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HIV-infected individuals continue to experience neurocognitive deterioration despite virologically successful treatments. While
the cause remains unclear, evidence suggests that HIV-associated neurocognitive disorders (HAND) may be associated with
neurobehavioral dysfunction. Genetic variants have been explored to identify risk markers to determine neuropathogenesis of
neurocognitive deterioration. Memory deficits and executive dysfunction are highly prevalent among HIV-infected adults. These
conditions can affect their quality of life andHIV risk-taking behaviors. Single nucleotide polymorphisms in the SLC6A4,TPH2, and
GALM genesmay affect the activity of serotonin and increase the risk ofHAND.Thepresent study explored the relationship between
SLC6A4, TPH2, andGALM genes and neurocognitive impairment in HIV-infected alcohol abusers. A total of 267 individuals were
genotyped for polymorphisms in SLC6A4 5-HTTLPR, TPH2 rs4570625, andGALM rs6741892. To assess neurocognitive functions,
the Short Category and the Auditory Verbal Learning Tests were used. TPH2 SNP rs4570625 showed a significant association with
executive function inAfricanAmericanmales (odds ratio 4.8, 95%CI, 1.5–14.8;𝑃 = 0.005). Similarly,GALM SNP rs6741892 showed
an increased risk with African Americanmales (odds ratio 2.4, 95%CI, 1.2–4.9; 𝑃 = 0.02).This study suggests that TPH2 rs4570625
and GALM rs6741892 polymorphisms may be risk factors for HAND.

1. Introduction

The development of combination antiretroviral therapy
(ART) has mitigated the severity of the human immunod-
eficiency virus (HIV) epidemic. Therapeutic advances have
transformed HIV/AIDS from a life-threatening illness to
a chronic condition [1]. Despite substantial improvements
in life expectancy and a lower incidence of HIV-associated
neurocognitive disorders (HAND), neuropsychological and
neurocognitive deficits continue to be highly prevalent [2].
Clinical neurocognitive manifestations of HAND in the ART
era differ from the typical AIDS dementia complex [1]. In the
pre-ART era, a progressive subcortical dementia with motor
and cognitive slowing was common.

However, today more cortical than subcortical involve-
ment is often reported [3, 4]. HAND encompasses a range of
cognitive impairments, including slowed processing and defi-
cient memory and attention, decreased executive function,

and behavioral changes, such as apathy or lethargy [5].
Although this type of impairment is much more subtle than
the classic HIV dementia, it still affects daily function, quality
of life, and antiretroviral adherence and can increaseHIV risk
behaviors [1, 6]. Asymptomatic or minimally symptomatic
neurocognitive disorders aremore prevalent in individuals in
the current ART era than in the pre-ART era [7]. The causes
of continuing high rates of HIV-associated neurocognitive
disorder in the ART era are uncertain [7]. Comorbid disor-
ders such as aging, coinfection with hepatitis C, and drug
abuse may act as moderators of neurocognitive decline [7, 8].
However, there is a need to identify additional risk markers
for the development of HAND [9].

Cognitive control processes regulating thought and
action are multifaceted functions influenced by heritable
genetic factors and environmental influences [10].The conse-
quences of cognitive impairment are seen by the large range
of both neurologic and neuropsychiatric disorders that affect
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the quality of life [8, 11, 12]. Cognitive impairment is highly
heritable, and individual differences in executive function
andmemory are influenced by genetic variations [13]. Several
studies have demonstrated associations between serotonin
polymorphisms with sustained attention, memory, and exec-
utive function phenotypes in both clinical and nonclinical
populations [14–17]. Furthermore, cognitive neuroscience
and pharmacology associate dopamine and serotonin as neu-
romodulators of executive function [10]. Executive function
is part of a system that acts in a supervisory capacity in
the brain through planning, decision making, and response
control for purposeful goal-directed behavior [18]. Memory
is a subclass of cognitive function, divided into long-term and
short-term (working)memory. Long-termmemory is further
divided into explicit and implicit memory [19].

