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Epiphylls widely colonize vascular leaves in moist tropical forests. Understanding the effects of epiphylls on leaf traits of host plants
is critical for understanding ecological function of epiphylls. A study was conducted in a rain forest to investigate leaf traits of the
host plants Photinia prunifolia colonized with epiphyllous liverworts and foliicolous lichens as well as those of uncolonized leaves.
Our results found that the colonization of lichens significantly decreased leaf water content (LWC), chlorophyll (Chl) a and a +
b content, and Chl a/b of P. prunifolia but increased Chl b content, while that of liverworts did not affect them as a whole. The
variations of net photosynthetic rates (P,) among host leaves colonized with different coverage of lichens before or after removal
treatment (a treatment to remove epiphylls from leaf surface) were greater than that colonized with liverworts. The full cover of
lichens induced an increase of light compensation point (LCP) by 21% and a decrease of light saturation point (LSP) by 54% for their
host leaves, whereas that of liverworts displayed contrary effects. Compared with the colonization of liverworts, lichens exhibited
more negative effects on the leaf traits of P prunifolia in different stages of colonization. The results suggest that the responses of host
leaf traits to epiphylls are affected by the epiphyllous groups and coverage, which are also crucial factors in assessing ecofunctions
of epiphylls in tropical forests.

1. Introduction and commonly consist of two dominant visible groups:
epiphyllous liverworts and foliicolous lichens (referred to as

Carbon (C) enters ecosystems via the process of photo- .0 =~~~ o lichens) [9].

synthesis, which is the most important exchange between

ecosystems and the atmosphere [1]. Leaf traits link closely o ) ) )
with the photosynthetic characteristics of leaves and affect the ~ Significant ecological and evolutionary impacts on host plants

capability of plants to sequestrate C [2-4]. However, leaves [10-12] due to the physical separation of epiphylls between
of vascular plants are usually covered with epiphylls [5, 6] in  the leaf surface and the atmosphere. Therefore, any potential
humid understory of the tropical forests. For example, up to ~ change in epiphyllous communities, including shifting of
40% of the leaf surface was covered by epiphylls in an Aus- community compositions and alteration of total coverage
tralia tropical rain forest [7]. Epiphylls are usually small cryp- ~ [13, 14], may considerably affect leaf traits of host plants
togams growing on the upper surfaces of the host leaves [8] subsequently. In addition, compared with vascular plants,

The occurrence of epiphylls would induce a series of



epiphylls are more sensitive to environmental changes owing
to their particular structure and physiology [15-17]. Whether
or not epiphylls exacerbate or mitigate the effects of climate
change on host vascular plants is crucial for understanding
ecological functions of epiphyllous communities in tropical
forests.

Previous studies paid more attention to nitrogen (N)
transfer between epiphylls and hosts [9, 18-22] due to the
ability of N fixation of epiphylls [23]. However, how epiphylls
affect leaf physiological traits is still unclear [13, 14]. Some
research has found that epiphylls decreased light radiation
and photosynthetic capability of host leaves [24-27], while
some thought that the photoacclimation of host plants could
offset the negative effects of epiphylls [10, 28, 29]. These
inconsistencies may result from the diverse composition of
epiphyllous communities and undefined succession stages of
epiphyllous colonization [14]. For examples, the epiphyllous
groups in Monge-Najera (1989) and Anthony et al. (2002)
were liverworts and lichens, respectively [10, 30].

Communities dominated by lichens or liverworts may
induce different effects on leaf traits of host plants due to their
diverse structure characteristics [15] and distribution patterns
on host leaves [14, 31]. In addition, the coverage of epiphylls
generally varies largely from sporadic to full cover [25, 31] in
the successive process of epiphyllous colonization [7, 13, 14],
which may be also crucial in understanding the roles of
epiphylls on hosts. Therefore, it is necessary to differentiate
effects of liverworts and lichens on host plants to better
understand the exact roles of epiphylls on their host plants.

