
Florida International University
FIU Digital Commons
Department of Biomedical Engineering Faculty
Publications Biomedical Engineering

8-4-2015

Highly Sensitive Electrochemical Sensor for the
Determination of 8-Hydroxy-2 '-deoxyguanosine
Incorporating SWCNTs-Nafion Composite Film
Lingfei Yang
Shaanxi Normal University

Bing Wang
Shaanxi Normal University

Honglan Qi
Shaanxi Normal University

Qiang Gao
Shaanxi Normal University

Chen-zhong Li
Department of Biomedical Engineering, Florida International University, licz@fiu.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.fiu.edu/biomed_eng

This work is brought to you for free and open access by the Biomedical Engineering at FIU Digital Commons. It has been accepted for inclusion in
Department of Biomedical Engineering Faculty Publications by an authorized administrator of FIU Digital Commons. For more information, please
contact dcc@fiu.edu.

Recommended Citation
Yang, Lingfei; Wang, Bing; Qi, Honglan; Gao, Qiang; Li, Chen-zhong; and Zhang, Chengxiao, "Highly Sensitive Electrochemical
Sensor for the Determination of 8-Hydroxy-2 '-deoxyguanosine Incorporating SWCNTs-Nafion Composite Film" (2015). Department
of Biomedical Engineering Faculty Publications. 12.
https://digitalcommons.fiu.edu/biomed_eng/12

https://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fbiomed_eng%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/biomed_eng?utm_source=digitalcommons.fiu.edu%2Fbiomed_eng%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/biomed_eng?utm_source=digitalcommons.fiu.edu%2Fbiomed_eng%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/bme?utm_source=digitalcommons.fiu.edu%2Fbiomed_eng%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/biomed_eng?utm_source=digitalcommons.fiu.edu%2Fbiomed_eng%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/biomed_eng/12?utm_source=digitalcommons.fiu.edu%2Fbiomed_eng%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


Authors
Lingfei Yang, Bing Wang, Honglan Qi, Qiang Gao, Chen-zhong Li, and Chengxiao Zhang

This article is available at FIU Digital Commons: https://digitalcommons.fiu.edu/biomed_eng/12

https://digitalcommons.fiu.edu/biomed_eng/12?utm_source=digitalcommons.fiu.edu%2Fbiomed_eng%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages


Research Article
Highly Sensitive Electrochemical Sensor for
the Determination of 8-Hydroxy-2-deoxyguanosine
Incorporating SWCNTs-Nafion Composite Film

Lingfei Yang,1 Bing Wang,1 Honglan Qi,1 Qiang Gao,1

Chen-zhong Li,2 and Chengxiao Zhang1

1Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering,
Shaanxi Normal University, Xi’an 710062, China
2Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University,
Miami, FL 33174, USA

Correspondence should be addressed to Chen-zhong Li; licz@fiu.edu and Chengxiao Zhang; cxzhang@snnu.edu.cn

Received 21 April 2015; Revised 26 July 2015; Accepted 4 August 2015

Academic Editor: Josep Samitier

Copyright © 2015 Lingfei Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

8-Hydroxy-2-deoxyguanosine (8-OHdG) is a typical biomarker of oxidative DNA damage and has attracted much attention in
recent years since the level of 8-OHdG in body fluids is typically associated with various diseases. In this work, a simple and highly
sensitive electrochemical sensor for the determination of 8-OHdG was fabricated incorporating single wall carbon nanotubes-
(SWCNTs-) Nafion composite film coated on glassy carbon electrode. Nafion was chosen as an optimal adhesive agent from a
series of adhesive agents and acted as a binder, enrichment, and exclusion film. Due to the strong cation-exchange ability of Nafion
and the outstanding electronic properties of SWCNTs, the prepared SWCNTs-Nafion film can strongly enhance the electrochemical
response to oxidation of 8-OHdG and efficiently alleviate the interferences from uric acid and ascorbic acid. The oxidation peak
currents are linear with the concentration of 8-OHdG in the range of 0.03 to 1.25𝜇M with a detection limit of 8.0 nM (S/N = 3).
This work demonstrates that SWCNTs-Nafion film can improve the sensitivity, selectivity, reproducibility, and stability, making it
an ideal candidate for electrochemical detection of 8-OHdG.

1. Introduction

8-Hydroxy-2-deoxyguanosine (8-OHdG), an oxidized form
of the nucleoside 2-deoxyguanosine (2-dG), is well known
as an important biomarker of oxidative DNA damage [1–3].
It is generated in the reaction between the eighth position of
the guanine molecule of DNA and reactive oxygen species
such as hydroxyl radicals, superoxide radicals, and hydrogen
peroxide [2]. The level of 8-OHdG in body fluids is typically
associated with the cancers [2, 4], diabetes [5, 6], aging [7],
and neurological disorders [8, 9]. Nowadays, it also acts as
a significant biomarker of genotoxicity [10, 11]. The devel-
opment of analytical methods for the determination of 8-
OHdG with simplicity, high sensitivity, and selectivity is of
great importance in clinic tests.