Serotonin pathways arise from the dorsal and ventral
raphe nuclei to innervate cortical and subcortical brain
regions, including the limbic forebrain, basal ganglia, frontal
cortices, thalamus, and the hypothalamus [20]. The neu-
rotransmitter serotonin, 5-hydroxytryptamine (5-HT), is
implicated in the pathophysiology of several psychological,
behavioral, and psychiatric disorders [21]. Molecular genetics
studies on 5-HT have shown that single nucleotide polymor-
phisms in theTPH2 and SLC6A4 are associatedwith impaired
memory and executive function [21–23]. SLC6A4 (solute car-
rier family 6, member 4) encodes the serotonin transporter
that affects serotonergic neurotransmission by reuptake of
synaptic serotonin, ending neurotransmission [24]. Sero-
tonin reuptake variation is linked to a functional polymor-
phism in the promoter region of the SLC6A4 on chromosome
17q11.1–q12 [24]. Polymorphisms within SLC6A4 have influ-
enced memory regulation, decision making, and response
inhibition capabilities [21–23].

The TPH2 (tryptophan hydroxylase 2) gene encodes a
member of the protein-dependent aromatic acid hydrox-
ylase family [15]. It is the rate-limiting enzyme of 5-HT
synthesis in the brain, which transforms tryptophan into 5-
hydroxytryptophan, the direct precursor of 5-HT [16, 25].The
functional SNP rs4570625 is found within the transcriptional
region of TPH2 on chromosome 12p21.1 [15]. Evidence of
TPH2 variations playing a role in cognition comes from stud-
ies implicating TPH2 in the pathophysiology of ADHD and
obsessive compulsive disorder [26–28]. Studies have shown
that the homozygous TT genotype in SNP rs4570625 is asso-
ciated with poorer executive function compared to GG and
GT genotypes [15, 22]. These studies showed a compensatory
adjustment of deficits in executive control functions [16, 29].

The GALM (galactose mutarotase) gene catalyzes the
conversion of beta-D-galactose to alpha-D-galactose, which
may affect regional neurophysiology, leading to local in-
creases in serotonin release in the brain [30]. A genome-
wide association study (GWAS) found a strong association
between thalamic region and a coding SNP rs6741892 in
GALM using the tracer [11C]DASB-BPND, used to measure
brain serotonin transporter levels [31].

The study demonstrated that SNP rs6741892 accounted
for about 50% of the variance in [11C]DASB-BPND binding
potential in the thalamus, especially for the TT genotype
[31]. There is accumulated evidence from genetic studies

suggesting that genetically determined polymorphisms in
serotonin-related genes may amplify differences in cognitive
performance measures in individuals with already impaired
cognition [32, 33].

The present study explored potential associations with
SLC6A4 5-HTTLPR, TPH2 rs4570625, and GALM rs6741892
polymorphism and cognitive functions in HIV-infected
adults. As described in this section, the existing literature on
serotonin genetics and cognition is in HIV-uninfected pop-
ulations. The present study explored potential associations
with SLC6A4 5-HTTLPR, TPH2 rs4570625, and GALM
rs6741892 polymorphisms and cognitive functions in HIV-
infected adults, using a number of cognitive measures
reported to be valid and reliable [34, 35].

2. Methods

The participants in this study were previously outlined in the
study by Villalba et al. [36].

2.1. Genotyping. DNA was extracted from whole blood by
manual extraction using the QIAamp DNAMini Kit (Valen-
cia, CA). Genotyping for TPH2 and GALM SNPs was
conducted using TaqMan® SNP Genotyping Assays (Foster
City, CA) on Bio-Rad CFX96™ real-time PCR instrument
(Hercules CA). Polymerase Chain Reaction (PCR) ampli-
fications were performed by using the Probes Supermix.
For the promoter variant called 5-HTTLPR, Bio-Rad CFX
Manager software (version 3.0) was used for data acquisition
and genotype assignment. The primer sequences used for
the 5-HTTLPR amplification were obtained from a previous
study [30].The sequences were as follows: 5-GCTCTGAAT-
GCCAGCACCTAAC-3 (forward primer) and AGAGGG-
ACTGAGCTGGACAACCAC-3 (reverse primer) amplify-
ing 522 bp for the 16-repeat allele and 478 bp for the 14-
repeat allele [30]. All genotyping was performed blindly with
unknown clinical status or background data on the samples.

