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Much evidence has now accumulated demonstrating and quantifying the extent of shared
regional brain activation for observation and execution of speech. However, the nature of
the actual networks that implement these functions, i.e., both the brain regions and the
connections among them, and the similarities and differences across these networks has
not been elucidated.The current study aims to characterize formally a network for observa-
tion and imitation of syllables in the healthy adult brain and to compare their structure and
effective connectivity. Eleven healthy participants observed or imitated audiovisual syllables
spoken by a human actor. We constructed four structural equation models to characterize
the networks for observation and imitation in each of the two hemispheres. Our results
show that the network models for observation and imitation comprise the same essential
structure but differ in important ways from each other (in both hemispheres) based on
connectivity. In particular, our results show that the connections from posterior superior
temporal gyrus and sulcus to ventral premotor, ventral premotor to dorsal premotor, and
dorsal premotor to primary motor cortex in the left hemisphere are stronger during imita-
tion than during observation. The first two connections are implicated in a putative dorsal
stream of speech perception, thought to involve translating auditory speech signals into
motor representations. Thus, the current results suggest that flow of information during
imitation, starting at the posterior superior temporal cortex and ending in the motor cortex,
enhances input to the motor cortex in the service of speech execution.

Keywords: speech, language, mirror neuron, structural equation modeling, effective connectivity, action observa-

tion, ventral premotor cortex, brain imaging

INTRODUCTION
In everyday communication, auditory speech is accompanied by
visual information from the speaker, including movements of the
lips, mouth, tongue, and hands. Observing these motor actions
improves speech perception, particularly under noisy conditions
(MacLeod and Summerfield, 1987) or when the auditory signal is
degraded (Sumby and Pollack, 1954; Ross et al., 2007). One puta-
tive neural mechanism postulated to account for this phenomenon
is observation–execution matching, whereby observed actions (e.g.,
oral motor actions) are matched by the perceiver to a repertoire of
previously executed actions (i.e., previous speech). Support for this
matching hypothesis comes from recent studies showing that the
brain areas active during action observation and action execution
contain many shared components, and that such overlap exists for
movements of the finger, hand, and arm (e.g., Tanaka and Inui,
2002; Buccino et al., 2004b; Molnar-Szakacs et al., 2005), as well as
those of the mouth and lips during speech (Fadiga et al., 1999; Wil-
son et al., 2004; Skipper et al., 2005, 2007; D’Ausilio et al., 2011).
Although these previous studies demonstrate both commonal-
ties and differences in regional brain activation for observation
and execution, they do not characterize the networks that imple-
ment these functions in terms of effective connectivity, i.e., the
functional influence of one region over those with which it is

anatomically connected. With such network descriptions, as we
elucidate here, it is possible to show the quality and degree to
which functional brain circuits for observation and execution are
intertwined, and thus to test the degree of functional overlap (or
lack thereof) related to the interactions established by the activated
brain regions.

Studies aiming to characterize the neural mechanisms for
observation and imitation of speech have used advanced brain
imaging techniques and have shown that some similar brain
regions are activated during the two tasks, particularly in motor
regions involved in speech [i.e., ventral premotor cortex (vPM) and
adjacent pars opercularis of the inferior frontal gyrus]. Although
the pars opercularis has been traditionally thought to be critical
for speech production (Geschwind, 1970; Ojemann et al., 1989),
an increasing number of studies have shown that the underlying
implementation of this function may be integrated in a multi-
modal fashion with visual (MacSweeney et al., 2000; Hasson et al.,
2007) and audiovisual speech perception (Skipper et al., 2005,
2007). For example, silent lip-reading increases brain activity bilat-
erally in the premotor cortex and Broca’s area (particularly pars
opercularis and its homolog; MacSweeney et al., 2000), and acti-
vation in left pars opercularis is associated with individual differ-
ences in the integration of visual and auditory speech information
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(Hasson et al., 2007). In macaque, related areas appear to critical
for integration of parietal sensory–motor signals with higher-
order information originating from multiple frontal areas, with
information shared across adjacent areas (Gerbella et al., 2011).

Both passive listening to monosyllables and production of the
same syllables leads to overlapping activation in a superior portion
of the vPM (Wilson et al., 2004). The time course of activation
on a related task – observing and imitating lip forms – succes-
sively incorporates the occipital cortex, superior temporal region,
inferior parietal lobule, inferior frontal, and ultimately the pri-
mary motor cortex, with stronger activation during imitation
than observation (Nishitani and Hari, 2002). Using audiovisual
stimuli, we previously showed observation/execution overlap in
posterior superior temporal cortices, inferior parietal areas, pars
opercularis, premotor cortices, primary motor cortex, subcentral
gyrus and sulcus, insula, and cerebellum (Skipper et al., 2007).
Overall, a number of studies have reported engagement of speech-
motor regions in visual (MacSweeney et al., 2000; Nishitani and
Hari, 2002), auditory (Fadiga et al., 2002; Wilson et al., 2004;
Tettamanti et al., 2005; Mottonen and Watkins, 2009; Sato et al.,
2009; D’Ausilio et al., 2011; Tremblay et al., 2011), and audiovi-
sual speech perception (Campbell et al., 2001; Fadiga et al., 2002;
Calvert and Campbell, 2003; Paulesu et al., 2003; Watkins et al.,
2003; Skipper et al., 2005, 2006, 2007).