The analytical methods for quantifying 8-OHdG have
been developed, including high-performance liquid chroma-
tography-electrochemical detection [12], high-performance
liquid chromatography-electrochemical detection combined
with solid-phase extraction [13, 14], gas/liquid chroma-
tography-mass spectrometry [15, 16] or liquid chroma-
tography-mass spectrometry [17–19], enzyme-linked im-
munosorbent assay [20, 21], and capillary electrophoresis
amperometric detection after solid-phase extraction [22, 23].
These methods provide high sensitivity and high throughput.
However, most of these methods have obvious drawbacks;
for example, they either require sophisticated equipment and
trained personnel or involve tedious pretreatment procedures
such as solid-phase extraction. Electrochemical methods for
quantifying 8-OHdG, based on the electrochemical oxidation
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activity of 8-OHdG, have displayedmany advantages, such as
high sensitivity, their fast implementation, and the simplicity
of the instruments. In direct electrochemical methods, most
of them are conducted at bare electrodes. Langmaier et al.
[24] investigated the electrochemical oxidation mechanism
of 8-OHdG at glassy carbon electrode (GCE) and Au, Pt, and
SnO
2
electrode using cyclic voltammetry and indicated that

the rate of the charge transfer reaction decreased with the
increasing solution pH and depended on the nature of the
electrode material following the sequence GC > Pt, Au ≫
SnO
2
. Rebelo et al. [25] reported a pH-dependent oxidation

mechanism over a wide pH range of 1–12 and the best sensi-
tivity observed at pH 6 for the differential pulse voltammetry
(DPV) determination of 8-OHdG in the presence of uric
acid with GCE. Brett et al. [26] reported electrochemical
oxidation of 8-oxoguanine on GCE for the detection of DNA
damage with a detection limit of 0.8𝜇M. In a nutshell, the
sensitivity and selectivity of direct electrochemical methods
for quantifying 8-OHdG are limited.

Some efforts have been made to improve the sensitivity
and selectivity of electrochemical sensors for quantifying
8-OHdG, mainly by modification of GCE using nano-
materials and polymers. In 2007, Li et al. [27] reported
an electrochemical sensor for quantifying 8-OHdG on a
poly(3-methylthiophene) modified GCE with a detection
limit of 0.10 𝜇M. Other work [28] they did in 2013 was on
the electrochemical reduction synthesis of graphene/Nafion
nanocomposite film and their results showed a high level of
electrochemical performance on the oxidation of 8-OHdG.
A wide linear range of 0.07–33.04𝜇M and a low detection
limit of 1.12 nM for 8-OHdGwere obtained using linear sweep
voltammetry. In 2008, Gutiérrez et al. [29] reported HPLC-
amperometric detection of 8-OHdG using electrostatic and
covalent adsorption of poly(amidoamine) (PAMAM) den-
drimers on a thiol-modified gold electrode with a detection
limit of 1.2 nM in synthetic samples and matrix interference
elimination. In 2011, Gutiérrez et al. [30] also reported
differential pulse anodic stripping voltammetry for quanti-
fying 8-OHdG on multiple wall carbon nanotubes (MWC-
NTs)/polyethylenimine (PEI) modified electrodes with a
detection limit of 0.10 𝜇Mand high selectivity. Electrochemi-
cal sensors using nanomaterials and polymers are an efficient
way for electrochemical quantification of 8-OHdG.

Carbon nanotubes (CNTs) have a wide application in
electrochemical sensors [31, 32] and biosensors [33, 34] since
they possess the characteristic of unique properties [31, 35,
36], such as high electrical conductivity, outstanding catalytic
activities, high adsorptive property, and facilitating electron
transfer. CNTs have two distinct types of structures, including
MWCNTs and single wall carbon nanotubes (SWCNTs).
MWCNTs are composed of concentric and closed graphene
tubules, each with a rolled-up graphene sheet, formed in a
range of diameters, typically between 2 and 25 nm. SWCNTs
are made of a single graphite sheet rolled seamlessly, with a
diameter between 1 and 2 nm, arranged in a regular pattern of
bundles that consist of tens to hundreds of nanotubes in par-
allel and in contact with one another [37]. Moreover, CNTs-
based electrochemical sensors have shown many distinct
advantages in the analysis of electroactive substances such as

cytochrome c [38], dopamine, epinephrine, and ascorbic acid
[39] (on SWCNTs/GCE), and NADH [40], myoglobin [41],
and warfarin [42] (on MWCNTs/GCE).

