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ABSTRACT

Base excision repair (BER) of an oxidized base within
a trinucleotide repeat (TNR) tract can lead to TNR
expansions that are associated with over 40 human
neurodegenerative diseases. This occurs as a re-
sult of DNA secondary structures such as hairpins
formed during repair. We have previously shown that
BER in a TNR hairpin loop can lead to removal of the
hairpin, attenuating or preventing TNR expansions.
Here, we further provide the first evidence that AP
endonuclease 1 (APE1) prevented TNR expansions
via its 3′-5′ exonuclease activity and stimulatory ef-
fect on DNA ligation during BER in a hairpin loop. Co-
ordinating with flap endonuclease 1, the APE1 3′-5′
exonuclease activity cleaves the annealed upstream
3′-flap of a double-flap intermediate resulting from
5′-incision of an abasic site in the hairpin loop. Fur-
thermore, APE1 stimulated DNA ligase I to resolve
a long double-flap intermediate, thereby promoting
hairpin removal and preventing TNR expansions.

INTRODUCTION

The expansion of trinucleotide repeats (TNR) is associ-
ated with over 40 human neurodegenerative diseases in-
cluding Huntington’s disease (CAG/CTG), Friedreich’s
ataxia (GAA/TTC) and myotonic dystrophy (CTG/CAG)
(1,2), among others. The repeat instability results from
non-B form DNA secondary structures including hairpins,
triplexes, tetraplexes and sticky DNA (3) formed during
DNA replication, repair, recombination and gene transcrip-
tion (4–6). Recent studies have shown that the repair of ox-
idative DNA damage within TNRs is associated with so-
matic TNR instability (7–11). During the repair of oxidized
base lesions such as 8-oxoguanine (8-oxoG), an abasic site is

incised at its 5′-side generating a nick in the DNA backbone.
If this occurs in TNRs, it allows the formation of hairpins in
the DNA, which leads to repeat expansions and deletions if
the hairpins are incorporated into the DNA and sustained
upon completion of repair (8,11). It has been proposed that
repeated cycles of oxidative DNA damage and BER lead to
cumulative repeat expansions through a ‘toxic oxidation cy-
cle,’ which can result in the onset of disease caused by TNR
expansion (2,7,12).

We previously reported that the location of a DNA base
lesion within a TNR repeat tract determines whether an ex-
pansion or deletion occurs, with a lesion near the 5′-end
leading to expansions and a lesion in the middle leading to
deletions (11). An 8-oxoG located in the hairpin loop has
been found to be resistant to DNA repair (12), resulting
in the accumulation of the lesion and sustainment of the
hairpin loop that leads to repeat expansion. However, we
have discovered that during BER in a TNR hairpin loop, the
hairpin can be converted to a double-flap intermediate, con-
taining an upstream 3′-flap and a downstream 5′-flap, which
can be subsequently resolved by a 3′-5′ endo/exonuclease,
Mus81/Eme1 and flap endonuclease 1 (FEN1), respectively.
This subsequently results in hairpin removal and prevention
or attenuation of TNR expansions (13).

AP endonuclease 1 (APE1) is a multi-functional protein
abundant in human cells (14–17) that is essential in main-
taining multiple cellular functions. This is demonstrated
by the lethality of APE1 knockout in mice (18). The en-
zyme can endonucleolytically incise the 5′-end of an aba-
sic site in duplex DNA and in single-stranded DNA (19),
including a TNR hairpin loop (13,19), by hydrolyzing the
phosphodiester bond during BER. In addition, APE1 can
promote the recycling of DNA glycosylases by dislodging
the glycosylase from an abasic site, resulting in stimulation
of the activity of the enzymes such as 8-oxoG DNA gly-
cosylase 1 (OGG1) (20,21) which efficiently initiates BER
(22–24). APE1 can also stimulate the activity of FEN1 via

*To whom correspondence should be addressed. Tel: +305 348 3628; Fax: +305 348 3772; Email: yualiu@fiu.edu

C© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com



Nucleic Acids Research, 2015, Vol. 43, No. 12 5949

a physical protein–protein interaction and the activity of
DNA ligase I (LIG I) (25,26), as well as stimulate the ac-
tivities of both the polymerase and deoxyribose phosphate
(dRP) lyase activities of polymerase � (pol �) (27) by facil-
itating pol � binding to a gapped DNA and dRP residue
(28), thereby enhancing the efficiency of BER (25,27–29).
Furthermore, APE1 can physically interact with prolifer-
ating cell nuclear antigen (PCNA) (26), suggesting its in-
volvement in BER coordination (30,31). In addition, APE1
has 3′-5′ exonuclease activity (32) that is 100-fold less effi-
cient than its AP endonuclease activity (17). The exonucle-
ase activity of APE1 can be regulated by poly(ADP-ribose)
polymerase-1 (PARP-1), as these proteins have been shown
to compete for binding to the 5′-end of a gapped interme-
diate during BER (33). However, the competition between
PARP-1 and APE1 in binding to BER intermediates stimu-
lates APE1 3′-5′ exonuclease activity, suggesting that APE1
is dislodged by PARP-1 from the 5′-end of a BER interme-
diate, allowing its binding to the 3′-end of a BER interme-
diate on which the exonuclease activity can act (33). It has
been shown that APE1 3′-5′ exonuclease activity removes a
3′-mismatch and may provide proofreading activity for pol
� during BER (34–36), indicating a crucial role of APE1 3′-
5′ exonuclease in maintaining genome integrity. The APE1
exonuclease activity has also been found to be able to re-
move 3′-blocking groups such as L-configuration nucleo-
side analogs (37), suggesting its importance in trimming the
‘dirty 3′-end’ of a BER intermediate to facilitate the comple-
tion of BER. However, the role of the exonuclease activity
of APE1 in sustaining genome stability remains unknown.
We previously showed that the 3′-5′ flap endonuclease activ-
ity of the Mus81/Eme1 complex promotes the removal of a
TNR hairpin by cleaving the 3′-flap of a double-flap inter-
mediate generated by BER in a TNR hairpin loop (13). Yet,
no BER protein that can process a 3′-5′ flap during BER in
a TNR hairpin has been identified. Because APE1 exhibits
3′-5′ exonuclease activity that can process mismatches at the
3′-end of an upstream DNA strand, we hypothesized that
the 3′-5′ exonuclease activity may shorten the upstream 3′-
flap of a double-flap intermediate resulting from the inci-
sion of the loop region of a TNR hairpin during BER. This
could subsequently promote the removal of the hairpin,
thereby facilitating prevention or attenuation of TNR ex-
pansions. We tested this hypothesis by reconstituting BER
on both TNR hairpins containing a base lesion in the loop
region and on the double-flap intermediates that are gen-
erated during BER. We found that APE1 promoted the re-
moval of a TNR hairpin during BER of a base lesion in the
hairpin loop region. This was accomplished by the 3′-5′ ex-
onuclease activity of the enzyme that cleaved the upstream
3′-region exonucleolytically, resolving the double-flap inter-
mediate and preventing TNR expansions. Surprisingly, we
also found that APE1 significantly stimulated the ligation
activity of LIG I to specifically facilitate the completion of
hairpin removal. This is the first evidence of APE1 prevent-
ing TNR expansions by facilitating hairpin removal.

