ellipsoid (MVE) estimator, minimum 

covariance determinant (MCD) estimator, 

reweighted MCD estimator and the trimmed 

mean estimator. They concluded that the 

robust alternatives Hotelling’s T
2
 charts 

behaved better than the traditional 

Hotelling’s T
2 

charts in the presences of 

outliers. Furthermore, they recommended 

using the Robust Hotelling’s T
2 

charts that 

depend on the trimmed mean and the 

modified of the MCD estimators when the 

amount of outliers is small. They also 

recommended using the other two robust 

Hotelling’s T
2
 statistic of MVE and MCD 

when the detection of outliers is more 

important. 

Abu-Shawiesh and Abdullah (2001) 

developed a new robust Shewart-type control 

chart for monitoring the location of a 

bivariate process and examine its behavior 

based on the Hodges-Lehamnn and Shamos-

Bickel-Lehmann estimators. A numerical 

example is given to illustrate the use of the 

proposed method. Its performance was 

investigated using a simulation study. 

Abu-Shawiesh et al. (2012) proposed a new 

bivariate control chart for m sub-groups 

based on the robust estimators as an 

alternative to the Hotelling’s T
2
 control 

chart. The location vector and the variance-

covariance matrix for the new control chart 

are obtained using the sample median, the 

median absolute deviation from the sample 

median, and the comedian estimator. The 

performance of the proposed 6 method in 

detecting outliers is evaluated and compared 

with the Hotelling’s T
2
 method by using a 

Monte-Carlo simulation study. 

In some industrial setting we come across 

with individual observations. This situation 

occurs frequently in the chemical and 

process industries. Since these industries 

frequently have multiple quality 

characteristics that must be observed, 

multivariate control chart with individual 

observation would be of interest in these 

situations (Montgomery, 2009). Since Alfero 

and Ortega (2009) suggested MVE and 

MCD among four methods and Abu-

Shewiesh et al. (2012) proposed        
  

for m sub-groups, this paper make an attempt 

to consider several bivariate control charts, 

namely, Hotelling’s T
2
,        

 ,     
 , and 

    
  to monitor individual observations. 

The organization of the paper is as follows. 

The proposed bivariate robust control chart 

along with the other two methods are 

discussed in section 2. To compare the 

performance of the proposed robust control 

chart, a simulation study has been conducted 

in section 4. To illustrate the use of the 

proposed methods, two real life data 

examples are analyzed in section 4. Section 

5 ends up with some conclusions. 

 

2. Bivariate Robust Control Charts 
 

In this section we will review several 

bivariate control charts, namely, Hotelling’s 

T
2
,        

 ,     
 , and     

  to monitor 

individual observations.  

 

2.1. The proposed Robust Bivariate 

Robust Control Chart 
 

Following Abu-Shawiesh et al. (2012), we 

present the algorithm for the robust bivariate 

control chart. We assume that the process 

characteristics (X1, X2) are generally 

correlated and follow some symmetric and 

continuous bivariate distribution. The null 

hypothesis, H0, represents the state of 

statistical control. In particular, the 

hypothesis of interest would be: 

 

   (   )   (     )  
vs                                 (3) 

    (   )  (     ) 

 

where (   ) is the median estimator of the 

process. We also assume, without loss of 

generality, that the in-control median 

(     ) = (0,0). Our proposed control chart 

constitutes the plotting of the         
  

statistic computed from successive random 

samples from the process. The process is in-
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control if the plots are within the control 

region defined by the acceptance region of 

the test. This control region is specified by 7 

an upper control limit, UCL, where UCL is 

defined as the (   )      percentile of 

the associated statistic under the null 

hypothesis and α is the probability of a false 

alarm. For our proposed method, the null 

hypothesis, H0, is rejected if the value of the 

statistic        
  is too large. That is, for the 

significance level, α, H0, is rejected 

if        
 >Tα where Tα is the (   )      

percentile of the statistic        
  under the 

null hypothesis, H0, and it will represent the 

UCL value. This value will be determined 

later by a simulation study for different 

values of sample size n and significance 

level α. Suppose that we have p variables x1, 

x2, …, xn. Each variable consists of n 

observations. In this paper the value of p 

considered 2, then using individual 

observation we do the following: 

1) Calculate the MED estimators as 

follows:  

 

     ,    -   , j=1,2 

 

2) Calculate the MAD estimators as 

follows:  

 

               {|       *  +|}, 

i=1,2,...,n; j=1,2 

 

3) The 2-by-2 sample variance-covariance 

matrix for the two variables X1 and X2 can 

be constructed as follows:  

 

      [
(   (  ))

 
   (     )

   (     ) (   (  ))
 ]  

 

which is robust and positive definite matrix. 