Nafion, a perfluorosulfonated and negatively charged
polymer, is a cation-exchange polymer. Nafion films have
been widely used as an electrode modifier in applications
of electrochemical sensors and biosensors because of their
chemical and thermal stability, high cation conductivity [43],
and high permeability to cations coupled with their near
impermeability to anions [44].Meanwhile, Nafion can also be
used as a binder to help other modifiers effectively adhere on
substrate electrode [45].Wang et al. [46] demonstrated CNTs
in the presence of Nafion can be homogeneously dispersed
into ethanol. To the best of our knowledge, an electro-
chemical sensor for the determination of 8-OHdG based on
SWCNTs-Nafion modified electrode has not been reported.

The aim of this work was to develop a sensitive electro-
chemical sensor for the determination of 8-OHdG, based on
the combination of the extraordinary properties of SWCNTs
and the adhesive ability coupled with selective permeation
of Nafion. A SWCNTs-Nafion film modified electrode was
prepared by drop-coating SWCNTs-Nafion dispersion on the
surface of GCE. Here, SWCNTs contributed to enhancing the
electrochemical response while Nafion played a crucial role
in the renewability and stability of the modified electrode, as
well as in alleviating the interferences. In this paper, selection
of an adhesive agent, characterization of the SWCNTs-
Nafion nanocomposite film, optimal test conditions, and
electrochemical performance and determination of 8-OHdG
by developed method are presented. The proposed electro-
chemical method showed many advantages such as high
sensitivity, reproducibility, good selectivity, and simplicity.

2. Materials and Methods

2.1. Reagents and Materials. 8-Hydroxy-2-deoxyguanosine
(8-OHdG), deoxyguanosine (dG), Nafion (5wt% solution
in water and lower aliphatic alcohols), polyethylenimine
(PEI, average MW 750000), and streptavidin (SA) were pur-
chased fromSigma-Aldrich (USA). N,N-dimethylformamide
(DMF), sodium dodecyl sulfate (SDS) were obtained from
Shanghai Reagent Corporation (Shanghai, China). Uricase
(2U/mL) was obtained from Sigma-Aldrich (USA). High
purity single wall carbon nanotubes (SWCNTs, outer diam-
eter < 2 nm, length = 5∼30𝜇m, and purity: >95%) and
short multiwalled carbon nanotubes (MWCNTs, outer diam-
eter: 8∼15 nm, length = 0.5∼2𝜇m, and purity: >95%) were
obtained from Institute of Chengdu Organic Chemicals Co.,
Ltd. (Chengdu, China). The other reagents were of analytical
grade and used without any further purification. Aqueous
solutions were all prepared withMilliporeMilli-Q water (𝜌 =
18.2ΩMcm).

0.1M phosphate buffer saline (PBS, pH 7.40, 0.1M
NaH
2
PO
4
+ 0.1M Na

2
HPO
4
+ 0.1M KCl) was used as a

supporting electrolyte in all measurements.

2.2. Apparatus. All the electrochemical measurements
including cyclic voltammetry (CV) and differential pulse



Journal of Sensors 3

voltammetry (DPV) were performed on a CHI 660E
electrochemical workstation (Shanghai Chenhua Apparatus
Co., Ltd., China). The three-electrode system was composed
of a bare disk GCE with a diameter of 2mm or an
electrochemical sensor as the working electrode, a platinum
wire as the counter electrode, andAg/AgCl (saturated KCl) as
the reference electrode. All potentials were in reference to this
reference electrode. A digital control ultrasonic instrument
(KQ5200DE, 100W, Kun Shan Ultrasonic Instruments Co.,
Ltd., China) was used for dispersing CNTs well. A HZ85-2
magnetic stirrer (Beijing Zhongxing Weiye Instrument
Co., Ltd., China) was used for stirring the solution during
electrochemical measurements.

A Quanta 200 scanning electron microscope (SEM,
FEI Company, USA) and a JEM-2100 transmission electron
microscope (JEOL, Japan) were used to obtain the microim-
ages of the SWCNTs-Nafion film.

2.3. Preparation of CNTs Dispersions

2.3.1. The Pretreatment of CNTs. SWCNTs/MWCNTs were
pretreated according to [47] with some modification. Briefly,
500mg of the pristine SWCNTs/MWCNTs was pretreated in
80mL of mixture of concentrated H

2
SO
4
/HNO

3
(v/v, 3 : 1),

ultrasonicated for 4 h, followed by centrifuging and rinsing
with water several times until the filtrate was neutral. Finally,
the washed CNTs were dried in an oven overnight at 100∘C.