MATERIALS AND METHODS

Materials

The DNA oligonucleotides which contain an 8-oxoG were
synthesized by Eurofins MWG Operon (Huntsville, AL,
USA), and all others were synthesized by Integrated DNA
Technologies (IDT, Coralville, IA, USA). Deoxynucleo-
side 5′-triphosphates (dNTPs) were from Fermentas (Glen
Burnie, MD, USA). Terminal deoxynucleotidyl trans-
ferase and T4 polynucleotide kinase were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). Radionu-
cleotides [� -32P] ATP (6000 mCi/mmol) and Cordycepin 5′-
triphosphate 3′-[�-32P] (5000 mCi/mmol) were purchased
from Perkin Elmer Inc. (Boston, MA, USA). Micro Bio-
Spin 6 chromatography columns were purchased from Bio-
Rad (Hercules, CA, USA). All standard chemical reagents
were purchased from Sigma-Aldrich (St. Louis, MO, USA)
and from Thermo Fisher Scientific (Waltham, MA, USA).
Purified OGG1, pol � and LIG I were generous gifts from
Dr Samuel H. Wilson at the National Institute of Envi-
ronmental Health Sciences/National Institutes of Health.
APE1 and FEN1 were expressed in Escherichia coli and pu-
rified as described below. Oligonucleotide substrates were
prepared as described previously (13). Briefly, substrates
containing a (CAG)7 or (CAG)14 hairpin were constructed
by annealing a damaged strand containing an 8-oxoG or
THF, an analog of an abasic site, in the loop-forming re-
gion of a (CAG)13 or (CAG)20 tract with a template strand
containing (CTG)7 repeats at a molar ratio of 1:2. Sub-
strates mimicking the double-flap intermediates with a 5′-
sugar phosphate residue, the THF residue, were constructed
by annealing an upstream primer containing a 3′-(CAG)4
or (CAG)7 flap and a downstream primer containing a 5′-
(CAG)3 or (CAG)7 flap with the template strand at a mo-
lar ratio of 1:2:2. For each substrate, three CAG repeats
located at both the 5′- and 3′-side of the hairpins/flaps,
base paired with three CTG repeats in the template strand.
Oligonucleotide sequences were described previously (13).
Substrates were labeled with 32P at the 5′- or 3′-end of the
damaged strand, or at the upstream primer or downstream
primer, as indicated.

Protein expression and purification

FEN1 was expressed in E. Coli BL21(DE3). Two liters
of lysogeny broth (LB) medium were inoculated with one
colony each of the transformed BL21(DE3) cells and were
incubated overnight without shaking. The cells were then
incubated at 37◦C at 225 rpm until OD600 reached 0.6. The
protein expression was induced with 1 mM IPTG for 3.5
h and harvested by centrifugation at 2600 rpm for 45 min
at 4◦C. Cells were lysed with a French press cell disrup-
tor (Glen Mills, Clifton, NJ, USA) in lysis buffer which
contained 30 mM 4-(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid (HEPES), pH 7.5, 30 mM KCl, 1 mM dithio-
threitol (DTT), 1 mM EDTA, 1 mM phenylmethylsulfonyl
fluoride (PMSF) and 0.5% inositol. The cell lysates were
centrifuged at 12 000 rpm for 30 min at 4◦C. The super-
natant was loaded onto a 10-ml Sepharose Q column op-
erated by an AKTA Fast Protein Liquid Chromatography
system (FPLC) (GE Healthcare, Piscataway, NJ, USA). The
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flow-through was collected and dialyzed into buffer con-
taining 30 mM HEPES, pH 7.5, 30 mM KCl, 0.5% inosi-
tol and 1 mM PMSF, and subsequently loaded onto a 5-ml
CM sepharose column (Bio-Rad), with fractions eluted us-
ing a linear gradient of KCl from 30 mM to 2 M. Peak frac-
tions were combined and dialyzed into buffer containing
30 mM HEPES, pH 7.5, 0.5% inositol, 1.7 M (NH4)2SO4
and 1 mM PMSF. Samples were then loaded onto a 2-ml
phenyl sepharose column, with fractions eluted using a lin-
ear gradient of (NH4)2SO4 from 1.7 M to 0 M. The peak
fractions were combined and dialyzed into buffer contain-
ing 30 mM HEPES, pH 7.5, 30 mM KCl, 0.5% inositol and 1
mM PMSF. Samples were then loaded onto a 1-ml Mono-S
column (GE Healthcare, Piscataway, NJ, USA), and eluted
using a linear gradient of KCl (30 mM to 2 M). Purified
FEN1 was aliquoted and frozen at −80◦C until further use.

APE1 was expressed in E. Coli BL21(DE3). Two liters
of LB medium were inoculated with one colony each of the
transformed BL21(DE3) cells and were incubated overnight
without shaking. The cells were then incubated at 37◦C at
225 rpm until OD600 reached 0.6. The APE1 expression was
induced by 0.5 mM IPTG for 3.5 h. Cells were harvested
by centrifugation at 2500 rpm for 30 min at 4◦C. The su-
pernatant was discarded and cell pellets were lysed in lysis
buffer, which contained 50 mM HEPES, pH 7.5, 30 mM
NaCl, 1 mM DTT, 1 mM EDTA and 1 mM PMSF. The
cell lysates were centrifuged at 12 000 rpm for 30 min at
4◦C. The supernatant was loaded onto a 10-ml sepharose
Q column operated by an AKTA FPLC. The flow-through
was collected and dialyzed into buffer containing 50 mM
HEPES, pH 7.5, 30 mM NaCl and 1 mM PMSF, and then
loaded onto a 5-ml CM sepharose column (Bio-Rad), with
fractions eluted using a linear gradient of NaCl (30 mM to
2 M). The peak fractions were combined and dialyzed into
buffer containing 50 mM HEPES, pH 7.5, 30 mM NaCl
and 1 mM PMSF. Samples were then loaded onto a 1-ml
Mono-S column, and eluted using a linear gradient of NaCl
from 30 mM to 2 M. Peak fractions were combined and di-
alyzed into buffer containing 50 mM HEPES, pH 7.5, 1.7
M (NH4)2SO4 and 1 mM PMSF. Samples were then loaded
onto a 2-ml phenyl sepharose column, with fractions eluted
using a linear gradient of (NH4)2SO4 ranging from 1.7 M
to 0 M. Purified APE1 was aliquoted and frozen at −80◦C
until further use.

