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and Nasar U. Ahmed4

Abstract

This paper considers several confidence intervals for estimating the population coefficient of

variation based on parametric, nonparametric and modified methods. A simulation study has been

conducted to compare the performance of the existing and newly proposed interval estimators.

Many intervals were modified in our study by estimating the variance with the median instead

of the mean and these modifications were also successful. Data were generated from normal,

chi-square, and gamma distributions for CV = 0.1, 0.3, and 0.5. We reported coverage probability

and interval length for each estimator. The results were applied to two public health data: child

birth weight and cigarette smoking prevalence. Overall, good intervals included an interval for

chi-square distributions by McKay (1932), an interval estimator for normal distributions by Miller

(1991), and our proposed interval.

MSC: Primary 62F10; Secondary 62F35

Keywords: Average width, coefficient of variation, inverted coefficient of variation, confidence in-

terval, coverage probability, simulation study, skewed distributions.

1. Introduction

The population coefficient of variation (CV) is a dimensionless (unit-free) measure of

the dispersion of a probability distribution. More specifically, it is a measure of variabil-
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ity relative to the mean. This measure can be used to make comparisons across several

populations that have different units of measurement. The population CV is defined as

a ratio of the population standard deviation (σ) to the population mean (µ 6= 0)

CV =
σ

µ
(1)

In real life instances the population parameters σ and µ are estimated by the sample

estimators s and x, respectively. One obvious disadvantage arises when the mean of a

variable is zero. In this case, the CV cannot be calculated. For small values of the mean,

the CV will approach infinity and hence becomes sensitive to small changes in the mean.

Even if the mean of a variable is not zero, but the variable contains both positive and

negative values and the mean is close to zero, then the CV can be misleading.

The CV is widely used in health sciences in descriptive and inferential manners

(Kelley, 2007). Some previous applications include measuring the variation in the mean

synaptic response of the central nervous system (Faber and Korn, 1991) and measuring

the variability in socioeconomic status and prevalence of smoking among tobacco

control environments (Bernatm et al., 2009). The CV has also been used to study the

impact of socioeconomic status on hospital use in New York City (Billings et al., 1993).

These studies generated the CV for ambulatory care sensitive admissions for nine age

cohorts and discussed the variance relative to the average number of admissions.

Perhaps, the most important use of the CV is in descriptive studies (Panichchkikosol-

kul, 2009). Because the CV is a unit-less measure, the variation of two or more different

measurement methods can be compared to each other. The CV is used often in public

health. For instance, when assessing the overall health of an individual, the CV may

be useful in a comparison of variability in blood pressure measurement (mmHg) and

cholesterol measurement (mg/dL). If variance were used, rather than the CV, then these

two measures would not be comparable as their units of measurement differ.

Another important application of the CV is its use in the field of quality control. The

inverse of the CV or ICV is equal to the signal to noise ratio (SNR), which measures

how much signal has been corrupted by noise (McGibney and Smith, 1993):

SNR = ICV =
µ

σ
(2)

The CV can be used as a measure of effect or as a point estimator (Kelley, 2007).

To test the significance of the CV, a hypothesis test can be conducted and a confidence

interval can be generated to reject or accept the null hypothesis. Confidence intervals

associated with point estimates provide more specific knowledge about the population

characteristics than the p-values in the test of hypothesis (Visintainer and Tejani, 1998).

A p-value only allows one to determine if results are significant or non-significant, but

a confidence interval allows for the examination of an additional factor, precision. The
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precision of a confidence interval can be seen through the width and coverage probability

of the interval. Given constant coverage, as the width of the (1−α) 100% confidence

interval decreases, the accuracy of the estimate increases (Kelley, 2007). The coverage

level is the probability that the estimated interval will capture the true CV value (Banik

and Kibria, 2010).