The consistent activation of the pars opercularis, inferior pari-
etal lobule, and vPM in studies of speech perception and imitation
is predicted by several related accounts of audiovisual speech per-
ception and production, and the relation between them. One set
of accounts has emphasized the contribution of motor cortex to
speech perception during audiovisual language comprehension
(see Schwartz et al., 2012 for review). An influential perspective
from this vantage point argues that motor cortex activation in
speech perception is the product of “direct matching” of a per-
ceived action with the observer’s previous motor experience with
that action (Rizzolatti et al., 2001). This view further hypothe-
sizes that such matching is accomplished, at least in part, by a
special class of neurons, called “mirror neurons.” Mirror neurons
are sensory–motor neurons, originally characterized from record-
ings in area F5 of the vPM of the macaque brain, that discharge
during both observation and execution of the same goal-oriented
actions (Fadiga et al., 1995; Strafella and Paus, 2000; Rizzolatti
et al., 2001). Mirror neurons have also been identified in the rostral
part of the inferior parietal cortex (areas PF and PFG) in macaque
(Fogassi et al., 2005; Fabbri-Destro and Rizzolatti, 2008; Rozzi
et al., 2008; for review, see Cattaneo and Rizzolatti, 2009). Mirror
neurons have been found in the macaque for both oral actions
and manual actions, and human imaging studies have demon-
strated task-dependent functional brain activation to observation
and execution that fits this pattern and suggests that mirror neu-
rons may also exist in the human (Buccino et al., 2001; Grezes
et al., 2003; for review, see Buccino et al., 2004a). Within F5, the
mirror neurons are located primarily in the caudal sector in the
cortical convexity of F5 (area F5c).

Visual action information from STS appears to take two dif-
ferent pathways to the frontal lobe, with distinct projections first
to the parietal lobe and then to areas F5c and F5ab of the infe-
rior frontal lobe. One route begins in the upper bank of the STS,

and projects to PF/PFG in the inferior parietal region (Kurata,
1991; Rizzolatti and Fadiga, 1998; Nelissen et al., 2011), which cor-
responds roughly to the human supramarginal gyrus, and then
projects to premotor area F5c. This pathway appears to empha-
size information about the agent and the intentions of the agent,
and comprises the parieto-frontal mirror circuit involved in visual
transformation for grasping (Jeannerod et al., 1995; Rizzolatti and
Fadiga, 1998). The other pathway begins on the lower bank of STS,
and connects to the frontal region F5ab via the IPS (Luppino et al.,
1999; Borra et al., 2008; Nelissen et al., 2011), probably subregion
AIP, whereas the second emphasizes information about the object.

We recently observed a related, but topographically differ-
ent, organization in the human PMv, with a ventral PMv sector
containing neurons with mirror properties, and a dorsal PMv sec-
tor containing neurons with canonical properties (Tremblay and
Small, 2011).

It is not known if motor cortical regions are necessary for speech
perception (Sato et al., 2008; D’Ausilio et al., 2009; Tremblay et al.,
2011) or are facilitatory,playing a particularly important role in sit-
uations of decreased auditory efficiency (e.g., hearing loss, noisy
environment; Hickok, 2009; Lotto et al., 2009). In either case, brain
networks that include frontal and parietal motor cortical regions
are activated during speech perception, and may represent a phys-
iological mechanism by which brain circuits for motor execution
aid in the understanding of speech. One way this could occur
is by “direct matching” (Rizzolatti et al., 2001; Gallese, 2003), in
which an individual recognizes speech by mapping perceptions
onto motor representations using a sensory–motor circuit includ-
ing posterior inferior frontal/ventral premotor, inferior parietal,
and posterior superior temporal brain regions (Callan et al., 2004;
Guenther, 2006; Guenther et al., 2006; Skipper et al., 2007; Dick
et al., 2010).

Although these prior studies demonstrate participation of these
visuo-motor regions in speech perception, there does not yet exist a
characterization of the organization of these regions into an effec-
tively connected network relating speech production with speech
perception. In this paper, we describe such a network organiza-
tion, and show the relation between the human effective network
for observing speech (without a goal of execution) and imitating
speech (observing with a goal of execution and then executing).
Specifically, we present a formal structural equation (effective con-
nectivity) model of the neural networks used for observation and
imitation of audiovisual syllables in the normal state, and com-
pare the structure and effective connectivity of observation and
imitation networks in both left and right hemispheres.

In investigating these questions, we have three hypotheses. (i)
First, we postulate a gross anatomical similarity between the net-
works for observation and imitation, i.e., optimal models of the
raw imaging data can be described with a core of similar nodes
(regions), since there will be overlapping regional activation dur-
ing both observation and imitation. (ii) Second, we suggest that the
effective connections within the network will be of approximately
equal strength, particularly those with larger motor biases, such
as the connection between the inferior frontal/ventral premotor
regions and the inferior parietal regions. (iii) Third, we expect that
the networks with the best fit to the data will differ between the left
and right hemispheres for both observation and imitation, based
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on the postulated left-hemispheric bias for auditory language pro-
cessing (Hickok and Poeppel, 2007). Further, based on previous
findings in speech perception and auditory language understand-
ing (e.g., Mazoyer et al., 1993; Binder et al., 1997) and imitation
(e.g., Saur et al., 2008), we expect stronger effective connectivity
among relevant regions in the left hemisphere (LH) during imi-
tation compared to observation since the former requires speech
output (e.g., see Nishitani and Hari, 2002 for a discussion).