Reconstituted BER assay

In vitro BER of an 8-oxoG or abasic site analog, THF, in
the loop region of a (CAG)7 or (CAG)14 hairpin was carried
out by incubating 50 nM substrate with the indicated con-
centrations of OGG1, APE1, pol �, FEN1 and LIG I. Sub-
strates containing an 8-oxoG were initially incubated with
OGG1 (100 nM) and APE1 (50 nM) at 37◦C for 30 min.
Substrates were then subject to a phenol:chloroform extrac-
tion for removing the OGG1 and APE1. The cleaved sub-
strates were then precipitated with ethanol and resuspended
for the BER assay. Substrates containing a THF in the hair-
pin loop were pre-cleaved with APE1 alone and subject to
the BER assay. BER of an abasic site, the THF residue,
within the loop of the (CAG)7 and (CAG)14 hairpins was
measured by incubating 25 nM substrates with the indicated

concentrations of APE1, pol �, FEN1 and LIG I. All reac-
tions were carried out in reaction buffer containing 50 mM
Tris-HCl, pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mg/ml
bovine serum albumin (BSA), 0.2 mM DTT and 0.01%
Nonidet P-40, with 5 mM MgCl2, 2 mM ATP and 50 �M
dNTPs. The reaction mixtures were incubated at 37◦C for
15 min, and terminated by addition of stopping buffer con-
taining 95% formamide and 10 mM EDTA. Reaction mix-
tures were denatured at 95◦C for 10 min and separated by 15
or 18% urea-denaturing polyacrylamide gel electrophoresis.
Substrates and products were detected and analyzed using
a Pharos FX Plus Phosphorimager from Bio-Rad.

BER enzymatic activity assay

The activities of APE1 AP endonuclease and APE1 3′-5′
exonuclease, as well as FEN1 flap cleavage activity on the
(CAG)7 and (CAG)14 hairpin substrates and double-flap
substrates were measured by incubating 50 or 100 nM sub-
strates with the indicated concentrations of FEN1, APE1
and pol � in reaction buffer containing 50 mM Tris-HCl,
pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 mg/ml BSA, 0.2
mM DTT and 0.01% Nonidet P-40, with 5 mM MgCl2
and 50 �M dNTPs. The reaction mixtures were incubated
at 37◦C for 15 min, and terminated by addition of stop-
ping buffer containing 95% formamide and 10 mM EDTA.
Reaction mixtures were denatured at 95◦C for 10 min and
separated by 15% urea-denaturing polyacrylamide gel elec-
trophoresis. Substrates and products were detected using a
Pharos FX Plus Phosphorimager (Bio-Rad Laboratory).

The effects of APE1 on LIG I activity

The effects of APE1 on LIG I activity were determined via
in vitro reconstitution of BER on the double-flap substrates
resulting from APE1 5′-incision of an abasic site within the
loop of the (CAG)7 and (CAG)14 hairpins at low concentra-
tions of APE1 (0.5 and 1 nM) that exhibit little3′-5′ exonu-
clease activity, and LIG I (1 nM). Twenty five nanomolar
substrates were incubated with the indicated concentrations
of FEN1, APE1, pol � and LIG I in reaction buffer contain-
ing 50 mM Tris-HCl, pH 7.5, 50 mM KCl, 0.1 mM EDTA,
0.1 mg/ml BSA, 0.2 mM DTT and 0.01% Nonidet P-40,
with 5 mM MgCl2, 2 mM ATP and 50 �M dNTPs. The re-
action mixtures were incubated at 37◦C for 15 min, and ter-
minated by stopping buffer containing 95% formamide and
10 mM EDTA. Reaction mixtures were denatured at 95◦C
for 10 min and separated by 15 or 18% urea-denaturing
polyacrylamide gel electrophoresis. Results were analyzed
using a Pharos FX Plus Phosphorimager (Bio-Rad Labo-
ratory).

RESULTS

APE1 stimulates CAG repeat hairpin removal during BER of
a base lesion in a hairpin loop

To determine whether APE1 can facilitate the removal of
a CAG repeat hairpin during BER within the loop of the
hairpin, we reconstituted BER using synthesized oligonu-
cleotide substrates containing either a (CAG)7 or (CAG)14
hairpin with an 8-oxoG (Figure 1) or abasic site analog,
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Figure 1. APE1 promotes the removal of a trinucleotide repeat hairpin during BER of 8-oxoG in a TNR hairpin loop. The effect of APE1 on hairpin
removal during BER of an 8-oxoG in the loop of a small (CAG)7 hairpin (left panel) and a large (CAG)14 hairpin (right panel) was examined by recon-
stituting BER with the hairpin-containing substrates. Lanes 1 and 12 are markers that indicate the length of the template strand or unexpanded product.
Lanes 2 and 13 are markers that indicate the length of the damage-containing strand or expanded product. Lanes 3 and 14 correspond to the substrates that
were pre-incubated with 100 nM OGG1 and 50 nM APE1 and isolated after phenol-chloroform extraction. Lanes 4–5 and lanes 15–16 correspond to the
reaction mixtures with OGG1/APE1 pretreated substrates and 50 and 100 nM APE1 only. Lanes 6–8 and lanes 17–19 correspond to BER reconstituted
with FEN1 (1 nM) and LIG I (5 nM) in the absence and presence of APE1. Lanes 9–11 and lanes 20–22 correspond to BER reconstituted with FEN1 (1
nM), LIG I (5 nM) and pol � (10 nM) in the absence and presence of APE1. Substrates were 32P-labeled at the 5′-end of the damage-containing strand
and are illustrated above each gel.

tetrahydrofuran (THF) (Figure 2), in the loop region of the
hairpin. We found that during BER of an 8-oxoG in the
loop of the small (CAG)7 hairpin, the production of the
‘repaired unexpanded product’, the product with the same
length as the template strand, was significantly increased in
the presence of 50 and 100 nM APE1 (Figure 1, lanes 7–8
and lanes 10–11) compared to the amount of product re-
sulting from BER in the absence of APE1 (Figure 1, lanes
6 and 9). During BER of an 8-oxoG in the loop of the
large (CAG)14 hairpin, 50 and 100 nM APE1 resulted in the
production of the repaired unexpanded product (Figure 1,
lanes 18–19 and lanes 21–22), whereas little unexpanded
product was generated in the absence of APE1 (Figure 1,
lanes 17 and 20). APE1 alone failed to produce any repair
products (Figure 1, lanes 4–5 and lanes 15–16). Consistent
with the findings from BER of the 8-oxoG in the hairpin
loop, 50 and 100 nM APE1 also resulted in the production
or an increase in the amount of repaired unexpanded prod-
uct during BER of a THF in the loop region of the (CAG)7
and (CAG)14 hairpins (Figure 2, compare lanes 7–8 with
lane 6 and lanes 10–11 with lane 9, lanes 18–19 with lane
17 and lanes 21–22 with lane 20). The results indicated that
APE1 promoted the removal of the (CAG)7 and (CAG)14
repeat hairpins during BER of both an 8-oxoG and abasic

lesion in the loop region of the hairpin, thereby preventing
TNR expansions.

