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A practical guideline for intracranial volume
estimation in patients with Alzheimer’s disease
Saman Sargolzaei1*, Arman Sargolzaei1, Mercedes Cabrerizo1, Gang Chen2, Mohammed Goryawala3, Shirin Noei4,
Qi Zhou1, Ranjan Duara5, Warren Barker5, Malek Adjouadi1

From The 11th Annual Biotechnology and Bioinformatics Symposium (BIOT-2014)
Provo, UT USA. 11-12 December 2014

Abstract

Background: Intracranial volume (ICV) is an important normalization measure used in morphometric analyses to
correct for head size in studies of Alzheimer Disease (AD). Inaccurate ICV estimation could introduce bias in the
outcome. The current study provides a decision aid in defining protocols for ICV estimation in patients with
Alzheimer disease in terms of sampling frequencies that can be optimally used on the volumetric MRI data, and
the type of software most suitable for use in estimating the ICV measure.

Methods: Two groups of 22 subjects are considered, including adult controls (AC) and patients with Alzheimer
Disease (AD). Reference measurements were calculated for each subject by manually tracing intracranial cavity by
the means of visual inspection. The reliability of reference measurements were assured through intra- and inter-
variation analyses. Three publicly well-known software packages (Freesurfer, FSL, and SPM) were examined in their
ability to automatically estimate ICV across the groups.

Results: Analysis of the results supported the significant effect of estimation method, gender, cognitive condition
of the subject and the interaction among method and cognitive condition factors in the measured ICV. Results on
sub-sampling studies with a 95% confidence showed that in order to keep the accuracy of the interleaved slice
sampling protocol above 99%, the sampling period cannot exceed 20 millimeters for AC and 15 millimeters for AD.
Freesurfer showed promising estimates for both adult groups. However SPM showed more consistency in its ICV
estimation over the different phases of the study.

Conclusions: This study emphasized the importance in selecting the appropriate protocol, the choice of the
sampling period in the manual estimation of ICV and selection of suitable software for the automated estimation
of ICV. The current study serves as an initial framework for establishing an appropriate protocol in both manual
and automatic ICV estimations with different subject populations.

Background
Alzheimer’s disease (AD), the most prevalent form of
dementia, is affecting the lives of nearly 5.4 million
Americans according to the Alzheimer’s Association
estimates. Regional cerebral atrophy are mostly asso-
ciated with this neurodegenerative disease in discrimi-
nating AD patients from cognitively normal population
[1,2]. Magnetic Resonance Imaging (MRI) is a modality

often utilized in investigating atrophied regions of cere-
brum and in diagnosing prodromal stages of AD. When
measuring morphometric features of the brain, normali-
zation is essential in order to account for the different
head sizes. Intracranial Volume (ICV) is a standard mea-
sure to correct for head size in different brain studies
and in particular in AD related literature [3-6].
The ICV measure, sometimes referred to as total intra-

cranial volume (TIV), refers to the estimated volume of
the cranial cavity as outlined by the supratentorial dura
matter or cerebral contour when dura is not clearly
detectable [7]. ICV is often used in studies involved with
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analysis of the cerebral structure under different imaging
modalities, such as Magnetic Resonance (MR) [8,9], MR
and Diffusion Tensor Imaging (DTI) [10], MR and
Single-photon Emission Computed Tomography
(SPECT) [11], Ultrasound [12] and Computed Tomogra-
phy (CT) [13,14]. ICV consistency during aging [15]
makes it a reliable tool for correction of head size varia-
tion across subjects in studies that rely on morphological
features of the brain. ICV, along with age and gender are
reported as covariates to adjust for regression analyses in
investigating progressive neurodegenerative brain disor-
ders, such as Alzheimer’s disease [4,16-20], aging and
cognitive impairment [21]. ICV has also been utilized as
an independent voxel based morphometric feature to
evaluate age-related changes in the structure of premor-
bid brain [22-26], determine characterizing atrophy pat-
terns in subjects with mild cognitive impairment (MCI)
and Alzheimer’s disease (AD) [27,28], delineate structural
abnormalities in the white matter (WM) in schizophrenia
[29], epilepsy [30-36], and gauge cognitive efficacy [37].
Of the existing protocols for calculating ICV, despite