There are various methods available for estimating the confidence interval for a

population CV. For more information on the confidence interval for the CV, we refer

to Koopmans et al. (1964), Miller (1991), Sharma and Krishna (1994), McKay (1932),

Vangel (1996), Curto and Pinto (2009) and recently Banik and Kibria (2011), among

others. The necessary sample size for estimating a population parameter is important.

Therefore, determining the sample size to estimate the population CV is also important.

Tables of necessary sample sizes to have a sufficiently narrow confidence intervals under

different scenarios are provided by Kelly (2007).

Many researchers considered several confidence intervals for estimating the popu-

lation CV. Since the studies were conducted under different simulation conditions they

are not comparable as a whole. The objective of this paper is to compare several con-

fidence interval estimators based on parametric, nonparametric and modified methods,

which are developed by several researchers at several times under the same simulation

conditions. Six confidence intervals that already exist in literature are considered. Addi-

tionally, we have made median and bootstrap modifications to several existing intervals

in an attempt to improve the interval behaviour. Also, we have proposed our own con-

fidence interval estimator. A simulation study is conducted to compare the performance

of the interval estimators. Most of the previous simulations and comparisons found in

literature were conducted under the normality assumption. Since in real life the data

could be skewed we also conducted simulations under skewed distributions (chi-square

and gamma). Finally, based on the simulation results, the intervals with high coverage

probability and small width were recommended for practitioners.

The organization of this paper is as follows: In Section 2 we present the proposed

confidence intervals. In Section 3, the simulation technique and results are provided

and discussed. Two real life data are analyzed in Section 4. Finally, some concluding

remarks are presented in Section 5. Due to space limitations, only graphs representing

simulations for the normal distribution are presented but the full simulation results are

presented in the Appendix.

2. Statistical methodology

Let x1,x2,x3, . . . ,xn be an independently and identically distributed (iid) random sample

of size n from a distribution with finite mean, µ, and finite variance, σ2. Let x be the

sample mean and s be the sample standard deviation. Then ĈV = s/x would be the

estimated value of the population CV. We want to find the (1 − α)100% confidence

intervals for the population CV. In this section we will review some existing interval
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estimators and propose some new interval estimators for CV. A total of 15 intervals will

be considered.

2.1. The existing confidence interval estimators

Six existing (parametric and nonparametric) confidence intervals for the CV are re-

viewed in this section.

2.1.1. Parametric confidence intervals

1. Miller’s (1991) confidence interval for normal distribution (referred to as Mill).

Miller showed that
s

x
approximates an asymptotic normal distribution with mean

σ
µ

and variance m−1(σ
µ
)2
(

0.5+(σ
µ
)2
)

. Then, the (1−α)100% approximate con-

fidence interval for the population CV = σ
µ

is given by

s

x
±Zα

2

√
m−1

( s

x

)2
(

0.5+
( s

x

)2
)

(3)

which can be expressed as

s

x
−Zα

2

√
m−1

( s

x

)2
(

0.5+
( s

x

)2
)
< CV <

s

x
+Zα

2

√
m−1

( s

x

)2
(

0.5+
( s

x

)2
)

(4)

where m = n − 1,x = 1
n ∑

n
i=1 xi is the sample mean, s =

√
1

n−1 ∑
n
i=1(xi − x)2 is

the sample standard deviation and Zα is the upper (1−α)100th percentile of the

standard normal distribution.

2. Sharma and Krishna’s (1994) confidence interval for inverted CV (S&K): This

confidence interval is given by

x

s
+
φ−1

(α/2)√
n

<
1

CV
<

x

s
−
φ−1

(α/2)√
n

(5)

where φ cumulative standard normal distribution. Therefore, the (1 − α)100%

confidence interval for the population CV is given by

(
x

s
−
φ−1

(α/2)√
n

)−1

< CV <

(
x

s
+
φ−1

(α/2)√
n

)−1

(6)
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3. Curto and Pinto’s (2009) iid assumption (C&P):

s

x
−Z(α/2)

√
1

n

(( s

x

)4

+
1

2

( s

x

)2
)
< CV <

s

x
+Z(α/2)