To test these three hypotheses, we focused on six regions that
have been shown in previous studies to be involved in speech per-
ception. These regions include (i) vPM and inferior frontal gyrus
(combined region); (ii) inferior parietal lobule (including intra-
parietal sulcus); (iii) primary motor and sensory cortices (M1S1);
(iv) dorsal premotor cortex (dPM); (v) posterior superior tempo-
ral gyrus and sulcus (combined region); and (vi) anterior superior
temporal gyrus and sulcus (combined region).

MATERIALS AND METHODS
PARTICIPANTS
Eleven adults (seven females, mean age = 24 ± 5) participated.
All were right handed as assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971), with no history of neurological or psy-
chiatric illness. Participants gave written informed consent and
the Institutional Review Board of the Biological Sciences Division
of The University of Chicago approved the study.

STIMULI AND TASK
Participants performed two tasks. In the Observation task, partic-
ipants passively watched and listened to a female actress (filmed
from neck up) articulating four syllables with different articulatory
profiles in terms of lip and tongue movements: /pa/, /fa/, /ta/, and
/tha/. In the Imitation task, participants were asked to say the syl-
lable out loud immediately after observing the same actress. Each
syllable was presented for 1.5 s. The Observation run was 6′30′′
(6 minutes and 30 seconds) in duration (260 whole-brain images)
and the Imitation run lasted 12′30′′ (12 minutes and 30 seconds)
(500 whole-brain images). Each run contained a total of 120 stim-
uli (30 stimuli for each syllable). In each of these runs, stimuli were
presented in a randomized event-related manner with a variable
interstimulus interval (ISI; minimum ISI for Observation = 0 s;
minimum ISI for Imitation = 1.5 s, maximum ISI = 12 s for both
runs). The ISI formed the baseline for computation of the hemo-
dynamic response. Participants viewed the video stimuli through
a mirror attached to the head coil that allowed them to see a screen
at the end of the scanning bed. The audio track was simultaneously
delivered to participants at 85 dB SPL via headphones containing
MRI-compatible electromechanical transducers (Resonance Tech-
nologies, Inc., Northridge, CA, USA). Before the beginning of the
experiment, participants were trained inside the scanner with a set
of four stimuli to ensure they understood the tasks and could hear
properly the voice of the actress.

IMAGING AND DATA ANALYSIS
Functional imaging was performed at 3 T (TR = 1.5 s; TE = 25 ms;
FA = 77˚; 29 axial slices; 5 mm × 3.75 mm × 3.75 mm voxels) on
a GE Signa scanner (GE Medical Systems, Milwaukee, WI, USA)
using spiral BOLD acquisition (Noll et al., 1995). A volumetric

T1-weighted inversion recovery spoiled grass sequence (120 axial
slices, 1.5 mm × 0.938 mm × 0.938 mm resolution) was used to
acquire structural images on which anatomical landmarks could
be found and functional activation maps could be superimposed.

DATA ANALYSIS
Preprocessing and identification of task-related activity
Functional image preprocessing for each participant consisted of
three-dimensional motion correction using weighted least-squares
alignment of three translational and three rotational parameters,
as well as registration to the first non-discarded image of the
first functional run, and to the anatomical volumes (Cox and
Jesmanowicz, 1999)1. The time series were linearly detrended
and despiked, the impulse response function was estimated using
deconvolution, and analyzed statistically using multiple linear
regression. The two principal regressors were for the Observation
task and the Imitation task. Nine sources of non-specific variance
were removed by regression, including six motion parameters,
the signal averaged over the whole-brain, the signal averaged
over the lateral ventricles, and the signal averaged over a region
centered in the deep cerebral white matter. The regressors were
converted to percent signal change values relative to the baseline,
and significantly activated voxels were selected after correction for
multiple comparisons using false discovery rate (FDR; Benjamini
and Hochberg, 1995; Genovese et al., 2002) with a whole-brain
alpha of p < 0.05.

Whole-brain group analysis of condition differences
A group analysis was conducted on the whole-brain to determine
whether there was a significant group level activation relative to a
resting baseline, and to compare condition differences at the group
level. We conducted one-sample t tests to assess activation relative
to zero, and dependent paired-sample t tests to assess condition
differences. These were computed on a voxel-wise basis using the
normalized regression coefficients as the dependent variable. To
control for multiple comparisons, we used the FDR procedure
(p < 0.05).

Network analysis using structural equation modeling
The primary analysis was a network analysis using SEM (McIntosh,
2004), which was performed using AMOS software (Arbuckle,
1989), which can be used to model fMRI data from both block and
event-related designs (Gates et al., 2011). We first specified a theo-
retical anatomical model, which consisted of the regions compris-
ing the nodes of the network, and the directional connections (i.e.,
paths) among them. Our hypotheses focused on six anatomical
regions, identified on each individual participant. The regions of
the model, which are specified further in Table 1, included M1S1,
dPM, vPM including pars opercularis of the inferior frontal gyrus
and the inferior portion of the precentral sulcus and gyrus, inferior
parietal lobule (IP) including the intraparietal sulcus, posterior
superior temporal gyrus and sulcus (pST), and anterior supe-
rior temporal gyrus and sulcus (aST). Connections were specified
with reference to known macaque anatomical connectivity (e.g.,

1http://afni.nimh.nih.gov/afni/
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Table 1 | Anatomical description of the cortical regions of interest.