their methodological differences, they can be classified
mainly into two broad categories, manual and automated.
Manual estimation of ICV involves segmentation of the
cranial cavity by hand in every single slice of brain
volume. The process of manual segmentation of ICV is a
tedious and lengthy process. In order to alleviate this
process, different sampling protocols as opposed to con-
sidering every slice were suggested and evaluated pre-
viously [7]. Calculating ICV following the subsampling
protocol [7] reported that no significant loss of measure-
ment reliability (0.999) was observed by segmenting ICV
every 10 sagittal slices with 0.938 mm thickness instead
of measuring ICV in every single slice. Although subsam-
pling strategies result in significant time saving, this find-
ing was limited to the normal control adult population.
Consequently, the first aim of the current study focused
on evaluating subsampling protocols for manual estima-
tion of ICV in adult control (AC) and AD population.
Automated approaches for estimating ICV are highly

desirable in order to minimize the level of manual inter-
vention required from the human rater in the estimation
procedure. Freesurfer [38], FSL [39] and SPM [40] are
three widely accepted and well-known software packages
in neuroimaging studies, which come with their own
routines for estimating ICV. Accuracy of the software
packages in estimating ICV has recently been investi-
gated [41]. The main challenge in this reliability assess-
ment is in determining if the estimated ICV through
each package is consistent over the variability exhibited
with respect to age population, strength of the magnetic
field in case of MR based imaging, slice thickness, con-
dition of the population targeted (control or patient)

and the type of the neurological disorder [42,43].
Another aim of the current study was placed towards
assessing the effect of other factors such as age, gender,
filed strength of the MRI on the measured ICV.
Challenges with regards to ICV estimation using dif-

ferent field strengths [44], and in estimating ICV in
adult subjects with dementia as the neurological disor-
der [42,45] have been well addressed in these studies.
However these type of evaluations which focused on the
use of two software platforms (Freesurfer and SPM),
were shown to upwardly bias the ICV for adult subjects
[43], and Freesurfer and SPM 5 in the case of subject
with dementia [45] have shown an overestimation of the
ICV by Freesurfer. Consequently, the third aim of the
current work was to provide a reliability assessment of
Freesurfer (FS version 5.1.0), FSL (version 5.0) and SPM
(version 8) in estimating ICV for the aforementioned
two categories of subject groups.
In retrospect, main objectives of the current study are

(1) reliability analysis of slice subsampling strategy in
cohort of manual ICV estimation in AC and AD popula-
tions; (2) Main factors that could affect ICV estimation;
and (3) performance evaluation of three commonly used
software platforms (Freesurfer, FSL and SPM) for auto-
matically estimating ICV.

Methods
An overview of the study protocol, which includes two
phases of analysis, is presented in Figure 1. Phase I of
the study, which is two months leading to phase II of
the study, involves reference manual measurement of
ICV by Operator 1 (Op1). The estimated ICV measure-
ments from Freesurfer, FSL and SPM are calculated and
contrasted against the reference manual ICV and the

errors �1
FS , �1

FSL and �1
SPM are calculated for Freesur-

fer, FSL and SPM, respectively. Second operator (Op2)
is provided with the same T1-weighted image volume of
the subject and inter-operator variability analysis is per-
formed. Intra-operator variability analysis is conducted
by re-measuring the ICV by Operator 1 in phase II of
the study. Automatic measurements of ICV using FS,
FSL and SPM are also repeated to compare the intra-
software reproducibility. The second phase of the study
was implemented with similar processing power to keep
the results unbiased from the potential unbalance pro-
cessing units in software measurements.