The tropical Montane rain forests in Hainan Island are the
largest and best preserved primary tropical forest in China.
The forests harbor diverse epiphylls on the surface of host
leaves in the understory. In this study, we studied the effects
of liverworts versus lichens, with varying degrees of covers
on their host tree species Photinia prunifolia in a tropical
Montane forest in Hainan Island. We asked the following
questions: (1) Does epiphyllous colonization affect host’s leaf
traits? (2) Do the effects of epiphyllous groups (liverworts
versus lichens) on host’s leaf traits vary. (3) How do their
coverages affect the effects on host’s leaf traits?

2. Materials and Methods

2.1. Study Site and Species. The study was conducted in a
tropical Montane rain forest at the Jianfengling National
Nature Reserve (J]NNR) (18°23'-18°50'N, 108°46'-109°02'E),
which is located in the southwest of Hainan Island, China.
JNNR is dominated by tropical monsoon climate, with an
average air temperature of 24.5°C, relative humidity of 88%,
and annual sunshine of 1467 h [32]. Annual precipitation
ranges from 1305 to 3662 mm with a distinct wet season
(May to October) and a dry season (November to April) [32].
The monthly temperature and precipitation there had been
described by Yang et al. [33]. Due to the humid environment,
approximately up to 14.5% leaf area of plants in the understory
was covered with epiphylls (average percentage of leaves with
epiphylls x average coverage on leaves), in which more than
60 species of epiphyllous liverworts have been identified
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(unpublished data). In order to obtain a relatively consistent
species composition in epiphyllous communities, we selected
host plants within a plot with a diameter of 5 km.

We selected the vascular plants, Photinia prunifolia as
host plants in this study for the following reasons. Firstly, P.
prunifolia was a common species with epiphylls at the study
site. Secondly, the average coverage of epiphylls on the mature
leaves of P. prunifolia was about 31.3%, which was ideal for
sampling purpose. Thirdly, it was easy to remove epiphylls
from coriaceous leaves of P prunifolia for manipulative
treatment. Leaves with comparable sizes and locations on the
branches were selected from a large number of labeled leaves,
which had been selected out two years ago when they were
tender leaves with no epiphylls. We excluded leaves covered
with mixed epiphyllous community of liverworts and lichens
to avoid the interaction effects of the two groups. The dom-
inant species of lichens on the surface of P. prunifolia were
Porina chrysophora and P. atrocaerulea, and the dominant
liverworts were Drepanolejeunea spicata, Radula acuminata,
Colura acroloba, and Leptolejeunea maculata.

2.2. Measurement. Using a plastic sheet marked with 2 x
2mm?* grids we measured the coverage of epiphylls (com-
prised of liverworts or lichens) on leaf surface following
methods specified in Roskoski (1981) [13]. The leaves with 0%
coverage of epiphylls (uncolonized leaves) were used as the
control groups to be compared with leaves colonized by liver-
worts or lichens. Leaves colonized with liverworts or lichens
were divided into four subgroups according to levels of
coverage: 25%, 50%, 75%, and 100% (+5% error), respectively.
The following physical leaf traits were measured: leaf mass
per area (LMA), leaf water content (LWC), and chlorophyll
(Chl) content (a and b). We used the method by Linder
(1974) and Arnon (1949) for pretreatment and measurement
of Chl content, respectively [34, 35]. The contents of Chl a, b,
a+b (mgg™), and a/b ratios were calculated subsequently.
Physical leaf trait measurements were replicated 5 times for
each subgroup, one replication per tree.

Before sampling, photosynthetic light-response curves of
these leaves were examined using the “Light Curve” auto-
matic program in Li-6400 Portable Photosynthesis System
(LI-COR, USA) with a 6400-02B Red/Blue light source
chamber (2 x 3 cm). Leaves were allowed 10 min to acclimate
the changes of light intensity before measurements, which
were made following photosynthetic photon flux (PPF): 0,
10, 20, 50, 100, 200, 500, 1000, 1500, and 2000 ymol m2s,
during 9:00-12:00 a.m, when the ambient temperature was
20 + 2°C and relative humidity ranged from 50% to 70%.
Airflow rate was kept constant at 0.5Lmin~" with 380 +
10 ymol mol™" CO, concentrations during the measurement.