2.2. Neurocognitive Assessment. All participants were as-
sessed on the same battery of neurocognitive tests and in the
same order. Verbal memory was measured with the Audi-
tory Verbal Learning Test (AVLT), using the version World
Health Organization/University of California Los Angeles
(WHO/UCLA) [37], and executive function was measured
by the Short Category Test (SCT) [38]. Alcohol use and other
drugs of abuse were also measured using the Timeline Fol-
lowback (TLFB) and theAlcoholUseDisorders Identification
score [39]. There are no agreed criteria to measure HIV-
associated neurocognitive disorders. However, the Frascati
criteria have been validated and are widely used to classify
HIV impairments [3].TheFrascati criteriawere used to deter-
mine cognitive impairment for asymptomatic neurocogni-
tive impairment (ANI), mild neurocognitive impairment
(MND), andHIV-associated dementia (HAD) [40] (Table 1).

2.2.1. Auditory Verbal Learning Test. The AVLT assessment
was based on a five-trial presentation of a 15-noun word list
(list A) with a presentation rate of one word per second.
On completion of trial 5, a single word presentation of a
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Table 1: Categories of HIV-associated neurocognitive disorder according to Frascati criteria.

Neurocognitive status∗ Functional status
Asymptomatic
neurocognitive impairment 1 SD below the mean in 2 cognitive domains No impairment in activities of daily living

Mild neurocognitive
impairment or disorder 1 SD below the mean in 2 cognitive domains Impairment in activities of daily living

HIV-associated dementia 2 SD below the mean in 2 cognitive domains Notable impairment in activities of daily living
SD: standard deviation.
∗Neurocognitive testing should include an assessment of at least five domains, including attention-information processing, language, abstraction-executive,
complex perceptual motor skills, memory (including learning and recall), simple motor skills, or sensory, perceptual skills.

Table 2: Genotype frequencies and cognitive scores for AVLT and SCT tests.

Chr. Position Gene Variant Minor allele A/A A/B B/B MAF Cognitive T-scores
Mean (SD)

12 12:71938143 TPH2 rs4570625 T 93 120 47 0.18 40.6 (15.1)
2 2:38689828 GALM rs6741892 T 90 114 60 0.22 47.4 (9.8)

15-noun word interference list (list B) was presented. The
test measured retention, learning, and recognition rates with
higher scores representing better episodic memory [41, 42].
This instrument demonstrates high test-retest reliability, with
alpha scores ranging from 0.51 to 0.72 [43].

2.2.2. Short Category Test. The SCT assessment consisted of
five booklets, one for each subtest, with 20 cards per subtest.
All of the cards within each subtest were organized according
to a single principle. The test required the individual to for-
mulate an organizing concept for each subtest.The number of
errors on each booklet was added to determine impairment
with lower scores representing better executive function [38].
Test-retest coefficients range from 0.60 to 0.96, depending
upon the severity of impairment in the sample [38].