2.3.2. Preparation of the CNTs Dispersion. The SWCNTs-
DMF/MWCNTs-DMF dispersion was prepared by dispers-
ing 1.0mg of the pretreated SWCNTs/MWCNTs in 1.0mL
of DMF with the aid of ultrasonication for 15–30 minutes.
The SWCNTs-Nafion dispersion was prepared in the same
manner described above, but using 1.0mL of 0.5% Nafion
instead. Other SWCNTs-binder (SDS, PEI, SA) dispersions
were prepared by dispersing 1.0mgof the pretreated SWCNTs
in 1.0mL of 1.0mg/mL binder prepared using 1 : 1 (V/V)
ethanol/water solution.

2.4. Fabrication of Sensor. The GCE was polished manually
with a 0.3 𝜇m and 0.05𝜇m alumina slurry on a polishing
cloth, respectively, followed by ultrasonication in ethanol and
water for 3min, respectively, and was finally rinsed with
water and dried with nitrogen steam. The electrochemical
sensor was fabricated, typically, by drop-coating 9𝜇L of
SWCNTs-Nafion dispersion on the surface of the cleaned
GCE, following its exposure to air to be dried. Subsequent
modified GCEs were fabricated with the same protocol.

2.5. Electrochemical Measurements. All electrochemical exp-
eriments were performed in 0.1M pH 7.4 PBS at room
temperature, 25 ± 1∘C. CV measurements were conducted to
obtain the electrochemical response of 8-OHdG, as well as
select adhesive agents after an unstirred accumulation over
5min.

DPV measurements for the detection for 8-OHdG were
performed after the modified electrode had accumulated
under magnetic stirring for 9min. DPV parameters were
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Figure 1: Cyclic voltammograms on different electrodes in 0.1M
PBS (pH 7.4) containing 5𝜇M 8-OHdG. (A) Bare GCE, (B) MWC-
NTs/GCE, and (C) SWCNTs/GCE. Cyclic voltammetric measure-
ments were performed at a scan rate of 50mV/s after the electrode
was immersed in the tested solution under the condition of 5.0min
accumulation (unstirring).

selected to attain a pulse amplitude of 50mV, a pulse width
of 0.05 s, and a pulse period of 0.5 s.

Recycling the sensors required a renewal process to
remove the adsorbed analytewhichwas performed as follows:
the used sensors were immersed in 0.1M PBS (pH 7.4) and
then electrochemically treated by successive cyclic voltam-
metric scanning for 1–3min in the potential range between
+0.1 and+0.6V at a scan rate of 100mV s−1 until a stable cyclic
voltammogramwas obtained and, finally, dried with nitrogen
steam.

3. Results and Discussion

3.1. Electrochemical Behaviors of 8-OHdG on CNTs-Coated
GCE. In the preliminary experiments, SWCNTs and MWC-
NTs were separately dispersed in DMF and then drop-
coated on the surface of GCE. Figure 1 shows the cyclic
voltammograms of 8-OHdG on bare GCE (curve (A)),
MWCNTs/GCE (curve (B)), and SWCNTs/GCE (curve (C)).
On bare GCE, the anodic peak potential of 8-OHdG appears
at about +0.38V. This is in agreement with the reports by Li
et al. [27] and Gutiérrez et al. [30]. On MWCNTs/GCE and
SWCNTs/GCE, the anodic peak potentials all positively shift
from +0.38V to +0.41 V. This suggests that MWCNTs and
SWCNTs should not have an observed catalytic function for
electrochemical oxidation of 8-OHdG. It is notable that the
oxidation peak currents of 8-OHdG on MWCNTs/GCE and
SWCNTs/GCEwere significantly enhanced. Compared to the
bareGCE, there was about a 20-fold enhancement in the peak
current obtained by subtracting capacitive current from the
observed current using MWCNTs/GCE and about a 47-fold
enhancement in the peak current obtained by subtracting
capacitive current from the observed current using SWC-
NTs/GCE.Thismay be attributed to an increase of adsorption
amount of 8-OHdG on the surface of the electrodes, and
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the high conductivity of MWCNTs or SWCNTs. This indi-
cates that the enhanced current on SWCNTs/GCE is much
larger than that onMWCNTs/GCE.Therefore, SWCNTswere
chosen as themodifiedmaterial in the following experiments.