APE1 stimulates the processing of a double-flap intermediate
during BER

Our previous studies have shown that during BER of a base
lesion within the loop of a CAG repeat hairpin, the hair-
pin is converted to a double-flap intermediate as a result
of APE1 5′-incision of an abasic site (13). We found that
the double-flap intermediate was then processed by a 3′-5′
flap endonuclease, Mus81/Eme1 and FEN1 5′-flap cleavage
(13). This led to cleavage of the flaps, thereby resulting in the
removal of the hairpin. We further hypothesized that APE1
is also involved in the processing of a double-flap interme-
diate by employing its 3′-5′ exonuclease activity to process
the upstream 3′-flap, thereby promoting removal of a TNR
hairpin structure. To test this, we reconstituted BER with
a substrate containing an upstream 3′-(CAG)4 flap and a
downstream 5′-(CAG)3 flap with a THF residue, as well as
with a substrate containing a (CAG)7 flap on both the up-
stream and downstream strands with a 5′-THF residue, in
the absence and presence of APE1. These substrates sim-
ulate the double-flap intermediates produced by APE1 5′-
incision of the (CAG)7 and (CAG)14 hairpins, respectively.
We found that BER reconstituted with FEN1 (0.5 and 1
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Figure 2. APE1 promotes the removal of a trinucleotide repeat hairpin during BER of an abasic site in a CAG repeat hairpin loop. The effect of APE1
on CAG repeat hairpin removal during BER of a THF residue, an abasic site analog, in the loop of a small (CAG)7 hairpin (left panel) and a large
(CAG)14 hairpin (right panel) was examined by reconstituting BER with the substrates containing a THF in the (CAG)7 and (CAG)14 loop. Lanes 1 and
12 indicate markers that illustrate the length of the template strand or unexpanded product, corresponding to the removal of the entire hairpin. Lanes 2
and 13 correspond to markers that represent the length of the substrate only. Lanes 3 and 14 correspond to the substrates that were pre-incubated with
APE1 (50 nM) and isolated after phenol-chloroform extraction. Lanes 4–5 and lanes 15–16 correspond to the reaction mixture with the APE1-pretreated
substrates and 50 and 100 nM APE1 only. Lanes 6–8 and 17–19 correspond to BER reactions reconstituted with FEN1 (1 nM) and LIG I (5 nM) in the
absence and presence of APE1. Lanes 9–11 and lanes 20–22 correspond to BER reaction mixture reconstituted with FEN1 (1 nM), LIG I (5 nM) and pol
� (10 nM) in the absence and presence of APE1.

nM) and LIG I (5 nM) without and with pol � (5 nM) on
the (CAG)3/(CAG)4 double-flap substrate, resulted in the
production of a significant amount of the repaired unex-
panded product (Figure 3A, lanes 6, 9 and 12). However, 50
and 100 nM APE1 did not significantly alter the production
of the unexpanded repaired product with the substrate (Fig-
ure 3A, compare lanes 7–8 with lane 6, lanes 10–11 with lane
9 and lanes 13–14 with lane 12). Further characterization of
the 3′-5′ exonuclease activity of APE1 showed that 50 and
100 nM APE1 exhibited efficient 3′-5′ exonuclease activity
that generated a significant amount of exonucleolytic cleav-
age products (Figure 3A, lanes 4–5). This indicated that
APE1 cleaved the upstream CAG repeats exonucleolytically.
The results showed that APE1 exonuclease did not play a
significant role in the removal of the short double-flaps, sug-
gesting that FEN1 flap cleavage plays a predominant role
in processing the short double-flaps. Interestingly, we found
that BER with the substrate containing long double-flaps
in the presence of FEN1 (1 nM) and LIG I (5 nM) only re-
sulted in a series of repaired products that are longer than
the repaired unexpanded product (Figure 3A, lanes 20 and
23), but shorter than the original hairpin-containing sub-
strate. They were termed ‘repaired expanded product’ (Fig-
ure 3A, lanes 20–25). This occurred in the absence and pres-
ence of pol � (10 nM) (Figure 3A, lanes 20–25) indicating
that the production of the expanded products was indepen-
dent of pol �. However, we found that the presence of 50 and
100 nM APE1 resulted in the formation of repaired unex-

panded product (Figure 3A, lanes 21–22 and lanes 24–25).
APE1 alone failed to generate the product (Figure 3A, lanes
18–19), indicating that the product was specifically gener-
ated through BER. However, APE1 failed to affect the pro-
duction of repaired expansion products during BER (Fig-
ure 3A, compare the amount of repaired expanded products
in lanes 21–22 and lanes 24–25 with that in lanes 20 and
23). This suggests that APE1 promoted the complete reso-
lution of the long double-flap intermediate resulting from
a (CAG)14 hairpin, thereby specifically stimulating the pro-
duction of repaired unexpanded product. To further deter-
mine the effect that is specifically from APE1 on the pro-
duction of repaired unexpanded products during BER, we
reconstituted BER with 50 and 100 nM APE1 without or
with a low concentration of FEN1 (1 nM) with the double-
flap substrates without a THF residue. We found that on
the short (CAG)3/(CAG)4 double-flap substrate, APE1 (50
and 100 nM) along with LIG I (5 nM) was sufficient to
generate repaired unexpanded product in the absence and
presence of 10 nM pol � (Figure 3B, lanes 7–8 and lanes
10–11). This indicated that APE1 facilitated the process-
ing of the short (CAG)3/(CAG)4 double-flap by cleaving
the upstream strand via its 3′-5′ exonuclease activity inde-
pendent of FEN1. The production of the repaired unex-
panded product was significantly stimulated by the pres-
ence of 1 nM FEN1 (Figure 3B, left panel, lanes 13–14
and lanes 16–17). To further determine the specific effect of
APE1 on the removal of the long (CAG)7/(CAG)7 double-
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Figure 3. APE1 stimulates removal of a double-flap intermediate during BER. APE1 stimulation of resolution of the double-flap intermediate resulting
from (CAG)7 and (CAG)14 hairpins during BER was examined by reconstituting BER with the substrates containing short (CAG)3/(CAG)4 double-flaps
(left panel) or long (CAG)7/(CAG)7 double-flaps (right panel) with a THF residue (A) and without a THF residue (B) in the absence and presence of APE1.
(A) Lanes 1 and 15 indicate the size markers of the template strand or unexpanded product. Lanes 2 and 16 represent the size markers of the damaged
strand or expanded product. Lanes 3 and 17 represent the substrate only. Lanes 4–5 and lanes 18–19 correspond to the reaction mixture containing the
substrates and 50 or 100 nM APE1. Lanes 6–11 and lanes 20–22 correspond to reactions with FEN1 (0.5 or 1 nM) and LIG I (5 nM) in the absence or
presence of APE1. Lanes 12–14 and lanes 23–25 correspond to reactions with FEN1 (1 nM), LIG I (5 nM) and pol � (5 or 10 nM) in the absence and
presence of APE1. (B) Lanes 1 and 18 indicate the size markers that represent the template strand or unexpanded product. Lanes 2 and 19 correspond to
the size markers that illustrate the damaged strand. Lanes 3 and 20 correspond to the substrate only. Lanes 4–5 and lanes 21–22 correspond to the reaction
mixture with the substrates and 50 or 100 nM APE1 only. Lanes 6–8 and lanes 23–25 correspond to reactions with the substrates and LIG I (5 nM) in the
absence and presence of 50 or 100 nM APE1. Lanes 9–11 and lanes 26–28 correspond to reactions containing the substrates, pol � (10 nM) and LIG I
(5 nM) in the absence and presence of APE1. Lanes 12–14 and lanes 29–31 correspond to reactions with the substrates, FEN1 (1 nM) and LIG I (5 nM)
without or with APE1. Lanes 15–17 and lanes 32–34 correspond to reactions mixtures with the substrates, pol � (10 nM), FEN1 (1 nM) and LIG I (5 nM)
without or with APE1.