Subjects and images
Table 1 provides demographic characteristics of the 22
study subjects. All participants are from Wien Center
for Alzheimer’s Disease and Memory disorders with the
Mount Sinai Medical Center, Miami Beach, FL, USA.

Sargolzaei et al. BMC Bioinformatics 2015, 16(Suppl 7):S8
http://www.biomedcentral.com/1471-2105/16/S7/S8

Page 2 of 10



The study was approved by the local institutional review
board (Protocol number: IRB-13-0515) and informed
consent forms were provided from the subjects or their
legal representatives. Subjects from both groups have
taken the Folstein Mini-Mental State Examination [46]
with a minimum score of 15 out of 30. AD and AC sub-
jects had a neurological and medical evaluation by a
physician acoording to the neuropsychological tests [47].
MRI scans of the brain for Adult population groups, AD
and AC, were acquired on a 1.5-T machine (Siemen’s
Symphony, Iselin, N.J., USA, or General Electric, HDX,
Milwaukee, Wisc., USA) using a proprietary 3D-magne-
tization-prepared rapid-acquisition gradient echo
(MPRAGE). Specifications for MPRAGE include coronal
sections with a 1.5 mm gap in thickness; section inter-
val, 0.75 mm; TR, 2190 ms; TE, 4.38 ms; TI, 1100 ms;
FA, 15°; NEX, 1; matrix, 256 × 256; FOV, 260 mm;
bandwidth, 130 Hz/pixel; acquisition time, 9 minutes;
phase-encoding direction, right to left.

Reference ICV estimation
Reference ICV measurements were performed for all 22
subjects from the two groups by operator 1, Op1, during
phase I of the study. Op1 repeated the process of mea-
suring ICV across all subjects during phase II of the
study, in order to evaluate intra-operator variability. A
second operator, Op2, calculated the ICV of all subjects
during phase II of the study to assess the inter-operator
variability in calculating ICV. No specific order of sub-
jects/groups was considered by both operators when
measuring ICV to lessen the possible learning bias
across groups. No time limitation in reference ICV mea-
surement was imposed on the operators, Op1 and Op2.
A computer assisted approach, using an AFNI plugin
[48], was conducted by the operators to manually draw
masks in every slice of the volume and highlighting vox-
els which belong to ICV. Voxels were included in the
ICV mask in each slice by strictly following the protocol
from a recent study [43]. The ICV was measured by
counting the total number of voxels highlighted as
belonging to ICV multiplied by the voxel volume. Figure
2 shows a sample slice of T1-weighetd image volume
corresponding to one randomly selected subject from
each group with the same slice with ICV highlighted.
Their histogram equalized images are shown in the mid-
dle column of Figure 2. Arrows are pointing to the

Figure 1 Overview of the study protocol. Overview of the study protocol is presented. The study has two phases with phase I implemented
two months leading to phase II. Input to both phases of the study is the MRI T1-weighted image volume of the subject. In phase I, Reference
manual segmentation of ICV is measured by Operator 1 and the corresponding error of the ICV estimated through automatic software is

determined, �1
FS for Freesurfer, �1

FSL for FSL and �1
SPM for SPM. Inter-operator variability, �2

Op1 , is also calculated in this phase as the error

between estimated ICV by Operator 1 and estimated ICV by Operator 2. For the phase II of the study, Intra-operator variability, �1
OP1 , is

calculated as the error between estimated ICV by Operator 1 in phase I and estimated ICV by the same operator in phase II. The automatic

measurements of ICV using Freesurfer, FSL and SPM are repeated and the corresponding errors are calculated as �2
FS for Freesurfer, �2

FSL for

FSL and �2
SPM for SPM.

Table 1. Demographic characteristics of study subjects

AGE Female/Male

AD (n = 11) 81 ± 9.31* 6/5

AC (n = 11) 71 ± 6.21 9/2

*Data presented as mean ± standard deviation where applicable.

AC: Adult Control; AD: Adult With Alzheimer’s disease.
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visual clarity of dura matter which is considered as a
landmark in segmenting ICV from other brain tissues.