3.2. Effect of the Adhesive Agents. The common methods to
fabricate the electrochemical sensors rely not only on the
SWCNTs homogeneous dispersion but also on their ability to
adhere onto the surface of the substrate electrode. SWCNTs
were often dispersed in organic solvents, such as DMF
[38, 39], acetonitrile [48], and cyclohexane [49] to obtain
a homogeneous suspension for electrochemical sensors. In
addition, polymer composites and conjugation chemistry
were employed to enhance the adhesion of nanomaterials
to the surfaces of the electrodes and to reduce interferers
from the complex samples. The choice of a suitable adhesive
agent as binder is very important since it decides the physical
stability of the SWCNTs modified electrode. If the adhesive
agent has an excellent dispersant property, not only will the
adhesive force between SWCNTs film and GCE interface be
enhanced, but also the uniformity of SWCNTs dispersion
will be improved. Typically, from a physical perspective,
binding reagents can assist SWCNTs in firmly attaching onto
the surface of the substrate electrode to avoid SWCNTs
film exfoliation from the substrate electrode. Therefore, in
our work, five reagents including Nafion, DMF, SDS, PEI,
and SA were chosen as binding reagents. Additionally, since
the chosen dispersants are partially solid or sticky fluid,
ethanol/water (V/V = 1 : 1) was used as the solvent. Prepa-
ration of SWCNTs dispersion as described in Section 2.3
and the experiments for the investigation of the effect of
dispersants on electrochemical properties of SWCNTs/GCE
were performed using CV measurements.

At first, the adhesive ability of the binding agents for
SWCNTs on the surface of GCE was checked. It was found
that both SWCNTs-DMF and SWCNTs-SDS films formed
by drop-coating on the surface of GCE were observed to be
easily wiped off from the surface of GCE.This is attributed to
the fact that both DMF and SDS have a low adhesive ability.
It was found that the electrodes modified with SWCNTs-
Nafion, SWCNTs-PEI, and SWCNTs-SA films were observed
to be firmly attached to the surface of the GCE. Figure 2
shows the voltammograms of 8-OHdG at SWCNTs-Nafion
(curve (A)), SWCNTs-PEI (curve (B)), SWCNTs-SA (curve
(C)), and SWCNTs (curve (D), ethanol/water V/V = 1 : 1
as solvent) film modified GCE. Comparing curve (A) with
(D), the oxidation peak current increases from 24.23𝜇A to
54.15 𝜇A. This indicates that 8-OHdG can be accumulated
in SWCNTs-Nafion film. Comparing curve (B) with (D),
the anodic peak potential negatively shifts from 0.41 V to
0.32V, indicating that PEI could overcome the overpotential
of the oxidation of 8-OHdG.This is consistent with the report
by Gutiérrez et al. [30]. Comparing curve (C) with (D),
the oxidation peak current slightly decreases. This indicates
that SA could not improve the oxidation of 8-OHdG. In
order to obtain the high sensitivity and stability required,
Nafion was selected as the binding reagent in subsequent
experiments.
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Figure 2: Cyclic voltammograms on different SWCNTs film
modified electrodes in 0.1M PBS (pH 7.4) containing 50 𝜇M 8-
OHdG with a scan rate of 50mV/s. (A) SWCNTs-Nafion/GCE,
(B) SWCNTs-PEI/GCE, (C) SWCNTs-SA/GCE, and (D) SWC-
NTs/GCE. Cyclic voltammetric measurements conditions are the
same as in Figure 1.
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Figure 3: Cyclic voltammograms on different electrodes in 0.1M
PBS (pH 7.4) containing 5𝜇M 8-OHdG. (A) Bare GCE, (B)
Nafion/GCE, and (C) SWCNTs-Nafion/GCE. Cyclic voltammetric
measurements conditions are the same as in Figure 1.

To investigate the functions of Nafion and SWCNTs,
CV measurements are performed on 8-OHdG with three
different electrodes including bare GCE, Nafion/GCE, and
SWCNTs-Nafion/GCE, as showed in Figure 3. The results
showed that the oxidation peak current of the bare GCE
(curve (A)) was higher than that of Nafion/GCE (curve (B)).
This is attributed to the fact that the diffusion coefficient
of 8-OHdG is lower in the Nafion polymer film than in
aqueous solution. This indicates that the Nafion polymer
film slightly blocks the electron transfer between the surface
of GCE and the electrolyte. The oxidation peak current
of SWCNTs-Nafion/GCE (9.30 𝜇A) (curve (C)) was much
higher than that of bare GCE (0.128𝜇A), indicating that
SWCNTs-Nafion/GCE can enhance the peak current about
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73-foldwhen compared to a bareGCE.Thismay be attributed
to the unique microstructure characteristics inherent to the
special SWCNTs and Nafion.

To obtain information on the SWCNTs-Nafion film, a
potassium ferricyanide system was used as an electrochem-
ical redox probe. The large differences in cyclic voltam-
mograms of [Fe(CN)

6
]3−/4− were clearly observed for three

different electrodes including bare GCE, Nafion/GCE, and
SWCNTs-Nafion/GCE from Figure 4. For the bare GCE
(curve (A)), a well-defined cyclic voltammogram can be seen,
and the anodic peak current (𝑖pa) and cathodic peak current
(𝑖pc) were 25.2𝜇A and −25.5 𝜇A, respectively, with a peak
potential separation (ΔEp) of 0.065V. After the GCE was
modified with Nafion (curve (B)), the redox peak currents
were greatly reduced. This can be ascribed to the fact that
negatively charged Nafion films partly hinder the diffusion of
[Fe(CN)

6
]3−/4− through the film, which have been illustrated

in some previous reports [45, 50]. 𝑖pa and 𝑖pc for the SWCNTs-
Nafion/GCE (curve (C)) were 69.2 𝜇A and −70.5 𝜇A, respec-
tively, with ΔEp of 0.15 V. The introduction of SWCNTs with
Nafion films resulted in a considerable increase of the peak
currents, indicating that SWCNTs provided the conducting
bridges for the electron transfer of [Fe(CN)

6
]3−/4 [50]. This

confirms that the combination of SWCNTs and Nafion film
can increase the currents of the analytes.