In order to determine whether impacts of epiphylls on
leaves were temporary, epiphylls were removed from the
surface of leaves after photosynthetic measurement using
methods described by Eze and Berrie (1977) [36]. Light-
response curves of postremoval leaves were measured using
the same method two days later after the removal treatment
(hereafter, preremoval and postremoval were referred to the
photosynthetic traits of leaves covered with epiphylls and
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those of epiphylls were removed, resp.). These measurements
were replicated on 4 leaves from different trees in each sub-
group. Parameters of photosynthetic light-response curves,
which included respiration rate (R), maximum net photosyn-
thesis rate (P,,,), light compensation point (LCP), and light
saturation point (LSP) in preremoval and postremoval, were
estimated by nonrectangular hyperbola model [37]:

A= §DQ + Amax - \/((PQ + IAmaX)2 - 4§0QkAmax R (1)

2k ’

where A is net photosynthetic rate, ¢ is apparent quantum
efficiency, Q is photosynthetically active radiation, A, is
maximum net photosynthetic rate, k is an angle of photosyn-
thesis light curve, and R is a dark respiration rate.

2.3. Data Analysis. Differences of leaf traits among the five
levels of coverage (0%, 25%, 50%, 75%, and 100%) were tested
by Tukey’s multiple comparison. Student’s ¢-test was used to
investigate the differences of leaf traits between leaves covered
with liverworts and lichens. The differences of leaf traits in
the same leaves between pre- and postremoval treatments
were tested by Paired-Samples ¢-test. Differences of net pho-
tosynthetic rates among light-response curves were examined
by nonparametric tests (K related samples test). Effects of
epiphyllous groups (liverworts and lichens), coverage (0%,
25%, 50%, 75%, and 100%), and removing treatment on
physical traits of P. prunifolia leaves were examined using
two-way ANOVA or three-way ANOVA.

3. Results

3.1. Physical Leaf Traits of Host Leaves with Different Epiphylls.
The colonization of liverworts did not significantly affect all
leaf traits of host (i.e., leaf mass per area (LMA), leaf water
content (LWC), chlorophyll content (Chl), and Chl a/b ratio)
with increasing coverage from 25 to 100% compared to the
control group (0% coverage, Figure 1). The colonization of
lichens significantly decreased LMA only at full coverage
(=100%) compared to the control group, while it decreased
Chl a and Chl a + b at almost all coverage from 25 to 100%
except Chl a + b at full coverage (Figures 1(a), 1(c), and
1(e)). Lichens significantly decreased LWC and Chl a/b and
increased Chl b with increasing coverage when its coverage
was larger than 50% (Figures 1(b), 1(d), and 1(f)).

Leaves covered with liverworts exhibited a significantly
lower LMA than that in leaves colonized with lichens at
coverage of 50% and 75% but displayed a significantly
higher one compared to that with lichens at fall coverage
(Figure 1(a)). The Chl b of leaves colonized with 75%-100%
liverworts was also significantly lower than that colonized
with lichens (Figure 1(d)). However, the LWC and Chl a/b
of leaves covered with liverworts were significantly higher
than that with lichens when the coverage was larger than 50%
(Figures 1(b) and 1(f)). The Chl a and Chl a + b of leaves
colonized with liverworts were all significantly higher than
these with lichens (Figures 1(c) and 1(e)). The interactions of
the levels of epiphyllous coverage (0%, 25%, 50%, 75%, and
100%) and groups (liverworts and lichens) were all significant

in LMA, LWC, Chl a, Chl b, and Chla/b (P < 0.05) except Chl
a+Db (F =1.32, P> 0.05), while the main effect of coverage’s
levels on Chl a + b was significant (F = 3.71, P < 0.05)
(Table 1).