The diagonal elements are the square of the 

MAD of    that is,     
         and  

   (     )
    ,(       *             +)(   
    *             +)- 
 

4) Calculate the inverse of the matrix 

    , that is     
  . 

 

5) Determine the statistic,         
  

 (      )
     
  (      )   

        

  
6) The control limits will be determined 

through a Monte-Carlo simulation study.  

 

7) Plot the values of the statistic 

        
 on the control chart.  

 
8) If any value of         

  is falling 

outside the control limits, then the process is 

considered to be an out of control.  

 

2.2. Robust MVE Control Chart 
 

Following Jensen et al. (2007) and Vargas 

(2003), a robust alternative to Hotelling T
2 

statistic is defined as 

 

     
   (    ̅   )

     
  (    ̅   )  

 

where  ̅    and      are MVE mean vector 

and scale estimators respectively. The 

statistical software R is used to calculate 

MVE estimates based on a genetic 

algorithm. The computing program is 

available from the authors upon request. 

More details on MVE method we refer 

Vargas (2003), Jensen et al. (2007) and 

Alfaro and Ortega (2009) among others. 

 

Following Jensen et al. (2007) and Vargas 

(2003), a robust alternative to Hotelling T
2 

statistic is defined as 

 

     
   (    ̅   )

     
  (    ̅   ) 

 

where  ̅    and     are MDC location and 

scale estimators respectively. The statistical 

software R is used to calculate MVE 

estimates based on a genetic algorithm. The 

computing program is available from the 

authors upon request. More details on MCD 

method we refer Vargas (2003), Jensen et al. 
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(2007) and Alfaro and Ortega (2007) among 

others. 

 

3. The Simulation Study 
 

Since, the distributions of        
      

  

and     
  are not known, a 

theoreticalcomparison among different 

methods are not possible, a simulation study 

has beenconducted to compare the 

performance of the three robust methods. We 

used the R software to conduct this 

simulation. 

 

3.1. The General Simulation and Results 
 

The simulation series considered the 

bivariate normal distribution for sample sizes 

n = 25, 50 and 100. Moreover, we 

considered the bivariate contaminated 

normal distribution (10% and 20%). Each 

simulation run consisted of 5000 replications 

of size n. The control limits were determined 

from the 5000 simulations, such that the 

false alarm probability is 0.05, which is 

widely used level of significance. We will 

consider the mean vector   .
 
 
/ and the 

variance-covariance matrix    .
  
  

/. 

The simulated upper control limits (UCL) 

for all methods are given in Table 1. The 

lower control limits for all methods are set to 

zero. From Table 1 we observed that as 

sample size increase the control limits for all 

robust methods decrease, while the UCL for 

Hotelling’s T
2 

remain almost the same. For 

very large sample size, one may expect a 

constant UCL for all methods. However, the 

upper limit of        
  

is close to Hotelling 

T
2
 than MCD and MVE. The limits of     

  

    
  are very close to each other. It can also 

be noticed that the control limit of 

       
  is between control limits of T

2
 and 

    
      

 .  

 

Table 1: The Simulated UCL for all T
2
 

Control Charts 
Sample 

Size (n)  

 

T2     
      

         
  

25 5.989 13.488  14.257  7.724 

50 5.987  9.271  9.656  6.705 

100 5.96 7.57  7.77  6.28 

 

3.2. Simulation with Outliers 
 

The probability of detecting a change 

depends on the values of       and    but it 

does not depend on the value of   , 

therefore, we can, without loss of generality, 

use    .
 
 
/. We consider the proportion of 

outliers (ε) as 0, 0.1 and 0.2. We use 5000 

replications for different sample sizes where 

n = 15, 25, 50 and 100. We have used 

α=0.05 for the simulation study. We 

calculated the percentage of detection of all 

outliers and the percentage of false alarms in 

parentheses which is estimated as the 

proportion of statistic values that are above 

the control limits in the 5000 replications. To 

perform the simulation study with outliers, 

we consider the following three cases: 

 

a) Independent Variables  
In this case, the two variables (Quality 

Characteristics)    and    are assumed to be 

independent. The contaminated normal 

model considered is as follows: 

 

    (   ) (    )    (     )         (4) 