√
1

n

(( s

x

)4

+
1

2

( s

x

)2
)

(7)

2.1.2. Confidence intervals based on chi-square distribution

1. McKay’s (1932) confidence interval for chi-square distribution (McK):

( s

x

)
√√√√
(
χ2
ν ,1−α/2

ν+1
−1

)( s

x

)2

+
χ2
ν ,1−α/2

ν
< CV <

( s

x

)
√√√√
(
χ2
ν ,α/2

ν+1
−1

)( s

x

)2

+
χ2
ν ,α/2

ν

(8)

where ν = n−1 and χ2
ν ,α is the 100α-th percentile of a chi-square distribution with

ν degrees of freedom.

2. Modified McKay (1996) confidence interval (MMcK): Vangel (1996) modified
McKay’s original (1932) interval:

( s

x

)
√√√√
(
χ2
(ν ,1−α/2)

+2

ν+1
−1

)( s

x

)2
+
χ2
ν ,1−α/2

ν
< CV <

( s

x

)
√√√√
(
χ2
(ν ,α/2)

+2

ν+1
−1

)( s

x

)2
+
χ2
ν ,α/2

ν

(9)

3. Panichkitkosolkul’s (2009) confidence interval (Panich): Panichkitkosokul further

modified the Modified McKay interval by replacing the sample CV with the

maximum likelihood estimator for a normal distribution, k̃

k̃

√√√√
(
χ2
(ν ,1−α/2)

+2

ν+1
−1

)
(
k̃
)2

+
χ2
ν ,1−α/2

ν
< CV < k̃

√√√√
(
χ2
(ν ,α/2)

+2

ν+1
−1

)
(
k̃
)2

+
χ2
ν ,α/2

ν

(10)

where k̃ =

√
∑n

i=1(xi−x)2

√
nx

2.2. Median modifications of existing intervals

Kibria (2006) and Shi and Kibria (2007) claimed that for a skewed distribution, the

median describes the centre of the distribution better than the mean. Thus, for skewed

data it makes more sense to measure sample variability in terms of the median rather

than the mean. Following Shi and Kibria (2007), the (1−α)100% CI for the CV are

obtained for four of the existing estimators and provided below. These median modifi-

cations are made in attempt to improve the performance of the original intervals. The

intervals selected for modification represent parametric and non-parametric estimators.



50 A comparison of some confidence intervals for estimating the population coefficient...

1. Median Modified Miller Estimator (Med Mill):

s̃

x
−Zα/2

√√√√m−1

(
s̃

x

)2
(

0.5+

(
s̃

x

)2
)

< CV <
s̃

x
+Zα/2

√√√√m−1

(
s̃

x

)2
(

0.5+

(
s̃

x

)2
)

(11)

where s̃ =
√

1
n−1 ∑

n
i=1(xi − x̃)2 and x̃ is the sample median.

2. Median Modification of McKay (Med McK):

(
s̃

x

)√√√√
(
χ2
ν ,1−α/2

ν+1
−1

)(
s̃

x

)2

+
χ2
ν ,1−α/2

ν
<CV<

(
s̃

x

)√√√√
(
χ2
ν ,α/2

ν+1
−1

)(
s̃

x

)2

+
χ2
ν ,α/2

ν

(12)

3. Median Modification of Modified McKay (Med MMcK):

(
s̃

x

)√√√√
(
χ2
ν ,1−α/2

+2

ν+1
−1

)(
s̃

x

)2

+
χ2
ν ,1−α/2

ν
< CV <

(
s̃

x

)√√√√
(
χ2
ν ,α/2

+2

ν+1
−1

)(
s̃

x

)2

+
χ2
ν ,α/2

ν

(13)

4. Median Modified Curto and Pinto(2009) iid assumption (Med C&P):

s̃

x
−Z(α/2)

√(
s̃
x

)4
+0.5

(
s̃
x

)2

n
< CV <

s̃

x
+Z(α/2)

√(
s̃
x

)4
+0.5

(
s̃
x

)2

n
(14)

2.3. Bootstrap confidence intervals

Bootstrapping is a commonly used computer-intensive, nonparametric tool (introduced

by Efron, 1979), which is used to make inference about a population parameter when

there are no assumptions regarding the underlying population available. It will be espe-

cially useful because unlike other methods, this technique does not require any assump-

tions to be made about the underlying population of interest (Banik and Kibria, 2009).