3. Analysis

Statistical analyses were performed using Stata v.11 (Stat-
aCorp, College Station, TX). Pearson’s 𝑋2, Student’s 𝑡-test
(for means), or median test (for medians) was used to com-
pare characteristics between the participants and nonpar-
ticipants. To standardize cognitive measures for this study,
standardized T-scores were developed by using multiple
linear regression methods analyzing the influence of age,
sex, education, and ethnicity on each cognitive test score.
Each of the five cognitive domains was included as depen-
dent variables: memory (recognition measures form AVLT)
executive function (number of errors on the SCT). The
continuous predictor was age, and categorical predictors were
sex, education, and race/ethnicity. All the predictors in the
model were included in each regression, retaining only the
variables that significantly contributed to the prediction of
cognitive test score. These predictive scores were subtracted
from each individual’s actual composite score to calculate
residual scores. Finally, residual scores were converted to T-
scores (mean = 50 and SD = 10) which were used to deter-
mine cognitive impairment for asymptomatic neurocognitive

impairment (ANI).Mild neurocognitive impairment (MND)
and HIV-associated dementia (HAD) were not part of the
analyses due to small number of participants with MND
and HAD. Logistic methods were used to calculate crude
and multifactorial (self-reported ethnicity/race, alcohol use
severity, viral load, CD4 count, cannabis, and cocaine use)
adjusted odds ratios (OR), including 95% confidence inter-
vals (CIs). The ORs, with 95% CIs, were used as a measure
of effect size. Test for interaction was performed. Bonferroni
method was used for correction for multiple comparisons.
All statistical tests were two-tailed, and the threshold for
statistical significance was set at𝑃 < 0.05. Ethnic and gender-
specific associations were calculated through stratified anal-
yses. Whenever possible the STREGA reporting guidelines
for genetic association studies were used. Genotyping counts
were tested for Hardy-Weinberg equilibrium using an exact
test. By default, the additive genetic model was used, but due
to previous associations in the recessive model for SCL6A4,
the recessive model was also used.

4. Results

A total of 267 HIV-infected alcohol abusers completed the
study. Please refer to the study by Villalba et al. [36] for
participant characteristics. The Frascati criteria were used
to measure neurocognitive impairment. Asymptomatic neu-
rocognitive impairment, greater than one standard deviation
below the mean, was observed in 125 (47%) and mild
neurocognitive impairment, greater than two standard devi-
ations below the mean, was seen in 11 (4%). HIV-associated
dementia was not observed (executive function: mean = 45.2,
SD = 10.9; memory: mean = 40.0, SD = 9.1).

Genotyping results, including genotype frequencies, are
presented inTables 2 and 3. All SNPswere inHardy-Weinberg
equilibrium. Analyses yielded significant associations with
executive function and TPH2 and memory and GALM
genetic polymorphisms.

Whereas 5-HTTLPR polymorphism did not show an
association with cognitive flexibility as previously suggested



4 Genetics Research International

Table 3: TPH2 and GALM associations with cognitive impairment stratified by sex and race/ethnicity (ORs and 95% CIs).

Gene Variant Domain OR allele
(95% CI) 𝑃 value

OR sex
(95% CI) 𝑃 value

OR race
(95% CI) 𝑃 value

OR race ×
sex (95%

CI)
𝑃 value

TPH2 rs4570625 Executive function 2.5 (1.1 to
4.9) 𝑃 = 0.02

4.0 (1.6 to
10.5) 𝑃 = 0.007 3.3 (1.4 to

7.6) 𝑃 = 0.007
4.8 (1.5 to
14.8) 𝑃 = 0.005

GALM rs6741892 Memory 1.9 (1.2 to
3.1) 𝑃 = 0.006

2.3 (1.2 to
4.2) 𝑃 = 0.009 1.9 (1.1 to

3.6) 𝑃 = 0.02
2.4 (1.2 to

4.9) 𝑃 = 0.02

OR stratified by sex, OR stratified by race, OR stratified by sex and race.