3.2. Leaf Photosynthesis in Pre- and Postremoval Treat-
ments. Net photosynthetic rates (P,) of light-response curves
increased from 0 to 500 umol photons m™*s™' and then
reached a plateau (Figure 2). Except for the leaves colo-
nized with 25% liverworts, other light-response curves of
P prunifolia leaves (including those colonized by liverworts
and lichens) were all significantly different from those in the
uncolonized leaves (P < 0.05). With increasing coverage of
epiphylls, P, continuously increased from 25% to 75% while
it decreased at 100% coverage (Figures 2(a) and 2(c)). In
postremoval, most curves in leaves colonized by liverworts
previously were no longer different significantly (P > 0.05)
from those in uncolonized leaves, except that in leaves
with 100% liverworts previously (P = 0.041). In contrast,
differences in P, between postremoval leaves colonized by
lichens previously and uncolonized leaves were smaller than
those between preremoval and uncolonized leaves but were
still statistically significant (P < 0.05) (Figures 2(b) and 2(d)).

Epiphylls showed a negligible effect on total respiration
rate (R) of leaves colonized with epiphylls in preremoval
(left panel, Figure3(a)), but the treatment of removing
epiphylls resulted in a significant variation of R in most
leaves of P prunifolia, particularly for those with 25%-
75% liverworts exhibited significant higher R (P < 0.05)
compared with uncolonized leaves. Leaves colonized with
100% lichens had a significantly higher R (P = 0.040) in
postremoval compared with those in preremoval (right panel,
Figure 3(a)). With the exception of that in coverage and
removal, interactions among epiphyllous groups, coverage,
and treatment of removal (removal) were all significant in
R of P. prunifolia leaves (Table 2). Epiphyll colonization did
not affect the maximum net photosynthesis rates (P,,,) of
host leaves in general (P > 0.05, Figure 3(b)), except that of
leaves with 50% lichens in preremoval with a higher P, . (P =
0.042), in spite of the corresponding photosynthetic photon
flux for P, that was different (Figure 2). The interaction of

max

coverage and removal was significant in P, ..

The leaves of P. prunifolia colonized with lichens exhib-
ited a significant higher light compensation point (LCP) at
100% coverage (11.6 umol m™>s™") than that of uncolonized
leaves (7.6 umol m~2s™). In contrast, the LCP of leaves
colonized with 100% liverworts exhibited a significant lower
one contrarily (left panel, Figure 3(a)). The difference in LCP
between leaves colonized with lichens and liverworts became
significant when the coverage is large enough (75%-100%,
P < 0.05). In contrast, it was only significant at full coverage
of epiphylls after removal (P = 0.048). The interaction
of epiphyllous groups and coverage was significant on LCP
(Table 2).

In preremoval, the difference in light saturation point
(LSP) between leaves colonized with lichens and liverworts
was also significant when the coverage was 100%. Remov-
ing treatment expanded the difference between epiphyllous
groups in postremoval at full coverage and exhibited contrary
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FIGURE 1: Physical leaf traits of Photinia prunifolia colonized with lichens and liverworts at different coverages (0%, 25%, 50%, 75%, and 100%).
(a) Leaf mass per area (LMA) (g m™2), (b) leaf water content (LWC) (%), (c) concentration of chlorophyll a (Chl a) (mg g’1 ), (d) concentration
of chlorophyll b (Chl b) (mgg™), (e) concentration of chlorophyll a + b (Chl a + b) (mgg™), and (f) chlorophyll a/b ratio (Chl a/b) (mean
+1SE) (n = 5). Different lowercase letters above the bars indicate the differences of physical leaf traits among leaves colonized with lichens;
the symbol “indicates the difference between leaves colonized with liverworts and lichens (P < 0.05).

effects on LSP between leaves colonized with liverworts
and lichens. In postremoval, the LSP of leaves colonized
with liverworts previously increased with an increasing
degree of coverage and was significantly different from the
uncolonized leaves at 75% and 100% coverage (Figure 3(d)).

Full coverage of lichens decreased LSP of leaves by 54%,
while that of liverworts increased LSP of leaves by 43%.
The interactions of epiphyllous groups and coverage, groups,
and removal were significant in LSP of P. prunifolia leaves
(Table 2).
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FIGURE 2: Photosynthetic light-response curves of leaves of Photinia prunifolia colonized with liverworts (a and b) or lichens (c and d), pre-

(a and c) versus postremoval (b and d) (mean + 1 SE) (n = 4).