Therefore, bootstrapping can be applied to all situations. This method is implemented

by simulating an original data set then randomly selecting variables several times with

replacement to estimate the CV. The accuracy of the bootstrap CI depends on the number

of bootstrap samples. If the number of bootstrap samples is large enough, the CI may be

very accurate. We will consider four different bootstrap methods which are summarized

in this section.
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Let X (∗) = X
(∗)
1 ,X

(∗)
2 ,X

(∗)
3 , . . . ,X

(∗)
n where the ith sample is denoted X (i) for i =

1,2, . . . ,B and B is the number of bootstrap samples. Efron (1979) suggests using a

minimum value of B = 1000. Following Banik and Kibria (2009), we will consider four

different bootstrap methods for estimating the population CV which are summarized in

this section.

2.3.1. Non-parametric bootstrap CI (NP BS)

The CV for all bootstrap samples is computed and then ordered as follows:

CV∗
(1) ≤ CV∗

(2) ≤ CV∗
(1) · · ·CV∗

(B)

The lower confidence level (LCL) and upper confidence level (UCL) for the population

CV is then

LCL = CV∗
[(α/2)B] and UCL = CV∗

[(1−α/2)B]

Therefore, in a case where B = 1000, LCL = the 25th bootstrap sample and UCL =

the 975th bootstrap sample.

2.3.2. Bootstrap t-approach (BS)

Following Banik and Kibria (2009), we will propose a version called the bootstrap-t,

defined as

LCL = ĈV+T ∗
(n−1),α/2S

ĈV
and UCL = ĈV+T ∗

(n−1),1−α/2S
ĈV

where ĈV is the sample CV, T ∗
α/2

,T ∗
1−α/2

are the (α/2)th and (1 − α/2)th sample

quantiles of

T ∗
i =

CV∗
i −CV

σ̂CV

where

σ̂CV =

√
1

B

B

∑
i=1

(
CV∗

i −CV
)2

and CV =
1

B

B

∑
i=1

CV∗
i

is a bootstrap CV.
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2.3.3. Modified median Miller based on critical value from bootstrap samples (BSMill)

s̃

x
+T ∗
α/2

√√√√m−1

(
s̃

x

)2
(

0.5+

(
s̃

x

)2
)

< CV <
s̃

x
+T ∗

1−(α/2)

√√√√m−1

(
s̃

x

)2
(

0.5+

(
s̃

x

)2
)

(15)

2.3.4. Modified median Curto and Pinto (2009) based on BS sample (BS C&P)

s̃

x
−T ∗

(α/2)

√(
s̃
x

)4
+0.5

(
s̃
x

)2

n
< CV <

s̃

x
+T ∗

1−(α/2)

√(
s̃
x

)4
+0.5

(
s̃
x

)2

n
(16)

where T ∗
α/2

and T ∗
1−α/2

are the (α/2)th and (1−α/2)th sample quantiles of T ∗
i =

(CV∗
i −CV)

σ̂CV

2.4. Proposed confidence interval based on estimator of σ2σ2σ2

Another parametric confidence interval that was compared in the simulation was one

based on the known formula for calculating the confidence interval for σ2. Let x1,x2,x3,

. . . ,xn be an iid random sample which is normally distributed with finite mean µ and

variance σ2. Then the (1−α)100% CI for σ2 is

(n−1)s2

χ2
ν ,1−α/2

< σ2 <
(n−1)s2

χ2
ν ,α/2

(17)