 

where we consider    to be a vector of size 

2. Its elements are all 0 (there is no 
change) or 3 or 5 and    is the identity matrix 

of size 2, that is, there are different sized 

changes in the average of the two 

independent variables    and   . The results 

of this simulation study are given in Table 2. 
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Table 2. Percentage of Detection of all Outliers and the Percentage of False Alarms (within 

parenthesis) for all methods 

Sample  

Size (n)  

     T
2
     

      
         

  

25 0 (0,0)  4.92  5.04  4.96  4.88  

0.1 (3,3)  

(5,5)  

44.5(2.7)  

57.2(2.2)  

73.3(3.4)  

98.9(3.5)  

74.2(3.4)  

99.5(3.4)  

73.9(2.7)  

98.9(2.5)  

0.2 (3,3)  

(5,5)  

19.5(2.4)  

23.2(2.0)  

57.8(2.4)  

96.9(2.1)  

59.6(2.6)  

96.9(2.2)  

46.8(1.3)  

87.3(1.1)  

50 0 (0,0)  4.99  5.11  5.14  4.91  

0.1 (3,3)  

(5,5)  

49.6(2.3)  

67.7(1.8)  

85.6(3.2)  

100(3.4)  

88.1(3.3)  

100(3.5)  

83.8(2.3)  

100(2.4)  

0.2 (3,3)  

(5,5)  

19.4(2.2)  

23.6(1.9)  

73.3(2.0)  

99.8(2.3)  

76.1(2.2)  

99.9(2.4)  

55.6(1.0)  

96.3(0.9)  

100 0 (0,0)  5.04  5.15  5.17  5.17  

0.1 (3,3)  

(5,5)  

53.0(2.3)  

74.6(1.9)  

92.5(3.8)  

100(3.9)  

93.4(3.8)  

100(3.9)  

87.7(2.4)  

100(2.3)  

0.2 (3,3)  

(5,5)  

20.0(2.1)  

22.2(1.9)  

83.9(2.6)  

100(3.0)  

86.7(2.6)  

100(2.9)  

62.1(0.9)  

99.2(0.8)  

 
From Table 2 we observe that if the 

variables are assumed to be independent and 

the outliers are present, the proposed robust 

method,     
  and     

  perform better than 

the Hotelling’s T
2
 control chart in the sense 

of high power. The Hotelling’s T
2
 has the 

lower false alarm rate compare to MCD and 

MVE. However, its power is the worse 

among four methods. Our proposed robust 

method        
  has the lowest false alarm 

rate while keeping high power similar to 

    
  and      

 . 

 

b) Correlated Variables  

In this case, two variables,   and    are 

assumed to be correlated. The contaminated 

normal model considered is as follows: 

 

    (   ) (    )    (     )      (5) 

 

where we consider   to be a vector of size 2 

where the elements of the vector are all 0 

(there is no change) or 5, which shows 

outliers (observations out of control) in the 

two variables, and   to be a matrix of size 2 

given as     .
    
    

/. This value of    

is used in order to analyze whether the 

correlation coefficient level affects the 

detection probability. The results of this 

simulation study are given in Table 3. 

 

Table 3. Percentage of Detection of all Outliers and the Percentage of False Alarms for all 

methods Methods 

Sample  

Size (n)  

     T
2
     

      
         

  

25 0 (0,0)  4.92  5.04  4.96  4.88  

0.1 (3,3)  

(5,5)  

44.5(2.7)  

57.2(2.2)  

73.3(3.4)  

98.9(3.5)  

74.2(3.4)  

99.5(3.4)  

73.9(2.7)  

98.9(2.5)  

0.2 (3,3)  

(5,5)  

19.5(2.4)  

23.2(2.0)  

57.8(2.4)  

96.9(2.1)  

59.6(2.6)  

96.9(2.2)  

46.8(1.3)  

87.3(1.1)  

50 0 0,0)  4.99  5.11  5.14  4.91  

0.1 (3,3)  49.6(2.3)  85.6(3.2)  88.1(3.3)  83.8(2.3)  
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(5,5)  67.7(1.8)  100(3.4)  100(3.5)  100(2.4)  

0.2 (3,3)  

(5,5)  

19.4(2.2)  

23.6(1.9)  

73.3(2.0)  

99.8(2.3)  

76.1(2.2)  

99.9(2.4)  

55.6(1.0)  

96.3(0.9)  

100 0 0,0)  5.04  5.15  5.17  5.17  

0.1 (3,3)  

(5,5)  

53.0(2.3)  

74.6(1.9)  

92.5(3.8)  

100(3.9)  

93.4(3.8)  

100(3.9)  

87.7(2.4)  

100(2.3)  

0.2 (3,3)  

(5,5)  

20.0(2.1)  

22.2(1.9)  

83.9(2.6)  

100(3.0)  

86.7(2.6)  

100(2.9)  

62.1(0.9)  

99.2(0.8)  

 

From Table 3 we observe that if the 

variables are assumed to be correlated and 

the outliers are present, the        
 ,     

  

and     
  perform better than the Hotelling’s 

T
2
 control chart in the sense of high power. 