To obtain the microstructure information of the
SWCNTs-Nafion dispersion, scanning electron micro-
scopy (SEM) in combination with transmission electron
microscopy (TEM) was used to characterize the micromor-
phology of the SWCNTs-Nafion dispersion. As displayed in
Figure 5(a), a uniform and homogeneous distribution of
SWCNTs-Nafion film was formed. Typical TEM images in
Figure 5(b) displayed a scattered distribution of well-
dispersed SWCNT clusters. The results indicate that
Nafion can disperse SWCNTs well to form a uniform and
homogeneous distribution of SWCNTs-Nafion film on GCE.

Additionally, the effects of scan rates on the electrochem-
ical oxidation of 8-OHdG on SWCNTs-Nafion/GCE were
investigated. The result was showed in Figure 6. It can be
seen that the oxidation peak currents increased with the up of
scan rate (Figure 6(a)) and were proportional to the scan rate
(5∼500mV/s) (Figure 6(b)), relying on the linear regression
equation: 𝑖

𝑝
(𝜇A) = 0.2391 + 0.7318 v (mV/s) (𝑅 = 0.9996).

This indicates that the electrochemical oxidation process of
8-OHdG on SWCNTs-Nafion/GCE was a surface-defined
controlled process.

3.3. Effect of Modification Volume of SWCNTs-Nafion Disper-
sion and Accumulation Time. We found that stirring of the
tested solution during accumulation time when the electro-
chemical sensors were immersed in the solution affected the
peak current. Cyclic voltammetric measurements were per-
formed after different accumulation conditions. Figure 7(a)
shows cyclic voltammograms obtained on the sensors after
an accumulation time of 5min without stirring (curve (A))
and with a constant stirring (curve (B)).The result shows that
stirring the tested solution can increase the peak current of 8-
OHdG about 2.7-fold when compared to an unstirred case.

As expected, modification volume of SWCNTs-Nafion
dispersion decides the amount of the SWCNTs-Nafion on the
GCE and further affects the sensitivity. Thus, the effect of the
modification volume of SWCNTs-Nafion on the peak current
was checked using a fixed concentration of SWCNTs-Nafion
(1.0mg/mL) and stirring for 5min. The result in Figure 7(b)
shows the dependence of the peak current on the volume
of SWCNTs-Nafion dispersion. From Figure 7(b), it can be
seen that the peak currents linearly increase from 1 to 7 𝜇L.
This is attributed to the fact that the amount of 8-OHdG in
SWCNTs-Nafion film on the electrode increases. And then,
the peak current reaches a stable platform between 7 𝜇L
and 11 𝜇L. When the volume is higher than 11𝜇L, the signal
declines. This can be ascribed to the formation of a thicker
film, which increases the resistance of 8-OHdG from the bulk
solution to the surface of the electrode.Therefore, the volume
of 9 𝜇L was chosen as the optimum volume.

Effect of accumulation time on the peak current was
checked under moderate stirring with a magnetic stirrer, as
shown in Figure 7(c). The peak current linearly increases
from 1 to 7min. This is attributed to the fact that the
amount of 8-OHdG in SWCNTs-Nafion film on the electrode
increases. And then, the peak current reaches a stable plateau
between 7 and 13min. This is attributed to the fact that the
amount of 8-OHdG to be concentrated in the SWCNTs-
Nafion film reaches a saturation state of adsorption, as
expected for a process under adsorptive control, which is
consistent with the inference above. Therefore, the optimal
accumulation time of 9min was chosen for further experi-
ments.