[27], the SNP rs4570625 of TPH2 gene showed an overall
association in the dominant model with impaired executive
function (odds ratio = 2.5, 95% CI, 1.1–4.9; 𝑃 = 0.02). Fur-
thermore, the association showed an increased risk in males
(odds ratio = 4.0, 95% CI, 1.6–10.5; 𝑃 = 0.007), not in
females (𝑃interaction = 0.08 for sex). Greater risk was observed
in African American males (odds ratio 4.8, 95% CI, 1.514.8;
𝑃 = 0.005). For the SNP rs6741892 of the GALM gene, a
significant association with impaired memory (odds ratio =
1.9, 95% CI, 1.2–3.1; 𝑃 = 0.006) was observed. The risk again
was increased inAfricanAmericanmales (odds ratio 2.4, 95%
CI, 1.2–4.9; 𝑃 = 0.02). Results from this study showed that
the associations between serotonin genes and asymptomatic
neurocognitive impairment are male-specific. When strati-
fied by race/ethnicity, results were only significant in African
Americans; Caucasians and Hispanics were nonsignificant.
The interaction between GALM and THP2 polymorphisms
with alcohol use was nonsignificant (𝑃 = 0.65).

5. Discussion

This study provides further evidence for the role of 5-HT
in cognition, where functional polymorphisms of two can-
didate genes in the serotonergic signaling pathway influence
executive function andmemory. Significant associationswere
found between TPH2 SNP rs4570625 and executive dys-
function and GALM SNP rs6741892 and impaired memory.
Previous studies have shown sex differences in cognition
due to dopamine genes interacting with sex and impacting
cognition. Similarly, we sought to analyze if serotonin genes
were modulated by sex.Thus, stratification by potential effect
modifiers (sex and race) showed an even greater effect in
African Americanmales but not in females. For the polymor-
phism 5-HTTLPR, no statistically significant associations
were found with neurocognitive measures. Our data suggest
that the 5-HTTLPR polymorphism is probably not a risk
factor for executive dysfunction and supports previous stud-
ies that reported no association between this polymorphism
and cognitive decline [44, 45]. However, results are mixed;
other studies provided evidence of the influence of 5HTTLPR
polymorphism on executive function [14, 46].

The findings of this study indicate that homozygous
TT genotype in SNP rs4570625 showed higher error rates
measured by the Short Category Test than TG and GG geno-
types increasing the risk for executive dysfunction. These
findings parallel and extend those of functional imaging
and molecular genetic studies suggesting that polymorphism

rs4570625 is a risk marker for executive dysfunction [27, 47,
48]. SNP rs4570625 affects the transcription rate of TPH2,
which may increase the activity of prefrontal cortex [15]. The
prefrontal cortex plays a central role in top-down control
of many higher-order executive tasks [49–51]. Additional
evidence from a functional image study showed a significant
association between SNP rs4570625 and increased activity in
several prefrontal and parietal sites during updating of work-
ingmemory [48].The authors suggested that the effect of SNP
rs4570625 was not specific for attention, impulse control, or
working memory, rather it seemed to reflect one common
basal cognitive process [48].These studies showed a compen-
satory adjustment of deficits in executive control functions
[15, 16]. Similarly, results in this study are in line with studies
suggesting increased prefrontal activity due to serotonin
dysregulation affecting executive function [14, 52–54].

Behavioral studies have demonstrated that executive dys-
function (i.e., poor learning) is central to HIV-neurocog-
nitive impairment andmost likely affects behaviors, including
adherence to antiretroviral medication and unemployment
(or underemployment) [7].

Heaton and colleagues found that medically asymp-
tomatic HIV-infected adults with executive dysfunction were
twice as likely to be unemployed and perceived greater voca-
tional difficulties than their unimpaired counterparts [55].
Similarly, another study showed that, for recently diagnosed
individuals, the key predictors for finding employment were
learning and memory [56].

This study is the first to analyze the functionality of the
GALM SNP rs6741892 in relation to 5-HT transporter. Thus,
a significant association between rs6741892 and impaired
memory measured by Auditory Verbal Learning Test was
found in HIV-infected adults.