Automatic ICV estimation
During phase I of the study, T1-weighetd image
volumes of all subjects in two categories were subjected
to ICV estimation through Freesurfer (FS 5.1.0), FSL
(FSL 5.0) and Statistical Parametric Mapping (SPM 8).
A set of default parameters were chosen when required
by the software and no other external interventions
were involved. The process of automatic ICV measure-
ment using FS, FSL and SPM was repeated in phase II
of the study to evaluate the intra-software variability.
FS 5.1.0
T1-weighted image volumes of all subjects were pro-
cessed through automatic image processing pipeline of
Freesurfer software (https://surfer.nmr.mgh.harvard.edu).
Estimated ICV reported as part of the statistics file
(aseg.stats file) corresponding to the subject, created by
the Freesurfer [38], was recorded as the ICV estimation
for the subject. ICV estimation by FS is an atlas-based
estimation approach [49] which assumes that a correla-
tion exists among ICV of a subject and determinant of
the registration matrix used to transform the image
from subject space to the atlas.

FSL 5.0
ENIGMA protocol (http://enigma.ini.usc.edu) was used
to automatically estimate ICV using FSL (http://fsl.
fmrib.ox.ac.uk). ICV estimation through FSL [39] follow-
ing the above mentioned protocol is also an atlas based
estimation procedure where the subject image is first
linearly aligned to MNI152 standard space. ICV is next
calculated by multiplying the inverse of the determinant
of the affine matrix by the size of the template brain.
The protocol itself corrects for field bias with a two
steps BET [50] with an intermediate FAST (automated
segmentation tool). The default parameter values of 0.5
and 0 were set respectively for fractional intensity
threshold and threshold gradient.
SPM 8
VBM toolbox (http://www.fil.ion.ucl.ac.uk/spm) of Sta-
tistical Parametric Mapping [51] was used with default
parameters to segments the voxels of T1-weighetd brain
volume into four classes, namely white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF) and other.
WM, GM and CSF volumes were summed up to pro-
vide an estimate of ICV. To attain the automatic feature
of the method, no preprocessing or re-orientation were
applied on the T1-weighetd images in advance to esti-
mate the ICV since manual intervention [52]. However

Figure 2 Reference ICV Segmentation. Reference ICV segmentation for a sample sagittal slice of randomly selected subject from each group:
First row: AD; second row: AC. Left column images are the original T1-weighted image sagittal slice; middle column is the histogram equalized
version of the same image with arrows pointing to the boundary of dura which is a landmark in ICV segmentation. Right column is the slice
with ICV highlighted pixels.
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visual inspection of the images showed no major misa-
lignment along the commissural line.

Main factors analysis
To determine the interactions that exist among different
factors and covariates, a general linear model was
adopted in which ICV was the measured value for each
subject. Group (AD, AC), method (Manual, FS, FSL,
SPM), sex (M: male; F: female), and age were considered
as explanatory variables. The statistical analysis was per-
formed in R [53] using package afex.

Reliability assessment of manual ICV estimation
For each of the AD and AC groups, analysis of intra-

operator variation, �1
op1 , and inter-operator variation,

�2
op1 , have been performed through paired t-test and

correlation analysis.

Statistical analysis of sampling based manual ICV
estimation
A randomized statistical testing procedure [7] was
implemented to measure the accuracy of manual esti-
mate of ICV by changing the sampling period for each
group of subjects, AD and AC. Sampling period, m, is
defined as the number of interleaved slices in tracing
ICV across the brain volume, e.g. manual ICV estima-
tion with a sampling period of 2 refers to tracing ICV in
only half of the total number of slices. The larger the
sampling period chosen, the less amount of time is
required for ICV measurement. However, the accuracy
of the measurement may drop with different rates for
different subject categories. Different sampling periods,
beginning from 2, were considered for ICV estimation.
At each sampling period, m, ICV is calculated from a
subset of slices. The first slice of the subset is the slice
where the brain tissue appeared for the first time in the
sequence of slices. The subsequent slices in the subset
were selected every m slices from the first slice until the
brain tissue is no longer perceived. ICV of the subject
was finally calculated as the sum of the traced volumes
in the subset multiplied by m. The Intra-class correlation
coefficient (ICC) among the reference ICV measurement
and the estimated ICV at sampling frequency m was cal-
culated using two-way random ANOVA test. The pro-
cess, initiated by randomly selecting the first slice of a
given subset and ending with ICC calculation, was
repeated five thousand times to create an empirical dis-
tribution of ICC’s across each group to evaluate the effect
of sampling period on the accuracy of the estimated ICV.