ROI Anatomical structure Brodmann’s area Delimiting landmarks

IFGOp/PMv Pars opercularis of the inferior frontal gyrus, inferior

precentral sulcus, and inferior precentral gyrus

6, 44 A = anterior vertical ramus of the sylvian fissure
P = central sulcus

S = inferior frontal sulcus, extending a horizontal plane

posteriorly across the precentral gyrus

I = anterior horizontal ramus of the sylvian fissure to the

border with insular cortex

PMd Pars opercularis of the inferior frontal gyrus, inferior

precentral sulcus, and inferior precentral gyrus

6 A = vertical plane through the anterior commissure
P = central sulcus

S = medial surface of the hemisphere

I = inferior frontal sulcus, extending a horizontal plane

posteriorly across the precentral gyrus

IP Supramarginal gyrus; angular gyrus; intraparietal

sulcus

39, 40 A = postcentral sulcus
P = sulcus intermedius secundus

S = superior parietal gyrus

I = horizontal posterior segment of the superior temporal

sulcus

STa Anterior portion of the superior temporal gyrus,

superior temporal sulcus, and planum polare

22 A = inferior circular sulcus of insula
P = a vertical plane drawn from the anterior extent of the

transverse temporal gyrus

S = anterior horizontal ramus of the sylvian fissure

I = middle temporal gyrus

STp Posterior portion of the superior temporal gyrus,

superior temporal sulcus, and planum temporale

22, 42 A = a vertical plane drawn from the anterior extent of the

transverse temporal gyrus

P = angular gyrus

S = supramarginal gyrus

I = middle temporal gyrus

Central sulcus; postcentral gyrus 1, 2, 3, 4 A = precentral gyrus

P = postcentral sulcus

S = medial surface of the hemisphere

I = parietal operculum

A, anterior; P, posterior; S, superior; I, inferior.

Petrides and Pandya, 1984; Matelli et al., 1986; Seltzer and Pandya,
1994; Rizzolatti and Matelli, 2003; Schmahmann et al., 2007)

Definition of these regions on each individual participant
was obtained using the automated parcelation procedure in
Freesurfer2. Cortical surfaces were inflated (Fischl et al., 1999a)
and registered to a template of average curvature (Fischl et al.,
1999b). The surface representations of each hemisphere of each
participant were then automatically parcelated into regions (Fis-
chl et al., 2004). Small modifications to this parcelation were made
manually (see Table 1 for anatomical definition).

For SEM, we first re-sampled the (rapid event-related) time
series to enable assessment of variability and thus quantification
of goodness of fit. We first obtained time series from the peak
voxel in each ROI (voxel associated with the highest t value from
all active voxels; corrected FDR p < 0.05). The peak voxel approach
was chosen because it has been shown empirically in comparison
with other approaches to result in robust models across individual
participants contributing to a group model (Walsh et al., 2008). We

2http://surfer.nmr.mgh.harvard.edu

then re-sampled these time series (260 and 500 time points for the
Observation and Imitation conditions, respectively) down to 78 in
the LH and 77 points in the RH using a locally weighted scatterplot
smoothing (LOESS) method. In this method, each re-sampled data
point is estimated with a weighted least-squares function, giving
greater weight to actual time points near the point being estimated,
and less weight to points farther away (Cleveland and Devlin,
1988). Non-significant Box’s M tests indicated no differences in
the variance–covariance structure of the re-sampled and original
data. The SEM analysis was conducted on these re-sampled time
series.

To specify a theoretical model constrained by known anatomy,
and to determine whether it was able to reproduce the observed
data, we used maximum likelihood estimation. We first estimated
the path coefficients based on examination of the interregional
correlations, which were used as starting values to facilitate maxi-
mum likelihood estimation (McIntosh and Gonzalez-Lima, 1994).
We assessed the difference between the predicted and the observed
solution using the stacked model (multiple group) approach
(Gonzalez-Lima and McIntosh, 1994; McIntosh and Gonzalez-
Lima, 1994; McIntosh et al., 1994). If the χ2 statistic characterizing
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the difference between the models in not significant, then the null
hypotheses (i.e., that there is no difference between the predicted
and the observed data) should be retained, and the model rep-
resents a good fit. Note that in cases where two models have
different degrees of freedom, missing nodes are included with
random–constant time series and its connections are added to the
less specified model with connection strength of zero to permit
comparison (Solodkin et al., 2004).

RESULTS
WHOLE-BRAIN ANALYSIS: ACTIVATION COMPARED TO RESTING
BASELINE AND ACROSS CONDITIONS
Patterns of activation in Imitation and Observation conditions
were quite similar, with activation in the occipital cortex, anterior
and posterior superior temporal regions, inferior frontal gyrus,
and primary sensory–motor cortex bilaterally. All activations were
of higher volume and intensity during Imitation compared to
Observation (see Table 2 for the quantitative data). Activation
during Imitation but not Observation extended to anterior parts
of the IFG (i.e., pars orbitalis) bilaterally. The activation profile
from a representative participant is shown in Figure 1.

STRUCTURAL EQUATION MODELS: MODELS OF OBSERVATION AND
IMITATION IN THE LEFT HEMISPHERE
The predicted model for the LH fit the data for both Observa-
tion and Imitation (for Observation: χ2 = 1.8, df = 1, p = 0.18; for
Imitation χ2 = 0.01, df = 1, p = 0.92; see Figure 2). The strongest
effective connections (EF > 0.4) for both Observation and Imi-
tation models included those from pST to IP (0.60, 0.72, in
Observation and Imitation, respectively), from IP to vPM (0.63,
0.47, respectively), from vPM to M1S1 (0.81, 0.73), and from pST
to aST (0.54, 0.50, respectively).