Assuming that µ 6= 0, dividing this interval by µ2 results in

(n−1)s2

(
χ2
ν ,1−α/2

)
µ2

<

(
σ

µ

)2

<
(n−1)s2

(
χ2
ν ,α/2

)
µ2

(18)

Since µ is not known, we can replace it by the unbiased estimator of µ which is x

resulting in

(n−1)s2

(
χ2
ν ,1−α/2

)
x2

< CV2 <
(n−1)s2

(
χ2
ν ,α/2

)
x2

(19)

Taking the square root results in the final proposed interval estimator given by

√
n−1ĈV√
χ2
ν ,1−α/2

< CV <

√
n−1ĈV√
χ2
ν ,α/2

(20)
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3. Simulation study

Many researchers have considered several confidence intervals for estimating the pop-

ulation CV. However, these studies were all conducted under different simulation con-

ditions and therefore they are not comparable as a whole. In this study we considered

15 useful confidence intervals (six existing intervals, eight modified intervals, and one

proposed interval) for estimating the population CV and compared them under the same

simulation conditions. A Monte-Carlo simulation was conducted using the R statistical

software (2010) version 2.10.1 to compare the performance of the interval estimators.

The performance of the estimators was considered for various CV values, sample sizes,

and distributions.

Table 1: The CV and skewness of data from normal,

chi-square, and gamma distributions.

Distribution CV Skewness

N(µ,σ) σ
µ 0

chi-square (ν)

√
2
ν 2

√
2
ν

gamma (α,2) 1√
α

2√
α

Table 2: Estimated lower and upper confidence limits and corresponding widths

for all proposed methods for Example 1 (n = 189).

Method Lower Confidence Limit Upper Confidence Limit Width

Mill 0.223719 0.277478 0.053759

S&K 0.223659 0.277365 0.053706

McK 0.223073 0.276620 0.053546

MMcK 0.221061 0.274088 0.053027

C&P 0.239134 0.256633 0.017499

Panich 0.230751 0.286434 0.055683

Proposed 0.224879 0.275406 0.050527

Med Mill 0.223940 0.277752 0.053812

MedMcK 0.223878 0.277643 0.053765

MedMMcK 0.221277 0.274362 0.053086

Med C&P 0.221347 0.274292 0.052945

NP BS 0.220954 0.274950 0.053996

P BS 0.219723 0.274653 0.054930

BS Mill 0.220414 0.273982 0.053568

BS C&P 0.220486 0.273912 0.053426
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3.1. Simulation technique

To study the behaviour of small and large sample sizes, we used n = 15,25,50,100. To

examine the behaviour of the intervals when the sample size is increased even further,

a second simulation was conducted using n = 500. A random sample was generated

with specific parameters from a normal distribution, chi-square distribution and gamma

distribution. The probability density functions of the distributions are given below.

• Normal distribution, with µ= 10 and σ = 1,3,5 where

f (x) =
1√

2πσ2
e−

1
2(

x−10
σ )

2

, −∞ < x < ∞, σ > 0

• Chi-square distribution, with degrees of freedom (df) ν = 200,22,8, where

f (x) =
1

2
ν
2 Γ(ν/2)

e−
x
2 x
ν
2 −1, x ≥ 0

• Gamma distribution with α= 100,11.11,4 and β = 2, where

f (x) =
1√
α

e−
x
2 xα−1

2α
, x > 0,α> 0

The CV was calculated for each distribution type by utilizing the equations in Table 1.

Thus, based on the CV formula presented in Table 3.1, all three distribution types

consider CV= 0.10,0.30,0.50. The number of simulation replications (M) was 2000 for

each case. For intervals that utilize the bootstrapping technique, 1000 bootstrap samples

(B) are used for each n.