Reliability assessment of automatic ICV estimation tools
For each of the AD and AC groups, three sets of criteria
were evaluated to provide a decision aid in choosing

automated tool(s) for ICV estimation: (1) Intra-software
variations were assessed using paired t-test; (2) Across
each subject group, the means of calculated ICV
through each automated tool (FS, FSL and SPM) in
phase I were tested against the mean of reference ICV
measured by Op1, through post hoc t-tests under the
general linear model, using R package phia (http://
CRAN.R-project.org/package=phia); and (3) Mean
related percentage of absolute difference (MRPAD) in
ICV estimated by each automated tool within each sub-
ject group was calculated using equation (1).

MRPAD =
1
n

∑n

i=1

|�auti |
ICVop1i

× 100

Where �auti is the error of the specific automated
tool in ICV measurement from the reference measure-
ment performed by Op1 in phase I; aut represents the
automated tool employed: FS, FSL or SPM; and n is the
number of subjects within the group.

Results
A summary of intra- and inter-operator variation analy-
sis is presented in Table 2. High correlations (0.999)
were observed for intra- and inter-operator measure-
ments of ICV across AD and AC groups. Statistical tests
as shown in Table 2 confirm the validity of the manual
ICV measurements performed by Op1. ICV measure-
ments performed by Op1 in phase I of the study were
then considered as the reference measurements for the
rest of the analysis.
Group-ID (AC, AD), Sex (Male, Female) and Method

(manual, FS, FSL, and SPM) and Age were considered
as the main factors of this study. Analyzing their main
effects and interactions on measured ICV showed that
there is significant overall Group-ID effect (p < 0.01),
Sex effect (p < 0.01) and Method (p < 0.01). Further-
more, Interaction between Group-ID and Method fac-
tors was the only interaction found to be statistically
significant (p < 0.01). Table 3 provides all the p-values
for the different factors and the interaction between
them.
Next was to study the effect of the sampling period on

the reliability of manual estimation of ICV. For this pur-
pose, random statistical testing procedure explained pre-
viously was implemented on ICV measurements
performed by Op1 (Phase I) for each subject group. The
5th, 25th, 50th, 75th, and 95th percentiles of the empirical
distribution of ICC were calculated for each subject
group, as shown in Figure 3, to contrast the estimated
ICV based on a specific sampling period with the esti-
mated ICV considering the “every slice” protocol. Corre-
sponding maximum percentage errors (MPE) were also
given for each sampling period. The figure shows the
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randomness behaviour of ICC value as the sampling
period increases.
The sampling periods and corresponding MPE values

showed in dashed lines in Figure 3 correspond to the
95% probability of occurrence in keeping the reliability
of the estimated ICV measurement above 0.99 based on
sub-sampling protocols. Accordingly, a sampling period
may not exceed 15.7 mm (with MPE ranging from 0.6
to 4.9) for the AD group; and 19 mm (with MPE ran-
ging from 0.9 to 4.4) for the AC group. Also by defining
the spread of empirical ICC distribution as the differ-
ence between the fifth percentile and 95th percentile per
sampling period, tight spread were considered as this
difference to be lower than or equal with 0.005 [7]. To
keep a tighter spread, the sampling period should not
exceed 10 mm for AD and 15 mm for AC group. The
MPE shows the same random behaviour with an incre-
mental pattern as the sampling period gets higher. The
90% confidence interval of MPE at sampling period of
40 mm is found to be within the range of 3% to 10% for
AD and 3.5% to 7% for the AC group. These findings