5954 Nucleic Acids Research, 2015, Vol. 43, No. 12

flaps, we reconstituted BER with the substrate containing
(CAG)7/(CAG)7 double-flaps without the 5′-THF residue
in the absence and presence of FEN1 (1 nM) (Figure 3B,
right panel). We found that 50 and 100 nM APE1 alone or
APE1 along with LIG I (5 nM) in the absence and presence
of pol � (10 nM) failed to produce any repair products (Fig-
ure 3B, lanes 21–22, lanes 24–25 and lanes 27–28). BER re-
constituted with FEN1 and LIG I produced only repaired
expanded products without and with pol � (10 nM) (Fig-
ure 3B, lanes 29 and 32). However, BER reconstituted with
APE1, FEN1 and LIG I in the absence and presence of pol
� resulted in the production of a significant amount of the
repaired unexpanded product (Figure 3B, lanes 30–31 and
lanes 33–34). The results indicated that APE1 significantly
promoted the removal of both the short (CAG)3/(CAG)4
and long (CAG)7/(CAG)7 double-flap intermediates. Thus,
we conclude that APE1 can facilitate the resolution of the
double-flap intermediate formed during BER in a CAG re-
peat hairpin loop and stimulate the formation of the unex-
panded repaired product. APE1 alone can lead to complete
removal of a short double-flap intermediate through its 3′-5′
exonuclease activity (Figure 3B, lanes 7–8). However, it can
only promote the processing of an intermediate with long
double-flaps by cooperating with FEN1 flap cleavage (Fig-
ure 3B, lanes 30–31 and lanes 33–34).

APE1 3′-5′ exonuclease activity shortens the upstream 3′-
region of a double-flap intermediate

Because our previous studies have shown that a 3′-5′ flap
endonuclease, Mus81/Eme1, can facilitate the removal of a
TNR hairpin by endonucleolytically cleaving a 3′-flap from
the double-flap intermediate during BER (13), we further
hypothesized that APE1 may promote the removal of a
CAG repeat hairpin by shortening the upstream 3′-flap of a
double-flap intermediate through its 3′-5′ exonuclease activ-
ity. To test this, we examined the 3′-5′ exonuclease activity of
APE1 on both the (CAG)3/(CAG)4 and (CAG)7/(CAG)7
double-flap substrates without or with the THF residue,
that were labeled at the 5′-end of the upstream flaps. This
allowed the detection of shortened upstream flaps (Fig-
ure 4). We found that 10–100 nM APE1 exonucleolytically
cleaved the upstream 3′-flap of the (CAG)3/(CAG)4 double-
flap substrate, leading to the production of cleavage prod-
ucts that are shorter than the substrate (Figure 4, lanes 2–5
and lanes 7–10). APE1 exonucleolytic cleavage was slightly
greater on the substrate lacking the THF residue (com-
pare lanes 7–10 with lanes 2–5). The results indicated that
the APE1 3′-5′ exonuclease activity efficiently processed the
short 3′-upstream strand of the double-flap intermediate re-
sulting from a small CAG repeat hairpin. To further deter-
mine if APE1 can process a long 3′-CAG repeat flap, we ex-
amined the APE1 activity on the (CAG)7/(CAG)7 double-
flap substrate, without or with the THF residue. The re-
sults showed that 10–100 nM APE1 resulted in the pro-
duction of a small amount of exonuclease cleavage prod-
uct from the (CAG)7/(CAG)7 double-flap substrate with a
THF (Figure 4 lanes 12–15). For the double-flap substrate
without a THF, a small amount of APE1 exonucleolytic
cleavage products was also generated (Figure 4, lanes 17–
20). This indicated that APE1 3′-5′ exonuclease cleaved a

long upstream 3′-flap with a low efficiency. This further sug-
gests that the resolution of the long double-flap intermedi-
ate formed from the larger (CAG)14 hairpin during BER re-
quires a coordinated activity between APE1 and other nu-
cleases such as FEN1 that can resolve the double-flap inter-
mediate through its endonucleolytic cleavage of a 5′-flap.

APE1 fails to directly stimulate FEN1 cleavage on a double-
flap intermediate

APE1 has been shown to stimulate FEN1 flap cleavage dur-
ing BER of an abasic lesion located in a random DNA se-
quence (25). To further determine if APE1 can promote
the removal of a CAG repeat hairpin by facilitating FEN1
flap cleavage of the 5′-flap of a double-flap intermediate, we
tested whether APE1 could stimulate FEN1 flap cleavage
on the (CAG)3/(CAG)4 and (CAG)7/(CAG)7 double-flap
intermediates (Figure 5). We found that in the absence and
presence of 50 and 100 nM APE1, similar amounts of FEN1
cleavage products were generated by 0.5 and 1 nM FEN1
during BER of the (CAG)3/(CAG)4 and (CAG)7/(CAG)7
double-flap substrate (Figure 5, compare lanes 4–5 with
lane 3, lanes 10–11 with lane 9, lanes 18–19 with lane 17
and lanes 24–25 with lane 23). We further examined if APE1
could stimulate FEN1 cleavage in the presence of pol � (10
nM). We did not observe any increase of FEN1 cleavage
products in the presence of 50 and 100 nM APE1 with 10
nM pol � (Figure 5, compare lanes 7–8 with lane 6, lanes
13–14 with lane 12, lanes 21–22 with lane 20 and lanes 27–28
with lane 26). Thus, the results indicated that APE1 failed
to stimulate FEN1 cleavage activity in processing the short
and long double-flap intermediates during BER. We there-
fore concluded that the stimulation of the removal of a CAG
repeat hairpin by APE1 was not the result of APE1 stimu-
lation of FEN1 cleavage activity.

APE1 promotes the production of the unexpanded repair
product by stimulating LIG I

A study from the Bambara group showed that APE1 can
stimulate LIG I activity to promote ligation of a nick and
facilitate the formation of repaired products during BER
(25). Thus, it is possible that APE1 may also stimulate LIG
I activity to promote the removal of a CAG repeat hairpin
and facilitate the production of the repaired products dur-
ing BER of a base lesion in a hairpin loop. To test this pos-
sibility, we determined the effects of APE1 on LIG I activ-
ity independent of its 3′-5′ exonuclease activity by measur-
ing the production of the repaired products in the presence
of low concentrations of APE1 (0.5 and 1 nM) that exhib-
ited a low 3′-5′ exonuclease activity on the (CAG)3/(CAG)4
double-flap substrate (Supplementary Figure S1, lanes 3–
4) and little exonucleolytic activity on the (CAG)7/(CAG)7
double-flap substrate (Supplementary Figure S1, lanes 9–
10). We found that low concentrations of APE1 failed to
alter the production of repaired products resulting from a
short double-flap substrate (Figure 6, compare lanes 5–6
with lane 4 and lanes 8–9 with lane 7) indicating that APE1
did not significantly alter LIG I activity during removal of a
small hairpin. However, the same concentrations of APE1
resulted in the production of the unexpanded product on
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Figure 4. APE1 3′–5′ exonuclease activity shortens the 3′-flap of the double-flap intermediates. APE1 3′-5′ exonuclease activity of shortening the 3′-flap of
the double-flap intermediates was examined by incubating the substrates with the short (CAG)3/(CAG)4 and long (CAG)7/(CAG)7 double-flaps without
or with a THF residue with increasing concentrations of APE1 ranging from 10 to 100 nM. Lanes 1, 6, 11 and 16 correspond to the substrate only. Lanes
2–5, lanes 7–10, lanes 12–15 and lanes 17–20 correspond to increasing concentrations of APE1 ranging from 10 to 100 nM. Substrates were 32P-labeled at
the 5′-end of the upstream strands and are illustrated above the gels.