TaBLE 1: Effects (F value) of epiphyllous coverage (coverage: 0%, 25%, 50%, 75%, and 100%) and epiphyllous groups (groups: liverworts and
lichens) on the leaf traits: leaf mass per area (LMA), leaf water content (LWC), concentration of chlorophyll a (Chl a), Chl b, Chl a + b, and

Chl a/b of Photinia prunifolia in JNNR.

df LMA LWC Chla Chlb Chla+b Chl a/b
Coverage 4 8.62°"" 3.01" 4.98"" 2.67° 371 1.55"
Groups 1 2.09™ 1517 30.9"" 5.94" 3.52™ 19.0""*
Coverage X groups 4 5.46"" 317" 5.55"" 3.03" 1.32™ 6.01""

*P < 0.05,"*P < 0.01, """ P < 0.001, "Not significant.

4. Discussion

4.1. Effects of Epiphylls on the Physical Leaf Traits of P.
prunifolia. In tropical rain forest, light is one of the most
important limitation affecting plant growth [2], especially

in the understory which received only 0.5%-5.0% of the
sunlight [12]. Thus, the wide distribution of epiphylls may
make the low-light condition worse for hosts there [10, 36].
Host leaves are assumed to modify a series of physical traits
in some extent to acclimate the colonization of epiphylls [30].
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FIGURE 3: Estimated photosynthetic parameters of Photinia prunifolia colonized with lichens and liverworts, pre- versus postremoval (mean +
1SE) (n = 4). (a) Respiration rate (R), (b) maximum rates of photosynthesis (P,,,), (¢) light compensation point (LCP), and (d) light saturation
point (LSP). The symbol “indicates the difference of photosynthetic parameters between pre- and postremoval treatment; different small and
capital letters near the bars indicate the differences among leaves with different coverage and between leaves colonized with liverworts and

lichens (P < 0.05).

As a composite parameter associated with a suite of structural
traits, leaf mass per area (LMA) can be understood as an
index of leaf-level cost for light interception of host leaves
and an important indicator of plant strategies [38, 39]. In this
study, colonization of liverworts did not induce significant
changes in host’s LMA overall, while leaves with full coverage
of lichens exhibited the lowest LMA. In addition, the leaves
colonized with liverworts exhibited a significantly lower
LMA than that with lichens at coverage of 50% and 75%,
respectively (Figure 1(a)). In general, leaves possessed a lower
LMA adapted to the low-light condition much better than
that with a higher one [40, 41]. Therefore, the host leaves

covered with liverworts (50%-75%) may be more competitive
than that with lichens, especially under the increased shading
condition [16]. However, leaves colonized with 100% lichens
decreased LMA significantly by 18.6% compared with that in
uncovered leaves, which may be attributed to the decline of
photosynthetic output in mesophyll tissue due to the dense
coverage of lichens [12, 42].

Lichens colonization on leaves of P. prunifolia also dis-
played a significantly negative effect on leaf water content
(LWC) when the coverage was larger than 50% (Figure 1(b)),
while the colonization of liverworts exhibited no effect
on hosts LWC at any coverage. Although some epiphylls
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TaBLE 2: Effects of epiphyllous coverage (0%, 25%, 50%, 75%, and 100%), epiphyllous groups (groups: liverworts and lichens), and treatment
of removal (preremoval and postremoval) on photosynthetic parameters: respiration rate (R), maximum rates of photosynthesis (P,,,. ), light
compensation point (LCP), and light saturation point (LSP) of Photinia prunifolia in JNNR.

Source df R P o LCP LSP
Groups 1 0.88™ 3.86™ 20.6""" 16.0"*"
Coverage 4 1.68™ 18.5""" 0.556™ 10.2"*
Removal 1 8.46™" 29.1° 0.120™ 1.14™
Groups x coverage 4 2.90" 1.20™ 6.65""" 18.6"*"
Coverage x removal 4 1.60" 5.91"*" 0.566" 2.32%
Groups x removal 1 8.34™" 2.15™ 115" 6.49"
Groups x coverage x removal 4 5.70""" 2.05™ 0.239™ 2.31"

*P < 0.05,"*P < 0.01, """ P < 0.001, "Not significant.