confirm the importance in carefully choosing an appro-
priate sampling period for the different subject groups
when manual estimation of ICV is used. To evaluate the
effectiveness of FS, FSL and SPM in the automated ICV
estimation process, ICV measurements through the
select automated tools are plotted in Figure 4 against
the ICV measurements performed by Op1 in phase I.
Within each subject group (AD and AC), paired t-test
statistics of the difference between each automated
tool’s ICV estimations and the reference ICV estima-
tions across each group along with correlation coeffi-
cient and the corresponding MRPAD values are given in
Table 4.
Intra-software variation analysis is performed across

each subject group. Table 5 summarizes the intra-soft-
ware variation analysis. A retrospective on the results
suggest the following findings for each of the study
groups:

AD Subject group
FS showed to be an accurate tool for automatic ICV
estimation across AD subject group where a high corre-
lation (0.68) is found among automatic ICV measure-
ments and the reference ICV. MRPAD of FS across AD
subject group is found to be 9.6. FS is found to be a
reliable tool for AD group as the intra-software variation
of FS is found to be non-significant (p = 0.25) and the
correlation is ranked second (0.71). SPM is also showed
to be a suitable candidate when choosing an automated
tool for ICV estimation for the AD group with MRPAD
value of 12.5. However, FSL is found to upwardly bias
(p < 0.01) the ICV measurements for AD causing a very
high MRPAD value (177) as well as a significant varia-
tion for its intra-software variation.

AC Subject group
Both FS and SPM provide competitive results in auto-
matic ICV estimation, MRPAD of 5.4 and 10.1 respec-
tively, which makes them both as good candidates when
choosing an automatic tool for ICV estimation across the
AC groups. However, the mean of ICV estimated of ICV

Table 2. Intra- and inter-operator variation analysis for manual ICV estimation

Op1 (Phase I) Op2 (Phase I) Op1 (Phase II) �1
op1 �2

op1 MRPA1 MRPA1

AD 1.4870 ± 0.16418* 1.4870 ± 0.16416 1.4870 ± 0.16418 p = 0.55 p = 0.23 0.002 0.004

AC 1.4609 ± 0.14444 1.4610 ± 0.14436 1.4609 ± 0.14446 p = 0.35 p = 0.33 0.002 0.014

*ICV (mm3) presented as mean ± standard deviation (a factor of 106 has been taken from all values). Op1 (Phase I): ICV measurements performed by Op1 in
phase I of the study; Op2 (Phase I): ICV measurements performed by Op2 in phase I of the study; Op1 (Phase II): ICV measurements performed by Op1 in phase II

of the study; �1
op1 is the result for testing the null hypothesis that the ICV measurements performed by Op1 (Phase I) is not significantly different from ICV

measurements performed by Op1 (Phase II). �2
op1 is the result for testing the null hypothesis that ICV measurement calculated manually by Op1 (Phase I) is not

significantly different from ICV measurements done by Op2 (Phase II). Paired t-test is used. MRPAD1: Mean related percentage of absolute difference between ICV
measurements performed by Op1 in Phase I and Phase II which provides intra-operator error in manual ICV estimation. MRPAD2: Mean related percentage of
absolute difference between ICV measurements performed by Op1 and Op2 in Phase I which is related to inter-operator error; AD: Adult With Alzheimer’s
Disease subject group; AC: Adult Control subject group.