Coverage probability and width of the interval were measured for each case. The

most common 95% confidence interval (α= 0.05) is used for measuring the confidence

level. The coverage probability is calculated by counting the number of times the true

CV is captured between the upper and lower limits. Generally, since the sampling

distribution of the sample CV is approximately normally distributed, see Miller (1991),

as the sample size (number of sample CV’s) increases the distribution becomes more

symmetric and it is expected for the coverage probability to approach (1−α). When

α = 0.05, an interval that has perfect performance in terms of coverage probability

will capture the true CV between the upper and lower limits 95% of the time. The

coverage probability is an excellent method for evaluating the success of a particular

interval in capturing the true parameter. An interval width is calculated by subtracting

a lower limit from an upper limit. A smaller width is better because it means that

the true CV is captured within a smaller span and the results are more precise. In

cases where the coverage probability is comparable, the interval length is especially

important because the smaller width will give a more accurate and precise result. The

simulated coverage probabilities and interval widths for the normal, chi-square and
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Table 3: Estimated lower and upper confidence limits and corresponding widths

for all proposed methods for Example 2 (n = 24).

Method Lower Confidence Limit Upper Confidence Limit Width

Mill 0.181510 0.340507 0.158997

S&K 0.181261 0.338874 0.157613

McK 0.177526 0.331398 0.153872

MMcK 0.163988 0.307669 0.143680

C&P 0.215497 0.260397 0.044900

Panich 0.186213 0.350015 0.163802

Proposed 0.165501 0.306156 0.140655

Med Mill 0.183289 0.330811 0.147522

MedMcK 0.187048 0.350897 0.163849

MedMMcK 0.186665 0.349749 0.163084

Med C&P 0.168763 0.317286 0.148523

NP BS 0.170327 0.315722 0.145396

P BS 0.188882 0.340905 0.152023

BS Mill 0.121866 0.305541 0.183675

BS C&P 0.136045 0.319795 0.183750

Figure 1: Sample size vs. coverage probability for normal distribution when CV = 0.30.

gamma distributions are presented in Tables 4, 5 and 6 of the appendix, respectively,

and for n = 500 of all distributions are presented in Table 7 of the appendix. Each table

gives results for the various sample sizes and CV values previously mentioned. Due to
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space limitation simulation results of the normal distribution are graphically displayed

in Figure 1 through Figure 4, but full simulation results are given in the Appendix.

Figure 2: Sample size vs. interval length for normal distribution when CV = 0.30.

Figure 3: Coefficient of variation vs. coverage probability for normal distribution when n = 100.

3.2. Simulation results

A main trend that was noted throughout all distributions was the net increase in coverage

probability from n = 15 to n = 100. The results will be discussed below by distribution

type. To aid in visualization of results, multiple graphs have been referred to.
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Figure 4: Coefficient of variation vs. interval length for normal distribution when n = 100.

3.2.1. Normal distribution

Table 4 and Figures 1–4 present simulated results for the normal distribution. Figure 1

displays sample size vs. coverage probability for all tested intervals when CV = 0.30.

This figure clearly shows that S&K had the weakest overall performance with its

lowest coverage probability at 21% (Table 4). However, S&K’s performance improves

as sample size increases. By n = 100, almost all intervals are performing at a similar

level (Figure 1). All C&P intervals (C&P, Med C&P, and BS C&P) over exceeded the

expected coverage probability of 95% and reached 100% and are clear outliers. Figure 2

displays the sample size vs. interval length for all intervals when CV = 0.30. All C&P

intervals seem to remain stable and large throughout all sample sizes. The S&K interval

also remains stable; however, the values are, as desired, low. All other intervals follow

a similar trend: as sample size increases, interval length decreases. When n = 100, all

intervals are performing similarly, however the C&P intervals are clear outliers. Figure 3

represents the CV vs. coverage probability for normal distribution when n = 100. All

intervals seem to fall between a coverage range of .9 and 1 however, when CV = 0.10

the S&K interval performs very poorly.