(including lichens and liverworts) growing between the
cuticle and epidermis had been indicated to absorb water
from their hosts during periods of drought [8, 12, 16], the
LWC of host leaves would not decline significantly unless the
water transport of host plants was depressed by colonization
of epiphylls [43]. Although both lichens and liverworts are
poikilohydric, the former are more likely to occur in dry
habitat than the latter [44]. This physiological drought of
host leaves resulted from lichens colonization that may make
lichens more competitive over liverworts and accelerate the
senescence of host leaves accordingly [8, 25]. Therefore,
the lowest LWC of leaves colonized with 100% lichens also
supported the assumption that the leaves colonized with full
cover of lichens may be ready for shedding [45].

Changes of chlorophyll contents in host leaves in response
to epiphyllous colonization are crucial topics related to
the acclimation of hosts to epiphyllous colonization [36,
46, 47]. The colonization of lichens significantly decreased
chlorophyll content (Chl) a, a + b, and a/b (Figures 1(c), 1(e),
and 1(f)) but increased Chl b in host leaves of P. prunifolia
(Figure 1(d)), while the colonization of liverworts induced
no changes of them even at full coverage (Figures 1(c)-
1(f)). Combined with the change in LMA, lichens’ effect
on total chlorophyll content (ug Chl cm®) of P prunifolia
was comparable with the results from Anthony et al. (2002)
[10]. Lichens colonized on the leaves commonly are thought
to prefer the habitat with higher light relative to liverworts
[48]. Their absorptance spectra were also demonstrated to be
similar to those of host leaves [10, 16], while most epiphyllous
liverworts possessed lower Chl a/b ratio with higher levels
of Chl b, and were adapted to low-light intensities better
than did lichens [44]. Therefore, relative to light competition
between liverworts and host leaves, the light competition
between lichens and hosts would be more significant, which
thus induced more modification in host’s chlorophyll, such as
decreased Chl a/b (Figure 1(f)) [28, 29].

4.2. Effects of Epiphylls on Photosynthesis of Host Leaves.
Because of the independent photosynthetic capacity of liver-
worts and photobionts from lichens [15, 16, 49], the coating
of epiphylls had been considered widely to affect the pho-
tosynthetic efficiency of host leaves [10, 13, 36]. With the
exception of leaves colonized with 25% liverworts and full

epiphylls, rates of C assimilation per unit leaf area colonized
with epiphylls were all higher than that in single uncovered
leaves of P. prunifolia (Figures 2(a) and 2(c)). Combined
with the well-known contribution of epiphylls for N-fixation
for host leaves [9, 18, 22], the colonization of epiphylls
may increase the photosynthetic efficiency in community
level at some extent. Although there is a general perception
that both lichens and liverworts have low photosynthetic
rates compared to their host vascular plants [15], the larger
diversity of photosynthetic rates (P,) induced by increasing
of lichens coverage implied a relative higher rate of lichens
compared with that of liverworts (Figures 2(a) and 2(c)).

However, the respiration rate (R) and maximum net
photosynthesis rates (P,,,,) of leaves with coating of lichens
and liverworts did not show the expected increase as their
larger intragroup variance in the same level of coverage
excepted for the larger P, in leaves covered with 50%
lichens (Figures 3(a) and 3(b), left panels). This negligible
contribution of epiphylls to total R and P,  was similar
with that of lichens on host plants (Calamus australis) in
Anthony et al. (2002) [10]. The full coverage of both lichens
and liverworts induced some interesting changes of light
compensation point (LCP) and light saturation point (LSP)
(Figures 3(c) and 3(d), left panels). The full coverage of lichens
induced an increased LCP but a decreased LSP of P. prunifolia
leaves, which was inconsistent with general traits of plants in
shading condition [50, 51], whereas leaves covered with dense
liverworts were characterized by a decreased LCP contrarily.
The dense coverage of liverworts advanced their hosts’ shade
tolerance [52], but without any significant impacts on their
physical leaf traits compared with that in uncolonized leaves
(Figure 1).