Figure 5. APE1 fails to stimulate FEN1 cleavage of the double-flap intermediate. The stimulatory effects of APE1 on FEN1 cleavage activity on the short
(CAG)3/(CAG)4 and long (CAG)7/(CAG)7 double-flap intermediates during BER were examined by incubating 0.5 or 1 nM FEN1 with the double-flap
substrates in the absence and presence of 50 or 100 nM APE1. Lanes 1 and 15 are size markers. Lanes 2 and 16 correspond to the substrate only. Lanes
3–5 and lanes 17–19 correspond to reaction mixture with FEN1 (0.5 nM) in the absence and presence of 50 or 100 nM APE1. Lanes 6–8 and lanes 20–22
correspond to reaction mixture with FEN1 (0.5 nM) and pol � (10 nM) in the absence and presence of 50 or 100 nM APE1. Lanes 9–11 and lanes 23–25
correspond to reactions with FEN1 (1 nM) in the absence and presence of 50 or 100 nM APE1. Lanes 12–14 and lanes 26–28 correspond to reactions with
FEN1 (1 nM) and pol � (10 nM) in the absence and presence of 50 or 100 nM APE1. Substrates were 32P-labeled at the 3′-end of the downstream strands
and are illustrated above each gel.
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Figure 6. APE1 stimulates LIG I activity on a double-flap intermediate. The effects of APE1 to stimulate the ligation activity of LIG I on the short
(CAG)3/(CAG)4 and long (CAG)7/(CAG)7 double-flap intermediates during BER were determined by reconstituting BER in the absence and presence of
low concentrations of APE1 (0.5 and 1 nM) at which a little or no 3′-5′ exonuclease activity was observed (Supplementary Figure S1) on the short and long
double-flap substrates, respectively. Lanes 1 and 10 indicate the size markers of the template strand, corresponding to complete removal of the double-flaps
and full repair. Lanes 2 and 11 correspond to the markers that illustrate the length of the damaged strand containing a CAG repeat hairpin and the size of
repaired expanded product. Lanes 3 and 12 correspond to the substrate only. Lanes 4–6 and lanes 13–15 correspond to reactions containing the substrates,
FEN1 (5 nM) and LIG I (0.1 nM or 1 nM) in the absence and presence of 0.5 or 1 nM APE1. Lanes 7–9 and lanes 16–18 correspond to reaction mixture
containing the substrates, FEN1 (5 nM), LIG I (0.1 nM or 1 nM) and pol � (5 nM) in the absence and presence of 0.5 or 1 nM APE1. Substrates were
32P-labeled at the 5′-end of the upstream strands and are illustrated above each gel.

the long (CAG)7/(CAG)7 double-flap substrate (Figure 6,
compare lanes 14–15 with lane 13 and lanes 17–18 with lane
16). The results indicated that APE1 stimulated the liga-
tion activity of LIG I, thereby promoting the production of
the unexpanded repair product. Interestingly, we observed
that the same concentrations of APE1 failed to stimulate the
production of shortened repaired expanded products (Fig-
ure 6, lanes 14–15, lanes 17–18) suggesting that APE1 failed
to stimulate the ligation of a nick by LIG I that was adjacent
a hairpin structure.

DISCUSSION

In this study, we made the first discovery that APE1 pro-
moted the removal of a TNR hairpin (Figures 1 and 2) by
shortening the upstream 3′-flap via its 3′-5′ exonuclease ac-
tivity (the left panels of Figures 3 and 4). We found that
APE1 specifically facilitated the production of the repaired
unexpanded product by stimulating the ligation activity of
LIG I (the right panel of Figure 6). We further demon-
strated that APE1 also stimulated the removal of a large
(CAG)14 repeat hairpin by exonucleolytically cleaving the
3′-flap of a long (CAG)7/(CAG)7 repeat double-flap inter-
mediate (Figure 4) as well as stimulating LIG I activity (Fig-
ure 6). This specifically facilitated the formation of the re-
paired unexpanded product during BER (the right panels
of Figures 3A and B and 6). In addition, we showed that
the stimulatory effects of APE1 on TNR hairpin removal

were not the result of APE1 stimulation of FEN1, because
APE1 did not show any stimulatory effects on FEN1 cleav-
age activity or pol � DNA synthesis (Figure 5 and Supple-
mentary Figure S2). Our results support a model by which
APE1 stimulates TNR hairpin removal to prevent TNR ex-
pansions (Figure 7), showing that upon exposure of TNR
tracts to oxidative DNA damaging agents and the forma-
tion of an oxidized base lesion in the loop region of a TNR
hairpin, or relocation of the lesion to the loop, a DNA gly-
cosylase removes the damaged base leaving an abasic site.
APE1 incises the 5′-side of the abasic site in the hairpin loop,
converting the hairpin into a double-flap intermediate. A
short double-flap intermediate converted from a small hair-
pin can be directly processed by APE1 via its exonucleolytic
cleavage of the upstream 3′-region, shortening the flap. In
coordination with FEN1 cleavage of a 5′- sugar phosphate
residue, this leads to the removal of a small hairpin and pre-
vention of repeat expansion (Figure 7, subpathway 1). A
long double-flap intermediate resulting from a large hairpin
is resolved by the coordination among APE1, FEN1, pol �
and LIG I that results in the formation of different interme-
diates leading to either repeat expansion or no expansion.
For the long flaps that form two adjacent small hairpins
with a short 5′-flap containing a sugar phosphate, FEN1
cleaves the flap with its alternate flap cleavage activity leav-
ing a gapped DNA. Pol � then fills in the gap leaving a nick
for ligation by LIG I. The nicked intermediate with small
hairpins traps a large amount of LIG I, resulting in liga-
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Figure 7. APE1 prevents trinucleotide repeat expansions during BER in a hairpin loop. During BER of a base lesion in the loop of a TNR hairpin, the
damaged base is removed by a DNA glycosylase creating an abasic site. APE1 incises the 5′-side of the abasic site converting the hairpin into a double-flap
intermediate. A short double-flap intermediate resulting from a small hairpin undergoes flap equilibration to allow annealing of the upstream flap to the
template strand. The annealed upstream 3′-region can be processed by APE1 3′-5′ exonuclease cleavage, shortening the upstream strand to allow annealing
of the downstream 5′-flap, leading to removal of a small hairpin upon FEN1 cleavage of a sugar phosphate residue, synthesis by pol � and ligation by LIG
I (subpathway 1). A long double-flap intermediate formed by APE1 5′-incision of an abasic site in a large hairpin can result in different consequences upon
the formation of hairpin structures by the flaps. If the double-flaps form two small hairpins adjacent to each other, FEN1 removes a sugar phosphate with
a short flap through alternate flap cleavage activity, leaving a gapped DNA. Pol � then fills in the gap, leaving a nick for ligation by LIG I. This intermediate
traps a large quantity of LIG I, resulting in ligation of hairpins by LIG I and repeat expansion. For this intermediate, APE1 fails to access the nick to
interact with LIG I to stimulate the activity of the enzyme (left, subpathway 2). For the long double-flap intermediates that form a downstream long flap,
FEN1 removes the flap leaving a short upstream 5′-flap. This allows the upstream flap to reanneal into an intermediate with an upstream small repeat
bubble with a 3′-annealed region that is subsequently cleaved by APE1 3′-5′ exonuclease activity leaving gapped DNA. Pol � then fills in the gap resulting
in a nick that is sealed by the limited amount of LIG I. Subsequently, APE1 facilitates the limited amount of LIG I to bind to the nick, stimulating LIG I
activity, facilitating the removal of the double-flaps and generation of the unexpanded product (right, subpathway 2).