The Hotelling’s T
2
 has the lower false alarm 

rate compare to MCD and MVE. However, 

its power is the worse among four methods. 

For small contamination,        
 , method 

has the lowest false alarm rate and the 

highest power. However, in other situations 

the powers are comparable to MVE and 

MCD. 

 

c) Correlated Variables and Regression 

Outliers 

Here, the two variables   and    are 

assumed to be correlated and regression 

outliers are introduced. The contaminated 

normal model considered is as follows: 

 

    (   ) (    )    (     )      (6) 

 

where we consider    to be a matrix of size 

2 given as    .
    
    

/ and    to be a 

vector of size 2 where the elements of the 

vector are all 0 (there is no change) or 5, or a 

vector of size 2 with a -1.5 and for the other 

values, which shows regression outliers, and 

   to be a matrix of size 2 given as    

.
    
    

/. This case of comparison is 

known as regression outliers. Results of this 

simulation study are given in Table 4. 

 

Table 4. Percentage of Detection of all Outliers and the Percentage of False Alarms for all 

methods 

Sample  

Size (n)  

     T
2
     

      
         

  

25 0  (0,0)  4.8  4.8  4.8  4.7  

0.1  (3,3)  

(5,5)  

59.7(2.0)  

63.2(2.0)  

98.8(3.4)  

100(3.4)  

98.9(3.4)  

100(3.4)  

98.6(2.6)  

100(2.7)  

0.2  (3,3)  

(5,5)  

29.4(1.9)  

28.0(1.8)  

98.0(2.0)  

99.2(2.1)  

98.2(2.0)  

99.2(2.2)  

96.5(1.1)  

99.8(1.1)  

50 0  0,0)  5.0  5.2  5.2  5.1  

0.1  (3,3)  

(5,5)  

63.8(1.8)  

71.3(1.6)  

99.4(3.2)  

100(3.4)  

99.3(3.4)  

100(3.5)  

99.2(2.3)  

100(2.3)  

0.2  (3,3)  

(5,5)  

30.6(1.7)  

29.0(1.7)  

99.3(2.2)  

100(2.2)  

99.3(2.3)  

100(2.2)  

98.0(0.8)  

100(0.8)  

100 0  0,0)  5.1  5.5  5.3  5.2  

0.1  (3,3)  

(5,5)  

67.2(1.7)  

78.8(1.6)  

99.3(4.1)  

100(4.0)  

99.4(4.0)  

100(4.0)  

99.1(2.3)  

100(2.4)  

0.2  (3,3)  

(5,5)  

31.3(1.7)  

28.9(1.7)  

99.2(2.9)  

100(2.9)  

99.2(2.9)  

100(2.8)  

98.4(0.7)  

100(0.7)  
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From Table 4 we observe that if the 

variables are assumed to be correlated and 

the outliers are present, the         
 , 

    
 and     

  perform better than the 

Hotelling’s T
2
 control chart in the sense of 

high power. The Hotelling’s T
2
 has the lower 

false alarm rate compare to MCD and MVE. 

However, its power is the worse among four 

methods. For all possible conditions, our 

proposed robust method, T2MEDMAD has 

the lowest false alarm rate and the highest 

power. 

 

4. Applications 
 

To illustrate the procedure of the robust 

bivariate control charts, we will consider two 

real life data examples in this section. 

4.1. Example 1 

 

Consider a production process data given by 

Quesenberry (2001). The original data 

consists of 11 quality variables 

(characteristics) and measured on 30 

products form a production process. For our 

comaprison purposes we consider 25 

observarions from the first two variables and 

provided them in Table 5. The first and 

fourth columns are the production numbers 

and second, third, fifth and sixth columns are 

the observed values of production quality 

variables (X1, X2). The sample mean vectors 

and sample covarinace matrices for all 

methods are given in Table 6. 