By removing epiphylls on host leaves, the effects of
epiphylls to light-response curves were eliminated in
postremoval; however, remained differences among bare
leaves colonized with lichens previously were still larger than
that with liverworts previously (Figure 2). The progressive
colonization of lichens leaded to more accumulated effects on
their host’s photosynthetic capacity, which may concurrently
occur with lichen-induced changes of physical leaf traits we
discussed above (Figure 1). However, the significant increases
of respiration rate (R) in some leaves induced by removal
treatment were unexpected (Figure3(a), right panel).



The removal of dense lichen-induced increment of R in
bare leaves may be attributed to the relative larger leaf area
(the same as the area of leaf chamber) disturbed by removal
treatment [53]. Leaves colonized with full lichens and
liverworts before still exhibited an increased and a decreased
LCP, respectively, after removal treatment (Figure 3(c), right
panel), which also demonstrated that the lower LCP in the
latter was one of acclimated leaf traits but not the temporary
contribution from liverworts [14, 22]. The effects of removal
treatment on LSP in leaves with full epiphylls were contrarily
between that with full lichens and liverworts (Figure 3(d),
right panel). The decreased LSP (by lichens) may prevent
their leaves from utilizing sunflecks, which are commonly
higher irradiances and important sources of photosynthetic
photon flux (PPF) in the understory of tropical forests,
whereas the increased LSP (by liverworts) may advance this
capability to absorb them [51, 54].

4.3. Advantage of Liverworts in Epiphyllous Community. The
relations between liverworts and lichens on phyllosphere are
known as competitions, in which liverworts are generally
preponderant and overgrow its opponent (lichens) [14, 16,
55]. For the host plants (P. prunifolia) we selected in this
study, lichens’ colonization had induced much more negative
impacts on their physical leaf traits (Figurel) as well as
correlated photosynthetic parameters (e.g., LCP and LSP,
Figure 3) compared to that of liverworts. In long term
coevolution between epiphylls and host plants, epiphyllous
group (liverworts) exhibited less disadvantageous effects on
hosts that may possess more predominance in epiphyllous
community [14], unless environmental changes favoring
lichens competition.

In epiphyllous community, liverworts commonly require
more proportion of available water than lichens [12]. Thus
once available water in environment decreased, excessive
water loss during drought periods in the understory of
tropical rain forest may depress the advantage of liverworts
in the competition with lichens [16]. Increasing frequency
of drought and duration of heat waves may similarly induce
more wide distribution of lichens [56, 57]. Thereby, current
structure of epiphyllous community, including ratios of
liverworts and lichens and total coverage on vascular plants,
may shift to some extent in responding to these new ratios of
available water and energy [58].

5. Conclusion and Prospect

In this study, the effects of epiphylls on host plants were
focused on aspects of physical and photosynthetic leaf traits.
Lichens colonization (especially at full coverage) significantly
decreased leaf water content (LWC), chlorophyll (Chl) a and
a + b content, and Chl a/b of P. prunifolia but increased
Chl b content, while liverworts did not affect them as a
whole (Figure 1). The variations of photosynthetic rates (P,)
among host leaves induced by lichens before or after removal
treatment were all larger than liverworts (Figure 2). The full
coverage of lichens even induced an increased LCP but a
decreased LSP of P, prunifolia leaves, while that of liverworts
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exhibited a contrary effect. Our results suggested that the
effects of epiphyllous communities dominated by lichens or
liverworts on host leaves had differentiated effects. Compared
with liverworts, lichens colonization exhibited more adverse
effects on their host’s leaf traits. The coverage of epiphylls is a
critical factor for determining the roles of epiphylls for host
leaves, after all the vital effects on hosts only occur at largest
coverage.

In natural understory of tropical rain forest, with col-
onization of epiphylls on phyllosphere, some symbiotic
organisms with epiphylls provide the host leaf protection
against herbivores and pathogens as well as the newly fixed
nitrogen. The exact relationship between epiphylls and host
plants is much more complicated than the modification of
leaf traits. Furthermore, the advantage of liverworts relative
to lichens exhibited in affecting host’s leaf traits may shift
with current environmental changes, as their environmental
sensitivity and ecological fragility. More studies are needed
to examine the ecophysiology of epiphylls, particularly under
the background of climate change.
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