There were also important differences based on compar-
ison with the stacked model approach (Gonzalez-Lima and
McIntosh, 1994; McIntosh and Gonzalez-Lima, 1994; McIntosh
et al., 1994). Overall, the models for Observation and Imita-
tion differed (χ2 = 55.2, df = 18, p < 0.0001), suggesting differ-
ences in the magnitude of some of the path coefficients of

Table 2 | Average number of active voxels in each of the regions of

interest (FDR corrected p < 0.05).

Observation Imitation

Region LH RH LH RH

IP 32 36 79 79

M1S1 5 2 52 47

pST 22 53 38 67

aST 16 20 36 37

vPM 25 25 95 67

dPM 17 15 78 60

LH, left hemisphere; RH, right hemisphere; IP, inferior parietal lobule; M1S1, pri-

mary motor/somatosensory cortex; pST, posterior superior temporal gyrus and

sulcus; aST, anterior superior temporal gyrus and sulcus; vPM, ventral premo-

tor cortex; dPM, dorsal premotor cortex. Anatomical definition of the regions is

provided inTable 1.

the models. Although many of the coefficients did not differ
(Figure 3; including IP → vPM, pST → aST, pST → IP, aST → IP,
IP → dPM, IP → M1S1, vPM → M1S1), connections from pST to
vPM (χ2 = 11.7, df = 1, p < 0.001), vPM to dPM (χ2 = 5.2, df = 1,
p < 0.05), and dPM to M1S1 (χ2 = 14.0, df = 1, p < 0.001) were
stronger during Imitation than during Observation (Figure 4).

STRUCTURAL EQUATION MODELS: MODELS OF OBSERVATION AND
IMITATION IN THE RIGHT HEMISPHERE
Connectivity models with similar nodes characterized both
the Observation and Imitation conditions (for Observation:
χ2 = 2.5, df = 1, p = 0.11; for Imitation: χ2 = 3.1, df = 2, p = 0.21;
Figure 2). As in the case of the LH, there were differences in the
magnitude of the path coefficients across conditions (χ2 = 174.3,
df = 17, p < 0.001). As can be seen from Figure 3, some of the
connections are different during Imitation from Observation:
IP → vPM (χ2 = 15.4, df = 1, p < 0.01), pST → vPM (χ2 = 7.4,
df = 1, p < 0.01), pST → M1S1 (χ2 = 7.2, df = 1, p < 0.01),
vPM → dPM (χ2 = 11.5, df = 1, p < 0.001), and vPM → M1S1
(χ2 = 28.5, df = 1, p < 0.001). In contrast with the LH, some of the
connections were different during Observation from Imitation:
pST → IP (χ2 = 14.4, df = 1, p < 0.001), pST → dPM (χ2 = 4.5,
df = 1, p < 0.05), and IP → M1S1 (χ2 = 12.2, df = 1, p < 0.001).

STRUCTURAL EQUATION MODELS: MODELS OF IMITATION IN LH VS RH
The models for Imitation differed across hemispheres (χ2 = 84.2,
df = 18, p < 0.0001). Specifically, three connections were dif-
ferent in the LH compared to the RH: pST → IP (χ2 = 16.8,
df = 1, p < 0.001), vPM → M1S1 (χ2 = 17.7, df = 1, p < 0.001),
aST → dPM (χ2 = 7, df = 1, p < 0.05). No connections were
different in the RH from the LH.

STRUCTURAL EQUATION MODELS: MODELS OF OBSERVATION IN THE
LH VS RH
The models for Observation differed across hemispheres
(χ2 = 50.8, df = 16, p < 0.001). Specifically, three connections
were different in the LH than the RH: IP → vPM (χ2 = 13.8,
df = 1, p < 0.001), IP → dPM (χ2 = 4.6, df = 1, p < 0.05), and
pST → M1S1 (χ2 = 6.7, df = 1, p < 0.01).

DISCUSSION
The present study examined three hypotheses regarding effective
connectivity among brain regions important for observation and
imitation of audiovisual syllables in the healthy adult. In our first
hypothesis, we predicted structural similarity (i.e., similar active
regions) across conditions, and our findings support this: The net-
works for Observation and Imitation incorporate the same nodes
(brain regions). In our second hypothesis, we predicted similarity
in regional interconnectivity across Observation and Imitation,
and found partial support for this: while we did find considerable
similarity across Imitation and Observation (e.g., see Figure 4),
we also found several differences in connectivity in both hemi-
spheres. Interestingly, the effective connectivity differences are not
restricted to connections between historically identified “motor”
areas (e.g., the connection between ventral premotor to dorsal pre-
motor), as would be expected when motor execution is necessary
for Imitation but not for Observation. While we did find this,
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FIGURE 1 | Activation during observation and imitation. Voxels were selected using general linear model after adjusting for false positives using false
discovery rate (p < 0.05). The figure shows the data obtained from a representative single subject.