3.4. DPV Determination of 8-OHdG. Differential pulse
voltammetry (DPV) is a highly sensitive and selective tool
for quantitative analysis when compared to the linear scan
voltammetry. Therefore, the electrochemical determination
of 8-OHdG was examined using DPV at the fabricated
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Figure 5: (a) SEM image of SWCNTs-Nafion film. Acceleration voltage, 25 kV. Magnification 20,000x (scale bar = 500 nm). (b) TEM
micrograph of SWCNTs-Nafion film (scale bar = 200 nm).
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Figure 6: (a) Cyclic voltammograms in 0.1M PBS (pH 7.4) containing 5 𝜇M 8-OHdG at different scan rates from 5mV/s to 500mV/s on the
SWCNTs-Nafion/GCE. (b) Dependence of the peak current on the scan rates from 5mV/s to 500mV/s.

sensors under the stated optimal conditions. Figure 8(a)
shows theDPV response curves of 8-OHdG in the concentra-
tion range of 0 to 8.75𝜇M. Figure 8(b) shows the correspond-
ing dependence of the oxidation currents on the concentra-
tion of 8-OHdG. The peak currents are proportional to the
concentration of 8-OHdG over two concentration intervals:
0.03∼1.25 𝜇M (line (A)) and 1.25∼8.75 𝜇M (line (B)). The
linear regression equations are expressed as follows: 𝑖

𝑝
(𝜇A) =

0.233 + 16.731C (𝜇M) (𝑅 = 0.9995, 0.03∼1.25𝜇M) and 𝑖
𝑝

(𝜇A) = 10.030 + 9.229C (𝜇M) (𝑅 = 0.9987, 1.25∼8.75 𝜇M).
The detection limit (S/N = 3) was estimated to be 8.0 nM.
The slopes of the two linear ranges are 16.731𝜇A/𝜇M and

9.229𝜇A/𝜇M, respectively. The detection limit in this work
(8.0 nM) is much lower than that reported using poly(3-
methylthiophene) modified GCE (0.10𝜇M) [27] and MWC-
NTs/PEI modified electrode (0.10 𝜇M) [30]. The slope of the
linear range at low concentrations in this work ismuch higher
than that reported using poly(3-methylthiophene) modified
GCE (0.361 𝜇A/𝜇M, Φ = 3mm) [27] and using MWC-
NTs/PEI modified electrodes (2.67𝜇A/𝜇M, Φ = 3mm)
[30]. However, the detection limit in this work is only
slightly higher than that reported using electrochemically
graphene/Nafion nanocomposite film modified GCE (linear
range is 0.07∼3.64 𝜇M with the detection limit of 1.12 nM)
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Figure 7: (a) Cyclic voltammograms on SWCNTs-Nafion/GCE under different accumulation conditions for 5min. (A)Without stirring. (B)
With stirring. (b) Dependence of the peak current on the volume of SWCNTs-Nafion dispersion. (c) Dependence of the peak current on the
accumulation time at SWCNTs-Nafion/GCE. Cyclic voltammetric measurements were performed in pH 7.4 PBS solution containing 5𝜇M
8-OHdG at a scan rate of 50mV/s.

[28], in which it was required that graphene be synthesized
electrochemically from graphite oxide. A lower detection
limit of the proposed method is, therefore, feasible.

The reproducibility of the sensors for quantification of
8-OHdG was evaluated by testing 7 sensors fabricated. The
results showed that the relative standard deviation (RSD)
was 6.1%. This indicates that the Nafion-SWCNTs/GCE
fabrication process has a good level of reproducibility.

The renewability of the sensors is an important issue in
the application of the sensors. Although the modification
process proposed in this work is simple, the renewable ability
of the sensors was also checked. After each DPV determi-
nation, the sensor was renewed as described in Section 2.5.
The results showed that the RSD was 3.9% for one sensor
in 7 repeat measurements. A satisfactory renewability of the
modified electrodes is, therefore, evident.

3.5. Specificity Tests. Uric acid (UA) and ascorbic acid (AA)
are generally considered as the main interferers in the

electrochemical determination of 8-OHdG since they are
electroactive coexistent compounds. Therefore, the influence
of UA and AA on the DPV peak current of 8-OHdG
was examined using fabricated sensors. In the case of our
study, the oxidation peak potential of AA, UA, and 8-
OHdG appeared at about −0.10V, +0.30V, and +0.38V,
respectively. The oxidation peak current of 0.5 𝜇M 8-OHdG
only decreased 1.3% in the presence of 0.25mM AA (500-
fold of 8-OHdG). This indicates that AA caused a negligi-
ble response. The oxidation peak current of 8-OHdG only
decreased 5.0% in the presence of 0.05mM UA (100-fold of
8-OHdG). This indicates that UA did not cause a significant
response. When the concentration of UA was increased to
0.1mM (200-fold) and 0.25mM (500-fold), the oxidation
peak currents of 8-OHdG were decreased by 6.7% and 10%,
respectively. The high selectivity of the developed method in
this work may be attributed to the fact that the negatively
charged SWCNTs-Nafion film repels AA and UA anions
and provides a transport channel only for 8-OHdG cations,
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Figure 8: (a) Differential pulse voltammograms of different concentration of 8-OHdG with the subtraction of background current on
SWCNTs-Nafion/GCE. (b) Calibration curve of the concentration of 8-OHdG.