Table 3. Main factors analysis and their interactions on
the measured ICV

F Pr(>F)

Group-ID 4.057815e+00 6.359433e-02

Sex 8.929189e+00 9.777993e-03

Age 1.069814e-01 7.484464e-01

Method 2.096274e+02 2.732017e-25

Group-ID : Sex 8.929189e+00 9.777993e-03

Group-ID : Age 5.299599e-03 9.429964e-01

Sex : Age 2.656019e-01 6.143387e-01

Group-ID : Method 8.024328e+00 2.432221e-04

Sex : Method 8.291057e-01 4.853501e-01

Age : Method 1.981851e-02 9.961500e-01

Group-ID : Sex : Age 1.012292e-03 9.750675e-01

Group-ID : Sex : Method 6.211696e-01 6.052420e-01

Group-ID : Age : Method 2.471838e-01 8.628723e-01

Sex : Age : Method 4.724365e-01 7.031207e-01

Group-ID : Sex : Age : Method 5.051764e-01 6.808114e-01
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using SPM is different (p < 0.01) from the one of refer-
ence ICV measurement. This results in underestimation
of SPM in ICV measurement. SPM shows more reliable
(MRPAD value of 0.5) in intra-software variability analy-
sis as compared with FS (MRPAD value of 1.09). FSL is
not providing accurate results (correlation coefficient

equal with -0.2 and MRPAD of 127) for ICV estimation
across AC subject group.

Discussion
This study was initiated to provide a decision-making
process as a guide for estimating ICV either manually or

Figure 3 Reliability assessment of sub-sampling manual ICV estimation. Left: 5th, 25th, 50th, 75th, and 95th percentiles of the empirical
distribution of Intra-class Correlation Coefficient (ICC) are plotted for each group contrasting the estimated ICV based on a specific sampling rate
with the estimated ICV considering every slice protocol; Right: Maximum Percentage Error (MPE) are given for groups. ICC of 0.99 is highlighted
in ICC plots and the corresponding sampling period is found as the point could be considered as a reference to not to lose the accuracy when
using subsampling strategies. The sampling period corresponding to the ICC of 0.99 is marked to assess the MPE for that specific sampling
period.

Figure 4 Reliability assessment of Automatic ICV estimation. Plot of ICV measurements through automated tools (FS, FSL and SPM) against
ICV measurements performed by Op1 in Phase I for each subject group (AD and AC). The bold dashed line defines the reference line, and the
solid lines are the regression lines of the ICV estimated by each of the automated tools used.
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automatically, given the critical importance of ICV as a
metric used in brain volumetric studies in reference to
AD. The main findings of this study could be summar-
ized in three very important points: (1) The choice of
the software should take into consideration whether the
population under study is control or AD; (2) the sam-
pling period, in terms of the number of slices that are
considered, should be carefully evaluated in terms of the
ICC value or accuracy in the ICV estimation, in order
to overcome the heavy computational requirements
when considering all the slices and the burden imposed
in the tediousness of the manual segmentation of ICV;
and (3) The analysis of the covariates such as sex,
method and group-ID showed that they all have statisti-
cally significant effect on the measured ICV. Further-
more the interaction between Group-ID and method
was the only interaction between factors that was found
to be significant, which supports the importance of
choosing a suitable method in calculating ICV with
respect to Group-ID.
In assessing the merits of the aforementioned 3 points,

four groups of subjects with different neurological con-
ditions, cognitively normal and subjects with Alzhei-
mer’s disease were considered: AD: Adult With
Alzheimer’s Disease; AC: Adult Control. Two operators
performed the manual ICV measurements for all the
subjects; one of them repeated the measurements in two
phases to assess the intra-operator variance. The relia-
bility of reference ICV measurements was assured for
intra-operator and inter-operator variations. No

statistical significant difference (MRPAD less than
0.01%) was found across the subjects groups considered.
In the case of manual estimation of ICV, the study