FIGURE 2 | Observation and Imitation models in both the LH

and RH with connections between pST, aST, IP, vPM, dPM, and

M1S1. IP, inferior parietal lobule. M1S1, primary
motor/somatosensory cortex; pST, posterior superior temporal

gyrus and sulcus; aST, anterior superior temporal gyrus and sulcus;
vPM, ventral premotor cortex; dPM, dorsal premotor cortex; M1/S1,
primary motor/somatosensory cortex. Anatomical definitions of the
regions are provided inTable 1.
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FIGURE 3 | Comparison between the models of observation

and imitation in LH and in the RH. The connections between
pST, aST, IP, vPM, dPM, and M1S1 showing stronger connection
weights for Imitation vs Observation, and stronger connection

weights for Observation vs Imitation. The flow of information in
the LH might suggest a pathway to execute speech during
Imitation. For a key to abbreviations, please see the legend to
Figure 2 andTable 1.

FIGURE 4 | Common pathways for observation and imitation in the

LH. Observation and Imitation models in the LH with connections between
pST, aST, IP, vPM, dPM, and M1S1. Black arrows show the connections that
did not differ statistically across the Observation and Imitation models. For
a key to abbreviations, please see the legend to Figure 2 andTable 1.

we also found differences in sensory–motor interactions (e.g., the
connection between posterior superior temporal region and vPM).
In our third hypothesis, we predicted stronger effective connectiv-
ity during Imitation compared to Observation, particularly in the
LH,since the former requires speech output and the latter does not.
For the “dorsal stream” pathway connecting pST → vPM → dPM
and M1/S1, we found with stronger connectivity for Imitation
compared to Observation in both hemispheres. Additional differ-
ences in connectivity were found across the two conditions in the
right hemisphere (RH).

It is important to note that these models reflect effective con-
nectivity and not anatomical connectivity. Thus, whereas we show
the presence of overlapping networks for Observation and Imi-
tation, characterized by similar anatomical regions and similar
statistical covariation among activity in these regions, we cannot

make conclusions about brain anatomy, i.e., the white matter
connections among these regions. SEM does not assess anatomi-
cal pathways directly, but rather statistical covariance in the BOLD
response. Nevertheless, these networks present strong evidence on
effective connectivity, which incorporates an a priori anatomical
model (based largely on what is known about connectivity in the
non-human primate), but still represents statistical covariation
and not explicit anatomical evidence, supporting a human system
for observation–imitation matching in speech perception.

OBSERVATION AND IMITATION IN THE LH
The results we report with respect to BOLD signal amplitude repli-
cate previous studies in audiovisual speech perception that show
brain activation in regions involved in planning and execution of
speech (Calvert et al., 2000; Callan et al., 2003, 2004; Calvert and
Campbell, 2003; Jones and Callan, 2003; Sekiyama et al., 2003;
Wright et al., 2003; Miller and D’Esposito, 2005; Ojanen et al.,
2005; Skipper et al., 2005, 2007; Pekkola et al., 2006; Pulvermuller
et al., 2006; Bernstein et al., 2008). Specifically, we showed that
several regions were active during both speech production and
speech perception (Table 2; cf. (Pulvermuller et al., 2006; Skipper
et al., 2007). These regions were also activated in an event-related
MEG study (Nishitani and Hari, 2002), which showed temporal
progression of activity for both observation and imitation (of sta-
tic lip forms) from the occipital cortex to the pST, the IP, IFG,
to the sensory–motor cortex (M1S1). In our current work, we
elaborate on these activation studies by elucidating the functional
relationships between the relevant regions, i.e., showing the basic
organization of the network in terms of effective connections and
relative strengths across conditions and hemispheres.

The novel contribution of the present work is a characterization
of the networks for observation and imitation of dynamic speech
stimuli, and we found that the functional interactions among brain
regions that were active during Observation and Imitation share
both similarities and differences. Figure 4 illustrates the connec-
tions with similar strength during both conditions in the LH. The
current models are consistent with the time course demonstrated
by prior MEG results (Nishitani and Hari, 2002) and with pre-
vious models of effective connectivity during the perception of
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intelligible speech (between superior temporal and inferior frontal
regions; Leff et al., 2008) and speech production (between inferior
frontal/ventral premotor regions and primary motor cortex during
production; Eickhoff et al., 2009). We consider these similarities
below.

The models presented here include integral connections from
pST → IP, from IP → IFG/vPM, and from IFG/vPM → M1S1.
Both pST and IP have been implicated in speech perception, and
both are activated during acoustic and phonological analyses of
speech (e.g., Binder et al., 2000; Burton et al., 2000; Wise et al.,
2001). pST is activated by observation of biologically relevant
movements including mouth, hands, and limb movements (Alli-
son et al., 2000). This model represents a hierarchical network from
the sensory temporal and parietal lobules, to inferior frontal and
ventral premotor regions, to execution by primary motor cortex. In
fact, it is quite similar, in many respects, to the results presented by
Nishitani and Hari (2002) in their MEG study of observation and
imitation of static speech stimuli. These authors identified a flow of
information from posterior superior temporal sulcus, to inferior
parietal lobule, to inferior frontal cortex, to primary motor cortex.