tion of hairpins by LIG I and the production of repaired ex-
panded product. For this intermediate, APE1 cannot access
the nick to interact with LIG I and stimulate the activity of
the enzyme (Figure 7, the left side of the subpathway 2). For
the long double-flap intermediate that forms a downstream
long flap, FEN1 removes the flap leaving a short upstream
3′-flap. This allows the upstream flap to reanneal into an in-
termediate with an upstream small repeat bubble with a 3′-
annealed region that is subsequently cleaved by APE1 3′-5′
exonuclease activity leaving a gapped DNA. Pol � then fills
in the gap resulting in a nick, which is sealed by the limited
amount of LIG I that is not bound to the nick located in
between the two small hairpins. Subsequently, APE1 facili-
tates the binding of the limited amount of LIG I to the nick.
This stimulates the ligation activity of LIG I, thereby pro-

moting the generation of the repaired unexpanded product
(Figure 7, right, subpathway 2).

Here, for the first time, we identified a new role of APE1
in the resolution of the upstream 3′-flap formed during re-
moval of a TNR hairpin through BER. Our findings also
provide new insight into how the BER enzymes APE1, pol
�, FEN1 and LIG I can cooperate to remove TNR hair-
pins and maintain TNR stability. Although the APE1 ex-
onuclease activity has been shown to be able to remove
3′-mismatched bases and 3′-blocking groups (17,34,36–38),
the biological function of the 3′-5′ exonuclease of APE1 re-
mains to be elucidated. Our study demonstrates that during
BER in a hairpin loop, APE1 promoted the formation of
repaired unexpanded product specifically by exonucleolyti-
cally cleaving the upstream strand of a double-flap interme-
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diate and stimulating the LIG I activity in sealing a nick.
We further verified the exonucleolytic cleavage of APE1 on
both the short and long double-flap substrates specifically
to examine if the 3′-5′ exonuclease activity of APE1 is in-
deed involved in the resolution of both of the short and
long double-flaps. Our results showed that APE1 exhibited
efficient 3′-5′ exonuclease activity on the short double-flap
substrate by predominantly cleaving two repeat units from
the short upstream strand (Figure 4, lanes 2–5 and lanes
7–10), whereas it mainly cleaved one repeat unit from the
long upstream flap (Figure 4, lanes 13–15 and lanes 19–20).
The results indicate that APE1 3′-5′ exonucleolytic cleavage
of the upstream flaps plays an important role in preventing
and attenuating TNR expansion during the repair of both
small- and large-hairpin structures.

Our previous study has shown that the 3′-5′ flap endonu-
clease Mus81/Eme1 protein complex prevents TNR expan-
sions by cleaving the upstream 5′-flap (13). This indicates
that any nuclease that can cleave the upstream 5′-flap may
lead to the prevention of TNR repeat expansions during
BER in a hairpin loop. Although the 3′-5′ exonuclease ac-
tivity of APE1 has been well established and proposed to
serve as a proof-reading enzyme for pol � during BER, its
biological function remains to be elucidated. In this study,
for the first time, we reveal a novel function of APE1 3′-5′
exonuclease activity and APE1 stimulation on the activity
of LIG I in preventing TNR expansions via its unique co-
ordination with other BER enzymes. Although the APE1
exonuclease activity is weaker than its AP endonuclease ac-
tivity and accomplished by a relatively high concentration
of the enzyme, the abundance of the enzyme in mammalian
cells (105–106 molecules/cell) (16) appears to allow it to act
as an efficient 3′-5′ exonuclease for sustaining TNR stability
in cells.

Our results also suggested that for a double-flap inter-
mediate, the upstream flap annealed back to the template
strand creating a downstream 5′-flap. Subsequently, APE1
3′-5′ exonuclease cleaved the upstream strand creating an
upstream gap into which the downstream 5′-flap reannealed
to generate a nick. This is supported by the observation
that APE1 exonuclease failed to make cleavage on a sub-
strate containing an upstream 3′-flap that fails to anneal
with the template strand, indicating that APE1 3′-5′ exonu-
clease cannot endonucleolytically cleave a single-stranded
3′-flap (36). This further indicates that the APE1 3′-5′ ex-
onuclease activity was accomplished through the reanneal-
ing of the upstream 3′-flap to the template strand that cre-
ates a nick or gap in a DNA duplex through flap equilibra-
tion (39).

Our results showed that APE1 specifically stimulated the
production of the repaired unexpanded product, but not the
production of repaired expanded products via its 3′-5′ ex-
onuclease activity (Figure 4) as well as its stimulation of the
activity of LIG I (Figure 6, lanes 14–15 and lanes 17–18).
This was indicated by the production of the repaired un-
expanded product during BER with the long double-flap
substrate in the presence of low concentrations of APE1
(Figure 6, compare lanes 14–15 with lane 13 and lanes 17–
18 with lane 16) that exhibit little 3′-5′ exonuclease activity
(Supplementary Figure S1). This indicates that APE1 can
specifically promote the formation of repaired unexpanded

product from BER of a long double-flap substrate by stim-
ulating LIG I activity independent of its 3′-5′ exonuclease
activity. The production of a large quantity of repaired ex-
panded products suggests that the products were generated
by ligation of a nick that was flanked by a small upstream
and downstream CAG repeat hairpin structure that pro-
vided a limited space for LIG I alone to bind to the nick.
This further prevented the binding of both LIG I and APE1
to the nick, thereby preventing any effects from APE1 on
LIG I activity. Moreover, it is possible that the nick flanked
by two CAG repeat hairpins may also trap LIG I, thereby
resulting in depletion of LIG I that reduced the availabil-
ity of LIG I for generating the unexpanded product. In this
scenario, APE1 became critical for recruiting the limited
amount of LIG I to bind to the nick at a duplex DNA re-
sulting from the complete removal of the double flaps. This
led to stimulation of the formation of the unexpanded prod-
uct. This notion was supported by our results showing that
APE1 failed to stimulate LIG I activity during BER with
the short double-flap substrate that led to the production of
a nick in a duplex DNA. This further suggests that there was
a sufficient amount of LIG I to carry out efficient ligation on
a nick in duplex DNA during BER with a short double-flap
intermediate because the short double-flaps did not form
hairpin structures. This was also supported by the fact that
LIG I activity at a nick on duplex DNA can be stimulated by
APE1 at a very low concentration of LIG I (0.06–0.1 nM)
(25). Our results indicate that APE1 promoted the removal
of a small TNR hairpin by employing its 3′-5′ exonuclease
activity. It facilitated the removal of a large TNR hairpin
by both its 3′-5′ exonuclease activity and its stimulation of
LIG I activity.