The largest sample size presented in Tables 4, 5, and 6 is n = 100. For instances

where one wants to consider an even larger sample size, Table 7 presents the behaviour

of each interval for all distribution types when n = 500. Overall, all intervals seem to

perform at a similar level when n = 500. One key difference that should be noted is that

when sample size in increased to 500, there is a drastic improvement in the performance

of S&K.
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3.2.2. Skewed distributions

The simulated results for chi-square distribution are presented in Table 5 which indi-

cates that many of the same trends as seen in the normal distribution. Similar to the

normal distribution, the S&K interval had the weakest overall performance for the chi-

square distribution. Table 5 shows that as sample size increases, coverage probability

for all intervals has a general increasing trend. The S&K interval is notably lacking in

performance relatively to other intervals. Table 5 shows that as sample size increases,

the interval length decreases for most of the intervals. Similar to the results seen for the

normal distribution, all C&P intervals seem to remain stable and large throughout all

sample sizes and do not follow the decreasing trend. The S&K interval also did not fol-

low the trend as it remained low throughout all sample sizes. Table 5 indicates that with

the exception of S&K, all intervals had coverage probabilities between 0.9 and 1 for all

CV values. S&K performed much lower than the other intervals when CV = 0.10. The

same trend was seen for the normal distribution. Table 5 shows that as the CV value in-

creases, all interval lengths become increasingly wider. The widths are narrowest when

CV = 0.10 and widest when CV = 0.50. The C&P intervals have the greatest length for

all CV values. When CV = 0.50, S&K also has a notably higher interval length than

the other intervals and the narrowest width is observed in the BS and PBS intervals.

The results for gamma distribution are presented in Table 6. Although the gamma

distribution has a greater skewness than the chi-square distribution, this difference did

not have a major effect on the trends seen between the two distribution types. All trends

in the gamma distribution are comparable to results from the chi-square distribution

because the two distribution types are related. When sample size is increased to 500

for skewed distributions, all intervals perform at a similar level (Table 7). The weakest

interval when n = 500 is C&P. C&P has its lowest coverage probability of 21% when

CV = 0.10 in the gamma distribution.

4. Application

To illustrate the findings of the paper, some real life health data are analyzed in this

section.

4.1. Example 1: Birth weight data

The first data set was obtained from Hosmer and Lemeshow (2000), which was collected

from the Baystate Medical Center, in Springfield, Massachusetts (University of Mas-

sachusetts Amherst, 2000). Child birth weight data were collected from 189 women.

A baby weighing less than 2500 grams was defined as a “low birth weight” child.

Among them, 59 women had low birth weight babies and 130 women had normal birth

weight babies. The average birth weight was 2944.66 grams, with a standard deviation
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of 729.022 grams. The coefficient of variation for the low birth data is 0.248. The his-

togram of the data is presented in Figure 5, which showed a mound shaped distribution.

The Shapiro-Wilk test (W = 0.9925, p-value = 0.4383) supported that the data follow a

normal distribution.
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Figure 5: Histogram of birth weight of babies from 189 women, with modelled normal distribution.
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Figure 6: Histogram of the percent of smokers in the United States for 24 selected years,

with modelled gamma distribution.
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Using SPSS (2008), the Kolmogorov-Smirnov (ks) goodness of fit test result (ks =

0.043, p-value = 0.2001) for a hypothesized normal distribution with mean µ = 2945

and standard deviation σ = 755, indicates that the data follow a normal distribution

with mean of 2945 gm and standard deviation of 755 gm. The corresponding population

coefficient of variation, CV = 755/2945 = 0.2564. The resulting 95% confidence

intervals and corresponding widths for all proposed intervals are reported in Table 2.

Results showed that all confidence intervals covered the hypothesize population CV

0.2564. We note that the C&P interval has the shortest width followed by our proposed

interval. Panich has the largest width. Based on the overall simulation results presented

and Figure 3, we may suggest S&K or the proposed one to be the interval of choice

for this example. In fact the proposed interval performed better than the majority of the

other interval estimators.