Our results are also consistent with those of Leff et al.
(2008), who investigated word-level language comprehension, and
exhaustively constructed all models of effective connectivity across
the posterior superior temporal, anterior superior temporal, and
inferior frontal gyrus. They found that the optimal model exhib-
ited a “forward” architecture originating in the posterior superior
temporal sulcus, with a directional projection to the anterior supe-
rior temporal sulcus, and a subsequent termination in the anterior
inferior frontal gyrus. Notably, unlike the model proposed by
Nishitani and Hari (2002), Leff et al.s’ (2008) model of temporal–
inferior frontal connectivity did not pass through the inferior
parietal lobule. We found a similar pathway, in addition to the
“forward” architecture from pST → IP → vPM pathway, in which
there was significant directional connectivity from pST → aST.
We showed that this directional pST → aST connection is present
during both Observation and Imitation. This finding provides
support for the notion that shared network interactions dur-
ing production and perception allow for the development of
and maintenance of speech representations, in particular between
anterior and posterior superior temporal regions typically empha-
sized during speech perception and comprehension. However,
the fact that we did not find strong connectivity between the
aST and IFG/vPM during Imitation suggests the core interactions
shared by Observation and Imitation proceed through the“dorsal”
pST → IP → IFG/vPM → M1/S1 pathway identified by Nishitani
and Hari (2002).

Of particular interest is that the connection strengths from IP
to IFG/vPM, and from IFG/vPM to M1S1 were not significantly
different across conditions. Interactions between IP and IFG/vPM
have been shown to be important for speech production, as electri-
cal stimulation of both of these structures and the fiber pathways
connecting them impairs speech production (Duffau et al., 2003).
Further, both of these regions are sensitive to the incongruence
between visual and auditory speech information during audiovi-
sual speech perception (Hasson et al., 2007; Bernstein et al., 2008).
In conjunction with the primary sensory–motor cortex, the vPM,
and posterior inferior frontal gyrus are also necessary for speech

production (Ojemann et al., 1989; Duffau et al., 2003), and there
is evidence that even perception of audiovisual and auditory-only
speech elicits activity in both premotor and primary motor cortices
(Pulvermuller et al., 2006; Skipper et al., 2007). Thus, in addition to
the overlapping regional activation for observation and imitation
of audiovisual speech, we show similar connectivity from IP to
IFG/vPM and from IFG/vPM to M1S1 during these tasks, suggest-
ing similar interactivity among these regions during perception
and production of speech. This finding suggests that the flow of
information during speech perception involves a motor execution
circuit, and this motor circuit (IP – IFG/vPM – M1S1) supporting
speech production relies on the relevant sensory experience.

Although there are similarities, the networks implementing
perception and production of speech are dissociated by stronger
effective connectivity in the LH for Imitation compared to Obser-
vation (Figure 3). Connections that differed included those from
pST to vPM, vPM to dPM, and dPM to M1S1, all of which
were stronger during Imitation than during Observation. The first
two connections (pST → vPM, vPM → dPM) are implicated in
Hickok and Poeppel’s (2007) “dorsal stream”of speech perception.
By their account, the dorsal stream helps translate auditory speech
signals into motor representations in the frontal lobe, which is
essential for speech development and normal speech production
(Hickok and Poeppel, 2007). Our results are consistent with this
view by pointing to a partially overlapping network for Observa-
tion and Imitation as part of a larger auditory–motor integration
circuit. The presence of a connection from dPM to M1S1 that
is stronger during Imitation than Observation represents a novel
finding of potential relevance, suggesting a flow of information
during Imitation from pST to vPM, vPM to dPM, and dPM to
M1S1, which provides stronger input to M1S1 in triggering speech
execution.

The LH models also differed across tasks by the inclusion of a
negative influence from dPM to M1S1 during Observation that
was positive during Imitation. Such negative influence in the
motor system has been previously shown in a motor imagery
task, compared to overt motor execution (Solodkin et al., 2004).
In that study participants were asked to execute finger–thumb
opposition movement or to imagine it kinetically (with no overt
motor output). In the model that describes the execution of move-
ment, dPM had positive influence on M1S1 whereas during kinetic
imagery M1S1 received strong negative influence. This is consis-
tent with the recent argument that action observation involves
some sort of covert simulation (Lamm et al., 2007) that has sim-
ilarities with kinetic motor imagery (Fadiga et al., 1999; Solodkin
et al., 2004). Although the precise nature of such a mechanism
remains elusive, and appears not to make use of identical cir-
cuits (Tremblay and Small, 2011), the present network models,
with their shared but distinctive features, suggest a more formal
notion of what such “simulation” might mean in terms of network
dynamics.

Our data also support the notion that imitation of speech in
the human brain involves a hierarchical flow of information from
pST to IP to vPM through the “dorsal stream.” As noted, Nishitani
and Hari (2002) found evidence for this pathway during obser-
vation and imitation of static speech, and Iacoboni (2005) called
this small circuit the “minimal neural architecture for imitation.”
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By this account, the STS sends a visual description of the observed
action to be imitated to posterior parietal mirror neurons, then
augments it with additional somatosensory input before sending
to inferior frontal mirror neurons, which code for the associated
goal of the action. Efferent copies of the motor commands provid-
ing the predicted sensory output are then sent to sensory cortices
and comparisons are made between real and predicted sensory
consequences, and corrections are made prior to execution. We
have previously developed a model of speech perception based on
an analogous mechanism (Skipper et al., 2006).

Thus, our data demonstrate that the core circuit underlying
imitation of speech in the LH overlaps with that for observation,
and that this circuit is embedded in larger networks that differ sta-
tistically. This supports the view that the core circuitry of imitation
(pST, IP, vPM) in a context-dependent manner (McIntosh, 2000)
depending on the nature of the actions to be imitated (Iacoboni
et al., 2005).