The Auditory Verbal Learning Test was used because
of the repeated presentations of words and their successive
testing at various time intervals which allowed for the analysis
of different memory learning processes such as acquisition,
retention, retrieval, and interference [41]. The thalamus plays
a significant role in regulating higher level brain activity [57].
Several functional imaging studies showed a relationship
between memory processes and the thalamus [58]. Results
in this study showed an association with explicit memory
and are consistent with neuroimaging reports of compro-
mised thalamus and associated memory structures [57, 58].
Explicit memory is correlated with limited use of higher level
encoding strategies, such as semantic clustering and strategic
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retrieval.This can lead to issues involvingmedication nonad-
herence and problematic work-related issues in HIV-infected
adults [56, 59]. This study has several limitations. First, there
was relatively low frequency of homozygous TT genotype
of the TPH2 SNP. However, it should be noted that there is
relatively low occurrence of TT genotype within the general
population. In fact, compared to previous studies, the current
study included a rather high proportion of homozygous
TT genotype carriers compared to others [15, 60]. Second,
because of the low power of the study to detect smaller effect
sizes, some important associations may not have emerged as
statistically significant. Multiple comparisons were necessary
due to the exploratory nature of the study, including the
analysis of the SNP functionality in the GALM gene, as well
as the use of all three genetic models. These results should
be viewed with caution and should be replicated before a
definitive conclusion can be drawn. In general the additive
model is used to assess statistical associations of SNPs. While
the additive model has sufficient power to detect associations
in most situations, there may be occasions where statistical
significance is not found,when, in fact, there is an association.
Consequently, a strength in this study was the use of multiple
genetic models to determine associations that may remain
undetectable by the exclusive use of the additivemodel.Third,
due to the vast number of HIV antiretroviral drugs used by
study participants, we did not adjust for HIV medication
type. Since certain HIV antiretroviral drugs may also affect
cognition, this may potentially confound the results. Fourth,
two main approaches are used to approximate individual
ancestry in association with studies, self-reported race, and
ancestry informative markers. We did not use ancestry
informative markers due to DNA requirements. Instead,
we used self-reported ancestry that may capture common
environmental influences as well as ancestral background.
However, self-identified racial categories may not always
consistently predict ancestral population clusters. Finally,
since this was a cross-sectional study stemming from a
behavioral intervention trial of HIV-infected subjects, we did
not have a healthy control group. Although we adjusted for
alcohol and drug use, the results may not adequately explain
whether impairments in memory and executive function
were correlated with the presence of SNPs TPH2 rs4570625
and GALM rs6741892 or mediated by HIV and alcohol/drug
use. Alternatively, these results can serve as an initial point
for future research in cognitive phenotypes for HAND in
adults. Molecular genetics, as applied in the present study,
offers further analytic insight beyond behavioral assessment
and neuroimaging and may present a reasonable instrument
for the dissociation of different executive control processes.

This study may pave the way for future research inte-
grating the examination of genetic factors in behavioral pre-
vention interventions with HIV-infected populations. Future
studies are needed to further identify specific neurocognitive
aspects that are especially relevant to HIV-associated neu-
rocognitive disorders. Studies that incorporate genetic factors
in combination with neurocognitive testing would benefit
from also including the effects of genetic factors on cognitive
functioning in healthy individuals since gene by disorder
interactions might be expected. Furthermore, it would be

beneficial to investigate haplotypes rather than genotypes in
studies on cognitive performance in HAND. Since most of
the polymorphisms have a small relative effect on cognition,
a larger sample is optimal to detect an effect. In addition to the
genes analyzed in this study, other genes related to cognitive
function should be included. The available findings provide
preliminary information for identifying targets for cognitive
rehabilitation and other behavioral interventions.

6. Conclusion

The current study was the first to explore the relation-
ship between serotonin-related polymorphisms and asymp-
tomatic neurocognitive impairment in a sample of HIV-
infected adults. The results showed a significant association
between TPH2 rs4570625 and individual differences in exec-
utive function and GALM rs6741892 with memory. The two
associations were male-specific. The present study validates
previous results pointing to genetic influences on executive
function and memory. Moreover, a significant association
between SNP rs6741892 and memory was demonstrated,
which may imply SNP rs6741892 as a functional polymor-
phism in the GALM gene.
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