showed that there is causality between the accuracy and
reliability of the measured ICV with respect to the num-
ber of slices considered in the segmentation process.
The same finding was reported in a previous study
using a group of adult control subjects (Eritaia et al.,
2000), however the current study reports the existence
of similar relationship between the number of slices
considered for ICV segmentation and the reliability of
the calculated ICV measurement across different subject
groups. More importantly, the study also showed the
reliability of ICV measurements should be weighed
across the different AD and AC groups, and that a set
of guidelines should be considered when performing
either manual or automatic ICV estimation procedures
in terms of both the population under study and the
software platform that is used. Consequently, the results
shown earlier in Figure 3 could be utilized as a guide in
choosing the right sampling period in manual ICV esti-
mation. The current study finds that in order to keep
the reliability of the estimated ICV measurement above
0.99 based on sub-sampling protocols; the sampling per-
iod may not exceed 15.7 mm for AD group; and 19 mm
for AC group. The sampling periods are given in milli-
meter unit so to normalize and be capable to apply in
other studies.
Furthermore, it was important to set up a decision-

making framework in choosing the right software tool in
automatic ICV estimation of the two subject groups con-
sidered in this study. This was accomplished by evaluat-
ing the effectiveness of three widely accepted and well
known software packages (FS, FSL and SPM with their
default settings) across AD and AC subject groups. The
effectiveness of each software was evaluated from two
main perspectives: (1) Determining the accuracy of the
automatic tool in measuring ICV as compared with refer-
ence manual ICV measurement, and (2) Assessing the
reliability and consistency of the results for each of the
automated software platforms in measuring ICV across
subject groups with different neurological conditions.
The results obtained confirmed the hypothesis that the

choice of the software should take into consideration
whether the population under study is cognitively normal
or not, with the knowledge that atlas-based software plat-
forms tend to perform better when dealing with both
adult populations. Since the built-in atlas from FS is from
normal and Alzheimer subjects [49,54], FS showed excel-
lent results across AD and AC subject groups for this
study. On the other hand, SPM-based measurements of
ICV showed to be more consistent over different phases
of the study across the AC subject group. This could be
due to the limited number of defined tissue classes

Table 4. Software reliability analysis for automated ICV
estimation

AD AC

p r MRPAD p r MRPAD

Op1 vs. FS 0.1 0.68 9.6 0.13 0.68 5.4

Op1 vs. FSL < 0.0 0.67 177 <0.01 -0.2 127

Op1 vs. SPM < 0.0 0.48 12.5 < 0.01 0.82 10.1

AD: Adult With Alzheimer’s Disease subject groups; AC: Adult Control subject
groups. p: paired t-test p-value; r: correlation coefficient; MRPAD: Mean Related
Percentage of Absolute Difference; p-value less than 0.01 was considered
significant.

Table 5. Intra-software (Phase I and II) variation analysis
for automated ICV estimation

AD AC

p r MRPAD p r MRPAD

FS 0.25 0.71 11.5 < 0.0 0.99 1.09

FSL <0.0 0.82 25.4 < 0.0 0.47 33.7

SPM 0.49 0.63 5.96 0.1 0.99 0.5

AD: Adult With Alzheimer’s Disease subject groups; AC: Adult Control subject
groups. p: paired t-test p-value; r: correlation coefficient; MRPAD: Mean Related
Percentage of Absolute Difference; p-value less than 0.01 was considered
significant.
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(white matter, gray matter and CSF) which could be dis-
cussed more as an advantage when working with subjects
with similar conditions to AC subject group. However
this could introduce bias when dealing with ICV mea-
surements patients suffering from neurological disorders
where brain atrophy is present. Other potential biases in
automated ICV estimations are also discussed in related
studies [43,44].

Conclusions
In retrospect, this study emphasizes the importance in
selecting the appropriate protocol which should focus
on the choice of the sampling period in the manual
estimation of ICV and the selection of the most suita-
ble software in the automated estimation of ICV,
which are shown to depend largely on the demo-
graphics of the targeted population, the imaging para-
meters of the MR machine, as well as the neurological
disorder under study.
The current study serves as an initial framework for

establishing an appropriate protocol in both manual and
automatic ICV estimations with different subject popu-
lations; however it definitely has space for improvement.
As ICV has gained its popularity and showed its signifi-
cance in research area of Alzheimer, this study could
serve as an important guide for the researchers of differ-
ent areas to choose the right approach for a more accu-
rate estimation of ICV.
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