FEN1 was previously shown by the Bambara group to be
stimulated by APE1 through a direct interaction between
the two enzymes (25). However, we failed to observe the
stimulatory effect on the double-flap substrates. It is pos-
sible that with the double flap intermediate, the upstream
flap may interrupt the direct interaction between APE1
and FEN1, thereby eliminating APE1 stimulatory effect on
FEN1 flap cleavage. It is conceivable that APE1 can be
bound to the upstream region of the double-flap intermedi-
ate, which is too far away from the base of the downstream
5′-flap of the intermediate. This would prevent the direct in-
teraction between the enzymes and the stimulatory effect.

It should be noted that we found that the formation of
unexpanded repaired product from both the short and long
double-flap substrates was promoted in the presence of pol
� (Figure 1, lanes 10–11 and lanes 21–22, Figure 2, lanes
10–11 and lanes 21–22, Figure 3A, lanes 24–25, Figure 3B,
lanes 33–34 and Figure 6, lanes 17–18). However, the for-
mation of the unexpanded product from both the short and
long double-flap substrates was also observed in the absence
of pol � (Figure 1, lanes 6–8 and lanes 18–19, Figure 2, lanes
7–8 and lanes 18–19, Figure 3A, lanes 6–11 and lanes 21–
22, Figure 3B, lanes 7–8, lanes 12–14 and lanes 30–31 and
Figure 6, lanes 4–6 and lanes 14–15). This indicates that
pol � is not required for the production of the unexpanded
product during BER. This is because for both a short and
long double-flap intermediate, FEN1 cleavage of the down-
stream flap along with APE1 3′-5′ exonucleolytic cleavage of
the upstream strand can result in the production of nicked
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DNA for ligation as well as gapped intermediates that need
to be filled in by pol � gap-filling synthesis for generating
nicked DNA for ligation and completion of repair. In addi-
tion, we found that the production of the unexpanded prod-
uct was slightly stimulated by the presence of pol � with
both the short and long double-flap substrates, indicating
that there is no preference for pol � in the repair of a short
or long double-flap intermediate during BER.

Our results showed that repair of the long double-flap
substrates led to the formation of expanded products. This
is because the long flaps can reanneal with the template to
form an intermediate with a small hairpin in the upstream
or/and the downstream strand attached with a short flap
as described in our previous study (13). This further indi-
cates that a hairpin intermediate formed in the downstream
flap can be further processed by FEN1 alternate flap cleav-
age resulting in ligation of a small hairpin and production
of shortened expanded products, thereby attenuating repeat
expansion (13). However, our results also demonstrated that
a significant amount of unexpanded product was generated
during repair of the long double-flap intermediate, suggest-
ing that the upstream and downstream flaps were removed
completely by the cooperative cleavage activities of APE1
3′-5′ exonuclease activity and FEN1 flap cleavage through
their direct cleavage of the flaps as well as their cleavage of
a series of short flaps formed by a long flap in a stepwise
manner.

Previous studies from the Delaney group have shown that
a hairpin loop is more susceptible to the formation of oxida-
tive DNA damage such as 8-oxoG than duplex DNA (40).
Moreover, an 8-oxoG formed in the stem region of a hair-
pin can relocate to the loop region (41), indicating that the
oxidized base lesion preferentially accumulates in a hairpin
loop. Although this can further reduce OGG1 binding abil-
ity to the oxidized base lesion (12), we have demonstrated
that OGG1 can efficiently remove an 8-oxoG located in the
loop of a TNR hairpin within a TNR duplex tract, leaving
an abasic site in the loop region. Subsequently, APE1 incises
the 5′-side of the abasic site cleaving the loop and convert-
ing the hairpin into a double-flap intermediate. This results
in removal of the hairpin through BER (13), demonstrating
that BER in a TNR hairpin loop can lead to prevention and
attenuation of TNR expansion. Employing synthetic zinc
finger endonucleases, which specifically target hairpin struc-
tures of a specific sequence (CAG/CTG), the Leffak group
has found that a CAG and CTG repeat hairpin structure
containing about 46 repeats can be generated in cells (42).
Thus, it is possible that the hairpin substrates with seven
more repeats in the upper strand than the lower strand used
in our study can be readily generated as a natural DNA
replication and repair intermediate in cells. Here, we used
the substrates containing an 8-oxoG and abasic lesion in the
loop region of a TNR hairpin to mimic a damaged TNR
hairpin and its repair intermediate that can be generated
during BER to study the mechanism of BER in a hairpin
loop. We found that BER was not significantly affected by
a TNR hairpin structure.

In this study, we have identified a mechanism by which
APE1 prevents TNR expansion with an in vitro biochemi-
cal approach. Since there is no in vivo system that has been
established to study a mechanism that involves BER protein

coordination in modulating TNR stability as yet, develop-
ment of such a type of in vivo system would be helpful for
further elucidating this mechanism in mammalian cells.

Our previous studies have shown that alkylated DNA
damage can be induced in expanded GAA repeats associ-
ated with Friedreich’s ataxia by the chemotherapeutic drug,
temozolomide and BER of the alkylated DNA damage sub-
sequently results in large GAA repeat deletions (43). This
occurs as a result of the formation of a TTC loop in the
template strand and a downstream GAA repeat flap. Pol �
then skips over the loop, and FEN1 cleaves the GAA re-
peat flap allowing the removal of more GAA repeats than
pol � synthesizes. This subsequently leads to repeat dele-
tions (43). The study indicates that chemotherapeutically
induced DNA damage can shorten expanded TNR tracts
via BER, and thus potentially be used as novel treatment of
TNR expansion-induced neurodegeneration. In this study,
we further demonstrated that BER of a DNA base lesion in
a hairpin loop resulted in removal of the hairpin through the
coordination among APE1 3′-5′ exonuclease activity, FEN1
flap cleavage activity and LIG I activity, indicating that the
removal of a TNR hairpin via the coordination among ma-
jor BER enzymes during BER in a hairpin loop also serves
as one of the mechanisms that shortens expanded TNR
tracts. Our results suggest that multiple mechanisms under-
lie the shortening of expanded TNR tracts induced by ox-
idative or alkylating DNA damage via BER as a potential
therapy for TNR expansion-related neurodegenerative dis-
eases.
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