OBSERVATION AND IMITATION IN THE RH
We have established similarities and differences for speech imi-
tation and observation in the LH, but how is the observation of
speech processed similarly or differently from the imitation of
speech in the RH? We first focus on the similarities across hemi-
spheres. For the pST → vPM → dPM component of a “dorsal”
pathway, both hemispheres showed stronger connectivity during
Imitation compared to Observation (turquoise in Figure 3). How-
ever, unlike in the LH, in the RH during Imitation the M1/S1
region was more influenced by activity in the vPM rather than the
dPM. Inferior parietal → vPM connectivity was also stronger dur-
ing Imitation in the RH. These results suggest strong similarities in
the pathways for speech production across hemispheres, although
there are differences, primarily in the interactions between vPM
and inferior parietal and primary motor/somatosensory regions.
Further, with the exception of some differences in premotor–
motor interactions, a dorsal stream implemented through pST–
vPM interactions appears to be a prominent component for both
Imitation and Observation in both hemispheres.

We are not making the claim that the two hemispheres are
involved in speech production in an identical manner. It is well
known that LH damage leads to more severe impairments in
speech production and articulation (Dronkers, 1996; Borovsky
et al., 2007) and there is evidence for increasing LH involvement
in speech production with development (Holland et al., 2001).
However, we do emphasize that the predominant focus of the
prior literature on LH involvement minimizes the involvement
of the RH, it ignores the fact that different regions show differ-
ent patterns of lateralization, and it does not provide a sufficient
characterization of how different regions in the speech production
network interact. For example, there are regional differences in the
developmental trajectory of lateralization for speech production.
While the left inferior frontal/vPM shows increasing lateralization
with age during speech production tasks (Holland et al., 2001;
Brown et al., 2005; Szaflarski et al., 2006), this pattern does not
hold for posterior superior temporal and inferior parietal regions,
which show a more bilateral pattern of activation (Szaflarski et al.,
2006). With respect to connectivity, despite evidence for the par-
ticipation of both hemispheres in speech production (Abel et al.,

2011; Elmer et al., 2011; see Indefrey, 2011 for review), other
effective connectivity models of speech production (e.g., Eickhoff
et al., 2009), have failed to model the connectivity of RH regions.
We have done so here, and have revealed interesting differences
in the interactions of sensory and motor regions during speech
perception and production across both hemispheres.

It is notable that the only connections in which Observation
was stronger than Imitation were found in the RH, and this pro-
vides further support for the notion that speech perception also
relies on the participation of the RH (McGlone, 1984; Boatman,
2004; Hickok and Poeppel, 2007). For the RH, our model exhibits
a similar “forward” pST → aST architecture described by Leff et al.
(2008) in their network study of speech comprehension, such that
in our study for Observation compared to Imitation activation in
the pST modulated activation in M1/S1 via IP, and in dPM both
directly and via aST. This latter connection also mirrors the pST–
aST influence from Leff and colleagues, but our results further
suggest that these interactions continue to influence nodes of the
network typically associated with motor output.

Our findings are also consistent with evidence from electrocor-
tical mapping suggesting that information transfer during speech
perception proceeds from the posterior superior temporal cortex
in both an anterior direction (to the anterior superior temporal
cortex; Leff et al., 2008) and in a posterior direction through the
inferior parietal lobe (see Boatman, 2004 for review). We sug-
gest that the modulation of premotor and motor regions via these
functional paths (pST → IP → M1/S1; and pST → aST → dPM;
pST → dPM) during Observation could reflect the modification of
speech-motor representations through perception. That is, while
to this point we have focused on action/motor influences on speech
perception, there is also evidence that speech perception shapes
articulatory/motor representations. This notion is more evident
over the course of development, where speech perception and
speech production emerge in concert over an extended period
(Doupe and Kuhl, 1999; Werker and Tees, 1999), but such influ-
ences remain a part of models of adult speech perception (e.g.,
Guenther, 2006; Guenther et al., 2006; Schwartz et al., 2012) and
have some support from functional imaging studies of the role
of the pST in the acquisition and maintenance of fluent speech
(Dhanjal et al., 2008).

This explanation requires further empirical investigation, and it
also raises the question of why such differences during Observation
and Imitation were not revealed in the LH. Functional interactions
among these regions (e.g., aST → dPM) were either not signifi-
cant in the LH, or did not differ significantly across conditions
(see Figure 4). Null findings are difficult to interpret, and we can-
not rule out the possibility that intermediate nodes that were not
modeled have an influence on the connectivity profile of these
networks. For example, although Eickhoff et al. (2009) found sig-
nificant cortico-cerebellar and cortico-striatal interactions in their
dynamic causal model of speech production, we did not model
these interactions, and this could account for the difference in the
connectivity profile across hemispheres. Alternatively, it may also
reflect that the core circuit underlying imitation and observation
of speech in the LH overlaps considerably not only in the struc-
ture of the functional connections, but also in the strength of the
interactions.
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In summary, similar, if not identical, brain networks med-
icate the observation and imitation of audiovisual syllables, sug-
gesting strong overlap in the neural implementation of speech
production and perception. The network for Imitation in par-
ticular appears to be mediated by the two cerebral hemispheres
in similar ways. In both hemispheres during both Observa-
tion and Imitation, there is significant directional connectivity
between pST → aST. However, the primary flow of audiovi-
sual speech information involves a “dorsal” pathway proceeding
from pST → IP → vPM → M1/S1, with additional modulation of
M1/S1 through dPM. The regions that appear to have mirror

properties in humans, IP and vPM, are functionally integrated
with temporal regions involved in speech perception and motor
and somatosensory regions involved in speech production, and
comprise the core of this network.
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