4.2. Example 2: Cigarette smoking among men, women, and high school

students: United States, 1965-2007

The data set for this example were obtained from the Center for Disease Control and

Prevention (CDC, 2009). The CDC used the National Health Interview Survey and the

Youth Risk Behavior Survey to compile the data. Adults were classified as cigarette

smokers if they smoked 100 cigarettes in their lifetime and if now smoke daily or

occasionally.

A high school student was categorized as a smoker if he or she had even one cigarette

in the past month. The data is a compilation of cigarette smoking among adult and

high school population for selected years between 1965 and 2007. The total sample

size for the data is n = 24 selected years between 1965 and 2007. The mean percent

of smokers is 28.9%, with a standard deviation of 6.8%. The coefficient of variation

for the data is 0.236. The histogram of the data is presented in Figure 6, which shows

a right skewed distribution. Using SAS (2008), the Kolmogorov-Smirnov (ks) good-

ness of fit test result (ks = 0.188, p-value > 0.25) for a hypothesized gamma distri-

bution with shape parameter, α = 17.6 and scale parameter β = 1.6, indicates that

the data follow a gamma distribution with α = 17.6 and β = 1.6. For more infor-

mation on goodness of fit for the gamma distribution, see D’Agostino and Stephens

(1986). For this example, the corresponding population coefficient of variation, CV =
1√
17.6

= 0.238. The resulting 95% confidence intervals and corresponding widths for

all proposed intervals are reported in Table 3. Results showed that all confidence in-

tervals covered the hypothesize population CV of 0.238. Based on the simulation re-

sults presented, we would have expected the S&K interval to have the narrowest width,

1. Lillifors significance correction is applied. This is a lower bound of the true significance.
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however, in this example the narrowest width was observed in the original C&P interval.

S&K’s interval had results that were very comparable to all other intervals, but it was

not the best. This example indicates that the C&P bootstrap interval is the narrowest, a

finding that is confirmed by our simulation results.

5. Concluding remarks

We have considered several confidence intervals for estimating the population CV. A

simulation study has been conducted to compare the performance of the estimators.

For simulation purposes, we have generated data from both symmetric (normal) and

skewed distributions (chi-square and gamma) to see the performance of the interval

estimators. After thorough examination of all individual intervals, and each overall

simulation condition, it can be concluded that the intervals that performed well are: Mill,

McK, MMcK, Panich, MedMill, MedMcK, MedMMcK, and our proposed interval. The

S&K interval was not a good estimator for small sample sizes and had the weakest

performance in terms of coverage probability. However, its performance is comparable

to other intervals when the sample size is large. All C&P intervals did not perform

well for large sample sizes as the interval length for these estimators was too high

relative to other estimators. This wide interval length is not desired as it indicates

that the results are imprecise. It is known that for symmetric distributions the mean

equals the median, but as pointed out by a reviewer, the median modified intervals of

the CV for skewed distributions works well for moderate sample sizes, but for a very

large sample size, the point estimate of the CV using the median will be very close

but doesn’t converge to the true population CV. To see the large sample behaviour,

we have generated data from normal, chi-square and gamma distribution for n = 500

and presented the coverage probability and average widths in Table 7. Clearly, Table 7

shows that the coverage probabilities for all estimators are close to the nominal size of

0.95. For large sample size any of the intervals except S&K could be used. We do not

encourage the researchers to use bootstrap confidence intervals as their performances are

not significantly better than others and they are very time consuming. However, if some

researchers are very conservative about the assumptions of the distributions and willing

to accept the extensive computation they might consider the bootstrap methods. Most

importantly, in many instances, our newly proposed interval produced the best interval

length, especially as CV increased from 0.1 to 0.5. Higher values of CV indicate more

variability in the data, a characteristic that is often seen in health sciences where sample

sizes are frequently small. Because our proposed interval performed well for the higher

values of CV, it will be a good interval to use for many health science data. We also

recommend using this interval over other intervals because it is a very user-friendly

interval in calculation.
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