since in pH 7.4 PBS 8-OHdG (pK
𝑎1
= 8.6 and pK

𝑎2
= 11.7)

exists in cationic form, while AA (pK
𝑎
= 4.17) and UA

(pK
𝑎
= 5.7) are anionic. Therefore, the prepared SWCNTs-

Nafion/GCE greatly improved the selectivity towards 8-
OHdG. Additionally, deoxyguanosine (dG), which is the
oxidation precursor of 8-OHdG, was also examined as an
interference for evaluating oxidative DNA damage. It was
found that, in the case of optimal conditions as in this work,
the oxidation peak potential of dG appeared at about +0.92V
while the presence of high concentration of dG (3𝜇M, 6-fold
of 8-OHdG) caused a 10% decrease of oxidation peak of 8-
OHdG. It can be seen that increased concentration of dG led
to a greater decline of peak of 8-OHdG (see Table 1).Thismay
be explained by the fact that dG clogged themass transferring
pores in Nafion film on GCE.

3.6. Analysis of Spiked Urine Samples. The application of the
fabricated sensors was evaluated using a spiked recovery of
urine samples. The urine samples from healthy volunteers
were centrifuged at 5000 rpm for 10min to remove pre-
cipitation. The supernatant was diluted with 0.10M pH 7.4
PBS at the dilution ratio of 1 : 10 and 1 : 1, respectively. The
results showed that the spiked recovery of 95.0% ∼103.6%
was obtained with 10-fold-diluted samples (𝑛 = 3) for 8-
OHdG (Table 2). For the onefold-diluted samples, 0.6mg/mL
uricase can effectively eliminate the interference of UA. In the
presence of 0.6mg/mL uricase, a linear regression equation
(𝑖
𝑝
(𝜇A) = 0.452 + 8.805C (𝜇M)) was obtained in the range

of 0.1 𝜇M∼1.5 𝜇M with a correlation coefficient of 0.9991 for
addition of 8-OHdG into onefold-diluted samples. Based on

Table 1: Current data of 8-OHdG obtained from DPV measure-
ments before and after adding a certain concentration of dG.

𝐶8-OHdG :𝐶dG
ip8-OHdG/𝜇A

(after added dG)
The decline of

current
1 : 2 8.15 ± 0.06 5.2%
1 : 4 7.90 ± 0.05 8.1%
1 : 6 7.74 ± 0.10 10%
1 : 8 7.23 ± 0.11 15.9%
1 : 10 6.73 ± 0.07 21.7%
A fixed concentration of 8-OHdG (𝐶8-OHdG) is 0.5𝜇M, and the correspond-
ing peak current (ip8-OHdG) is 8.60 ± 0.12𝜇A. 𝐶8-OHdG :𝐶dG and the peak
currents of 8-OHdG after added dG are listed above. The decline of the
currents was calculated according to ip8-OHdG before and after added dG
as listed above. The results represent the mean ± standard deviation (SD),
calculated from three independent experiments (𝑛 = 3).

this equation, recovery for 8-OHdG in simulated patient
urine samples [51] was tested.The results are listed in Table 2.
The satisfactory recovery for 8-OHdG was obtained. This
indicates that the developed method may provide a potential
application for the estimation of 8-OHdG levels in urine from
patients suffering from 8-OHdG-related diseases.

4. Conclusion

A novel electrochemical sensor incorporating a SWCNTs-
Nafion composite film coated on GCE for the determination
of 8-OHdG was developed. This electrochemical sensor was
extremely sensitive, highly selective, and sufficiently accurate
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Table 2: Recovery results for 8-OHdG from different dilution urine
samples.

Sample
dilution

Added
(𝜇M) Found (𝜇M) Recovery

(%)

1 : 10a
0.05 0.0475 ± 0.03 95.0
0.15 0.152 ± 0.03 101.0
0.50 0.518 ± 0.05 103.6

1 : 1a
0.20 0.191 ± 0.03 95.5
0.30 0.286 ± 0.04 95.3
0.40 0.413 ± 0.02 103.3

aThe results represent the mean ± standard deviation (SD) from three
independent experiments (𝑛 = 3).

towards 8-OHdGdetection and quantification. Examinations
on the regeneration ability and the spiked recovery of the
sensors for urine samples also gave satisfactory results. This
work demonstrates that SWCNTs-Nafion films can improve
the sensitivity, selectivity, reproducibility, and stability of the
electrochemical sensors for the determination of 8-OHdG,
thereby making it an ideal candidate for electrochemical
detection of 8-OHdG. The research work is going on to
improve the selectivity by minimizing interferers from other
electrochemical activated molecules, such as dG and UA.
Further, the highly sensitive system will be used to quan-
titatively assess oxidative DNA damage induced by various
nonmaterials’ exposure.
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