 

 
Table 5. Variable 1 ans 2 of Quesenberry (2001) data set. 
Product 

Number  

X1  X2  Product 

Number  

X1  X2  

1  0.567  60.6  14  0.458  61.1  

2  0.538  56.3  15  0.554  59.8  

3  0.53  59.5  16  0.469  58.6  

4  0.562  61.1  17  0.471  59.6  

5  0.483  59.8  18  0.457  59.7  

6  0.525  60.2  19  0.565  60.9  

7  0.556  60.8  20  0.664  60.2  

8  0.586  59.8  21  0.6  60.5  

9  0.547  60.2  22  0.586  58.4  

10  0.531  60.6  23  0.567  60.2  

11  0.581  59.8  24  0.496  60.2  

12  0.585  59.7  25  0.485  59.5  

13  0.54  60.5     

 

Table 6. Sample mean vector and covariance 

matrix 
Method  Mean 

vector  

Covarinace matrix  

Hotelling 

T2 
.
     
     

/ .
            
            

/ 

       
  .

     
     

/ .
            
            

/ 

    
  .

     
     

/ .
            
            

/ 

    
  .

     
     

/ .
             
             

/ 

 

Using α = 0.05, the upper control limits for 

the all T
2
,        

 ,     
  and     

  control 

charts from Table 1 are found to be 5.989, 

7.724, 14.257 and 13.480 respectively. The 

resulting control charts are given in Figure 1. 

From Figure 1, we can see that the sample 

number 2 is out of control by all methods. 

However, the sample number 22 is out of 

control by MEDMAD and MVE methods. 

The sample number 20 is out of control by 

Hotelling T
2
 statistic. 
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Figure 1. The Control Charts for production process data (Quesenberry, 2011) using the 

Hotelling's T
2
,        

 ,     
  and     

  methods 

 

4.2. Example 2 

 

Consider a production process data given by 

Montgomerry (2009). The original data 

consists of 4 quality variables 

(characteristics) and measured on 30 

products form a production process. For our 

comaprison purposes we consider first 25 

observarions from the first two variables and 

provided them in Table 7. The first and 

fourth columns are the production numbers 

and second, third, fifth and sixth 15 columns 

are the observed values of production quality 

variables (X1, X2) The sample mean vectors 

and sample covarinace matrices for all 

methods are given in Table 8. 

 

 

Table 7. Variable 1 ans 2 of Montgomery (2009) data set 
Product 

Number  

X1  X2  Product 

Number  

X1  X2  

1  10  20.7  14  10  19.8  

2  10.5  19.9  15  8.5  19.2  

3  9.7  20  16  9.7  20.1  
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4  9.8  20.2  17  8.3  18.4  

5  11.7  21.5  18  11.9  21.8  

6  11  20.9  19  10.3  20.5  

7  8.7  18.8  20  8.9  19  

8  9.5  19.3  21  9.9  20  

9  10.1  19.4  22  8.7  19  

10  9.5  19.6  23  11.5  21.8  

11  10.5  20.3  24  15.9  24.6  

12  9.2  19  25  12.6  23.9  

13  11.3  21.6     

 

Table 8. Sample mean vector and covariance 

matrix 
Method  Mean vector  Covarinace 

matrix  

Hotelling T2 .
  
  
/ .

          
          

/ 

       
  .

    
     

/ .
          
          

/ 

    
  .

     
      

/ .
          
          

/ 

    
  .

     
      

/ .
          
          

/ 

Using α = 0.05, the upper control limits for 

the T
2
,        

 ,     
  and     

  control 

charts from Table 1 are found to be 5.989, 

7.724, 14.257 and 13.480 respectively. The 

resulting control charts are given in Figure 2. 

From Figure 2, we can see that the sample 

number 24 and 25 are out of control by all 

methods. 

 

 
Figure 1. The Control Charts for production process data (Montgomerry, 2009) using the 

Hotelling's T
2
,        

 ,     
  and     

  methods 

 



 

194                                M.O.A. Abu-Shawiesh, F.George, D.M.G. Kibria 

5. Conclusions and Further 

Research 
 

This paper compared several bivariate 

control charts which are based on robust 

estimators as an alternative to the Hotelling’s 

T2 control chart. Since a theoretical 

comparison is not possible, we have done 

simulation for three cases: (i) independent 

variables (ii) correlated variables and (iii) 

correlated variables and regression outliers. 

From the simulation study we observed that 

the robust methods,        
 ,     

 ,     
 . 

However, the proposed robust 

method,        
  has the lowest false alarm 

rate while having the highest power. The 

research in this paper is limited with two 

variables and the application of individual 

observations. The processes with more than 

two variables and with sub groups might be 

of interest for the practitioners. Such 

research possibilities are under our current 

investigation. 
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